mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-09 04:21:49 +08:00
76a4c1e063
This commit enables disassembler styling for AArch64. After this commit it is possible to have objdump style AArch64 disassembler output (using --disassembler-color option). Once the required GDB patches are merged, GDB will also style the disassembler output. The changes to support styling are mostly split between two files opcodes/aarch64-dis.c and opcodes/aarch64-opc.c. The entry point for the AArch64 disassembler can be found in aarch64-dis.c, this file handles printing the instruction mnemonics, and assembler directives (e.g. '.byte', '.word', etc). Some operands, mostly relating to assembler directives are also printed from this file. This commit changes all of this to pass through suitable styling information. However, for most "normal" instructions, the instruction operands are printed using a two step process. From aarch64-dis.c, in the print_operands function, the function aarch64_print_operand is called, this function is in aarch64-opc.c, and converts an instruction operand into a string. Then, back in print_operands (aarch64-dis.c), the operand string is printed. Unfortunately, the string returned by aarch64_print_operand can be quite complex, it will include syntax elements, like '[' and ']', in addition to register names and immediate values. In some cases, a single operand will expand into what will appear (to the user) as multiple operands separated with a ','. This makes the task of styling more complex, all these different components need to by styled differently, so we need to get the styling information out of aarch64_print_operand in some way. The solution that I propose here is similar to the solution that I used for the i386 disassembler. Currently, aarch64_print_operand uses snprintf to write the operand text into a buffer provided by the caller. What I propose is that we pass an extra argument to the aarch64_print_operand function, this argument will be a structure, the structure contains a callback function and some state. When aarch64_print_operand needs to format part of its output this can be done by using the callback function within the new structure, this callback returns a string with special embedded markers that indicate which mode should be used for each piece of text. Back in aarch64-dis.c we can spot these special style markers and use this to split the disassembler output up and apply the correct style to each piece. To make aarch64-opc.c clearer a series of new static functions have been added, e.g. 'style_reg', 'style_imm', etc. Each of these functions formats a piece of text in a different style, 'register' and 'immediate' in this case. Here's an example taken from aarch64-opc.c of the new functions in use: snprintf (buf, size, "[%s, %s]!", style_reg (styler, base), style_imm (styler, "#%d", opnd->addr.offset.imm)); The aarch64_print_operand function is also called from the assembler to aid in printing diagnostic messages. Right now I have no plans to add styling to the assembler output, and so, the callback function used in the assembler ignores the styling information and just returns an plain string. I've used the source files in gas/testsuite/gas/aarch64/ for testing, and have manually gone through and checked that the styling looks reasonable, however, I'm not an AArch64 expert, so it is possible that the odd piece is styled incorrectly. Please point out any mistakes I've made. With objdump disassembler color turned off, there should be no change in the output after this commit.
4023 lines
121 KiB
C
4023 lines
121 KiB
C
/* aarch64-dis.c -- AArch64 disassembler.
|
||
Copyright (C) 2009-2022 Free Software Foundation, Inc.
|
||
Contributed by ARM Ltd.
|
||
|
||
This file is part of the GNU opcodes library.
|
||
|
||
This library is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3, or (at your option)
|
||
any later version.
|
||
|
||
It is distributed in the hope that it will be useful, but WITHOUT
|
||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
||
License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; see the file COPYING3. If not,
|
||
see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "sysdep.h"
|
||
#include <stdint.h>
|
||
#include "disassemble.h"
|
||
#include "libiberty.h"
|
||
#include "opintl.h"
|
||
#include "aarch64-dis.h"
|
||
#include "elf-bfd.h"
|
||
#include "safe-ctype.h"
|
||
#include "obstack.h"
|
||
|
||
#define obstack_chunk_alloc xmalloc
|
||
#define obstack_chunk_free free
|
||
|
||
#define INSNLEN 4
|
||
|
||
/* This character is used to encode style information within the output
|
||
buffers. See get_style_text and print_operands for more details. */
|
||
#define STYLE_MARKER_CHAR '\002'
|
||
|
||
/* Cached mapping symbol state. */
|
||
enum map_type
|
||
{
|
||
MAP_INSN,
|
||
MAP_DATA
|
||
};
|
||
|
||
static aarch64_feature_set arch_variant; /* See select_aarch64_variant. */
|
||
static enum map_type last_type;
|
||
static int last_mapping_sym = -1;
|
||
static bfd_vma last_stop_offset = 0;
|
||
static bfd_vma last_mapping_addr = 0;
|
||
|
||
/* Other options */
|
||
static int no_aliases = 0; /* If set disassemble as most general inst. */
|
||
static int no_notes = 1; /* If set do not print disassemble notes in the
|
||
output as comments. */
|
||
|
||
/* Currently active instruction sequence. */
|
||
static aarch64_instr_sequence insn_sequence;
|
||
|
||
static void
|
||
set_default_aarch64_dis_options (struct disassemble_info *info ATTRIBUTE_UNUSED)
|
||
{
|
||
}
|
||
|
||
static void
|
||
parse_aarch64_dis_option (const char *option, unsigned int len ATTRIBUTE_UNUSED)
|
||
{
|
||
/* Try to match options that are simple flags */
|
||
if (startswith (option, "no-aliases"))
|
||
{
|
||
no_aliases = 1;
|
||
return;
|
||
}
|
||
|
||
if (startswith (option, "aliases"))
|
||
{
|
||
no_aliases = 0;
|
||
return;
|
||
}
|
||
|
||
if (startswith (option, "no-notes"))
|
||
{
|
||
no_notes = 1;
|
||
return;
|
||
}
|
||
|
||
if (startswith (option, "notes"))
|
||
{
|
||
no_notes = 0;
|
||
return;
|
||
}
|
||
|
||
#ifdef DEBUG_AARCH64
|
||
if (startswith (option, "debug_dump"))
|
||
{
|
||
debug_dump = 1;
|
||
return;
|
||
}
|
||
#endif /* DEBUG_AARCH64 */
|
||
|
||
/* Invalid option. */
|
||
opcodes_error_handler (_("unrecognised disassembler option: %s"), option);
|
||
}
|
||
|
||
static void
|
||
parse_aarch64_dis_options (const char *options)
|
||
{
|
||
const char *option_end;
|
||
|
||
if (options == NULL)
|
||
return;
|
||
|
||
while (*options != '\0')
|
||
{
|
||
/* Skip empty options. */
|
||
if (*options == ',')
|
||
{
|
||
options++;
|
||
continue;
|
||
}
|
||
|
||
/* We know that *options is neither NUL or a comma. */
|
||
option_end = options + 1;
|
||
while (*option_end != ',' && *option_end != '\0')
|
||
option_end++;
|
||
|
||
parse_aarch64_dis_option (options, option_end - options);
|
||
|
||
/* Go on to the next one. If option_end points to a comma, it
|
||
will be skipped above. */
|
||
options = option_end;
|
||
}
|
||
}
|
||
|
||
/* Functions doing the instruction disassembling. */
|
||
|
||
/* The unnamed arguments consist of the number of fields and information about
|
||
these fields where the VALUE will be extracted from CODE and returned.
|
||
MASK can be zero or the base mask of the opcode.
|
||
|
||
N.B. the fields are required to be in such an order than the most signficant
|
||
field for VALUE comes the first, e.g. the <index> in
|
||
SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]
|
||
is encoded in H:L:M in some cases, the fields H:L:M should be passed in
|
||
the order of H, L, M. */
|
||
|
||
aarch64_insn
|
||
extract_fields (aarch64_insn code, aarch64_insn mask, ...)
|
||
{
|
||
uint32_t num;
|
||
const aarch64_field *field;
|
||
enum aarch64_field_kind kind;
|
||
va_list va;
|
||
|
||
va_start (va, mask);
|
||
num = va_arg (va, uint32_t);
|
||
assert (num <= 5);
|
||
aarch64_insn value = 0x0;
|
||
while (num--)
|
||
{
|
||
kind = va_arg (va, enum aarch64_field_kind);
|
||
field = &fields[kind];
|
||
value <<= field->width;
|
||
value |= extract_field (kind, code, mask);
|
||
}
|
||
va_end (va);
|
||
return value;
|
||
}
|
||
|
||
/* Extract the value of all fields in SELF->fields from instruction CODE.
|
||
The least significant bit comes from the final field. */
|
||
|
||
static aarch64_insn
|
||
extract_all_fields (const aarch64_operand *self, aarch64_insn code)
|
||
{
|
||
aarch64_insn value;
|
||
unsigned int i;
|
||
enum aarch64_field_kind kind;
|
||
|
||
value = 0;
|
||
for (i = 0; i < ARRAY_SIZE (self->fields) && self->fields[i] != FLD_NIL; ++i)
|
||
{
|
||
kind = self->fields[i];
|
||
value <<= fields[kind].width;
|
||
value |= extract_field (kind, code, 0);
|
||
}
|
||
return value;
|
||
}
|
||
|
||
/* Sign-extend bit I of VALUE. */
|
||
static inline uint64_t
|
||
sign_extend (aarch64_insn value, unsigned i)
|
||
{
|
||
uint64_t ret, sign;
|
||
|
||
assert (i < 32);
|
||
ret = value;
|
||
sign = (uint64_t) 1 << i;
|
||
return ((ret & (sign + sign - 1)) ^ sign) - sign;
|
||
}
|
||
|
||
/* N.B. the following inline helpfer functions create a dependency on the
|
||
order of operand qualifier enumerators. */
|
||
|
||
/* Given VALUE, return qualifier for a general purpose register. */
|
||
static inline enum aarch64_opnd_qualifier
|
||
get_greg_qualifier_from_value (aarch64_insn value)
|
||
{
|
||
enum aarch64_opnd_qualifier qualifier = AARCH64_OPND_QLF_W + value;
|
||
assert (value <= 0x1
|
||
&& aarch64_get_qualifier_standard_value (qualifier) == value);
|
||
return qualifier;
|
||
}
|
||
|
||
/* Given VALUE, return qualifier for a vector register. This does not support
|
||
decoding instructions that accept the 2H vector type. */
|
||
|
||
static inline enum aarch64_opnd_qualifier
|
||
get_vreg_qualifier_from_value (aarch64_insn value)
|
||
{
|
||
enum aarch64_opnd_qualifier qualifier = AARCH64_OPND_QLF_V_8B + value;
|
||
|
||
/* Instructions using vector type 2H should not call this function. Skip over
|
||
the 2H qualifier. */
|
||
if (qualifier >= AARCH64_OPND_QLF_V_2H)
|
||
qualifier += 1;
|
||
|
||
assert (value <= 0x8
|
||
&& aarch64_get_qualifier_standard_value (qualifier) == value);
|
||
return qualifier;
|
||
}
|
||
|
||
/* Given VALUE, return qualifier for an FP or AdvSIMD scalar register. */
|
||
static inline enum aarch64_opnd_qualifier
|
||
get_sreg_qualifier_from_value (aarch64_insn value)
|
||
{
|
||
enum aarch64_opnd_qualifier qualifier = AARCH64_OPND_QLF_S_B + value;
|
||
|
||
assert (value <= 0x4
|
||
&& aarch64_get_qualifier_standard_value (qualifier) == value);
|
||
return qualifier;
|
||
}
|
||
|
||
/* Given the instruction in *INST which is probably half way through the
|
||
decoding and our caller wants to know the expected qualifier for operand
|
||
I. Return such a qualifier if we can establish it; otherwise return
|
||
AARCH64_OPND_QLF_NIL. */
|
||
|
||
static aarch64_opnd_qualifier_t
|
||
get_expected_qualifier (const aarch64_inst *inst, int i)
|
||
{
|
||
aarch64_opnd_qualifier_seq_t qualifiers;
|
||
/* Should not be called if the qualifier is known. */
|
||
assert (inst->operands[i].qualifier == AARCH64_OPND_QLF_NIL);
|
||
if (aarch64_find_best_match (inst, inst->opcode->qualifiers_list,
|
||
i, qualifiers))
|
||
return qualifiers[i];
|
||
else
|
||
return AARCH64_OPND_QLF_NIL;
|
||
}
|
||
|
||
/* Operand extractors. */
|
||
|
||
bool
|
||
aarch64_ext_none (const aarch64_operand *self ATTRIBUTE_UNUSED,
|
||
aarch64_opnd_info *info ATTRIBUTE_UNUSED,
|
||
const aarch64_insn code ATTRIBUTE_UNUSED,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
return true;
|
||
}
|
||
|
||
bool
|
||
aarch64_ext_regno (const aarch64_operand *self, aarch64_opnd_info *info,
|
||
const aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
info->reg.regno = extract_field (self->fields[0], code, 0);
|
||
return true;
|
||
}
|
||
|
||
bool
|
||
aarch64_ext_regno_pair (const aarch64_operand *self ATTRIBUTE_UNUSED, aarch64_opnd_info *info,
|
||
const aarch64_insn code ATTRIBUTE_UNUSED,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
assert (info->idx == 1
|
||
|| info->idx ==3);
|
||
info->reg.regno = inst->operands[info->idx - 1].reg.regno + 1;
|
||
return true;
|
||
}
|
||
|
||
/* e.g. IC <ic_op>{, <Xt>}. */
|
||
bool
|
||
aarch64_ext_regrt_sysins (const aarch64_operand *self, aarch64_opnd_info *info,
|
||
const aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
info->reg.regno = extract_field (self->fields[0], code, 0);
|
||
assert (info->idx == 1
|
||
&& (aarch64_get_operand_class (inst->operands[0].type)
|
||
== AARCH64_OPND_CLASS_SYSTEM));
|
||
/* This will make the constraint checking happy and more importantly will
|
||
help the disassembler determine whether this operand is optional or
|
||
not. */
|
||
info->present = aarch64_sys_ins_reg_has_xt (inst->operands[0].sysins_op);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* e.g. SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]. */
|
||
bool
|
||
aarch64_ext_reglane (const aarch64_operand *self, aarch64_opnd_info *info,
|
||
const aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
/* regno */
|
||
info->reglane.regno = extract_field (self->fields[0], code,
|
||
inst->opcode->mask);
|
||
|
||
/* Index and/or type. */
|
||
if (inst->opcode->iclass == asisdone
|
||
|| inst->opcode->iclass == asimdins)
|
||
{
|
||
if (info->type == AARCH64_OPND_En
|
||
&& inst->opcode->operands[0] == AARCH64_OPND_Ed)
|
||
{
|
||
unsigned shift;
|
||
/* index2 for e.g. INS <Vd>.<Ts>[<index1>], <Vn>.<Ts>[<index2>]. */
|
||
assert (info->idx == 1); /* Vn */
|
||
aarch64_insn value = extract_field (FLD_imm4, code, 0);
|
||
/* Depend on AARCH64_OPND_Ed to determine the qualifier. */
|
||
info->qualifier = get_expected_qualifier (inst, info->idx);
|
||
shift = get_logsz (aarch64_get_qualifier_esize (info->qualifier));
|
||
info->reglane.index = value >> shift;
|
||
}
|
||
else
|
||
{
|
||
/* index and type for e.g. DUP <V><d>, <Vn>.<T>[<index>].
|
||
imm5<3:0> <V>
|
||
0000 RESERVED
|
||
xxx1 B
|
||
xx10 H
|
||
x100 S
|
||
1000 D */
|
||
int pos = -1;
|
||
aarch64_insn value = extract_field (FLD_imm5, code, 0);
|
||
while (++pos <= 3 && (value & 0x1) == 0)
|
||
value >>= 1;
|
||
if (pos > 3)
|
||
return false;
|
||
info->qualifier = get_sreg_qualifier_from_value (pos);
|
||
info->reglane.index = (unsigned) (value >> 1);
|
||
}
|
||
}
|
||
else if (inst->opcode->iclass == dotproduct)
|
||
{
|
||
/* Need information in other operand(s) to help decoding. */
|
||
info->qualifier = get_expected_qualifier (inst, info->idx);
|
||
switch (info->qualifier)
|
||
{
|
||
case AARCH64_OPND_QLF_S_4B:
|
||
case AARCH64_OPND_QLF_S_2H:
|
||
/* L:H */
|
||
info->reglane.index = extract_fields (code, 0, 2, FLD_H, FLD_L);
|
||
info->reglane.regno &= 0x1f;
|
||
break;
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
else if (inst->opcode->iclass == cryptosm3)
|
||
{
|
||
/* index for e.g. SM3TT2A <Vd>.4S, <Vn>.4S, <Vm>S[<imm2>]. */
|
||
info->reglane.index = extract_field (FLD_SM3_imm2, code, 0);
|
||
}
|
||
else
|
||
{
|
||
/* Index only for e.g. SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]
|
||
or SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]. */
|
||
|
||
/* Need information in other operand(s) to help decoding. */
|
||
info->qualifier = get_expected_qualifier (inst, info->idx);
|
||
switch (info->qualifier)
|
||
{
|
||
case AARCH64_OPND_QLF_S_H:
|
||
if (info->type == AARCH64_OPND_Em16)
|
||
{
|
||
/* h:l:m */
|
||
info->reglane.index = extract_fields (code, 0, 3, FLD_H, FLD_L,
|
||
FLD_M);
|
||
info->reglane.regno &= 0xf;
|
||
}
|
||
else
|
||
{
|
||
/* h:l */
|
||
info->reglane.index = extract_fields (code, 0, 2, FLD_H, FLD_L);
|
||
}
|
||
break;
|
||
case AARCH64_OPND_QLF_S_S:
|
||
/* h:l */
|
||
info->reglane.index = extract_fields (code, 0, 2, FLD_H, FLD_L);
|
||
break;
|
||
case AARCH64_OPND_QLF_S_D:
|
||
/* H */
|
||
info->reglane.index = extract_field (FLD_H, code, 0);
|
||
break;
|
||
default:
|
||
return false;
|
||
}
|
||
|
||
if (inst->opcode->op == OP_FCMLA_ELEM
|
||
&& info->qualifier != AARCH64_OPND_QLF_S_H)
|
||
{
|
||
/* Complex operand takes two elements. */
|
||
if (info->reglane.index & 1)
|
||
return false;
|
||
info->reglane.index /= 2;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
bool
|
||
aarch64_ext_reglist (const aarch64_operand *self, aarch64_opnd_info *info,
|
||
const aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
/* R */
|
||
info->reglist.first_regno = extract_field (self->fields[0], code, 0);
|
||
/* len */
|
||
info->reglist.num_regs = extract_field (FLD_len, code, 0) + 1;
|
||
return true;
|
||
}
|
||
|
||
/* Decode Rt and opcode fields of Vt in AdvSIMD load/store instructions. */
|
||
bool
|
||
aarch64_ext_ldst_reglist (const aarch64_operand *self ATTRIBUTE_UNUSED,
|
||
aarch64_opnd_info *info, const aarch64_insn code,
|
||
const aarch64_inst *inst,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
aarch64_insn value;
|
||
/* Number of elements in each structure to be loaded/stored. */
|
||
unsigned expected_num = get_opcode_dependent_value (inst->opcode);
|
||
|
||
struct
|
||
{
|
||
unsigned is_reserved;
|
||
unsigned num_regs;
|
||
unsigned num_elements;
|
||
} data [] =
|
||
{ {0, 4, 4},
|
||
{1, 4, 4},
|
||
{0, 4, 1},
|
||
{0, 4, 2},
|
||
{0, 3, 3},
|
||
{1, 3, 3},
|
||
{0, 3, 1},
|
||
{0, 1, 1},
|
||
{0, 2, 2},
|
||
{1, 2, 2},
|
||
{0, 2, 1},
|
||
};
|
||
|
||
/* Rt */
|
||
info->reglist.first_regno = extract_field (FLD_Rt, code, 0);
|
||
/* opcode */
|
||
value = extract_field (FLD_opcode, code, 0);
|
||
/* PR 21595: Check for a bogus value. */
|
||
if (value >= ARRAY_SIZE (data))
|
||
return false;
|
||
if (expected_num != data[value].num_elements || data[value].is_reserved)
|
||
return false;
|
||
info->reglist.num_regs = data[value].num_regs;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Decode Rt and S fields of Vt in AdvSIMD load single structure to all
|
||
lanes instructions. */
|
||
bool
|
||
aarch64_ext_ldst_reglist_r (const aarch64_operand *self ATTRIBUTE_UNUSED,
|
||
aarch64_opnd_info *info, const aarch64_insn code,
|
||
const aarch64_inst *inst,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
aarch64_insn value;
|
||
|
||
/* Rt */
|
||
info->reglist.first_regno = extract_field (FLD_Rt, code, 0);
|
||
/* S */
|
||
value = extract_field (FLD_S, code, 0);
|
||
|
||
/* Number of registers is equal to the number of elements in
|
||
each structure to be loaded/stored. */
|
||
info->reglist.num_regs = get_opcode_dependent_value (inst->opcode);
|
||
assert (info->reglist.num_regs >= 1 && info->reglist.num_regs <= 4);
|
||
|
||
/* Except when it is LD1R. */
|
||
if (info->reglist.num_regs == 1 && value == (aarch64_insn) 1)
|
||
info->reglist.num_regs = 2;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Decode Q, opcode<2:1>, S, size and Rt fields of Vt in AdvSIMD
|
||
load/store single element instructions. */
|
||
bool
|
||
aarch64_ext_ldst_elemlist (const aarch64_operand *self ATTRIBUTE_UNUSED,
|
||
aarch64_opnd_info *info, const aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
aarch64_field field = {0, 0};
|
||
aarch64_insn QSsize; /* fields Q:S:size. */
|
||
aarch64_insn opcodeh2; /* opcode<2:1> */
|
||
|
||
/* Rt */
|
||
info->reglist.first_regno = extract_field (FLD_Rt, code, 0);
|
||
|
||
/* Decode the index, opcode<2:1> and size. */
|
||
gen_sub_field (FLD_asisdlso_opcode, 1, 2, &field);
|
||
opcodeh2 = extract_field_2 (&field, code, 0);
|
||
QSsize = extract_fields (code, 0, 3, FLD_Q, FLD_S, FLD_vldst_size);
|
||
switch (opcodeh2)
|
||
{
|
||
case 0x0:
|
||
info->qualifier = AARCH64_OPND_QLF_S_B;
|
||
/* Index encoded in "Q:S:size". */
|
||
info->reglist.index = QSsize;
|
||
break;
|
||
case 0x1:
|
||
if (QSsize & 0x1)
|
||
/* UND. */
|
||
return false;
|
||
info->qualifier = AARCH64_OPND_QLF_S_H;
|
||
/* Index encoded in "Q:S:size<1>". */
|
||
info->reglist.index = QSsize >> 1;
|
||
break;
|
||
case 0x2:
|
||
if ((QSsize >> 1) & 0x1)
|
||
/* UND. */
|
||
return false;
|
||
if ((QSsize & 0x1) == 0)
|
||
{
|
||
info->qualifier = AARCH64_OPND_QLF_S_S;
|
||
/* Index encoded in "Q:S". */
|
||
info->reglist.index = QSsize >> 2;
|
||
}
|
||
else
|
||
{
|
||
if (extract_field (FLD_S, code, 0))
|
||
/* UND */
|
||
return false;
|
||
info->qualifier = AARCH64_OPND_QLF_S_D;
|
||
/* Index encoded in "Q". */
|
||
info->reglist.index = QSsize >> 3;
|
||
}
|
||
break;
|
||
default:
|
||
return false;
|
||
}
|
||
|
||
info->reglist.has_index = 1;
|
||
info->reglist.num_regs = 0;
|
||
/* Number of registers is equal to the number of elements in
|
||
each structure to be loaded/stored. */
|
||
info->reglist.num_regs = get_opcode_dependent_value (inst->opcode);
|
||
assert (info->reglist.num_regs >= 1 && info->reglist.num_regs <= 4);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Decode fields immh:immb and/or Q for e.g.
