mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-06 12:09:26 +08:00
a616bb9450
In the existing code, when using the regset section iteration functions, the size parameter is used in different ways. With collect, size is used to create the buffer in which to write the regset. (see linux-tdep.c::linux_collect_regset_section_cb). With supply, size is used to confirm the existing regset is the correct size. If REGSET_VARIABLE_SIZE is set then the regset can be bigger than size. Effectively, size is the minimum possible size of the regset. (see corelow.c::get_core_register_section). There are currently no targets with both REGSET_VARIABLE_SIZE and a collect function. In SVE, a corefile can contain one of two formats after the header, both of which are different sizes. However, when writing a core file, we always want to write out the full bigger size. To allow support of collects for REGSET_VARIABLE_SIZE we need two sizes. This is done by adding supply_size and collect_size. gdb/ * aarch64-fbsd-tdep.c (aarch64_fbsd_iterate_over_regset_sections): Add supply_size and collect_size. * aarch64-linux-tdep.c (aarch64_linux_iterate_over_regset_sections): Likewise. * alpha-linux-tdep.c (alpha_linux_iterate_over_regset_sections): * alpha-nbsd-tdep.c (alphanbsd_iterate_over_regset_sections): Likewise. * amd64-fbsd-tdep.c (amd64fbsd_iterate_over_regset_sections): Likewise. * amd64-linux-tdep.c (amd64_linux_iterate_over_regset_sections): Likewise. * arm-bsd-tdep.c (armbsd_iterate_over_regset_sections): Likewise. * arm-fbsd-tdep.c (arm_fbsd_iterate_over_regset_sections): Likewise. * arm-linux-tdep.c (arm_linux_iterate_over_regset_sections): Likewise. * corelow.c (get_core_registers_cb): Likewise. (core_target::fetch_registers): Likewise. * fbsd-tdep.c (fbsd_collect_regset_section_cb): Likewise. * frv-linux-tdep.c (frv_linux_iterate_over_regset_sections): Likewise. * gdbarch.h (void): Regenerate. * gdbarch.sh: Add supply_size and collect_size. * hppa-linux-tdep.c (hppa_linux_iterate_over_regset_sections): Likewise. * hppa-nbsd-tdep.c (hppanbsd_iterate_over_regset_sections): Likewise. * hppa-obsd-tdep.c (hppaobsd_iterate_over_regset_sections): Likewise. * i386-fbsd-tdep.c (i386fbsd_iterate_over_regset_sections): Likewise. * i386-linux-tdep.c (i386_linux_iterate_over_regset_sections): Likewise. * i386-tdep.c (i386_iterate_over_regset_sections): Likewise. * ia64-linux-tdep.c (ia64_linux_iterate_over_regset_sections): Likewise. * linux-tdep.c (linux_collect_regset_section_cb): Likewise. * m32r-linux-tdep.c (m32r_linux_iterate_over_regset_sections): Likewise. * m68k-bsd-tdep.c (m68kbsd_iterate_over_regset_sections): Likewise. * m68k-linux-tdep.c (m68k_linux_iterate_over_regset_sections): Likewise. * mips-fbsd-tdep.c (mips_fbsd_iterate_over_regset_sections): Likewise. * mips-linux-tdep.c (mips_linux_iterate_over_regset_sections): Likewise. * mips-nbsd-tdep.c (mipsnbsd_iterate_over_regset_sections): Likewise. * mips64-obsd-tdep.c (mips64obsd_iterate_over_regset_sections): Likewise. * mn10300-linux-tdep.c (am33_iterate_over_regset_sections): Likewise. * nios2-linux-tdep.c (nios2_iterate_over_regset_sections): Likewise. * ppc-fbsd-tdep.c (ppcfbsd_iterate_over_regset_sections): Likewise. * ppc-linux-tdep.c (ppc_linux_iterate_over_regset_sections): Likewise. * ppc-nbsd-tdep.c (ppcnbsd_iterate_over_regset_sections): Likewise. * ppc-obsd-tdep.c (ppcobsd_iterate_over_regset_sections): Likewise. * riscv-linux-tdep.c (riscv_linux_iterate_over_regset_sections): Likewise. * rs6000-aix-tdep.c (rs6000_aix_iterate_over_regset_sections): Likewise. * s390-linux-tdep.c (s390_iterate_over_regset_sections): Likewise. * score-tdep.c (score7_linux_iterate_over_regset_sections): Likewise. * sh-tdep.c (sh_iterate_over_regset_sections): Likewise. * sparc-tdep.c (sparc_iterate_over_regset_sections): Likewise. * tilegx-linux-tdep.c (tilegx_iterate_over_regset_sections): Likewise. * vax-tdep.c (vax_iterate_over_regset_sections): Likewise. * xtensa-tdep.c (xtensa_iterate_over_regset_sections): Likewise.