|
||
SSHR <Vd>.<T>, <Vn>.<T>, #<shift>
|
||
or SSHR <V><d>, <V><n>, #<shift>. */
|
||
|
||
bool
|
||
aarch64_ext_advsimd_imm_shift (const aarch64_operand *self ATTRIBUTE_UNUSED,
|
||
aarch64_opnd_info *info, const aarch64_insn code,
|
||
const aarch64_inst *inst,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
int pos;
|
||
aarch64_insn Q, imm, immh;
|
||
enum aarch64_insn_class iclass = inst->opcode->iclass;
|
||
|
||
immh = extract_field (FLD_immh, code, 0);
|
||
if (immh == 0)
|
||
return false;
|
||
imm = extract_fields (code, 0, 2, FLD_immh, FLD_immb);
|
||
pos = 4;
|
||
/* Get highest set bit in immh. */
|
||
while (--pos >= 0 && (immh & 0x8) == 0)
|
||
immh <<= 1;
|
||
|
||
assert ((iclass == asimdshf || iclass == asisdshf)
|
||
&& (info->type == AARCH64_OPND_IMM_VLSR
|
||
|| info->type == AARCH64_OPND_IMM_VLSL));
|
||
|
||
if (iclass == asimdshf)
|
||
{
|
||
Q = extract_field (FLD_Q, code, 0);
|
||
/* immh Q <T>
|
||
0000 x SEE AdvSIMD modified immediate
|
||
0001 0 8B
|
||
0001 1 16B
|
||
001x 0 4H
|
||
001x 1 8H
|
||
01xx 0 2S
|
||
01xx 1 4S
|
||
1xxx 0 RESERVED
|
||
1xxx 1 2D */
|
||
info->qualifier =
|
||
get_vreg_qualifier_from_value ((pos << 1) | (int) Q);
|
||
}
|
||
else
|
||
info->qualifier = get_sreg_qualifier_from_value (pos);
|
||
|
||
if (info->type == AARCH64_OPND_IMM_VLSR)
|
||
/* immh <shift>
|
||
0000 SEE AdvSIMD modified immediate
|
||
0001 (16-UInt(immh:immb))
|
||
001x (32-UInt(immh:immb))
|
||
01xx (64-UInt(immh:immb))
|
||
1xxx (128-UInt(immh:immb)) */
|
||
info->imm.value = (16 << pos) - imm;
|
||
else
|
||
/* immh:immb
|
||
immh <shift>
|
||
0000 SEE AdvSIMD modified immediate
|
||
0001 (UInt(immh:immb)-8)
|
||
001x (UInt(immh:immb)-16)
|
||
01xx (UInt(immh:immb)-32)
|
||
1xxx (UInt(immh:immb)-64) */
|
||
info->imm.value = imm - (8 << pos);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Decode shift immediate for e.g. sshr (imm). */
|
||
bool
|
||
aarch64_ext_shll_imm (const aarch64_operand *self ATTRIBUTE_UNUSED,
|
||
aarch64_opnd_info *info, const aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
int64_t imm;
|
||
aarch64_insn val;
|
||
val = extract_field (FLD_size, code, 0);
|
||
switch (val)
|
||
{
|
||
case 0: imm = 8; break;
|
||
case 1: imm = 16; break;
|
||
case 2: imm = 32; break;
|
||
default: return false;
|
||
}
|
||
info->imm.value = imm;
|
||
return true;
|
||
}
|
||
|
||
/* Decode imm for e.g. BFM <Wd>, <Wn>, #<immr>, #<imms>.
|
||
value in the field(s) will be extracted as unsigned immediate value. */
|
||
bool
|
||
aarch64_ext_imm (const aarch64_operand *self, aarch64_opnd_info *info,
|
||
const aarch64_insn code,
|
||
const aarch64_inst *inst,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
uint64_t imm;
|
||
|
||
imm = extract_all_fields (self, code);
|
||
|
||
if (operand_need_sign_extension (self))
|
||
imm = sign_extend (imm, get_operand_fields_width (self) - 1);
|
||
|
||
if (operand_need_shift_by_two (self))
|
||
imm <<= 2;
|
||
else if (operand_need_shift_by_four (self))
|
||
imm <<= 4;
|
||
|
||
if (info->type == AARCH64_OPND_ADDR_ADRP)
|
||
imm <<= 12;
|
||
|
||
if (inst->operands[0].type == AARCH64_OPND_PSTATEFIELD
|
||
&& inst->operands[0].sysreg.flags & F_IMM_IN_CRM)
|
||
imm &= PSTATE_DECODE_CRM_IMM (inst->operands[0].sysreg.flags);
|
||
|
||
info->imm.value = imm;
|
||
return true;
|
||
}
|
||
|
||
/* Decode imm and its shifter for e.g. MOVZ <Wd>, #<imm16>{, LSL #<shift>}. */
|
||
bool
|
||
aarch64_ext_imm_half (const aarch64_operand *self, aarch64_opnd_info *info,
|
||
const aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors)
|
||
{
|
||
aarch64_ext_imm (self, info, code, inst, errors);
|
||
info->shifter.kind = AARCH64_MOD_LSL;
|
||
info->shifter.amount = extract_field (FLD_hw, code, 0) << 4;
|
||
return true;
|
||
}
|
||
|
||
/* Decode cmode and "a:b:c:d:e:f:g:h" for e.g.
|
||
MOVI <Vd>.<T>, #<imm8> {, LSL #<amount>}. */
|
||
bool
|
||
aarch64_ext_advsimd_imm_modified (const aarch64_operand *self ATTRIBUTE_UNUSED,
|
||
aarch64_opnd_info *info,
|
||
const aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
uint64_t imm;
|
||
enum aarch64_opnd_qualifier opnd0_qualifier = inst->operands[0].qualifier;
|
||
aarch64_field field = {0, 0};
|
||
|
||
assert (info->idx == 1);
|
||
|
||
if (info->type == AARCH64_OPND_SIMD_FPIMM)
|
||
info->imm.is_fp = 1;
|
||
|
||
/* a:b:c:d:e:f:g:h */
|
||
imm = extract_fields (code, 0, 2, FLD_abc, FLD_defgh);
|
||
if (!info->imm.is_fp && aarch64_get_qualifier_esize (opnd0_qualifier) == 8)
|
||
{
|
||
/* Either MOVI <Dd>, #<imm>
|
||
or MOVI <Vd>.2D, #<imm>.
|
||
<imm> is a 64-bit immediate
|
||
'aaaaaaaabbbbbbbbccccccccddddddddeeeeeeeeffffffffgggggggghhhhhhhh',
|
||
encoded in "a:b:c:d:e:f:g:h". */
|
||
int i;
|
||
unsigned abcdefgh = imm;
|
||
for (imm = 0ull, i = 0; i < 8; i++)
|
||
if (((abcdefgh >> i) & 0x1) != 0)
|
||
imm |= 0xffull << (8 * i);
|
||
}
|
||
info->imm.value = imm;
|
||
|
||
/* cmode */
|
||
info->qualifier = get_expected_qualifier (inst, info->idx);
|
||
switch (info->qualifier)
|
||
{
|
||
case AARCH64_OPND_QLF_NIL:
|
||
/* no shift */
|
||
info->shifter.kind = AARCH64_MOD_NONE;
|
||
return 1;
|
||
case AARCH64_OPND_QLF_LSL:
|
||
/* shift zeros */
|
||
info->shifter.kind = AARCH64_MOD_LSL;
|
||
switch (aarch64_get_qualifier_esize (opnd0_qualifier))
|
||
{
|
||
case 4: gen_sub_field (FLD_cmode, 1, 2, &field); break; /* per word */
|
||
case 2: gen_sub_field (FLD_cmode, 1, 1, &field); break; /* per half */
|
||
case 1: gen_sub_field (FLD_cmode, 1, 0, &field); break; /* per byte */
|
||
default: return false;
|
||
}
|
||
/* 00: 0; 01: 8; 10:16; 11:24. */
|
||
info->shifter.amount = extract_field_2 (&field, code, 0) << 3;
|
||
break;
|
||
case AARCH64_OPND_QLF_MSL:
|
||
/* shift ones */
|
||
info->shifter.kind = AARCH64_MOD_MSL;
|
||
gen_sub_field (FLD_cmode, 0, 1, &field); /* per word */
|
||
info->shifter.amount = extract_field_2 (&field, code, 0) ? 16 : 8;
|
||
break;
|
||
default:
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Decode an 8-bit floating-point immediate. */
|
||
bool
|
||
aarch64_ext_fpimm (const aarch64_operand *self, aarch64_opnd_info *info,
|
||
const aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
info->imm.value = extract_all_fields (self, code);
|
||
info->imm.is_fp = 1;
|
||
return true;
|
||
}
|
||
|
||
/* Decode a 1-bit rotate immediate (#90 or #270). */
|
||
bool
|
||
aarch64_ext_imm_rotate1 (const aarch64_operand *self, aarch64_opnd_info *info,
|
||
const aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
uint64_t rot = extract_field (self->fields[0], code, 0);
|
||
assert (rot < 2U);
|
||
info->imm.value = rot * 180 + 90;
|
||
return true;
|
||
}
|
||
|
||
/* Decode a 2-bit rotate immediate (#0, #90, #180 or #270). */
|
||
bool
|
||
aarch64_ext_imm_rotate2 (const aarch64_operand *self, aarch64_opnd_info *info,
|
||
const aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
uint64_t rot = extract_field (self->fields[0], code, 0);
|
||
assert (rot < 4U);
|
||
info->imm.value = rot * 90;
|
||
return true;
|
||
}
|
||
|
||
/* Decode scale for e.g. SCVTF <Dd>, <Wn>, #<fbits>. */
|
||
bool
|
||
aarch64_ext_fbits (const aarch64_operand *self ATTRIBUTE_UNUSED,
|
||
aarch64_opnd_info *info, const aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
info->imm.value = 64- extract_field (FLD_scale, code, 0);
|
||
return true;
|
||
}
|
||
|
||
/* Decode arithmetic immediate for e.g.
|
||
SUBS <Wd>, <Wn|WSP>, #<imm> {, <shift>}. */
|
||
bool
|
||
aarch64_ext_aimm (const aarch64_operand *self ATTRIBUTE_UNUSED,
|
||
aarch64_opnd_info *info, const aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
aarch64_insn value;
|
||
|
||
info->shifter.kind = AARCH64_MOD_LSL;
|
||
/* shift */
|
||
value = extract_field (FLD_shift, code, 0);
|
||
if (value >= 2)
|
||
return false;
|
||
info->shifter.amount = value ? 12 : 0;
|
||
/* imm12 (unsigned) */
|
||
info->imm.value = extract_field (FLD_imm12, code, 0);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return true if VALUE is a valid logical immediate encoding, storing the
|
||
decoded value in *RESULT if so. ESIZE is the number of bytes in the
|
||
decoded immediate. */
|
||
static bool
|
||
decode_limm (uint32_t esize, aarch64_insn value, int64_t *result)
|
||
{
|
||
uint64_t imm, mask;
|
||
uint32_t N, R, S;
|
||
unsigned simd_size;
|
||
|
||
/* value is N:immr:imms. */
|
||
S = value & 0x3f;
|
||
R = (value >> 6) & 0x3f;
|
||
N = (value >> 12) & 0x1;
|
||
|
||
/* The immediate value is S+1 bits to 1, left rotated by SIMDsize - R
|
||
(in other words, right rotated by R), then replicated. */
|
||
if (N != 0)
|
||
{
|
||
simd_size = 64;
|
||
mask = 0xffffffffffffffffull;
|
||
}
|
||
else
|
||
{
|
||
switch (S)
|
||
{
|
||
case 0x00 ... 0x1f: /* 0xxxxx */ simd_size = 32; break;
|
||
case 0x20 ... 0x2f: /* 10xxxx */ simd_size = 16; S &= 0xf; break;
|
||
case 0x30 ... 0x37: /* 110xxx */ simd_size = 8; S &= 0x7; break;
|
||
case 0x38 ... 0x3b: /* 1110xx */ simd_size = 4; S &= 0x3; break;
|
||
case 0x3c ... 0x3d: /* 11110x */ simd_size = 2; S &= 0x1; break;
|
||
default: return false;
|
||
}
|
||
mask = (1ull << simd_size) - 1;
|
||
/* Top bits are IGNORED. */
|
||
R &= simd_size - 1;
|
||
}
|
||
|
||
if (simd_size > esize * 8)
|
||
return false;
|
||
|
||
/* NOTE: if S = simd_size - 1 we get 0xf..f which is rejected. */
|
||
if (S == simd_size - 1)
|
||
return false;
|
||
/* S+1 consecutive bits to 1. */
|
||
/* NOTE: S can't be 63 due to detection above. */
|
||
imm = (1ull << (S + 1)) - 1;
|
||
/* Rotate to the left by simd_size - R. */
|
||
if (R != 0)
|
||
imm = ((imm << (simd_size - R)) & mask) | (imm >> R);
|
||
/* Replicate the value according to SIMD size. */
|
||
switch (simd_size)
|
||
{
|
||
case 2: imm = (imm << 2) | imm;
|
||
/* Fall through. */
|
||
case 4: imm = (imm << 4) | imm;
|
||
/* Fall through. */
|
||
case 8: imm = (imm << 8) | imm;
|
||
/* Fall through. */
|
||
case 16: imm = (imm << 16) | imm;
|
||
/* Fall through. */
|
||
case 32: imm = (imm << 32) | imm;
|
||
/* Fall through. */
|
||
case 64: break;
|
||
default: return 0;
|
||
}
|
||
|
||
*result = imm & ~((uint64_t) -1 << (esize * 4) << (esize * 4));
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Decode a logical immediate for e.g. ORR <Wd|WSP>, <Wn>, #<imm>. */
|
||
bool
|
||
aarch64_ext_limm (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, const aarch64_insn code,
|
||
const aarch64_inst *inst,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
uint32_t esize;
|
||
aarch64_insn value;
|
||
|
||
value = extract_fields (code, 0, 3, self->fields[0], self->fields[1],
|
||
self->fields[2]);
|
||
esize = aarch64_get_qualifier_esize (inst->operands[0].qualifier);
|
||
return decode_limm (esize, value, &info->imm.value);
|
||
}
|
||
|
||
/* Decode a logical immediate for the BIC alias of AND (etc.). */
|
||
bool
|
||
aarch64_ext_inv_limm (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, const aarch64_insn code,
|
||
const aarch64_inst *inst,
|
||
aarch64_operand_error *errors)
|
||
{
|
||
if (!aarch64_ext_limm (self, info, code, inst, errors))
|
||
return false;
|
||
info->imm.value = ~info->imm.value;
|
||
return true;
|
||
}
|
||
|
||
/* Decode Ft for e.g. STR <Qt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]
|
||
or LDP <Qt1>, <Qt2>, [<Xn|SP>], #<imm>. */
|
||
bool
|
||
aarch64_ext_ft (const aarch64_operand *self ATTRIBUTE_UNUSED,
|
||
aarch64_opnd_info *info,
|
||
const aarch64_insn code, const aarch64_inst *inst,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
aarch64_insn value;
|
||
|
||
/* Rt */
|
||
info->reg.regno = extract_field (FLD_Rt, code, 0);
|
||
|
||
/* size */
|
||
value = extract_field (FLD_ldst_size, code, 0);
|
||
if (inst->opcode->iclass == ldstpair_indexed
|
||
|| inst->opcode->iclass == ldstnapair_offs
|
||
|| inst->opcode->iclass == ldstpair_off
|
||
|| inst->opcode->iclass == loadlit)
|
||
{
|
||
enum aarch64_opnd_qualifier qualifier;
|
||
switch (value)
|
||
{
|
||
case 0: qualifier = AARCH64_OPND_QLF_S_S; break;
|
||
case 1: qualifier = AARCH64_OPND_QLF_S_D; break;
|
||
case 2: qualifier = AARCH64_OPND_QLF_S_Q; break;
|
||
default: return false;
|
||
}
|
||
info->qualifier = qualifier;
|
||
}
|
||
else
|
||
{
|
||
/* opc1:size */
|
||
value = extract_fields (code, 0, 2, FLD_opc1, FLD_ldst_size);
|
||
if (value > 0x4)
|
||
return false;
|
||
info->qualifier = get_sreg_qualifier_from_value (value);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Decode the address operand for e.g. STXRB <Ws>, <Wt>, [<Xn|SP>{,#0}]. */
|
||
bool
|
||
aarch64_ext_addr_simple (const aarch64_operand *self ATTRIBUTE_UNUSED,
|
||
aarch64_opnd_info *info,
|
||
aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
/* Rn */
|
||
info->addr.base_regno = extract_field (FLD_Rn, code, 0);
|
||
return true;
|
||
}
|
||
|
||
/* Decode the address operand for e.g.
|
||
stlur <Xt>, [<Xn|SP>{, <amount>}]. */
|
||
bool
|
||
aarch64_ext_addr_offset (const aarch64_operand *self ATTRIBUTE_UNUSED,
|
||
aarch64_opnd_info *info,
|
||
aarch64_insn code, const aarch64_inst *inst,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
info->qualifier = get_expected_qualifier (inst, info->idx);
|
||
|
||
/* Rn */
|
||
info->addr.base_regno = extract_field (self->fields[0], code, 0);
|
||
|
||
/* simm9 */
|
||
aarch64_insn imm = extract_fields (code, 0, 1, self->fields[1]);
|
||
info->addr.offset.imm = sign_extend (imm, 8);
|
||
if (extract_field (self->fields[2], code, 0) == 1) {
|
||
info->addr.writeback = 1;
|
||
info->addr.preind = 1;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Decode the address operand for e.g.
|
||
STR <Qt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
|
||
bool
|
||
aarch64_ext_addr_regoff (const aarch64_operand *self ATTRIBUTE_UNUSED,
|
||
aarch64_opnd_info *info,
|
||
aarch64_insn code, const aarch64_inst *inst,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
aarch64_insn S, value;
|
||
|
||
/* Rn */
|
||
info->addr.base_regno = extract_field (FLD_Rn, code, 0);
|
||
/* Rm */
|
||
info->addr.offset.regno = extract_field (FLD_Rm, code, 0);
|
||
/* option */
|
||
value = extract_field (FLD_option, code, 0);
|
||
info->shifter.kind =
|
||
aarch64_get_operand_modifier_from_value (value, true /* extend_p */);
|
||
/* Fix-up the shifter kind; although the table-driven approach is
|
||
efficient, it is slightly inflexible, thus needing this fix-up. */
|
||
if (info->shifter.kind == AARCH64_MOD_UXTX)
|
||
info->shifter.kind = AARCH64_MOD_LSL;
|
||
/* S */
|
||
S = extract_field (FLD_S, code, 0);
|
||
if (S == 0)
|
||
{
|
||
info->shifter.amount = 0;
|
||
info->shifter.amount_present = 0;
|
||
}
|
||
else
|
||
{
|
||
int size;
|
||
/* Need information in other operand(s) to help achieve the decoding
|
||
from 'S' field. */
|
||
info->qualifier = get_expected_qualifier (inst, info->idx);
|
||
/* Get the size of the data element that is accessed, which may be
|
||
different from that of the source register size, e.g. in strb/ldrb. */
|
||
size = aarch64_get_qualifier_esize (info->qualifier);
|
||
info->shifter.amount = get_logsz (size);
|
||
info->shifter.amount_present = 1;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Decode the address operand for e.g. LDRSW <Xt>, [<Xn|SP>], #<simm>. */
|
||
bool
|
||
aarch64_ext_addr_simm (const aarch64_operand *self, aarch64_opnd_info *info,
|
||
aarch64_insn code, const aarch64_inst *inst,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
aarch64_insn imm;
|
||
info->qualifier = get_expected_qualifier (inst, info->idx);
|
||
|
||
/* Rn */
|
||
info->addr.base_regno = extract_field (FLD_Rn, code, 0);
|
||
/* simm (imm9 or imm7) */
|
||
imm = extract_field (self->fields[0], code, 0);
|
||
info->addr.offset.imm = sign_extend (imm, fields[self->fields[0]].width - 1);
|
||
if (self->fields[0] == FLD_imm7
|
||
|| info->qualifier == AARCH64_OPND_QLF_imm_tag)
|
||
/* scaled immediate in ld/st pair instructions. */
|
||
info->addr.offset.imm *= aarch64_get_qualifier_esize (info->qualifier);
|
||
/* qualifier */
|
||
if (inst->opcode->iclass == ldst_unscaled
|
||
|| inst->opcode->iclass == ldstnapair_offs
|
||
|| inst->opcode->iclass == ldstpair_off
|
||
|| inst->opcode->iclass == ldst_unpriv)
|
||
info->addr.writeback = 0;
|
||
else
|
||
{
|
||
/* pre/post- index */
|
||
info->addr.writeback = 1;
|
||
if (extract_field (self->fields[1], code, 0) == 1)
|
||
info->addr.preind = 1;
|
||
else
|
||
info->addr.postind = 1;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Decode the address operand for e.g. LDRSW <Xt>, [<Xn|SP>{, #<simm>}]. */
|
||
bool
|
||
aarch64_ext_addr_uimm12 (const aarch64_operand *self, aarch64_opnd_info *info,
|
||
aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
int shift;
|
||
info->qualifier = get_expected_qualifier (inst, info->idx);
|
||
shift = get_logsz (aarch64_get_qualifier_esize (info->qualifier));
|
||
/* Rn */
|
||
info->addr.base_regno = extract_field (self->fields[0], code, 0);
|
||
/* uimm12 */
|
||
info->addr.offset.imm = extract_field (self->fields[1], code, 0) << shift;
|
||
return true;
|
||
}
|
||
|
||
/* Decode the address operand for e.g. LDRAA <Xt>, [<Xn|SP>{, #<simm>}]. */
|
||
bool
|
||
aarch64_ext_addr_simm10 (const aarch64_operand *self, aarch64_opnd_info *info,
|
||
aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
aarch64_insn imm;
|
||
|
||
info->qualifier = get_expected_qualifier (inst, info->idx);
|
||
/* Rn */
|
||
info->addr.base_regno = extract_field (self->fields[0], code, 0);
|
||
/* simm10 */
|
||
imm = extract_fields (code, 0, 2, self->fields[1], self->fields[2]);
|
||
info->addr.offset.imm = sign_extend (imm, 9) << 3;
|
||
if (extract_field (self->fields[3], code, 0) == 1) {
|
||
info->addr.writeback = 1;
|
||
info->addr.preind = 1;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Decode the address operand for e.g.
|
||
LD1 {<Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Xn|SP>], <Xm|#<amount>>. */
|
||
bool
|
||
aarch64_ext_simd_addr_post (const aarch64_operand *self ATTRIBUTE_UNUSED,
|
||
aarch64_opnd_info *info,
|
||
aarch64_insn code, const aarch64_inst *inst,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
/* The opcode dependent area stores the number of elements in
|
||
each structure to be loaded/stored. */
|
||
int is_ld1r = get_opcode_dependent_value (inst->opcode) == 1;
|
||
|
||
/* Rn */
|
||
info->addr.base_regno = extract_field (FLD_Rn, code, 0);
|
||
/* Rm | #<amount> */
|
||
info->addr.offset.regno = extract_field (FLD_Rm, code, 0);
|
||
if (info->addr.offset.regno == 31)
|
||
{
|
||
if (inst->opcode->operands[0] == AARCH64_OPND_LVt_AL)
|
||
/* Special handling of loading single structure to all lane. */
|
||
info->addr.offset.imm = (is_ld1r ? 1
|
||
: inst->operands[0].reglist.num_regs)
|
||
* aarch64_get_qualifier_esize (inst->operands[0].qualifier);
|
||
else
|
||
info->addr.offset.imm = inst->operands[0].reglist.num_regs
|
||
* aarch64_get_qualifier_esize (inst->operands[0].qualifier)
|
||
* aarch64_get_qualifier_nelem (inst->operands[0].qualifier);
|
||
}
|
||
else
|
||
info->addr.offset.is_reg = 1;
|
||
info->addr.writeback = 1;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Decode the condition operand for e.g. CSEL <Xd>, <Xn>, <Xm>, <cond>. */
|
||
bool
|
||
aarch64_ext_cond (const aarch64_operand *self ATTRIBUTE_UNUSED,
|
||
aarch64_opnd_info *info,
|
||
aarch64_insn code, const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
aarch64_insn value;
|
||
/* cond */
|
||
value = extract_field (FLD_cond, code, 0);
|
||
info->cond = get_cond_from_value (value);
|
||
return true;
|
||
}
|
||
|
||
/* Decode the system register operand for e.g. MRS <Xt>, <systemreg>. */
|
||
bool
|
||
aarch64_ext_sysreg (const aarch64_operand *self ATTRIBUTE_UNUSED,
|
||
aarch64_opnd_info *info,
|
||
aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
/* op0:op1:CRn:CRm:op2 */
|
||
info->sysreg.value = extract_fields (code, 0, 5, FLD_op0, FLD_op1, FLD_CRn,
|
||
FLD_CRm, FLD_op2);
|
||
info->sysreg.flags = 0;
|
||
|
||
/* If a system instruction, check which restrictions should be on the register
|
||
value during decoding, these will be enforced then. */
|
||
if (inst->opcode->iclass == ic_system)
|
||
{
|
||
/* Check to see if it's read-only, else check if it's write only.
|
||
if it's both or unspecified don't care. */
|
||
if ((inst->opcode->flags & (F_SYS_READ | F_SYS_WRITE)) == F_SYS_READ)
|
||
info->sysreg.flags = F_REG_READ;
|
||
else if ((inst->opcode->flags & (F_SYS_READ | F_SYS_WRITE))
|
||
== F_SYS_WRITE)
|
||
info->sysreg.flags = F_REG_WRITE;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Decode the PSTATE field operand for e.g. MSR <pstatefield>, #<imm>. */
|
||
bool
|
||
aarch64_ext_pstatefield (const aarch64_operand *self ATTRIBUTE_UNUSED,
|
||
aarch64_opnd_info *info, aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
int i;
|
||
aarch64_insn fld_crm = extract_field (FLD_CRm, code, 0);
|
||
/* op1:op2 */
|
||
info->pstatefield = extract_fields (code, 0, 2, FLD_op1, FLD_op2);
|
||
for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
|
||
if (aarch64_pstatefields[i].value == (aarch64_insn)info->pstatefield)
|
||
{
|
||
/* PSTATEFIELD name can be encoded partially in CRm[3:1]. */
|
||
uint32_t flags = aarch64_pstatefields[i].flags;
|
||
if ((flags & F_REG_IN_CRM)
|
||
&& ((fld_crm & 0xe) != PSTATE_DECODE_CRM (flags)))
|
||
continue;
|
||
info->sysreg.flags = flags;
|
||
return true;
|
||
}
|
||
/* Reserved value in <pstatefield>. */
|
||
return false;
|
||
}
|
||
|
||
/* Decode the system instruction op operand for e.g. AT <at_op>, <Xt>. */
|
||
bool
|
||
aarch64_ext_sysins_op (const aarch64_operand *self ATTRIBUTE_UNUSED,
|
||
aarch64_opnd_info *info,
|
||
aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
int i;
|
||
aarch64_insn value;
|
||
const aarch64_sys_ins_reg *sysins_ops;
|
||
/* op0:op1:CRn:CRm:op2 */
|
||
value = extract_fields (code, 0, 5,
|
||
FLD_op0, FLD_op1, FLD_CRn,
|
||
FLD_CRm, FLD_op2);
|
||
|
||
switch (info->type)
|
||
{
|
||
case AARCH64_OPND_SYSREG_AT: sysins_ops = aarch64_sys_regs_at; break;
|
||
case AARCH64_OPND_SYSREG_DC: sysins_ops = aarch64_sys_regs_dc; break;
|
||
case AARCH64_OPND_SYSREG_IC: sysins_ops = aarch64_sys_regs_ic; break;
|
||
case AARCH64_OPND_SYSREG_TLBI: sysins_ops = aarch64_sys_regs_tlbi; break;
|
||
case AARCH64_OPND_SYSREG_SR:
|
||
sysins_ops = aarch64_sys_regs_sr;
|
||
/* Let's remove op2 for rctx. Refer to comments in the definition of
|
||
aarch64_sys_regs_sr[]. */
|
||
value = value & ~(0x7);
|
||
break;
|
||
default: return false;
|
||
}
|
||
|
||
for (i = 0; sysins_ops[i].name != NULL; ++i)
|
||
if (sysins_ops[i].value == value)
|
||
{
|
||
info->sysins_op = sysins_ops + i;
|
||
DEBUG_TRACE ("%s found value: %x, has_xt: %d, i: %d.",
|
||
info->sysins_op->name,
|
||
(unsigned)info->sysins_op->value,
|
||
aarch64_sys_ins_reg_has_xt (info->sysins_op), i);
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Decode the memory barrier option operand for e.g. DMB <option>|#<imm>. */
|
||
|
||
bool
|
||
aarch64_ext_barrier (const aarch64_operand *self ATTRIBUTE_UNUSED,
|
||
aarch64_opnd_info *info,
|
||
aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
/* CRm */
|
||
info->barrier = aarch64_barrier_options + extract_field (FLD_CRm, code, 0);
|
||
return true;
|
||
}
|
||
|
||
/* Decode the memory barrier option operand for DSB <option>nXS|#<imm>. */
|
||
|
||
bool
|
||
aarch64_ext_barrier_dsb_nxs (const aarch64_operand *self ATTRIBUTE_UNUSED,
|
||
aarch64_opnd_info *info,
|
||
aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
/* For the DSB nXS barrier variant immediate is encoded in 2-bit field. */
|
||
aarch64_insn field = extract_field (FLD_CRm_dsb_nxs, code, 0);
|
||
info->barrier = aarch64_barrier_dsb_nxs_options + field;
|
||
return true;
|
||
}
|
||
|
||
/* Decode the prefetch operation option operand for e.g.
|
||
PRFM <prfop>, [<Xn|SP>{, #<pimm>}]. */
|
||
|
||
bool
|
||
aarch64_ext_prfop (const aarch64_operand *self ATTRIBUTE_UNUSED,
|
||
aarch64_opnd_info *info,
|
||
aarch64_insn code, const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
/* prfop in Rt */
|
||
info->prfop = aarch64_prfops + extract_field (FLD_Rt, code, 0);
|
||
return true;
|
||
}
|
||
|
||
/* Decode the hint number for an alias taking an operand. Set info->hint_option
|
||
to the matching name/value pair in aarch64_hint_options. */
|
||
|
||
bool
|
||
aarch64_ext_hint (const aarch64_operand *self ATTRIBUTE_UNUSED,
|
||
aarch64_opnd_info *info,
|
||
aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
/* CRm:op2. */
|
||
unsigned hint_number;
|
||
int i;
|
||
|
||
hint_number = extract_fields (code, 0, 2, FLD_CRm, FLD_op2);
|
||
|
||
for (i = 0; aarch64_hint_options[i].name != NULL; i++)
|
||
{
|
||
if (hint_number == HINT_VAL (aarch64_hint_options[i].value))
|
||
{
|
||
info->hint_option = &(aarch64_hint_options[i]);
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Decode the extended register operand for e.g.
|
||
STR <Qt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
|
||
bool
|
||
aarch64_ext_reg_extended (const aarch64_operand *self ATTRIBUTE_UNUSED,
|
||
aarch64_opnd_info *info,
|
||
aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
aarch64_insn value;
|
||
|
||
/* Rm */
|
||
info->reg.regno = extract_field (FLD_Rm, code, 0);
|
||
/* option */
|
||
value = extract_field (FLD_option, code, 0);
|
||
info->shifter.kind =
|
||
aarch64_get_operand_modifier_from_value (value, true /* extend_p */);
|
||
/* imm3 */
|
||
info->shifter.amount = extract_field (FLD_imm3, code, 0);
|
||
|
||
/* This makes the constraint checking happy. */
|
||
info->shifter.operator_present = 1;
|
||
|
||
/* Assume inst->operands[0].qualifier has been resolved. */
|
||
assert (inst->operands[0].qualifier != AARCH64_OPND_QLF_NIL);
|
||
info->qualifier = AARCH64_OPND_QLF_W;
|
||
if (inst->operands[0].qualifier == AARCH64_OPND_QLF_X
|
||
&& (info->shifter.kind == AARCH64_MOD_UXTX
|
||
|| info->shifter.kind == AARCH64_MOD_SXTX))
|
||
info->qualifier = AARCH64_OPND_QLF_X;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Decode the shifted register operand for e.g.