479 lines
13 KiB
C
479 lines
13 KiB
C
/* Target-dependent code for GNU/Linux m32r.
|
||
|
||
Copyright (C) 2004-2018 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "gdbcore.h"
|
||
#include "frame.h"
|
||
#include "value.h"
|
||
#include "regcache.h"
|
||
#include "inferior.h"
|
||
#include "osabi.h"
|
||
#include "reggroups.h"
|
||
#include "regset.h"
|
||
|
||
#include "glibc-tdep.h"
|
||
#include "solib-svr4.h"
|
||
#include "symtab.h"
|
||
|
||
#include "trad-frame.h"
|
||
#include "frame-unwind.h"
|
||
|
||
#include "m32r-tdep.h"
|
||
#include "linux-tdep.h"
|
||
|
||
|
||
|
||
/* Recognizing signal handler frames. */
|
||
|
||
/* GNU/Linux has two flavors of signals. Normal signal handlers, and
|
||
"realtime" (RT) signals. The RT signals can provide additional
|
||
information to the signal handler if the SA_SIGINFO flag is set
|
||
when establishing a signal handler using `sigaction'. It is not
|
||
unlikely that future versions of GNU/Linux will support SA_SIGINFO
|
||
for normal signals too. */
|
||
|
||
/* When the m32r Linux kernel calls a signal handler and the
|
||
SA_RESTORER flag isn't set, the return address points to a bit of
|
||
code on the stack. This function returns whether the PC appears to
|
||
be within this bit of code.
|
||
|
||
The instruction sequence for normal signals is
|
||
ldi r7, #__NR_sigreturn
|
||
trap #2
|
||
or 0x67 0x77 0x10 0xf2.
|
||
|
||
Checking for the code sequence should be somewhat reliable, because
|
||
the effect is to call the system call sigreturn. This is unlikely
|
||
to occur anywhere other than in a signal trampoline.
|
||
|
||
It kind of sucks that we have to read memory from the process in
|
||
order to identify a signal trampoline, but there doesn't seem to be
|
||
any other way. Therefore we only do the memory reads if no
|
||
function name could be identified, which should be the case since
|
||
the code is on the stack.
|
||
|
||
Detection of signal trampolines for handlers that set the
|
||
SA_RESTORER flag is in general not possible. Unfortunately this is
|
||
what the GNU C Library has been doing for quite some time now.
|
||
However, as of version 2.1.2, the GNU C Library uses signal
|
||
trampolines (named __restore and __restore_rt) that are identical
|
||
to the ones used by the kernel. Therefore, these trampolines are
|
||
supported too. */
|
||
|
||
static const gdb_byte linux_sigtramp_code[] = {
|
||
0x67, 0x77, 0x10, 0xf2,
|
||
};
|
||
|
||
/* If PC is in a sigtramp routine, return the address of the start of
|
||
the routine. Otherwise, return 0. */
|
||
|
||
static CORE_ADDR
|
||
m32r_linux_sigtramp_start (CORE_ADDR pc, struct frame_info *this_frame)
|
||
{
|
||
gdb_byte buf[4];
|
||
|
||
/* We only recognize a signal trampoline if PC is at the start of
|
||
one of the instructions. We optimize for finding the PC at the
|
||
start of the instruction sequence, as will be the case when the
|
||
trampoline is not the first frame on the stack. We assume that
|
||
in the case where the PC is not at the start of the instruction
|
||
sequence, there will be a few trailing readable bytes on the
|
||
stack. */
|
||
|
||
if (pc % 2 != 0)
|
||
{
|
||
if (!safe_frame_unwind_memory (this_frame, pc, buf, 2))
|
||
return 0;
|
||
|
||
if (memcmp (buf, linux_sigtramp_code, 2) == 0)
|
||
pc -= 2;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
if (!safe_frame_unwind_memory (this_frame, pc, buf, 4))
|
||
return 0;
|
||
|
||
if (memcmp (buf, linux_sigtramp_code, 4) != 0)
|
||
return 0;
|
||
|
||
return pc;
|
||
}
|
||
|
||
/* This function does the same for RT signals. Here the instruction
|
||
sequence is
|
||
ldi r7, #__NR_rt_sigreturn
|
||
trap #2
|
||
or 0x97 0xf0 0x00 0xad 0x10 0xf2 0xf0 0x00.
|
||
|
||
The effect is to call the system call rt_sigreturn. */
|
||
|
||
static const gdb_byte linux_rt_sigtramp_code[] = {
|
||
0x97, 0xf0, 0x00, 0xad, 0x10, 0xf2, 0xf0, 0x00,
|
||
};
|
||
|
||
/* If PC is in a RT sigtramp routine, return the address of the start
|
||
of the routine. Otherwise, return 0. */
|
||
|
||
static CORE_ADDR
|
||
m32r_linux_rt_sigtramp_start (CORE_ADDR pc, struct frame_info *this_frame)
|
||
{
|
||
gdb_byte buf[4];
|
||
|
||
/* We only recognize a signal trampoline if PC is at the start of
|
||
one of the instructions. We optimize for finding the PC at the
|
||
start of the instruction sequence, as will be the case when the
|
||
trampoline is not the first frame on the stack. We assume that
|
||
in the case where the PC is not at the start of the instruction
|
||
sequence, there will be a few trailing readable bytes on the
|
||
stack. */
|
||
|
||
if (pc % 2 != 0)
|
||
return 0;
|
||
|
||
if (!safe_frame_unwind_memory (this_frame, pc, buf, 4))
|
||
return 0;
|
||
|
||
if (memcmp (buf, linux_rt_sigtramp_code, 4) == 0)
|
||
{
|
||
if (!safe_frame_unwind_memory (this_frame, pc + 4, buf, 4))
|
||
return 0;
|
||
|
||
if (memcmp (buf, linux_rt_sigtramp_code + 4, 4) == 0)
|
||
return pc;
|
||
}
|
||
else if (memcmp (buf, linux_rt_sigtramp_code + 4, 4) == 0)
|
||
{
|
||
if (!safe_frame_unwind_memory (this_frame, pc - 4, buf, 4))
|
||