|
||
SUBS <Xd>, <Xn>, <Xm> {, <shift> #<amount>}. */
|
||
bool
|
||
aarch64_ext_reg_shifted (const aarch64_operand *self ATTRIBUTE_UNUSED,
|
||
aarch64_opnd_info *info,
|
||
aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
aarch64_insn value;
|
||
|
||
/* Rm */
|
||
info->reg.regno = extract_field (FLD_Rm, code, 0);
|
||
/* shift */
|
||
value = extract_field (FLD_shift, code, 0);
|
||
info->shifter.kind =
|
||
aarch64_get_operand_modifier_from_value (value, false /* extend_p */);
|
||
if (info->shifter.kind == AARCH64_MOD_ROR
|
||
&& inst->opcode->iclass != log_shift)
|
||
/* ROR is not available for the shifted register operand in arithmetic
|
||
instructions. */
|
||
return false;
|
||
/* imm6 */
|
||
info->shifter.amount = extract_field (FLD_imm6, code, 0);
|
||
|
||
/* This makes the constraint checking happy. */
|
||
info->shifter.operator_present = 1;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Decode an SVE address [<base>, #<offset>*<factor>, MUL VL],
|
||
where <offset> is given by the OFFSET parameter and where <factor> is
|
||
1 plus SELF's operand-dependent value. fields[0] specifies the field
|
||
that holds <base>. */
|
||
static bool
|
||
aarch64_ext_sve_addr_reg_mul_vl (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, aarch64_insn code,
|
||
int64_t offset)
|
||
{
|
||
info->addr.base_regno = extract_field (self->fields[0], code, 0);
|
||
info->addr.offset.imm = offset * (1 + get_operand_specific_data (self));
|
||
info->addr.offset.is_reg = false;
|
||
info->addr.writeback = false;
|
||
info->addr.preind = true;
|
||
if (offset != 0)
|
||
info->shifter.kind = AARCH64_MOD_MUL_VL;
|
||
info->shifter.amount = 1;
|
||
info->shifter.operator_present = (info->addr.offset.imm != 0);
|
||
info->shifter.amount_present = false;
|
||
return true;
|
||
}
|
||
|
||
/* Decode an SVE address [<base>, #<simm4>*<factor>, MUL VL],
|
||
where <simm4> is a 4-bit signed value and where <factor> is 1 plus
|
||
SELF's operand-dependent value. fields[0] specifies the field that
|
||
holds <base>. <simm4> is encoded in the SVE_imm4 field. */
|
||
bool
|
||
aarch64_ext_sve_addr_ri_s4xvl (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
int offset;
|
||
|
||
offset = extract_field (FLD_SVE_imm4, code, 0);
|
||
offset = ((offset + 8) & 15) - 8;
|
||
return aarch64_ext_sve_addr_reg_mul_vl (self, info, code, offset);
|
||
}
|
||
|
||
/* Decode an SVE address [<base>, #<simm6>*<factor>, MUL VL],
|
||
where <simm6> is a 6-bit signed value and where <factor> is 1 plus
|
||
SELF's operand-dependent value. fields[0] specifies the field that
|
||
holds <base>. <simm6> is encoded in the SVE_imm6 field. */
|
||
bool
|
||
aarch64_ext_sve_addr_ri_s6xvl (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
int offset;
|
||
|
||
offset = extract_field (FLD_SVE_imm6, code, 0);
|
||
offset = (((offset + 32) & 63) - 32);
|
||
return aarch64_ext_sve_addr_reg_mul_vl (self, info, code, offset);
|
||
}
|
||
|
||
/* Decode an SVE address [<base>, #<simm9>*<factor>, MUL VL],
|
||
where <simm9> is a 9-bit signed value and where <factor> is 1 plus
|
||
SELF's operand-dependent value. fields[0] specifies the field that
|
||
holds <base>. <simm9> is encoded in the concatenation of the SVE_imm6
|
||
and imm3 fields, with imm3 being the less-significant part. */
|
||
bool
|
||
aarch64_ext_sve_addr_ri_s9xvl (const aarch64_operand *self,
|
||
aarch64_opnd_info *info,
|
||
aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
int offset;
|
||
|
||
offset = extract_fields (code, 0, 2, FLD_SVE_imm6, FLD_imm3);
|
||
offset = (((offset + 256) & 511) - 256);
|
||
return aarch64_ext_sve_addr_reg_mul_vl (self, info, code, offset);
|
||
}
|
||
|
||
/* Decode an SVE address [<base>, #<offset> << <shift>], where <offset>
|
||
is given by the OFFSET parameter and where <shift> is SELF's operand-
|
||
dependent value. fields[0] specifies the base register field <base>. */
|
||
static bool
|
||
aarch64_ext_sve_addr_reg_imm (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, aarch64_insn code,
|
||
int64_t offset)
|
||
{
|
||
info->addr.base_regno = extract_field (self->fields[0], code, 0);
|
||
info->addr.offset.imm = offset * (1 << get_operand_specific_data (self));
|
||
info->addr.offset.is_reg = false;
|
||
info->addr.writeback = false;
|
||
info->addr.preind = true;
|
||
info->shifter.operator_present = false;
|
||
info->shifter.amount_present = false;
|
||
return true;
|
||
}
|
||
|
||
/* Decode an SVE address [X<n>, #<SVE_imm4> << <shift>], where <SVE_imm4>
|
||
is a 4-bit signed number and where <shift> is SELF's operand-dependent
|
||
value. fields[0] specifies the base register field. */
|
||
bool
|
||
aarch64_ext_sve_addr_ri_s4 (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
int offset = sign_extend (extract_field (FLD_SVE_imm4, code, 0), 3);
|
||
return aarch64_ext_sve_addr_reg_imm (self, info, code, offset);
|
||
}
|
||
|
||
/* Decode an SVE address [X<n>, #<SVE_imm6> << <shift>], where <SVE_imm6>
|
||
is a 6-bit unsigned number and where <shift> is SELF's operand-dependent
|
||
value. fields[0] specifies the base register field. */
|
||
bool
|
||
aarch64_ext_sve_addr_ri_u6 (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
int offset = extract_field (FLD_SVE_imm6, code, 0);
|
||
return aarch64_ext_sve_addr_reg_imm (self, info, code, offset);
|
||
}
|
||
|
||
/* Decode an SVE address [X<n>, X<m>{, LSL #<shift>}], where <shift>
|
||
is SELF's operand-dependent value. fields[0] specifies the base
|
||
register field and fields[1] specifies the offset register field. */
|
||
bool
|
||
aarch64_ext_sve_addr_rr_lsl (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
int index_regno;
|
||
|
||
index_regno = extract_field (self->fields[1], code, 0);
|
||
if (index_regno == 31 && (self->flags & OPD_F_NO_ZR) != 0)
|
||
return false;
|
||
|
||
info->addr.base_regno = extract_field (self->fields[0], code, 0);
|
||
info->addr.offset.regno = index_regno;
|
||
info->addr.offset.is_reg = true;
|
||
info->addr.writeback = false;
|
||
info->addr.preind = true;
|
||
info->shifter.kind = AARCH64_MOD_LSL;
|
||
info->shifter.amount = get_operand_specific_data (self);
|
||
info->shifter.operator_present = (info->shifter.amount != 0);
|
||
info->shifter.amount_present = (info->shifter.amount != 0);
|
||
return true;
|
||
}
|
||
|
||
/* Decode an SVE address [X<n>, Z<m>.<T>, (S|U)XTW {#<shift>}], where
|
||
<shift> is SELF's operand-dependent value. fields[0] specifies the
|
||
base register field, fields[1] specifies the offset register field and
|
||
fields[2] is a single-bit field that selects SXTW over UXTW. */
|
||
bool
|
||
aarch64_ext_sve_addr_rz_xtw (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
info->addr.base_regno = extract_field (self->fields[0], code, 0);
|
||
info->addr.offset.regno = extract_field (self->fields[1], code, 0);
|
||
info->addr.offset.is_reg = true;
|
||
info->addr.writeback = false;
|
||
info->addr.preind = true;
|
||
if (extract_field (self->fields[2], code, 0))
|
||
info->shifter.kind = AARCH64_MOD_SXTW;
|
||
else
|
||
info->shifter.kind = AARCH64_MOD_UXTW;
|
||
info->shifter.amount = get_operand_specific_data (self);
|
||
info->shifter.operator_present = true;
|
||
info->shifter.amount_present = (info->shifter.amount != 0);
|
||
return true;
|
||
}
|
||
|
||
/* Decode an SVE address [Z<n>.<T>, #<imm5> << <shift>], where <imm5> is a
|
||
5-bit unsigned number and where <shift> is SELF's operand-dependent value.
|
||
fields[0] specifies the base register field. */
|
||
bool
|
||
aarch64_ext_sve_addr_zi_u5 (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
int offset = extract_field (FLD_imm5, code, 0);
|
||
return aarch64_ext_sve_addr_reg_imm (self, info, code, offset);
|
||
}
|
||
|
||
/* Decode an SVE address [Z<n>.<T>, Z<m>.<T>{, <modifier> {#<msz>}}],
|
||
where <modifier> is given by KIND and where <msz> is a 2-bit unsigned
|
||
number. fields[0] specifies the base register field and fields[1]
|
||
specifies the offset register field. */
|
||
static bool
|
||
aarch64_ext_sve_addr_zz (const aarch64_operand *self, aarch64_opnd_info *info,
|
||
aarch64_insn code, enum aarch64_modifier_kind kind)
|
||
{
|
||
info->addr.base_regno = extract_field (self->fields[0], code, 0);
|
||
info->addr.offset.regno = extract_field (self->fields[1], code, 0);
|
||
info->addr.offset.is_reg = true;
|
||
info->addr.writeback = false;
|
||
info->addr.preind = true;
|
||
info->shifter.kind = kind;
|
||
info->shifter.amount = extract_field (FLD_SVE_msz, code, 0);
|
||
info->shifter.operator_present = (kind != AARCH64_MOD_LSL
|
||
|| info->shifter.amount != 0);
|
||
info->shifter.amount_present = (info->shifter.amount != 0);
|
||
return true;
|
||
}
|
||
|
||
/* Decode an SVE address [Z<n>.<T>, Z<m>.<T>{, LSL #<msz>}], where
|
||
<msz> is a 2-bit unsigned number. fields[0] specifies the base register
|
||
field and fields[1] specifies the offset register field. */
|
||
bool
|
||
aarch64_ext_sve_addr_zz_lsl (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
return aarch64_ext_sve_addr_zz (self, info, code, AARCH64_MOD_LSL);
|
||
}
|
||
|
||
/* Decode an SVE address [Z<n>.<T>, Z<m>.<T>, SXTW {#<msz>}], where
|
||
<msz> is a 2-bit unsigned number. fields[0] specifies the base register
|
||
field and fields[1] specifies the offset register field. */
|
||
bool
|
||
aarch64_ext_sve_addr_zz_sxtw (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
return aarch64_ext_sve_addr_zz (self, info, code, AARCH64_MOD_SXTW);
|
||
}
|
||
|
||
/* Decode an SVE address [Z<n>.<T>, Z<m>.<T>, UXTW {#<msz>}], where
|
||
<msz> is a 2-bit unsigned number. fields[0] specifies the base register
|
||
field and fields[1] specifies the offset register field. */
|
||
bool
|
||
aarch64_ext_sve_addr_zz_uxtw (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
return aarch64_ext_sve_addr_zz (self, info, code, AARCH64_MOD_UXTW);
|
||
}
|
||
|
||
/* Finish decoding an SVE arithmetic immediate, given that INFO already
|
||
has the raw field value and that the low 8 bits decode to VALUE. */
|
||
static bool
|
||
decode_sve_aimm (aarch64_opnd_info *info, int64_t value)
|
||
{
|
||
info->shifter.kind = AARCH64_MOD_LSL;
|
||
info->shifter.amount = 0;
|
||
if (info->imm.value & 0x100)
|
||
{
|
||
if (value == 0)
|
||
/* Decode 0x100 as #0, LSL #8. */
|
||
info->shifter.amount = 8;
|
||
else
|
||
value *= 256;
|
||
}
|
||
info->shifter.operator_present = (info->shifter.amount != 0);
|
||
info->shifter.amount_present = (info->shifter.amount != 0);
|
||
info->imm.value = value;
|
||
return true;
|
||
}
|
||
|
||
/* Decode an SVE ADD/SUB immediate. */
|
||
bool
|
||
aarch64_ext_sve_aimm (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, const aarch64_insn code,
|
||
const aarch64_inst *inst,
|
||
aarch64_operand_error *errors)
|
||
{
|
||
return (aarch64_ext_imm (self, info, code, inst, errors)
|
||
&& decode_sve_aimm (info, (uint8_t) info->imm.value));
|
||
}
|
||
|
||
/* Decode an SVE CPY/DUP immediate. */
|
||
bool
|
||
aarch64_ext_sve_asimm (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, const aarch64_insn code,
|
||
const aarch64_inst *inst,
|
||
aarch64_operand_error *errors)
|
||
{
|
||
return (aarch64_ext_imm (self, info, code, inst, errors)
|
||
&& decode_sve_aimm (info, (int8_t) info->imm.value));
|
||
}
|
||
|
||
/* Decode a single-bit immediate that selects between #0.5 and #1.0.
|
||
The fields array specifies which field to use. */
|
||
bool
|
||
aarch64_ext_sve_float_half_one (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
if (extract_field (self->fields[0], code, 0))
|
||
info->imm.value = 0x3f800000;
|
||
else
|
||
info->imm.value = 0x3f000000;
|
||
info->imm.is_fp = true;
|
||
return true;
|
||
}
|
||
|
||
/* Decode a single-bit immediate that selects between #0.5 and #2.0.
|
||
The fields array specifies which field to use. */
|
||
bool
|
||
aarch64_ext_sve_float_half_two (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
if (extract_field (self->fields[0], code, 0))
|
||
info->imm.value = 0x40000000;
|
||
else
|
||
info->imm.value = 0x3f000000;
|
||
info->imm.is_fp = true;
|
||
return true;
|
||
}
|
||
|
||
/* Decode a single-bit immediate that selects between #0.0 and #1.0.
|
||
The fields array specifies which field to use. */
|
||
bool
|
||
aarch64_ext_sve_float_zero_one (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
if (extract_field (self->fields[0], code, 0))
|
||
info->imm.value = 0x3f800000;
|
||
else
|
||
info->imm.value = 0x0;
|
||
info->imm.is_fp = true;
|
||
return true;
|
||
}
|
||
|
||
/* Decode ZA tile vector, vector indicator, vector selector, qualifier and
|
||
immediate on numerous SME instruction fields such as MOVA. */
|
||
bool
|
||
aarch64_ext_sme_za_hv_tiles (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
int fld_size = extract_field (self->fields[0], code, 0);
|
||
int fld_q = extract_field (self->fields[1], code, 0);
|
||
int fld_v = extract_field (self->fields[2], code, 0);
|
||
int fld_rv = extract_field (self->fields[3], code, 0);
|
||
int fld_zan_imm = extract_field (self->fields[4], code, 0);
|
||
|
||
/* Deduce qualifier encoded in size and Q fields. */
|
||
if (fld_size == 0)
|
||
info->qualifier = AARCH64_OPND_QLF_S_B;
|
||
else if (fld_size == 1)
|
||
info->qualifier = AARCH64_OPND_QLF_S_H;
|
||
else if (fld_size == 2)
|
||
info->qualifier = AARCH64_OPND_QLF_S_S;
|
||
else if (fld_size == 3 && fld_q == 0)
|
||
info->qualifier = AARCH64_OPND_QLF_S_D;
|
||
else if (fld_size == 3 && fld_q == 1)
|
||
info->qualifier = AARCH64_OPND_QLF_S_Q;
|
||
|
||
info->za_tile_vector.index.regno = fld_rv + 12;
|
||
info->za_tile_vector.v = fld_v;
|
||
|
||
switch (info->qualifier)
|
||
{
|
||
case AARCH64_OPND_QLF_S_B:
|
||
info->za_tile_vector.regno = 0;
|
||
info->za_tile_vector.index.imm = fld_zan_imm;
|
||
break;
|
||
case AARCH64_OPND_QLF_S_H:
|
||
info->za_tile_vector.regno = fld_zan_imm >> 3;
|
||
info->za_tile_vector.index.imm = fld_zan_imm & 0x07;
|
||
break;
|
||
case AARCH64_OPND_QLF_S_S:
|
||
info->za_tile_vector.regno = fld_zan_imm >> 2;
|
||
info->za_tile_vector.index.imm = fld_zan_imm & 0x03;
|
||
break;
|
||
case AARCH64_OPND_QLF_S_D:
|
||
info->za_tile_vector.regno = fld_zan_imm >> 1;
|
||
info->za_tile_vector.index.imm = fld_zan_imm & 0x01;
|
||
break;
|
||
case AARCH64_OPND_QLF_S_Q:
|
||
info->za_tile_vector.regno = fld_zan_imm;
|
||
info->za_tile_vector.index.imm = 0;
|
||
break;
|
||
default:
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Decode in SME instruction ZERO list of up to eight 64-bit element tile names
|
||
separated by commas, encoded in the "imm8" field.
|
||
|
||
For programmer convenience an assembler must also accept the names of
|
||
32-bit, 16-bit and 8-bit element tiles which are converted into the
|
||
corresponding set of 64-bit element tiles.
|
||
*/
|
||
bool
|
||
aarch64_ext_sme_za_list (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
int mask = extract_field (self->fields[0], code, 0);
|
||
info->imm.value = mask;
|
||
return true;
|
||
}
|
||
|
||
/* Decode ZA array vector select register (Rv field), optional vector and
|
||
memory offset (imm4 field).
|
||
*/
|
||
bool
|
||
aarch64_ext_sme_za_array (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
int regno = extract_field (self->fields[0], code, 0) + 12;
|
||
int imm = extract_field (self->fields[1], code, 0);
|
||
info->za_tile_vector.index.regno = regno;
|
||
info->za_tile_vector.index.imm = imm;
|
||
return true;
|
||
}
|
||
|
||
bool
|
||
aarch64_ext_sme_addr_ri_u4xvl (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
int regno = extract_field (self->fields[0], code, 0);
|
||
int imm = extract_field (self->fields[1], code, 0);
|
||
info->addr.base_regno = regno;
|
||
info->addr.offset.imm = imm;
|
||
/* MUL VL operator is always present for this operand. */
|
||
info->shifter.kind = AARCH64_MOD_MUL_VL;
|
||
info->shifter.operator_present = (imm != 0);
|
||
return true;
|
||
}
|
||
|
||
/* Decode {SM|ZA} filed for SMSTART and SMSTOP instructions. */
|
||
bool
|
||
aarch64_ext_sme_sm_za (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
info->pstatefield = 0x1b;
|
||
aarch64_insn fld_crm = extract_field (self->fields[0], code, 0);
|
||
fld_crm >>= 1; /* CRm[3:1]. */
|
||
|
||
if (fld_crm == 0x1)
|
||
info->reg.regno = 's';
|
||
else if (fld_crm == 0x2)
|
||
info->reg.regno = 'z';
|
||
else
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
bool
|
||
aarch64_ext_sme_pred_reg_with_index (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
aarch64_insn fld_rm = extract_field (self->fields[0], code, 0);
|
||
aarch64_insn fld_pn = extract_field (self->fields[1], code, 0);
|
||
aarch64_insn fld_i1 = extract_field (self->fields[2], code, 0);
|
||
aarch64_insn fld_tszh = extract_field (self->fields[3], code, 0);
|
||
aarch64_insn fld_tszl = extract_field (self->fields[4], code, 0);
|
||
int imm;
|
||
|
||
info->za_tile_vector.regno = fld_pn;
|
||
info->za_tile_vector.index.regno = fld_rm + 12;
|
||
|
||
if (fld_tszh == 0x1 && fld_tszl == 0x0)
|
||
{
|
||
info->qualifier = AARCH64_OPND_QLF_S_D;
|
||
imm = fld_i1;
|
||
}
|
||
else if (fld_tszl == 0x4)
|
||
{
|
||
info->qualifier = AARCH64_OPND_QLF_S_S;
|
||
imm = (fld_i1 << 1) | fld_tszh;
|
||
}
|
||
else if ((fld_tszl & 0x3) == 0x2)
|
||
{
|
||
info->qualifier = AARCH64_OPND_QLF_S_H;
|
||
imm = (fld_i1 << 2) | (fld_tszh << 1) | (fld_tszl >> 2);
|
||
}
|
||
else if (fld_tszl & 0x1)
|
||
{
|
||
info->qualifier = AARCH64_OPND_QLF_S_B;
|
||
imm = (fld_i1 << 3) | (fld_tszh << 2) | (fld_tszl >> 1);
|
||
}
|
||
else
|
||
return false;
|
||
|
||
info->za_tile_vector.index.imm = imm;
|
||
return true;
|
||
}
|
||
|
||
/* Decode Zn[MM], where MM has a 7-bit triangular encoding. The fields
|
||
array specifies which field to use for Zn. MM is encoded in the
|
||
concatenation of imm5 and SVE_tszh, with imm5 being the less
|
||
significant part. */
|
||
bool
|
||
aarch64_ext_sve_index (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
int val;
|
||
|
||
info->reglane.regno = extract_field (self->fields[0], code, 0);
|
||
val = extract_fields (code, 0, 2, FLD_SVE_tszh, FLD_imm5);
|
||
if ((val & 31) == 0)
|
||
return 0;
|
||
while ((val & 1) == 0)
|
||
val /= 2;
|
||
info->reglane.index = val / 2;
|
||
return true;
|
||
}
|
||
|
||
/* Decode a logical immediate for the MOV alias of SVE DUPM. */
|
||
bool
|
||
aarch64_ext_sve_limm_mov (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, const aarch64_insn code,
|
||
const aarch64_inst *inst,
|
||
aarch64_operand_error *errors)
|
||
{
|
||
int esize = aarch64_get_qualifier_esize (inst->operands[0].qualifier);
|
||
return (aarch64_ext_limm (self, info, code, inst, errors)
|
||
&& aarch64_sve_dupm_mov_immediate_p (info->imm.value, esize));
|
||
}
|
||
|
||
/* Decode Zn[MM], where Zn occupies the least-significant part of the field
|
||
and where MM occupies the most-significant part. The operand-dependent
|
||
value specifies the number of bits in Zn. */
|
||
bool
|
||
aarch64_ext_sve_quad_index (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
unsigned int reg_bits = get_operand_specific_data (self);
|
||
unsigned int val = extract_all_fields (self, code);
|
||
info->reglane.regno = val & ((1 << reg_bits) - 1);
|
||
info->reglane.index = val >> reg_bits;
|
||
return true;
|
||
}
|
||
|
||
/* Decode {Zn.<T> - Zm.<T>}. The fields array specifies which field
|
||
to use for Zn. The opcode-dependent value specifies the number
|
||
of registers in the list. */
|
||
bool
|
||
aarch64_ext_sve_reglist (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
info->reglist.first_regno = extract_field (self->fields[0], code, 0);
|
||
info->reglist.num_regs = get_opcode_dependent_value (inst->opcode);
|
||
return true;
|
||
}
|
||
|
||
/* Decode <pattern>{, MUL #<amount>}. The fields array specifies which
|
||
fields to use for <pattern>. <amount> - 1 is encoded in the SVE_imm4
|
||
field. */
|
||
bool
|
||
aarch64_ext_sve_scale (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, aarch64_insn code,
|
||
const aarch64_inst *inst, aarch64_operand_error *errors)
|
||
{
|
||
int val;
|
||
|
||
if (!aarch64_ext_imm (self, info, code, inst, errors))
|
||
return false;
|
||
val = extract_field (FLD_SVE_imm4, code, 0);
|
||
info->shifter.kind = AARCH64_MOD_MUL;
|
||
info->shifter.amount = val + 1;
|
||
info->shifter.operator_present = (val != 0);
|
||
info->shifter.amount_present = (val != 0);
|
||
return true;
|
||
}
|
||
|
||
/* Return the top set bit in VALUE, which is expected to be relatively
|
||
small. */
|
||
static uint64_t
|
||
get_top_bit (uint64_t value)
|
||
{
|
||
while ((value & -value) != value)
|
||
value -= value & -value;
|
||
return value;
|
||
}
|
||
|
||
/* Decode an SVE shift-left immediate. */
|
||
bool
|
||
aarch64_ext_sve_shlimm (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, const aarch64_insn code,
|
||
const aarch64_inst *inst, aarch64_operand_error *errors)
|
||
{
|
||
if (!aarch64_ext_imm (self, info, code, inst, errors)
|
||
|| info->imm.value == 0)
|
||
return false;
|
||
|
||
info->imm.value -= get_top_bit (info->imm.value);
|
||
return true;
|
||
}
|
||
|
||
/* Decode an SVE shift-right immediate. */
|
||
bool
|
||
aarch64_ext_sve_shrimm (const aarch64_operand *self,
|
||
aarch64_opnd_info *info, const aarch64_insn code,
|
||
const aarch64_inst *inst, aarch64_operand_error *errors)
|
||
{
|
||
if (!aarch64_ext_imm (self, info, code, inst, errors)
|
||
|| info->imm.value == 0)
|
||
return false;
|
||
|
||
info->imm.value = get_top_bit (info->imm.value) * 2 - info->imm.value;
|
||
return true;
|
||
}
|
||
|
||
/* Decode X0-X30. Register 31 is unallocated. */
|
||
bool
|
||
aarch64_ext_x0_to_x30 (const aarch64_operand *self, aarch64_opnd_info *info,
|
||
const aarch64_insn code,
|
||
const aarch64_inst *inst ATTRIBUTE_UNUSED,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
info->reg.regno = extract_field (self->fields[0], code, 0);
|
||
return info->reg.regno <= 30;
|
||
}
|
||
|
||
/* Bitfields that are commonly used to encode certain operands' information
|
||
may be partially used as part of the base opcode in some instructions.