return 0;
|
||
|
||
if (memcmp (buf, linux_rt_sigtramp_code, 4) == 0)
|
||
return pc - 4;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
m32r_linux_pc_in_sigtramp (CORE_ADDR pc, const char *name,
|
||
struct frame_info *this_frame)
|
||
{
|
||
/* If we have NAME, we can optimize the search. The trampolines are
|
||
named __restore and __restore_rt. However, they aren't dynamically
|
||
exported from the shared C library, so the trampoline may appear to
|
||
be part of the preceding function. This should always be sigaction,
|
||
__sigaction, or __libc_sigaction (all aliases to the same function). */
|
||
if (name == NULL || strstr (name, "sigaction") != NULL)
|
||
return (m32r_linux_sigtramp_start (pc, this_frame) != 0
|
||
|| m32r_linux_rt_sigtramp_start (pc, this_frame) != 0);
|
||
|
||
return (strcmp ("__restore", name) == 0
|
||
|| strcmp ("__restore_rt", name) == 0);
|
||
}
|
||
|
||
/* From <asm/sigcontext.h>. */
|
||
static int m32r_linux_sc_reg_offset[] = {
|
||
4 * 4, /* r0 */
|
||
5 * 4, /* r1 */
|
||
6 * 4, /* r2 */
|
||
7 * 4, /* r3 */
|
||
0 * 4, /* r4 */
|
||
1 * 4, /* r5 */
|
||
2 * 4, /* r6 */
|
||
8 * 4, /* r7 */
|
||
9 * 4, /* r8 */
|
||
10 * 4, /* r9 */
|
||
11 * 4, /* r10 */
|
||
12 * 4, /* r11 */
|
||
13 * 4, /* r12 */
|
||
21 * 4, /* fp */
|
||
22 * 4, /* lr */
|
||
-1 * 4, /* sp */
|
||
16 * 4, /* psw */
|
||
-1 * 4, /* cbr */
|
||
23 * 4, /* spi */
|
||
20 * 4, /* spu */
|
||
19 * 4, /* bpc */
|
||
17 * 4, /* pc */
|
||
15 * 4, /* accl */
|
||
14 * 4 /* acch */
|
||
};
|
||
|
||
struct m32r_frame_cache
|
||
{
|
||
CORE_ADDR base, pc;
|
||
struct trad_frame_saved_reg *saved_regs;
|
||
};
|
||
|
||
static struct m32r_frame_cache *
|
||
m32r_linux_sigtramp_frame_cache (struct frame_info *this_frame,
|
||
void **this_cache)
|
||
{
|
||
struct m32r_frame_cache *cache;
|
||
CORE_ADDR sigcontext_addr, addr;
|
||
int regnum;
|
||
|
||
if ((*this_cache) != NULL)
|
||
return (struct m32r_frame_cache *) (*this_cache);
|
||
cache = FRAME_OBSTACK_ZALLOC (struct m32r_frame_cache);
|
||
(*this_cache) = cache;
|
||
cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
|
||
|
||
cache->base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
|
||
sigcontext_addr = cache->base + 4;
|
||
|
||
cache->pc = get_frame_pc (this_frame);
|
||
addr = m32r_linux_sigtramp_start (cache->pc, this_frame);
|
||
if (addr == 0)
|
||
{
|
||
/* If this is a RT signal trampoline, adjust SIGCONTEXT_ADDR
|
||
accordingly. */
|
||
addr = m32r_linux_rt_sigtramp_start (cache->pc, this_frame);
|
||
if (addr)
|
||
sigcontext_addr += 128;
|
||
else
|
||
addr = get_frame_func (this_frame);
|
||
}
|
||
cache->pc = addr;
|
||
|
||
cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
|
||
|
||
for (regnum = 0; regnum < sizeof (m32r_linux_sc_reg_offset) / 4; regnum++)
|
||
{
|
||
if (m32r_linux_sc_reg_offset[regnum] >= 0)
|
||
cache->saved_regs[regnum].addr =
|
||
sigcontext_addr + m32r_linux_sc_reg_offset[regnum];
|
||
}
|
||
|
||
return cache;