|
||
For example, the bit 1 of the field 'size' in
|
||
FCVTXN <Vb><d>, <Va><n>
|
||
is actually part of the base opcode, while only size<0> is available
|
||
for encoding the register type. Another example is the AdvSIMD
|
||
instruction ORR (register), in which the field 'size' is also used for
|
||
the base opcode, leaving only the field 'Q' available to encode the
|
||
vector register arrangement specifier '8B' or '16B'.
|
||
|
||
This function tries to deduce the qualifier from the value of partially
|
||
constrained field(s). Given the VALUE of such a field or fields, the
|
||
qualifiers CANDIDATES and the MASK (indicating which bits are valid for
|
||
operand encoding), the function returns the matching qualifier or
|
||
AARCH64_OPND_QLF_NIL if nothing matches.
|
||
|
||
N.B. CANDIDATES is a group of possible qualifiers that are valid for
|
||
one operand; it has a maximum of AARCH64_MAX_QLF_SEQ_NUM qualifiers and
|
||
may end with AARCH64_OPND_QLF_NIL. */
|
||
|
||
static enum aarch64_opnd_qualifier
|
||
get_qualifier_from_partial_encoding (aarch64_insn value,
|
||
const enum aarch64_opnd_qualifier* \
|
||
candidates,
|
||
aarch64_insn mask)
|
||
{
|
||
int i;
|
||
DEBUG_TRACE ("enter with value: %d, mask: %d", (int)value, (int)mask);
|
||
for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i)
|
||
{
|
||
aarch64_insn standard_value;
|
||
if (candidates[i] == AARCH64_OPND_QLF_NIL)
|
||
break;
|
||
standard_value = aarch64_get_qualifier_standard_value (candidates[i]);
|
||
if ((standard_value & mask) == (value & mask))
|
||
return candidates[i];
|
||
}
|
||
return AARCH64_OPND_QLF_NIL;
|
||
}
|
||
|
||
/* Given a list of qualifier sequences, return all possible valid qualifiers
|
||
for operand IDX in QUALIFIERS.
|
||
Assume QUALIFIERS is an array whose length is large enough. */
|
||
|
||
static void
|
||
get_operand_possible_qualifiers (int idx,
|
||
const aarch64_opnd_qualifier_seq_t *list,
|
||
enum aarch64_opnd_qualifier *qualifiers)
|
||
{
|
||
int i;
|
||
for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i)
|
||
if ((qualifiers[i] = list[i][idx]) == AARCH64_OPND_QLF_NIL)
|
||
break;
|
||
}
|
||
|
||
/* Decode the size Q field for e.g. SHADD.
|
||
We tag one operand with the qualifer according to the code;
|
||
whether the qualifier is valid for this opcode or not, it is the
|
||
duty of the semantic checking. */
|
||
|
||
static int
|
||
decode_sizeq (aarch64_inst *inst)
|
||
{
|
||
int idx;
|
||
enum aarch64_opnd_qualifier qualifier;
|
||
aarch64_insn code;
|
||
aarch64_insn value, mask;
|
||
enum aarch64_field_kind fld_sz;
|
||
enum aarch64_opnd_qualifier candidates[AARCH64_MAX_QLF_SEQ_NUM];
|
||
|
||
if (inst->opcode->iclass == asisdlse
|
||
|| inst->opcode->iclass == asisdlsep
|
||
|| inst->opcode->iclass == asisdlso
|
||
|| inst->opcode->iclass == asisdlsop)
|
||
fld_sz = FLD_vldst_size;
|
||
else
|
||
fld_sz = FLD_size;
|
||
|
||
code = inst->value;
|
||
value = extract_fields (code, inst->opcode->mask, 2, fld_sz, FLD_Q);
|
||
/* Obtain the info that which bits of fields Q and size are actually
|
||
available for operand encoding. Opcodes like FMAXNM and FMLA have
|
||
size[1] unavailable. */
|
||
mask = extract_fields (~inst->opcode->mask, 0, 2, fld_sz, FLD_Q);
|
||
|
||
/* The index of the operand we are going to tag a qualifier and the qualifer
|
||
itself are reasoned from the value of the size and Q fields and the
|
||
possible valid qualifier lists. */
|
||
idx = aarch64_select_operand_for_sizeq_field_coding (inst->opcode);
|
||
DEBUG_TRACE ("key idx: %d", idx);
|
||
|
||
/* For most related instruciton, size:Q are fully available for operand
|
||
encoding. */
|
||
if (mask == 0x7)
|
||
{
|
||
inst->operands[idx].qualifier = get_vreg_qualifier_from_value (value);
|
||
return 1;
|
||
}
|
||
|
||
get_operand_possible_qualifiers (idx, inst->opcode->qualifiers_list,
|
||
candidates);
|
||
#ifdef DEBUG_AARCH64
|
||
if (debug_dump)
|
||
{
|
||
int i;
|
||
for (i = 0; candidates[i] != AARCH64_OPND_QLF_NIL
|
||
&& i < AARCH64_MAX_QLF_SEQ_NUM; ++i)
|
||
DEBUG_TRACE ("qualifier %d: %s", i,
|
||
aarch64_get_qualifier_name(candidates[i]));
|
||
DEBUG_TRACE ("%d, %d", (int)value, (int)mask);
|
||
}
|
||
#endif /* DEBUG_AARCH64 */
|
||
|
||
qualifier = get_qualifier_from_partial_encoding (value, candidates, mask);
|
||
|
||
if (qualifier == AARCH64_OPND_QLF_NIL)
|
||
return 0;
|
||
|
||
inst->operands[idx].qualifier = qualifier;
|
||
return 1;
|
||
}
|
||
|
||
/* Decode size[0]:Q, i.e. bit 22 and bit 30, for
|
||
e.g. FCVTN<Q> <Vd>.<Tb>, <Vn>.<Ta>. */
|
||
|
||
static int
|
||
decode_asimd_fcvt (aarch64_inst *inst)
|
||
{
|
||
aarch64_field field = {0, 0};
|
||
aarch64_insn value;
|
||
enum aarch64_opnd_qualifier qualifier;
|
||
|
||
gen_sub_field (FLD_size, 0, 1, &field);
|
||
value = extract_field_2 (&field, inst->value, 0);
|
||
qualifier = value == 0 ? AARCH64_OPND_QLF_V_4S
|
||
: AARCH64_OPND_QLF_V_2D;
|
||
switch (inst->opcode->op)
|
||
{
|
||
case OP_FCVTN:
|
||
case OP_FCVTN2:
|
||
/* FCVTN<Q> <Vd>.<Tb>, <Vn>.<Ta>. */
|
||
inst->operands[1].qualifier = qualifier;
|
||
break;
|
||
case OP_FCVTL:
|
||
case OP_FCVTL2:
|
||
/* FCVTL<Q> <Vd>.<Ta>, <Vn>.<Tb>. */
|
||
inst->operands[0].qualifier = qualifier;
|
||
break;
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Decode size[0], i.e. bit 22, for
|
||
e.g. FCVTXN <Vb><d>, <Va><n>. */
|
||
|
||
static int
|
||
decode_asisd_fcvtxn (aarch64_inst *inst)
|
||
{
|
||
aarch64_field field = {0, 0};
|
||
gen_sub_field (FLD_size, 0, 1, &field);
|
||
if (!extract_field_2 (&field, inst->value, 0))
|
||
return 0;
|
||
inst->operands[0].qualifier = AARCH64_OPND_QLF_S_S;
|
||
return 1;
|
||
}
|
||
|
||
/* Decode the 'opc' field for e.g. FCVT <Dd>, <Sn>. */
|
||
static int
|
||
decode_fcvt (aarch64_inst *inst)
|
||
{
|
||
enum aarch64_opnd_qualifier qualifier;
|
||
aarch64_insn value;
|
||
const aarch64_field field = {15, 2};
|
||
|
||
/* opc dstsize */
|
||
value = extract_field_2 (&field, inst->value, 0);
|
||
switch (value)
|
||
{
|
||
case 0: qualifier = AARCH64_OPND_QLF_S_S; break;
|
||
case 1: qualifier = AARCH64_OPND_QLF_S_D; break;
|
||
case 3: qualifier = AARCH64_OPND_QLF_S_H; break;
|
||
default: return 0;
|
||
}
|
||
inst->operands[0].qualifier = qualifier;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Do miscellaneous decodings that are not common enough to be driven by
|
||
flags. */
|
||
|
||
static int
|
||
do_misc_decoding (aarch64_inst *inst)
|
||
{
|
||
unsigned int value;
|
||
switch (inst->opcode->op)
|
||
{
|
||
case OP_FCVT:
|
||
return decode_fcvt (inst);
|
||
|
||
case OP_FCVTN:
|
||
case OP_FCVTN2:
|
||
case OP_FCVTL:
|
||
case OP_FCVTL2:
|
||
return decode_asimd_fcvt (inst);
|
||
|
||
case OP_FCVTXN_S:
|
||
return decode_asisd_fcvtxn (inst);
|
||
|
||
case OP_MOV_P_P:
|
||
case OP_MOVS_P_P:
|
||
value = extract_field (FLD_SVE_Pn, inst->value, 0);
|
||
return (value == extract_field (FLD_SVE_Pm, inst->value, 0)
|
||
&& value == extract_field (FLD_SVE_Pg4_10, inst->value, 0));
|
||
|
||
case OP_MOV_Z_P_Z:
|
||
return (extract_field (FLD_SVE_Zd, inst->value, 0)
|
||
== extract_field (FLD_SVE_Zm_16, inst->value, 0));
|
||
|
||
case OP_MOV_Z_V:
|
||
/* Index must be zero. */
|
||
value = extract_fields (inst->value, 0, 2, FLD_SVE_tszh, FLD_imm5);
|
||
return value > 0 && value <= 16 && value == (value & -value);
|
||
|
||
case OP_MOV_Z_Z:
|
||
return (extract_field (FLD_SVE_Zn, inst->value, 0)
|
||
== extract_field (FLD_SVE_Zm_16, inst->value, 0));
|
||
|
||
case OP_MOV_Z_Zi:
|
||
/* Index must be nonzero. */
|
||
value = extract_fields (inst->value, 0, 2, FLD_SVE_tszh, FLD_imm5);
|
||
return value > 0 && value != (value & -value);
|
||
|
||
case OP_MOVM_P_P_P:
|
||
return (extract_field (FLD_SVE_Pd, inst->value, 0)
|
||
== extract_field (FLD_SVE_Pm, inst->value, 0));
|
||
|
||
case OP_MOVZS_P_P_P:
|
||
case OP_MOVZ_P_P_P:
|
||
return (extract_field (FLD_SVE_Pn, inst->value, 0)
|
||
== extract_field (FLD_SVE_Pm, inst->value, 0));
|
||
|
||
case OP_NOTS_P_P_P_Z:
|
||
case OP_NOT_P_P_P_Z:
|
||
return (extract_field (FLD_SVE_Pm, inst->value, 0)
|
||
== extract_field (FLD_SVE_Pg4_10, inst->value, 0));
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Opcodes that have fields shared by multiple operands are usually flagged
|
||
with flags. In this function, we detect such flags, decode the related
|
||
field(s) and store the information in one of the related operands. The
|
||
'one' operand is not any operand but one of the operands that can
|
||
accommadate all the information that has been decoded. */
|
||
|
||
static int
|
||
do_special_decoding (aarch64_inst *inst)
|
||
{
|
||
int idx;
|
||
aarch64_insn value;
|
||
/* Condition for truly conditional executed instructions, e.g. b.cond. */
|
||
if (inst->opcode->flags & F_COND)
|
||
{
|
||
value = extract_field (FLD_cond2, inst->value, 0);
|
||
inst->cond = get_cond_from_value (value);
|
||
}
|
||
/* 'sf' field. */
|
||
if (inst->opcode->flags & F_SF)
|
||
{
|
||
idx = select_operand_for_sf_field_coding (inst->opcode);
|
||
value = extract_field (FLD_sf, inst->value, 0);
|
||
inst->operands[idx].qualifier = get_greg_qualifier_from_value (value);
|
||
if ((inst->opcode->flags & F_N)
|
||
&& extract_field (FLD_N, inst->value, 0) != value)
|
||
return 0;
|
||
}
|
||
/* 'sf' field. */
|
||
if (inst->opcode->flags & F_LSE_SZ)
|
||
{
|
||
idx = select_operand_for_sf_field_coding (inst->opcode);
|
||
value = extract_field (FLD_lse_sz, inst->value, 0);
|
||
inst->operands[idx].qualifier = get_greg_qualifier_from_value (value);
|
||
}
|
||
/* size:Q fields. */
|
||
if (inst->opcode->flags & F_SIZEQ)
|
||
return decode_sizeq (inst);
|
||
|
||
if (inst->opcode->flags & F_FPTYPE)
|
||
{
|
||
idx = select_operand_for_fptype_field_coding (inst->opcode);
|
||
value = extract_field (FLD_type, inst->value, 0);
|
||
switch (value)
|
||
{
|
||
case 0: inst->operands[idx].qualifier = AARCH64_OPND_QLF_S_S; break;
|
||
case 1: inst->operands[idx].qualifier = AARCH64_OPND_QLF_S_D; break;
|
||
case 3: inst->operands[idx].qualifier = AARCH64_OPND_QLF_S_H; break;
|
||
default: return 0;
|
||
}
|
||
}
|
||
|
||
if (inst->opcode->flags & F_SSIZE)
|
||
{
|
||
/* N.B. some opcodes like FCMGT <V><d>, <V><n>, #0 have the size[1] as part
|
||
of the base opcode. */
|
||
aarch64_insn mask;
|
||
enum aarch64_opnd_qualifier candidates[AARCH64_MAX_QLF_SEQ_NUM];
|
||
idx = select_operand_for_scalar_size_field_coding (inst->opcode);
|
||
value = extract_field (FLD_size, inst->value, inst->opcode->mask);
|
||
mask = extract_field (FLD_size, ~inst->opcode->mask, 0);
|
||
/* For most related instruciton, the 'size' field is fully available for
|
||
operand encoding. */
|
||
if (mask == 0x3)
|
||
inst->operands[idx].qualifier = get_sreg_qualifier_from_value (value);
|
||
else
|
||
{
|
||
get_operand_possible_qualifiers (idx, inst->opcode->qualifiers_list,
|
||
candidates);
|
||
inst->operands[idx].qualifier
|
||
= get_qualifier_from_partial_encoding (value, candidates, mask);
|
||
}
|
||
}
|
||
|
||
if (inst->opcode->flags & F_T)
|
||
{
|
||
/* Num of consecutive '0's on the right side of imm5<3:0>. */
|
||
int num = 0;
|
||
unsigned val, Q;
|
||
assert (aarch64_get_operand_class (inst->opcode->operands[0])
|
||
== AARCH64_OPND_CLASS_SIMD_REG);
|
||
/* imm5<3:0> q <t>
|
||
0000 x reserved
|
||
xxx1 0 8b
|
||
xxx1 1 16b
|
||
xx10 0 4h
|
||
xx10 1 8h
|
||
x100 0 2s
|
||
x100 1 4s
|
||
1000 0 reserved
|
||
1000 1 2d */
|
||
val = extract_field (FLD_imm5, inst->value, 0);
|
||
while ((val & 0x1) == 0 && ++num <= 3)
|
||
val >>= 1;
|
||
if (num > 3)
|
||
return 0;
|
||
Q = (unsigned) extract_field (FLD_Q, inst->value, inst->opcode->mask);
|
||
inst->operands[0].qualifier =
|
||
get_vreg_qualifier_from_value ((num << 1) | Q);
|
||
}
|
||
|
||
if (inst->opcode->flags & F_GPRSIZE_IN_Q)
|
||
{
|
||
/* Use Rt to encode in the case of e.g.
|
||
STXP <Ws>, <Xt1>, <Xt2>, [<Xn|SP>{,#0}]. */
|
||
idx = aarch64_operand_index (inst->opcode->operands, AARCH64_OPND_Rt);
|
||
if (idx == -1)
|
||
{
|
||
/* Otherwise use the result operand, which has to be a integer
|
||
register. */
|
||
assert (aarch64_get_operand_class (inst->opcode->operands[0])
|
||
== AARCH64_OPND_CLASS_INT_REG);
|
||
idx = 0;
|
||
}
|
||
assert (idx == 0 || idx == 1);
|
||
value = extract_field (FLD_Q, inst->value, 0);
|
||
inst->operands[idx].qualifier = get_greg_qualifier_from_value (value);
|
||
}
|
||
|
||
if (inst->opcode->flags & F_LDS_SIZE)
|
||
{
|
||
aarch64_field field = {0, 0};
|
||
assert (aarch64_get_operand_class (inst->opcode->operands[0])
|
||
== AARCH64_OPND_CLASS_INT_REG);
|
||
gen_sub_field (FLD_opc, 0, 1, &field);
|
||
value = extract_field_2 (&field, inst->value, 0);
|
||
inst->operands[0].qualifier
|
||
= value ? AARCH64_OPND_QLF_W : AARCH64_OPND_QLF_X;
|
||
}
|
||
|
||
/* Miscellaneous decoding; done as the last step. */
|
||
if (inst->opcode->flags & F_MISC)
|
||
return do_misc_decoding (inst);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Converters converting a real opcode instruction to its alias form. */
|
||
|
||
/* ROR <Wd>, <Ws>, #<shift>
|
||
is equivalent to:
|
||
EXTR <Wd>, <Ws>, <Ws>, #<shift>. */
|
||
static int
|
||
convert_extr_to_ror (aarch64_inst *inst)
|
||
{
|
||
if (inst->operands[1].reg.regno == inst->operands[2].reg.regno)
|
||
{
|
||
copy_operand_info (inst, 2, 3);
|
||
inst->operands[3].type = AARCH64_OPND_NIL;
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* UXTL<Q> <Vd>.<Ta>, <Vn>.<Tb>
|
||
is equivalent to:
|
||
USHLL<Q> <Vd>.<Ta>, <Vn>.<Tb>, #0. */
|
||
static int
|
||
convert_shll_to_xtl (aarch64_inst *inst)
|
||
{
|
||
if (inst->operands[2].imm.value == 0)
|
||
{
|
||
inst->operands[2].type = AARCH64_OPND_NIL;
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Convert
|
||
UBFM <Xd>, <Xn>, #<shift>, #63.
|
||
to
|
||
LSR <Xd>, <Xn>, #<shift>. */
|
||
static int
|
||
convert_bfm_to_sr (aarch64_inst *inst)
|
||
{
|
||
int64_t imms, val;
|
||
|
||
imms = inst->operands[3].imm.value;
|
||
val = inst->operands[2].qualifier == AARCH64_OPND_QLF_imm_0_31 ? 31 : 63;
|
||
if (imms == val)
|
||
{
|
||
inst->operands[3].type = AARCH64_OPND_NIL;
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Convert MOV to ORR. */
|
||
static int
|
||
convert_orr_to_mov (aarch64_inst *inst)
|
||
{
|
||
/* MOV <Vd>.<T>, <Vn>.<T>
|
||
is equivalent to:
|
||
ORR <Vd>.<T>, <Vn>.<T>, <Vn>.<T>. */
|
||
if (inst->operands[1].reg.regno == inst->operands[2].reg.regno)
|
||
{
|
||
inst->operands[2].type = AARCH64_OPND_NIL;
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* When <imms> >= <immr>, the instruction written:
|
||
SBFX <Xd>, <Xn>, #<lsb>, #<width>
|
||
is equivalent to:
|
||
SBFM <Xd>, <Xn>, #<lsb>, #(<lsb>+<width>-1). */
|
||
|
||
static int
|
||
convert_bfm_to_bfx (aarch64_inst *inst)
|
||
{
|
||
int64_t immr, imms;
|
||
|
||
immr = inst->operands[2].imm.value;
|
||
imms = inst->operands[3].imm.value;
|
||
if (imms >= immr)
|
||
{
|
||
int64_t lsb = immr;
|
||
inst->operands[2].imm.value = lsb;
|
||
inst->operands[3].imm.value = imms + 1 - lsb;
|
||
/* The two opcodes have different qualifiers for
|
||
the immediate operands; reset to help the checking. */
|
||
reset_operand_qualifier (inst, 2);
|
||
reset_operand_qualifier (inst, 3);
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* When <imms> < <immr>, the instruction written:
|
||
SBFIZ <Xd>, <Xn>, #<lsb>, #<width>
|
||
is equivalent to:
|
||
SBFM <Xd>, <Xn>, #((64-<lsb>)&0x3f), #(<width>-1). */
|
||
|
||
static int
|
||
convert_bfm_to_bfi (aarch64_inst *inst)
|
||
{
|
||
int64_t immr, imms, val;
|
||
|
||
immr = inst->operands[2].imm.value;
|
||
imms = inst->operands[3].imm.value;
|
||
val = inst->operands[2].qualifier == AARCH64_OPND_QLF_imm_0_31 ? 32 : 64;
|
||
if (imms < immr)
|
||
{
|
||
inst->operands[2].imm.value = (val - immr) & (val - 1);
|
||
inst->operands[3].imm.value = imms + 1;
|
||
/* The two opcodes have different qualifiers for
|
||
the immediate operands; reset to help the checking. */
|
||
reset_operand_qualifier (inst, 2);
|
||
reset_operand_qualifier (inst, 3);
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* The instruction written:
|
||
BFC <Xd>, #<lsb>, #<width>
|
||
is equivalent to:
|
||
BFM <Xd>, XZR, #((64-<lsb>)&0x3f), #(<width>-1). */
|
||
|
||
static int
|
||
convert_bfm_to_bfc (aarch64_inst *inst)
|
||
{
|
||
int64_t immr, imms, val;
|
||
|
||
/* Should have been assured by the base opcode value. */
|
||
assert (inst->operands[1].reg.regno == 0x1f);
|
||
|
||
immr = inst->operands[2].imm.value;
|
||
imms = inst->operands[3].imm.value;
|
||
val = inst->operands[2].qualifier == AARCH64_OPND_QLF_imm_0_31 ? 32 : 64;
|
||
if (imms < immr)
|
||
{
|
||
/* Drop XZR from the second operand. */
|
||
copy_operand_info (inst, 1, 2);
|
||
copy_operand_info (inst, 2, 3);
|
||
inst->operands[3].type = AARCH64_OPND_NIL;
|
||
|
||
/* Recalculate the immediates. */
|
||
inst->operands[1].imm.value = (val - immr) & (val - 1);
|
||
inst->operands[2].imm.value = imms + 1;
|
||
|
||
/* The two opcodes have different qualifiers for the operands; reset to
|
||
help the checking. */
|
||
reset_operand_qualifier (inst, 1);
|
||
reset_operand_qualifier (inst, 2);
|
||
reset_operand_qualifier (inst, 3);
|
||
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* The instruction written:
|
||
LSL <Xd>, <Xn>, #<shift>
|
||
is equivalent to:
|
||
UBFM <Xd>, <Xn>, #((64-<shift>)&0x3f), #(63-<shift>). */
|
||
|
||
static int
|
||
convert_ubfm_to_lsl (aarch64_inst *inst)
|
||
{
|
||
int64_t immr = inst->operands[2].imm.value;
|
||
int64_t imms = inst->operands[3].imm.value;
|
||
int64_t val
|
||
= inst->operands[2].qualifier == AARCH64_OPND_QLF_imm_0_31 ? 31 : 63;
|
||
|
||
if ((immr == 0 && imms == val) || immr == imms + 1)
|
||
{
|
||
inst->operands[3].type = AARCH64_OPND_NIL;
|
||
inst->operands[2].imm.value = val - imms;
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* CINC <Wd>, <Wn>, <cond>
|
||
is equivalent to:
|
||
CSINC <Wd>, <Wn>, <Wn>, invert(<cond>)
|
||
where <cond> is not AL or NV. */
|
||
|
||
static int
|
||
convert_from_csel (aarch64_inst *inst)
|
||
{
|
||
if (inst->operands[1].reg.regno == inst->operands[2].reg.regno
|
||
&& (inst->operands[3].cond->value & 0xe) != 0xe)
|
||
{
|
||
copy_operand_info (inst, 2, 3);
|
||
inst->operands[2].cond = get_inverted_cond (inst->operands[3].cond);
|
||
inst->operands[3].type = AARCH64_OPND_NIL;
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* CSET <Wd>, <cond>
|
||
is equivalent to:
|
||
CSINC <Wd>, WZR, WZR, invert(<cond>)
|
||
where <cond> is not AL or NV. */
|
||
|
||
static int
|
||
convert_csinc_to_cset (aarch64_inst *inst)
|
||
{
|
||
if (inst->operands[1].reg.regno == 0x1f
|
||
&& inst->operands[2].reg.regno == 0x1f
|
||
&& (inst->operands[3].cond->value & 0xe) != 0xe)
|
||
{
|
||
copy_operand_info (inst, 1, 3);
|
||
inst->operands[1].cond = get_inverted_cond (inst->operands[3].cond);
|
||
inst->operands[3].type = AARCH64_OPND_NIL;
|
||
inst->operands[2].type = AARCH64_OPND_NIL;
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* MOV <Wd>, #<imm>
|
||
is equivalent to:
|
||
MOVZ <Wd>, #<imm16>, LSL #<shift>.
|
||
|
||
A disassembler may output ORR, MOVZ and MOVN as a MOV mnemonic, except when
|
||
ORR has an immediate that could be generated by a MOVZ or MOVN instruction,
|
||
or where a MOVN has an immediate that could be encoded by MOVZ, or where
|
||
MOVZ/MOVN #0 have a shift amount other than LSL #0, in which case the
|
||
machine-instruction mnemonic must be used. */
|
||
|
||
static int
|
||
convert_movewide_to_mov (aarch64_inst *inst)
|
||
{
|
||
uint64_t value = inst->operands[1].imm.value;
|
||
/* MOVZ/MOVN #0 have a shift amount other than LSL #0. */
|
||
if (value == 0 && inst->operands[1].shifter.amount != 0)
|
||
return 0;
|
||
inst->operands[1].type = AARCH64_OPND_IMM_MOV;
|
||
inst->operands[1].shifter.kind = AARCH64_MOD_NONE;
|
||
value <<= inst->operands[1].shifter.amount;
|
||
/* As an alias convertor, it has to be clear that the INST->OPCODE
|
||
is the opcode of the real instruction. */
|
||
if (inst->opcode->op == OP_MOVN)
|
||
{
|
||
int is32 = inst->operands[0].qualifier == AARCH64_OPND_QLF_W;
|
||
value = ~value;
|
||
/* A MOVN has an immediate that could be encoded by MOVZ. */
|
||
if (aarch64_wide_constant_p (value, is32, NULL))
|
||
return 0;
|
||
}
|
||
inst->operands[1].imm.value = value;
|
||
inst->operands[1].shifter.amount = 0;
|
||
return 1;
|
||
}
|
||
|
||
/* MOV <Wd>, #<imm>
|
||
is equivalent to:
|
||
ORR <Wd>, WZR, #<imm>.
|
||
|
||
A disassembler may output ORR, MOVZ and MOVN as a MOV mnemonic, except when
|
||
ORR has an immediate that could be generated by a MOVZ or MOVN instruction,
|
||
or where a MOVN has an immediate that could be encoded by MOVZ, or where
|
||
MOVZ/MOVN #0 have a shift amount other than LSL #0, in which case the
|
||
machine-instruction mnemonic must be used. */
|
||
|
||
static int
|
||
convert_movebitmask_to_mov (aarch64_inst *inst)
|
||
{
|
||
int is32;
|
||
uint64_t value;
|
||
|
||
/* Should have been assured by the base opcode value. */
|
||
assert (inst->operands[1].reg.regno == 0x1f);
|
||
copy_operand_info (inst, 1, 2);
|
||
is32 = inst->operands[0].qualifier == AARCH64_OPND_QLF_W;
|
||
inst->operands[1].type = AARCH64_OPND_IMM_MOV;
|
||
value = inst->operands[1].imm.value;
|
||
/* ORR has an immediate that could be generated by a MOVZ or MOVN
|
||
instruction. */
|
||
if (inst->operands[0].reg.regno != 0x1f
|
||
&& (aarch64_wide_constant_p (value, is32, NULL)
|
||
|| aarch64_wide_constant_p (~value, is32, NULL)))
|
||
return 0;
|
||
|
||
inst->operands[2].type = AARCH64_OPND_NIL;
|
||
return 1;
|
||
}
|
||
|
||
/* Some alias opcodes are disassembled by being converted from their real-form.
|
||
N.B. INST->OPCODE is the real opcode rather than the alias. */
|
||
|
||
static int
|
||
convert_to_alias (aarch64_inst *inst, const aarch64_opcode *alias)
|
||
{
|
||
switch (alias->op)
|
||
{
|
||
case OP_ASR_IMM:
|
||
case OP_LSR_IMM:
|
||
return convert_bfm_to_sr (inst);
|
||
case OP_LSL_IMM:
|
||
return convert_ubfm_to_lsl (inst);
|
||
case OP_CINC:
|
||
case OP_CINV:
|
||
case OP_CNEG:
|
||
return convert_from_csel (inst);
|
||
case OP_CSET:
|
||
case OP_CSETM:
|
||
return convert_csinc_to_cset (inst);
|
||
case OP_UBFX:
|
||
case OP_BFXIL:
|
||
case OP_SBFX:
|
||
return convert_bfm_to_bfx (inst);
|
||
case OP_SBFIZ:
|
||
case OP_BFI:
|
||
case OP_UBFIZ:
|
||
return convert_bfm_to_bfi (inst);
|
||
case OP_BFC:
|
||
return convert_bfm_to_bfc (inst);
|
||
case OP_MOV_V:
|
||
return convert_orr_to_mov (inst);
|
||
case OP_MOV_IMM_WIDE:
|
||
case OP_MOV_IMM_WIDEN:
|
||
return convert_movewide_to_mov (inst);
|
||
case OP_MOV_IMM_LOG:
|
||
return convert_movebitmask_to_mov (inst);
|
||
case OP_ROR_IMM:
|
||
return convert_extr_to_ror (inst);
|
||
case OP_SXTL:
|
||
case OP_SXTL2:
|
||
case OP_UXTL:
|
||
case OP_UXTL2:
|
||
return convert_shll_to_xtl (inst);
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
static bool
|
||
aarch64_opcode_decode (const aarch64_opcode *, const aarch64_insn,
|
||
aarch64_inst *, int, aarch64_operand_error *errors);
|
||
|
||
/* Given the instruction information in *INST, check if the instruction has
|
||
any alias form that can be used to represent *INST. If the answer is yes,
|
||
update *INST to be in the form of the determined alias. */
|
||
|
||
/* In the opcode description table, the following flags are used in opcode
|
||
entries to help establish the relations between the real and alias opcodes:
|
||
|
||
F_ALIAS: opcode is an alias
|
||
F_HAS_ALIAS: opcode has alias(es)
|
||
F_P1
|
||
F_P2
|
||
F_P3: Disassembly preference priority 1-3 (the larger the
|
||
higher). If nothing is specified, it is the priority
|
||
0 by default, i.e. the lowest priority.
|
||
|
||
Although the relation between the machine and the alias instructions are not
|
||
explicitly described, it can be easily determined from the base opcode
|
||
values, masks and the flags F_ALIAS and F_HAS_ALIAS in their opcode
|
||
description entries:
|
||
|
||
The mask of an alias opcode must be equal to or a super-set (i.e. more
|
||
constrained) of that of the aliased opcode; so is the base opcode value.
|
||
|
||
if (opcode_has_alias (real) && alias_opcode_p (opcode)
|
||
&& (opcode->mask & real->mask) == real->mask
|
||
&& (real->mask & opcode->opcode) == (real->mask & real->opcode))
|
||
then OPCODE is an alias of, and only of, the REAL instruction
|
||
|
||
The alias relationship is forced flat-structured to keep related algorithm
|
||
simple; an opcode entry cannot be flagged with both F_ALIAS and F_HAS_ALIAS.
|
||
|
||
During the disassembling, the decoding decision tree (in
|
||
opcodes/aarch64-dis-2.c) always returns an machine instruction opcode entry;
|
||
if the decoding of such a machine instruction succeeds (and -Mno-aliases is
|
||
not specified), the disassembler will check whether there is any alias
|
||
instruction exists for this real instruction. If there is, the disassembler
|
||
will try to disassemble the 32-bit binary again using the alias's rule, or
|
||
try to convert the IR to the form of the alias. In the case of the multiple
|
||
aliases, the aliases are tried one by one from the highest priority
|
||
(currently the flag F_P3) to the lowest priority (no priority flag), and the
|
||
first succeeds first adopted.
|
||
|
||
You may ask why there is a need for the conversion of IR from one form to
|
||
another in handling certain aliases. This is because on one hand it avoids
|
||
adding more operand code to handle unusual encoding/decoding; on other
|
||
hand, during the disassembling, the conversion is an effective approach to
|
||
check the condition of an alias (as an alias may be adopted only if certain
|
||
conditions are met).