|
||
}
|
||
|
||
static void
|
||
m32r_linux_sigtramp_frame_this_id (struct frame_info *this_frame,
|
||
void **this_cache,
|
||
struct frame_id *this_id)
|
||
{
|
||
struct m32r_frame_cache *cache =
|
||
m32r_linux_sigtramp_frame_cache (this_frame, this_cache);
|
||
|
||
(*this_id) = frame_id_build (cache->base, cache->pc);
|
||
}
|
||
|
||
static struct value *
|
||
m32r_linux_sigtramp_frame_prev_register (struct frame_info *this_frame,
|
||
void **this_cache, int regnum)
|
||
{
|
||
struct m32r_frame_cache *cache =
|
||
m32r_linux_sigtramp_frame_cache (this_frame, this_cache);
|
||
|
||
return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
|
||
}
|
||
|
||
static int
|
||
m32r_linux_sigtramp_frame_sniffer (const struct frame_unwind *self,
|
||
struct frame_info *this_frame,
|
||
void **this_cache)
|
||
{
|
||
CORE_ADDR pc = get_frame_pc (this_frame);
|
||
const char *name;
|
||
|
||
find_pc_partial_function (pc, &name, NULL, NULL);
|
||
if (m32r_linux_pc_in_sigtramp (pc, name, this_frame))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static const struct frame_unwind m32r_linux_sigtramp_frame_unwind = {
|
||
SIGTRAMP_FRAME,
|
||
default_frame_unwind_stop_reason,
|
||
m32r_linux_sigtramp_frame_this_id,
|
||
m32r_linux_sigtramp_frame_prev_register,
|
||
NULL,
|
||
m32r_linux_sigtramp_frame_sniffer
|
||
};
|
||
|
||
/* Mapping between the registers in `struct pt_regs'
|
||
format and GDB's register array layout. */
|
||
|
||
static int m32r_pt_regs_offset[] = {
|
||
4 * 4, /* r0 */
|
||
4 * 5, /* r1 */
|
||
4 * 6, /* r2 */
|
||
4 * 7, /* r3 */
|
||
4 * 0, /* r4 */
|
||
4 * 1, /* r5 */
|
||
4 * 2, /* r6 */
|
||
4 * 8, /* r7 */
|
||
4 * 9, /* r8 */
|
||
4 * 10, /* r9 */
|
||
4 * 11, /* r10 */
|
||
4 * 12, /* r11 */
|
||
4 * 13, /* r12 */
|
||
4 * 24, /* fp */
|
||
4 * 25, /* lr */
|
||
4 * 23, /* sp */
|
||
4 * 19, /* psw */
|
||
4 * 19, /* cbr */
|
||
4 * 26, /* spi */
|
||
4 * 23, /* spu */
|
||
4 * 22, /* bpc */
|
||
4 * 20, /* pc */
|
||
4 * 16, /* accl */
|
||
4 * 15 /* acch */
|
||
};
|
||
|
||
#define PSW_OFFSET (4 * 19)
|
||
#define BBPSW_OFFSET (4 * 21)
|
||
#define SPU_OFFSET (4 * 23)
|
||
#define SPI_OFFSET (4 * 26)
|
||
|
||
#define M32R_LINUX_GREGS_SIZE (4 * 28)
|
||
|
||
static void
|
||
m32r_linux_supply_gregset (const struct regset *regset,
|
||
struct regcache *regcache, int regnum,
|
||
const void *gregs, size_t size)
|
||
{
|
||
const gdb_byte *regs = (const gdb_byte *) gregs;
|
||
enum bfd_endian byte_order =
|
||
gdbarch_byte_order (regcache->arch ());
|
||
ULONGEST psw, bbpsw;
|
||
gdb_byte buf[4];
|
||
const gdb_byte *p;
|
||
int i;
|
||
|
||
psw = extract_unsigned_integer (regs + PSW_OFFSET, 4, byte_order);
|
||
bbpsw = extract_unsigned_integer (regs + BBPSW_OFFSET, 4, byte_order);
|
||
psw = ((0x00c1 & bbpsw) << 8) | ((0xc100 & psw) >> 8);
|
||
|
||
for (i = 0; i < ARRAY_SIZE (m32r_pt_regs_offset); i++)
|
||
{
|
||
if (regnum != -1 && regnum != i)
|
||
continue;
|
||
|
||
switch (i)
|
||
{
|
||