|
||
|
||
In order to speed up the alias opcode lookup, aarch64-gen has preprocessed
|
||
aarch64_opcode_table and generated aarch64_find_alias_opcode and
|
||
aarch64_find_next_alias_opcode (in opcodes/aarch64-dis-2.c) to help. */
|
||
|
||
static void
|
||
determine_disassembling_preference (struct aarch64_inst *inst,
|
||
aarch64_operand_error *errors)
|
||
{
|
||
const aarch64_opcode *opcode;
|
||
const aarch64_opcode *alias;
|
||
|
||
opcode = inst->opcode;
|
||
|
||
/* This opcode does not have an alias, so use itself. */
|
||
if (!opcode_has_alias (opcode))
|
||
return;
|
||
|
||
alias = aarch64_find_alias_opcode (opcode);
|
||
assert (alias);
|
||
|
||
#ifdef DEBUG_AARCH64
|
||
if (debug_dump)
|
||
{
|
||
const aarch64_opcode *tmp = alias;
|
||
printf ("#### LIST orderd: ");
|
||
while (tmp)
|
||
{
|
||
printf ("%s, ", tmp->name);
|
||
tmp = aarch64_find_next_alias_opcode (tmp);
|
||
}
|
||
printf ("\n");
|
||
}
|
||
#endif /* DEBUG_AARCH64 */
|
||
|
||
for (; alias; alias = aarch64_find_next_alias_opcode (alias))
|
||
{
|
||
DEBUG_TRACE ("try %s", alias->name);
|
||
assert (alias_opcode_p (alias) || opcode_has_alias (opcode));
|
||
|
||
/* An alias can be a pseudo opcode which will never be used in the
|
||
disassembly, e.g. BIC logical immediate is such a pseudo opcode
|
||
aliasing AND. */
|
||
if (pseudo_opcode_p (alias))
|
||
{
|
||
DEBUG_TRACE ("skip pseudo %s", alias->name);
|
||
continue;
|
||
}
|
||
|
||
if ((inst->value & alias->mask) != alias->opcode)
|
||
{
|
||
DEBUG_TRACE ("skip %s as base opcode not match", alias->name);
|
||
continue;
|
||
}
|
||
|
||
if (!AARCH64_CPU_HAS_FEATURE (arch_variant, *alias->avariant))
|
||
{
|
||
DEBUG_TRACE ("skip %s: we're missing features", alias->name);
|
||
continue;
|
||
}
|
||
|
||
/* No need to do any complicated transformation on operands, if the alias
|
||
opcode does not have any operand. */
|
||
if (aarch64_num_of_operands (alias) == 0 && alias->opcode == inst->value)
|
||
{
|
||
DEBUG_TRACE ("succeed with 0-operand opcode %s", alias->name);
|
||
aarch64_replace_opcode (inst, alias);
|
||
return;
|
||
}
|
||
if (alias->flags & F_CONV)
|
||
{
|
||
aarch64_inst copy;
|
||
memcpy (©, inst, sizeof (aarch64_inst));
|
||
/* ALIAS is the preference as long as the instruction can be
|
||
successfully converted to the form of ALIAS. */
|
||
if (convert_to_alias (©, alias) == 1)
|
||
{
|
||
aarch64_replace_opcode (©, alias);
|
||
if (aarch64_match_operands_constraint (©, NULL) != 1)
|
||
{
|
||
DEBUG_TRACE ("FAILED with alias %s ", alias->name);
|
||
}
|
||
else
|
||
{
|
||
DEBUG_TRACE ("succeed with %s via conversion", alias->name);
|
||
memcpy (inst, ©, sizeof (aarch64_inst));
|
||
}
|
||
return;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Directly decode the alias opcode. */
|
||
aarch64_inst temp;
|
||
memset (&temp, '\0', sizeof (aarch64_inst));
|
||
if (aarch64_opcode_decode (alias, inst->value, &temp, 1, errors) == 1)
|
||
{
|
||
DEBUG_TRACE ("succeed with %s via direct decoding", alias->name);
|
||
memcpy (inst, &temp, sizeof (aarch64_inst));
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Some instructions (including all SVE ones) use the instruction class
|
||
to describe how a qualifiers_list index is represented in the instruction
|
||
encoding. If INST is such an instruction, decode the appropriate fields
|
||
and fill in the operand qualifiers accordingly. Return true if no
|
||
problems are found. */
|
||
|
||
static bool
|
||
aarch64_decode_variant_using_iclass (aarch64_inst *inst)
|
||
{
|
||
int i, variant;
|
||
|
||
variant = 0;
|
||
switch (inst->opcode->iclass)
|
||
{
|
||
case sve_cpy:
|
||
variant = extract_fields (inst->value, 0, 2, FLD_size, FLD_SVE_M_14);
|
||
break;
|
||
|
||
case sve_index:
|
||
i = extract_fields (inst->value, 0, 2, FLD_SVE_tszh, FLD_imm5);
|
||
if ((i & 31) == 0)
|
||
return false;
|
||
while ((i & 1) == 0)
|
||
{
|
||
i >>= 1;
|
||
variant += 1;
|
||
}
|
||
break;
|
||
|
||
case sve_limm:
|
||
/* Pick the smallest applicable element size. */
|
||
if ((inst->value & 0x20600) == 0x600)
|
||
variant = 0;
|
||
else if ((inst->value & 0x20400) == 0x400)
|
||
variant = 1;
|
||
else if ((inst->value & 0x20000) == 0)
|
||
variant = 2;
|
||
else
|
||
variant = 3;
|
||
break;
|
||
|
||
case sve_misc:
|
||
/* sve_misc instructions have only a single variant. */
|
||
break;
|
||
|
||
case sve_movprfx:
|
||
variant = extract_fields (inst->value, 0, 2, FLD_size, FLD_SVE_M_16);
|
||
break;
|
||
|
||
case sve_pred_zm:
|
||
variant = extract_field (FLD_SVE_M_4, inst->value, 0);
|
||
break;
|
||
|
||
case sve_shift_pred:
|
||
i = extract_fields (inst->value, 0, 2, FLD_SVE_tszh, FLD_SVE_tszl_8);
|
||
sve_shift:
|
||
if (i == 0)
|
||
return false;
|
||
while (i != 1)
|
||
{
|
||
i >>= 1;
|
||
variant += 1;
|
||
}
|
||
break;
|
||
|
||
case sve_shift_unpred:
|
||
i = extract_fields (inst->value, 0, 2, FLD_SVE_tszh, FLD_SVE_tszl_19);
|
||
goto sve_shift;
|
||
|
||
case sve_size_bhs:
|
||
variant = extract_field (FLD_size, inst->value, 0);
|
||
if (variant >= 3)
|
||
return false;
|
||
break;
|
||
|
||
case sve_size_bhsd:
|
||
variant = extract_field (FLD_size, inst->value, 0);
|
||
break;
|
||
|
||
case sve_size_hsd:
|
||
i = extract_field (FLD_size, inst->value, 0);
|
||
if (i < 1)
|
||
return false;
|
||
variant = i - 1;
|
||
break;
|
||
|
||
case sve_size_bh:
|
||
case sve_size_sd:
|
||
variant = extract_field (FLD_SVE_sz, inst->value, 0);
|
||
break;
|
||
|
||
case sve_size_sd2:
|
||
variant = extract_field (FLD_SVE_sz2, inst->value, 0);
|
||
break;
|
||
|
||
case sve_size_hsd2:
|
||
i = extract_field (FLD_SVE_size, inst->value, 0);
|
||
if (i < 1)
|
||
return false;
|
||
variant = i - 1;
|
||
break;
|
||
|
||
case sve_size_13:
|
||
/* Ignore low bit of this field since that is set in the opcode for
|
||
instructions of this iclass. */
|
||
i = (extract_field (FLD_size, inst->value, 0) & 2);
|
||
variant = (i >> 1);
|
||
break;
|
||
|
||
case sve_shift_tsz_bhsd:
|
||
i = extract_fields (inst->value, 0, 2, FLD_SVE_tszh, FLD_SVE_tszl_19);
|
||
if (i == 0)
|
||
return false;
|
||
while (i != 1)
|
||
{
|
||
i >>= 1;
|
||
variant += 1;
|
||
}
|
||
break;
|
||
|
||
case sve_size_tsz_bhs:
|
||
i = extract_fields (inst->value, 0, 2, FLD_SVE_sz, FLD_SVE_tszl_19);
|
||
if (i == 0)
|
||
return false;
|
||
while (i != 1)
|
||
{
|
||
if (i & 1)
|
||
return false;
|
||
i >>= 1;
|
||
variant += 1;
|
||
}
|
||
break;
|
||
|
||
case sve_shift_tsz_hsd:
|
||
i = extract_fields (inst->value, 0, 2, FLD_SVE_sz, FLD_SVE_tszl_19);
|
||
if (i == 0)
|
||
return false;
|
||
while (i != 1)
|
||
{
|
||
i >>= 1;
|
||
variant += 1;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
/* No mapping between instruction class and qualifiers. */
|
||
return true;
|
||
}
|
||
|
||
for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
|
||
inst->operands[i].qualifier = inst->opcode->qualifiers_list[variant][i];
|
||
return true;
|
||
}
|
||
/* Decode the CODE according to OPCODE; fill INST. Return 0 if the decoding
|
||
fails, which meanes that CODE is not an instruction of OPCODE; otherwise
|
||
return 1.
|
||
|
||
If OPCODE has alias(es) and NOALIASES_P is 0, an alias opcode may be
|
||
determined and used to disassemble CODE; this is done just before the
|
||
return. */
|
||
|
||
static bool
|
||
aarch64_opcode_decode (const aarch64_opcode *opcode, const aarch64_insn code,
|
||
aarch64_inst *inst, int noaliases_p,
|
||
aarch64_operand_error *errors)
|
||
{
|
||
int i;
|
||
|
||
DEBUG_TRACE ("enter with %s", opcode->name);
|
||
|
||
assert (opcode && inst);
|
||
|
||
/* Clear inst. */
|
||
memset (inst, '\0', sizeof (aarch64_inst));
|
||
|
||
/* Check the base opcode. */
|
||
if ((code & opcode->mask) != (opcode->opcode & opcode->mask))
|
||
{
|
||
DEBUG_TRACE ("base opcode match FAIL");
|
||
goto decode_fail;
|
||
}
|
||
|
||
inst->opcode = opcode;
|
||
inst->value = code;
|
||
|
||
/* Assign operand codes and indexes. */
|
||
for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
|
||
{
|
||
if (opcode->operands[i] == AARCH64_OPND_NIL)
|
||
break;
|
||
inst->operands[i].type = opcode->operands[i];
|
||
inst->operands[i].idx = i;
|
||
}
|
||
|
||
/* Call the opcode decoder indicated by flags. */
|
||
if (opcode_has_special_coder (opcode) && do_special_decoding (inst) == 0)
|
||
{
|
||
DEBUG_TRACE ("opcode flag-based decoder FAIL");
|
||
goto decode_fail;
|
||
}
|
||
|
||
/* Possibly use the instruction class to determine the correct
|
||
qualifier. */
|
||
if (!aarch64_decode_variant_using_iclass (inst))
|
||
{
|
||
DEBUG_TRACE ("iclass-based decoder FAIL");
|
||
goto decode_fail;
|
||
}
|
||
|
||
/* Call operand decoders. */
|
||
for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
|
||
{
|
||
const aarch64_operand *opnd;
|
||
enum aarch64_opnd type;
|
||
|
||
type = opcode->operands[i];
|
||
if (type == AARCH64_OPND_NIL)
|
||
break;
|
||
opnd = &aarch64_operands[type];
|
||
if (operand_has_extractor (opnd)
|
||
&& (! aarch64_extract_operand (opnd, &inst->operands[i], code, inst,
|
||
errors)))
|
||
{
|
||
DEBUG_TRACE ("operand decoder FAIL at operand %d", i);
|
||
goto decode_fail;
|
||
}
|
||
}
|
||
|
||
/* If the opcode has a verifier, then check it now. */
|
||
if (opcode->verifier
|
||
&& opcode->verifier (inst, code, 0, false, errors, NULL) != ERR_OK)
|
||
{
|
||
DEBUG_TRACE ("operand verifier FAIL");
|
||
goto decode_fail;
|
||
}
|
||
|
||
/* Match the qualifiers. */
|
||
if (aarch64_match_operands_constraint (inst, NULL) == 1)
|
||
{
|
||
/* Arriving here, the CODE has been determined as a valid instruction
|
||
of OPCODE and *INST has been filled with information of this OPCODE
|
||
instruction. Before the return, check if the instruction has any
|
||
alias and should be disassembled in the form of its alias instead.
|
||
If the answer is yes, *INST will be updated. */
|
||
if (!noaliases_p)
|
||
determine_disassembling_preference (inst, errors);
|
||
DEBUG_TRACE ("SUCCESS");
|
||
return true;
|
||
}
|
||
else
|
||
{
|
||
DEBUG_TRACE ("constraint matching FAIL");
|
||
}
|
||
|
||
decode_fail:
|
||
return false;
|
||
}
|
||
|
||
/* This does some user-friendly fix-up to *INST. It is currently focus on
|
||
the adjustment of qualifiers to help the printed instruction
|
||
recognized/understood more easily. */
|
||
|
||
static void
|
||
user_friendly_fixup (aarch64_inst *inst)
|
||
{
|
||
switch (inst->opcode->iclass)
|
||
{
|
||
case testbranch:
|
||
/* TBNZ Xn|Wn, #uimm6, label
|
||
Test and Branch Not Zero: conditionally jumps to label if bit number
|
||
uimm6 in register Xn is not zero. The bit number implies the width of
|
||
the register, which may be written and should be disassembled as Wn if
|
||
uimm is less than 32. Limited to a branch offset range of +/- 32KiB.
|
||
*/
|
||
if (inst->operands[1].imm.value < 32)
|
||
inst->operands[0].qualifier = AARCH64_OPND_QLF_W;
|
||
break;
|
||
default: break;
|
||
}
|
||
}
|
||
|
||
/* Decode INSN and fill in *INST the instruction information. An alias
|
||
opcode may be filled in *INSN if NOALIASES_P is FALSE. Return zero on
|
||
success. */
|
||
|
||
enum err_type
|
||
aarch64_decode_insn (aarch64_insn insn, aarch64_inst *inst,
|
||
bool noaliases_p,
|
||
aarch64_operand_error *errors)
|
||
{
|
||
const aarch64_opcode *opcode = aarch64_opcode_lookup (insn);
|
||
|
||
#ifdef DEBUG_AARCH64
|
||
if (debug_dump)
|
||
{
|
||
const aarch64_opcode *tmp = opcode;
|
||
printf ("\n");
|
||
DEBUG_TRACE ("opcode lookup:");
|
||
while (tmp != NULL)
|
||
{
|
||
aarch64_verbose (" %s", tmp->name);
|
||
tmp = aarch64_find_next_opcode (tmp);
|
||
}
|
||
}
|
||
#endif /* DEBUG_AARCH64 */
|
||
|
||
/* A list of opcodes may have been found, as aarch64_opcode_lookup cannot
|
||
distinguish some opcodes, e.g. SSHR and MOVI, which almost share the same
|
||
opcode field and value, apart from the difference that one of them has an
|
||
extra field as part of the opcode, but such a field is used for operand
|
||
encoding in other opcode(s) ('immh' in the case of the example). */
|
||
while (opcode != NULL)
|
||
{
|
||
/* But only one opcode can be decoded successfully for, as the
|
||
decoding routine will check the constraint carefully. */
|
||
if (aarch64_opcode_decode (opcode, insn, inst, noaliases_p, errors) == 1)
|
||
return ERR_OK;
|
||
opcode = aarch64_find_next_opcode (opcode);
|
||
}
|
||
|
||
return ERR_UND;
|
||
}
|
||
|
||
/* Return a short string to indicate a switch to STYLE. These strings
|
||
will be embedded into the disassembled operand text (as produced by
|
||
aarch64_print_operand), and then spotted in the print_operands function
|
||
so that the disassembler output can be split by style. */
|
||
|
||
static const char *
|
||
get_style_text (enum disassembler_style style)
|
||
{
|
||
static bool init = false;
|
||
static char formats[16][4];
|
||
unsigned num;
|
||
|
||
/* First time through we build a string for every possible format. This
|
||
code relies on there being no more than 16 different styles (there's
|
||
an assert below for this). */
|
||
if (!init)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i <= 0xf; ++i)
|
||
{
|
||
int res = snprintf (&formats[i][0], sizeof (formats[i]), "%c%x%c",
|
||
STYLE_MARKER_CHAR, i, STYLE_MARKER_CHAR);
|
||
assert (res == 3);
|
||
}
|
||
|
||
init = true;
|
||
}
|
||
|
||
/* Return the string that marks switching to STYLE. */
|
||
num = (unsigned) style;
|
||
assert (style <= 0xf);
|
||
return formats[num];
|
||
}
|
||
|
||
/* Callback used by aarch64_print_operand to apply STYLE to the
|
||
disassembler output created from FMT and ARGS. The STYLER object holds
|
||
any required state. Must return a pointer to a string (created from FMT
|
||
and ARGS) that will continue to be valid until the complete disassembled
|
||
instruction has been printed.
|
||
|
||
We return a string that includes two embedded style markers, the first,
|
||
places at the start of the string, indicates a switch to STYLE, and the
|
||
second, placed at the end of the string, indicates a switch back to the
|
||
default text style.
|
||
|
||
Later, when we print the operand text we take care to collapse any
|
||
adjacent style markers, and to ignore any style markers that appear at
|
||
the very end of a complete operand string. */
|
||
|
||
static const char *aarch64_apply_style (struct aarch64_styler *styler,
|
||
enum disassembler_style style,
|
||
const char *fmt,
|
||
va_list args)
|
||
{
|
||
int res;
|
||
char *ptr, *tmp;
|
||
struct obstack *stack = (struct obstack *) styler->state;
|
||
va_list ap;
|
||
|
||
/* These are the two strings for switching styles. */
|
||
const char *style_on = get_style_text (style);
|
||
const char *style_off = get_style_text (dis_style_text);
|
||
|
||
/* Calculate space needed once FMT and ARGS are expanded. */
|
||
va_copy (ap, args);
|
||
res = vsnprintf (NULL, 0, fmt, ap);
|
||
va_end (ap);
|
||
assert (res >= 0);
|
||
|
||
/* Allocate space on the obstack for the expanded FMT and ARGS, as well
|
||
as the two strings for switching styles, then write all of these
|
||
strings onto the obstack. */
|
||
ptr = (char *) obstack_alloc (stack, res + strlen (style_on)
|
||
+ strlen (style_off) + 1);
|
||
tmp = stpcpy (ptr, style_on);
|
||
res = vsnprintf (tmp, (res + 1), fmt, args);
|
||
assert (res >= 0);
|
||
tmp += res;
|
||
strcpy (tmp, style_off);
|
||
|
||
return ptr;
|
||
}
|
||
|
||
/* Print operands. */
|
||
|
||
static void
|
||
print_operands (bfd_vma pc, const aarch64_opcode *opcode,
|
||
const aarch64_opnd_info *opnds, struct disassemble_info *info,
|
||
bool *has_notes)
|
||
{
|
||
char *notes = NULL;
|
||
int i, pcrel_p, num_printed;
|
||
struct aarch64_styler styler;
|
||
struct obstack content;
|
||
obstack_init (&content);
|
||
|
||
styler.apply_style = aarch64_apply_style;
|
||
styler.state = (void *) &content;
|
||
|
||
for (i = 0, num_printed = 0; i < AARCH64_MAX_OPND_NUM; ++i)
|
||
{
|
||
char str[128];
|
||
char cmt[128];
|
||
|
||
/* We regard the opcode operand info more, however we also look into
|
||
the inst->operands to support the disassembling of the optional
|
||
operand.
|
||
The two operand code should be the same in all cases, apart from
|
||
when the operand can be optional. */
|
||
if (opcode->operands[i] == AARCH64_OPND_NIL
|
||
|| opnds[i].type == AARCH64_OPND_NIL)
|
||
break;
|
||
|
||
/* Generate the operand string in STR. */
|
||
aarch64_print_operand (str, sizeof (str), pc, opcode, opnds, i, &pcrel_p,
|
||
&info->target, ¬es, cmt, sizeof (cmt),
|
||
arch_variant, &styler);
|
||
|
||
/* Print the delimiter (taking account of omitted operand(s)). */
|
||
if (str[0] != '\0')
|
||
(*info->fprintf_styled_func) (info->stream, dis_style_text, "%s",
|
||
num_printed++ == 0 ? "\t" : ", ");
|
||
|
||
/* Print the operand. */
|
||
if (pcrel_p)
|
||
(*info->print_address_func) (info->target, info);
|
||
else
|
||
{
|
||
/* This operand came from aarch64_print_operand, and will include
|
||
embedded strings indicating which style each character should
|
||
have. In the following code we split the text based on
|
||
CURR_STYLE, and call the styled print callback to print each
|
||
block of text in the appropriate style. */
|
||
char *start, *curr;
|
||
enum disassembler_style curr_style = dis_style_text;
|
||
|
||
start = curr = str;
|
||
do
|
||
{
|
||
if (*curr == '\0'
|
||
|| (*curr == STYLE_MARKER_CHAR
|
||
&& ISXDIGIT (*(curr + 1))
|
||
&& *(curr + 2) == STYLE_MARKER_CHAR))
|
||
{
|
||
/* Output content between our START position and CURR. */
|
||
int len = curr - start;
|
||
if (len > 0)
|
||
{
|
||
if ((*info->fprintf_styled_func) (info->stream,
|
||
curr_style,
|
||
"%.*s",
|
||
len, start) < 0)
|
||
break;
|
||
}
|
||
|
||
if (*curr == '\0')
|
||
break;
|
||
|
||
/* Skip over the initial STYLE_MARKER_CHAR. */
|
||
++curr;
|
||
|
||
/* Update the CURR_STYLE. As there are less than 16
|
||
styles, it is possible, that if the input is corrupted
|
||
in some way, that we might set CURR_STYLE to an
|
||
invalid value. Don't worry though, we check for this
|
||
situation. */
|
||
if (*curr >= '0' && *curr <= '9')
|
||
curr_style = (enum disassembler_style) (*curr - '0');
|
||
else if (*curr >= 'a' && *curr <= 'f')
|
||
curr_style = (enum disassembler_style) (*curr - 'a' + 10);
|
||
else
|
||
curr_style = dis_style_text;
|
||
|
||
/* Check for an invalid style having been selected. This
|
||
should never happen, but it doesn't hurt to be a
|
||
little paranoid. */
|
||
if (curr_style > dis_style_comment_start)
|
||
curr_style = dis_style_text;
|
||
|
||
/* Skip the hex character, and the closing STYLE_MARKER_CHAR. */
|
||
curr += 2;
|
||
|
||
/* Reset the START to after the style marker. */
|
||
start = curr;
|
||
}
|
||
else
|
||
++curr;
|
||
}
|
||
while (true);
|
||
}
|
||
|
||
/* Print the comment. This works because only the last operand ever
|
||
adds a comment. If that ever changes then we'll need to be
|
||
smarter here. */
|
||
if (cmt[0] != '\0')
|
||
(*info->fprintf_styled_func) (info->stream, dis_style_comment_start,
|
||
"\t// %s", cmt);
|
||
}
|
||
|
||
if (notes && !no_notes)
|
||
{
|
||
*has_notes = true;
|
||
(*info->fprintf_styled_func) (info->stream, dis_style_comment_start,
|
||
" // note: %s", notes);
|
||
}
|
||
|
||
obstack_free (&content, NULL);
|
||
}
|
||
|
||
/* Set NAME to a copy of INST's mnemonic with the "." suffix removed. */
|
||
|
||
static void
|
||
remove_dot_suffix (char *name, const aarch64_inst *inst)
|
||
{
|
||
char *ptr;
|
||
size_t len;
|
||
|
||
ptr = strchr (inst->opcode->name, '.');
|
||
assert (ptr && inst->cond);
|
||
len = ptr - inst->opcode->name;
|
||
assert (len < 8);
|
||
strncpy (name, inst->opcode->name, len);
|
||
name[len] = '\0';
|
||
}
|
||
|
||
/* Print the instruction mnemonic name. */
|
||
|
||
static void
|
||
print_mnemonic_name (const aarch64_inst *inst, struct disassemble_info *info)
|
||
{
|
||
if (inst->opcode->flags & F_COND)
|
||
{
|
||
/* For instructions that are truly conditionally executed, e.g. b.cond,
|
||
prepare the full mnemonic name with the corresponding condition
|
||
suffix. */
|
||
char name[8];
|
||
|
||
remove_dot_suffix (name, inst);
|
||
(*info->fprintf_styled_func) (info->stream, dis_style_mnemonic,
|
||
"%s.%s", name, inst->cond->names[0]);
|
||
}
|
||
else
|
||
(*info->fprintf_styled_func) (info->stream, dis_style_mnemonic,
|
||
"%s", inst->opcode->name);
|
||
}
|
||
|
||
/* Decide whether we need to print a comment after the operands of
|
||
instruction INST. */
|
||
|
||
static void
|
||
print_comment (const aarch64_inst *inst, struct disassemble_info *info)
|
||
{
|
||
if (inst->opcode->flags & F_COND)
|
||
{
|
||
char name[8];
|
||
unsigned int i, num_conds;
|
||
|
||
remove_dot_suffix (name, inst);
|
||
num_conds = ARRAY_SIZE (inst->cond->names);
|
||
for (i = 1; i < num_conds && inst->cond->names[i]; ++i)
|
||
(*info->fprintf_styled_func) (info->stream, dis_style_comment_start,
|
||
"%s %s.%s",
|
||
i == 1 ? " //" : ",",
|
||
name, inst->cond->names[i]);
|
||
}
|
||
}
|
||
|
||
/* Build notes from verifiers into a string for printing. */
|
||
|
||
static void
|
||
print_verifier_notes (aarch64_operand_error *detail,
|
||
struct disassemble_info *info)
|
||
{
|
||
if (no_notes)
|
||
return;
|
||
|
||
/* The output of the verifier cannot be a fatal error, otherwise the assembly
|
||
would not have succeeded. We can safely ignore these. */
|
||
assert (detail->non_fatal);
|
||
|
||
(*info->fprintf_styled_func) (info->stream, dis_style_comment_start,
|
||
" // note: ");
|
||
switch (detail->kind)
|
||
{
|
||
case AARCH64_OPDE_A_SHOULD_FOLLOW_B:
|
||
(*info->fprintf_styled_func) (info->stream, dis_style_text,
|
||
_("this `%s' should have an immediately"
|
||
" preceding `%s'"),
|
||
detail->data[0].s, detail->data[1].s);
|
||
break;
|
||
|
||
case AARCH64_OPDE_EXPECTED_A_AFTER_B:
|
||
(*info->fprintf_styled_func) (info->stream, dis_style_text,
|
||
_("expected `%s' after previous `%s'"),
|
||
detail->data[0].s, detail->data[1].s);
|
||
break;
|
||
|
||
default:
|
||
assert (detail->error);
|
||
(*info->fprintf_styled_func) (info->stream, dis_style_text,
|
||
"%s", detail->error);
|
||
if (detail->index >= 0)
|
||
(*info->fprintf_styled_func) (info->stream, dis_style_text,
|
||
" at operand %d", detail->index + 1);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Print the instruction according to *INST. */
|
||
|
||
static void
|
||
print_aarch64_insn (bfd_vma pc, const aarch64_inst *inst,
|
||
const aarch64_insn code,
|
||
struct disassemble_info *info,
|
||
aarch64_operand_error *mismatch_details)
|
||
{
|
||
bool has_notes = false;
|
||
|
||
print_mnemonic_name (inst, info);
|
||
print_operands (pc, inst->opcode, inst->operands, info, &has_notes);
|
||
print_comment (inst, info);
|
||
|
||
/* We've already printed a note, not enough space to print more so exit.
|
||
Usually notes shouldn't overlap so it shouldn't happen that we have a note
|
||
from a register and instruction at the same time. */
|
||
if (has_notes)
|
||
return;
|
||
|
||
/* Always run constraint verifiers, this is needed because constraints need to
|
||
maintain a global state regardless of whether the instruction has the flag
|
||
set or not. */
|
||
enum err_type result = verify_constraints (inst, code, pc, false,
|
||
mismatch_details, &insn_sequence);
|
||
switch (result)
|
||
{
|
||
case ERR_VFI:
|
||
print_verifier_notes (mismatch_details, info);
|
||
break;
|
||
case ERR_UND:
|
||
case ERR_UNP:
|
||
case ERR_NYI:
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Entry-point of the instruction disassembler and printer. */
|
||
|
||
static void
|
||
print_insn_aarch64_word (bfd_vma pc,
|
||
uint32_t word,
|
||
struct disassemble_info *info,
|
||
aarch64_operand_error *errors)
|
||
{
|
||
static const char *err_msg[ERR_NR_ENTRIES+1] =
|
||
{
|
||
[ERR_OK] = "_",
|
||
[ERR_UND] = "undefined",
|
||
[ERR_UNP] = "unpredictable",
|
||
[ERR_NYI] = "NYI"
|
||
};
|
||
|
||
enum err_type ret;
|
||
aarch64_inst inst;
|
||
|
||
info->insn_info_valid = 1;
|
||
info->branch_delay_insns = 0;
|
||
info->data_size = 0;
|
||
info->target = 0;
|
||
info->target2 = 0;
|
||
|
||
if (info->flags & INSN_HAS_RELOC)
|
||
/* If the instruction has a reloc associated with it, then
|
||
the offset field in the instruction will actually be the
|
||
addend for the reloc. (If we are using REL type relocs).
|
||
In such cases, we can ignore the pc when computing
|
||
addresses, since the addend is not currently pc-relative. */
|
||
pc = 0;
|
||
|
||
ret = aarch64_decode_insn (word, &inst, no_aliases, errors);
|
||
|
||
if (((word >> 21) & 0x3ff) == 1)
|
||
{
|
||
/* RESERVED for ALES. */
|
||
assert (ret != ERR_OK);
|
||
ret = ERR_NYI;
|
||
}
|
||
|
||
switch (ret)
|
||
{
|
||
case ERR_UND:
|
||
case ERR_UNP:
|
||
case ERR_NYI:
|
||
/* Handle undefined instructions. */
|
||
info->insn_type = dis_noninsn;
|
||
(*info->fprintf_styled_func) (info->stream,
|
||
dis_style_assembler_directive,
|
||
".inst\t");
|
||
(*info->fprintf_styled_func) (info->stream, dis_style_immediate,
|
||
"0x%08x", word);
|
||
(*info->fprintf_styled_func) (info->stream, dis_style_comment_start,
|
||
" ; %s", err_msg[ret]);
|
||
break;
|
||
case ERR_OK:
|
||
user_friendly_fixup (&inst);
|
||
print_aarch64_insn (pc, &inst, word, info, errors);
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Disallow mapping symbols ($x, $d etc) from
|
||
being displayed in symbol relative addresses. */
|
||
|
||
bool
|
||
aarch64_symbol_is_valid (asymbol * sym,
|
||
struct disassemble_info * info ATTRIBUTE_UNUSED)
|
||
{
|
||
const char * name;
|
||
|
||
if (sym == NULL)
|
||
return false;
|
||
|
||
name = bfd_asymbol_name (sym);
|
||
|
||
return name
|
||
&& (name[0] != '$'
|
||
|| (name[1] != 'x' && name[1] != 'd')
|
||
|| (name[2] != '\0' && name[2] != '.'));
|
||
}
|
||
|
||
/* Print data bytes on INFO->STREAM. */
|
||
|
||
static void
|
||
print_insn_data (bfd_vma pc ATTRIBUTE_UNUSED,
|
||
uint32_t word,
|
||
struct disassemble_info *info,
|
||
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
|
||
{
|
||
switch (info->bytes_per_chunk)
|
||
{
|
||
case 1:
|
||
info->fprintf_styled_func (info->stream, dis_style_assembler_directive,
|
||
".byte\t");
|
||
info->fprintf_styled_func (info->stream, dis_style_immediate,
|
||
"0x%02x", word);
|
||
break;
|
||
case 2:
|
||
info->fprintf_styled_func (info->stream, dis_style_assembler_directive,
|
||
".short\t");
|
||
info->fprintf_styled_func (info->stream, dis_style_immediate,
|
||
"0x%04x", word);
|
||
break;
|
||
case 4:
|
||
info->fprintf_styled_func (info->stream, dis_style_assembler_directive,
|
||
".word\t");
|
||
info->fprintf_styled_func (info->stream, dis_style_immediate,
|
||
"0x%08x", word);
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Try to infer the code or data type from a symbol.
|
||
Returns nonzero if *MAP_TYPE was set. */
|
||
|
||
static int
|
||
get_sym_code_type (struct disassemble_info *info, int n,
|
||
enum map_type *map_type)
|
||
{
|
||
asymbol * as;
|
||
elf_symbol_type *es;
|
||
unsigned int type;
|
||
const char *name;
|
||
|
||
/* If the symbol is in a different section, ignore it. */
|
||
if (info->section != NULL && info->section != info->symtab[n]->section)
|
||
return false;
|
||
|
||
if (n >= info->symtab_size)
|
||
return false;
|
||
|
||
as = info->symtab[n];
|
||
if (bfd_asymbol_flavour (as) != bfd_target_elf_flavour)
|
||
return false;
|
||
es = (elf_symbol_type *) as;
|
||
|
||
type = ELF_ST_TYPE (es->internal_elf_sym.st_info);
|
||
|
||
/* If the symbol has function type then use that. */
|
||
if (type == STT_FUNC)
|
||
{
|
||
*map_type = MAP_INSN;
|
||
return true;
|
||
}
|
||
|
||
/* Check for mapping symbols. */
|
||
name = bfd_asymbol_name(info->symtab[n]);
|
||
if (name[0] == '$'
|
||
&& (name[1] == 'x' || name[1] == 'd')
|
||
&& (name[2] == '\0' || name[2] == '.'))
|
||
{
|
||
*map_type = (name[1] == 'x' ? MAP_INSN : MAP_DATA);
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Set the feature bits in arch_variant in order to get the correct disassembly
|
||
for the chosen architecture variant.
|
||
|
||
Currently we only restrict disassembly for Armv8-R and otherwise enable all
|
||
non-R-profile features. */
|
||
static void
|
||
select_aarch64_variant (unsigned mach)
|
||
{
|
||
switch (mach)
|
||
{
|
||
case bfd_mach_aarch64_8R:
|
||
arch_variant = AARCH64_ARCH_V8_R;
|
||
break;
|
||
default:
|
||
arch_variant = AARCH64_ANY & ~(AARCH64_FEATURE_V8_R);
|
||
}
|
||
}
|
||
|
||
/* Entry-point of the AArch64 disassembler. */
|
||
|
||
int
|
||
print_insn_aarch64 (bfd_vma pc,
|
||
struct disassemble_info *info)
|
||
{
|
||
bfd_byte buffer[INSNLEN];
|
||
int status;
|
||
void (*printer) (bfd_vma, uint32_t, struct disassemble_info *,
|
||
aarch64_operand_error *);
|
||
bool found = false;
|
||
unsigned int size = 4;
|
||
unsigned long data;
|
||
aarch64_operand_error errors;
|
||
static bool set_features;
|
||
|
||
if (info->disassembler_options)
|
||
{
|
||
set_default_aarch64_dis_options (info);
|
||
|
||
parse_aarch64_dis_options (info->disassembler_options);
|
||
|
||
/* To avoid repeated parsing of these options, we remove them here. */
|
||
info->disassembler_options = NULL;
|
||
}
|
||
|
||
if (!set_features)
|
||
{
|
||
select_aarch64_variant (info->mach);
|
||
set_features = true;
|
||
}
|
||
|
||
/* Aarch64 instructions are always little-endian */
|
||
info->endian_code = BFD_ENDIAN_LITTLE;
|
||
|
||
/* Default to DATA. A text section is required by the ABI to contain an
|
||
INSN mapping symbol at the start. A data section has no such
|
||
requirement, hence if no mapping symbol is found the section must
|
||
contain only data. This however isn't very useful if the user has
|
||
fully stripped the binaries. If this is the case use the section
|
||
attributes to determine the default. If we have no section default to
|
||
INSN as well, as we may be disassembling some raw bytes on a baremetal
|
||
HEX file or similar. */
|
||
enum map_type type = MAP_DATA;
|
||
if ((info->section && info->section->flags & SEC_CODE) || !info->section)
|
||
type = MAP_INSN;
|
||
|
||
/* First check the full symtab for a mapping symbol, even if there
|
||
are no usable non-mapping symbols for this address. */
|
||
if (info->symtab_size != 0
|
||
&& bfd_asymbol_flavour (*info->symtab) == bfd_target_elf_flavour)
|
||
{
|
||
int last_sym = -1;
|
||
bfd_vma addr, section_vma = 0;
|
||
bool can_use_search_opt_p;
|
||
int n;
|
||
|
||
if (pc <= last_mapping_addr)
|
||
last_mapping_sym = -1;
|
||
|
||
/* Start scanning at the start of the function, or wherever
|
||
we finished last time. */
|
||
n = info->symtab_pos + 1;
|
||
|
||
/* If the last stop offset is different from the current one it means we
|
||
are disassembling a different glob of bytes. As such the optimization
|
||
would not be safe and we should start over. */
|
||
can_use_search_opt_p = last_mapping_sym >= 0
|
||
&& info->stop_offset == last_stop_offset;
|
||
|
||
if (n >= last_mapping_sym && can_use_search_opt_p)
|
||
n = last_mapping_sym;
|
||
|
||
/* Look down while we haven't passed the location being disassembled.
|
||
The reason for this is that there's no defined order between a symbol
|
||
and an mapping symbol that may be at the same address. We may have to
|
||
look at least one position ahead. */
|
||
for (; n < info->symtab_size; n++)
|
||
{
|
||
addr = bfd_asymbol_value (info->symtab[n]);
|
||
if (addr > pc)
|
||
break;
|
||
if (get_sym_code_type (info, n, &type))
|
||
{
|
||
last_sym = n;
|
||
found = true;
|
||
}
|
||
}
|
||
|
||
if (!found)
|
||
{
|
||
n = info->symtab_pos;
|
||
if (n >= last_mapping_sym && can_use_search_opt_p)
|
||
n = last_mapping_sym;
|
||
|
||
/* No mapping symbol found at this address. Look backwards
|
||
for a preceeding one, but don't go pass the section start
|
||
otherwise a data section with no mapping symbol can pick up
|
||
a text mapping symbol of a preceeding section. The documentation
|
||
says section can be NULL, in which case we will seek up all the
|
||
way to the top. */
|
||
if (info->section)
|
||
section_vma = info->section->vma;
|
||
|
||
for (; n >= 0; n--)
|
||
{
|
||
addr = bfd_asymbol_value (info->symtab[n]);
|
||
if (addr < section_vma)
|
||
break;
|
||
|
||
if (get_sym_code_type (info, n, &type))
|
||
{
|
||
last_sym = n;
|
||
found = true;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
last_mapping_sym = last_sym;
|
||
last_type = type;
|
||
last_stop_offset = info->stop_offset;
|
||
|
||
/* Look a little bit ahead to see if we should print out
|
||
less than four bytes of data. If there's a symbol,
|
||
mapping or otherwise, after two bytes then don't
|
||
print more. */
|
||
if (last_type == MAP_DATA)
|
||
{
|
||
size = 4 - (pc & 3);
|
||
for (n = last_sym + 1; n < info->symtab_size; n++)
|
||
{
|
||
addr = bfd_asymbol_value (info->symtab[n]);
|
||
if (addr > pc)
|
||
{
|
||
if (addr - pc < size)
|
||
size = addr - pc;
|
||
break;
|
||
}
|
||
}
|
||
/* If the next symbol is after three bytes, we need to
|
||
print only part of the data, so that we can use either
|
||
.byte or .short. */
|
||
if (size == 3)
|
||
size = (pc & 1) ? 1 : 2;
|
||
}
|
||
}
|
||
else
|
||
last_type = type;
|
||
|
||
/* PR 10263: Disassemble data if requested to do so by the user. */
|
||
if (last_type == MAP_DATA && ((info->flags & DISASSEMBLE_DATA) == 0))
|
||
{
|
||
/* size was set above. */
|
||
info->bytes_per_chunk = size;
|
||
info->display_endian = info->endian;
|
||
printer = print_insn_data;
|
||
}
|
||
else
|
||
{
|
||
info->bytes_per_chunk = size = INSNLEN;
|
||
info->display_endian = info->endian_code;
|
||
printer = print_insn_aarch64_word;
|
||
}
|
||
|
||
status = (*info->read_memory_func) (pc, buffer, size, info);
|
||
if (status != 0)
|
||
{
|
||
(*info->memory_error_func) (status, pc, info);
|
||
return -1;
|
||
}
|
||
|
||
data = bfd_get_bits (buffer, size * 8,
|
||
info->display_endian == BFD_ENDIAN_BIG);
|
||
|
||
(*printer) (pc, data, info, &errors);
|
||
|
||
return size;
|
||
}
|
||
|
||
void
|
||
print_aarch64_disassembler_options (FILE *stream)
|
||
{
|
||
fprintf (stream, _("\n\
|
||
The following AARCH64 specific disassembler options are supported for use\n\
|
||
with the -M switch (multiple options should be separated by commas):\n"));
|
||
|
||
fprintf (stream, _("\n\
|
||
no-aliases Don't print instruction aliases.\n"));
|
||
|
||
fprintf (stream, _("\n\
|
||
aliases Do print instruction aliases.\n"));
|
||
|
||
fprintf (stream, _("\n\
|
||
no-notes Don't print instruction notes.\n"));
|
||
|
||
fprintf (stream, _("\n\
|
||
notes Do print instruction notes.\n"));
|
||
|
||
#ifdef DEBUG_AARCH64
|
||
fprintf (stream, _("\n\
|
||
debug_dump Temp switch for debug trace.\n"));
|
||
#endif /* DEBUG_AARCH64 */
|
||
|
||
fprintf (stream, _("\n"));
|
||
}
|