case PSW_REGNUM:
|
||
store_unsigned_integer (buf, 4, byte_order, psw);
|
||
p = buf;
|
||
break;
|
||
case CBR_REGNUM:
|
||
store_unsigned_integer (buf, 4, byte_order, psw & 1);
|
||
p = buf;
|
||
break;
|
||
case M32R_SP_REGNUM:
|
||
p = regs + ((psw & 0x80) ? SPU_OFFSET : SPI_OFFSET);
|
||
break;
|
||
default:
|
||
p = regs + m32r_pt_regs_offset[i];
|
||
}
|
||
|
||
regcache->raw_supply (i, p);
|
||
}
|
||
}
|
||
|
||
static void
|
||
m32r_linux_collect_gregset (const struct regset *regset,
|
||
const struct regcache *regcache,
|
||
int regnum, void *gregs, size_t size)
|
||
{
|
||
gdb_byte *regs = (gdb_byte *) gregs;
|
||
int i;
|
||
enum bfd_endian byte_order =
|
||
gdbarch_byte_order (regcache->arch ());
|
||
ULONGEST psw;
|
||
gdb_byte buf[4];
|
||
|
||
regcache->raw_collect (PSW_REGNUM, buf);
|
||
psw = extract_unsigned_integer (buf, 4, byte_order);
|
||
|
||
for (i = 0; i < ARRAY_SIZE (m32r_pt_regs_offset); i++)
|
||
{
|
||
if (regnum != -1 && regnum != i)
|
||
continue;
|
||
|
||
switch (i)
|
||
{
|
||
case PSW_REGNUM:
|
||
store_unsigned_integer (regs + PSW_OFFSET, 4, byte_order,
|
||
(psw & 0xc1) << 8);
|
||
store_unsigned_integer (regs + BBPSW_OFFSET, 4, byte_order,
|
||
(psw >> 8) & 0xc1);
|
||
break;
|
||
case CBR_REGNUM:
|
||
break;
|
||
case M32R_SP_REGNUM:
|
||
regcache->raw_collect
|
||
(i, regs + ((psw & 0x80) ? SPU_OFFSET : SPI_OFFSET));
|
||
break;
|
||
default:
|
||
regcache->raw_collect (i, regs + m32r_pt_regs_offset[i]);
|
||
}
|
||
}
|
||
}
|
||
|
||
static const struct regset m32r_linux_gregset = {
|
||
NULL,
|
||
m32r_linux_supply_gregset, m32r_linux_collect_gregset
|
||
};
|
||
|
||
static void
|
||
m32r_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
|
||
iterate_over_regset_sections_cb *cb,
|
||
void *cb_data,
|
||
const struct regcache *regcache)
|
||
{
|
||
cb (".reg", M32R_LINUX_GREGS_SIZE, M32R_LINUX_GREGS_SIZE, &m32r_linux_gregset,
|
||
NULL, cb_data);
|
||
}
|
||
|
||
static void
|
||
m32r_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
||
{
|
||
|
||
linux_init_abi (info, gdbarch);
|
||
|
||
/* Since EVB register is not available for native debug, we reduce
|
||
the number of registers. */
|
||
set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS - 1);
|
||
|
||
frame_unwind_append_unwinder (gdbarch, &m32r_linux_sigtramp_frame_unwind);
|
||
|
||
/* GNU/Linux uses SVR4-style shared libraries. */
|
||
set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
|
||
set_solib_svr4_fetch_link_map_offsets
|
||
(gdbarch, svr4_ilp32_fetch_link_map_offsets);
|
||
|
||
/* Core file support. */
|
||
set_gdbarch_iterate_over_regset_sections
|
||
(gdbarch, m32r_linux_iterate_over_regset_sections);
|
||
|
||
/* Enable TLS support. */
|
||
set_gdbarch_fetch_tls_load_module_address (gdbarch,
|
||
svr4_fetch_objfile_link_map);
|
||
}
|
||
|
||
void
|
||
_initialize_m32r_linux_tdep (void)
|
||
{
|
||
gdbarch_register_osabi (bfd_arch_m32r, 0, GDB_OSABI_LINUX,
|
||
m32r_linux_init_abi);
|
||
}
|