mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-12 12:16:04 +08:00
802e8e6d84
This patch fixes hardware breakpoint regressions exposed by my fix for "PR breakpoints/7143 - Watchpoint does not trigger when first set", at https://sourceware.org/ml/gdb-patches/2014-03/msg00167.html The testsuite caught them on Linux/x86_64, at least. gdb.sum: gdb.sum: FAIL: gdb.base/hbreak2.exp: next over recursive call FAIL: gdb.base/hbreak2.exp: backtrace from factorial(5.1) FAIL: gdb.base/hbreak2.exp: continue until exit at recursive next test gdb.log: (gdb) next Program received signal SIGTRAP, Trace/breakpoint trap. factorial (value=4) at ../../../src/gdb/testsuite/gdb.base/break.c:113 113 if (value > 1) { /* set breakpoint 7 here */ (gdb) FAIL: gdb.base/hbreak2.exp: next over recursive call Actually, that patch just exposed a latent issue to "breakpoints always-inserted off" mode, not really caused it. After that patch, GDB no longer removes breakpoints at each internal event, thus making some scenarios behave like breakpoint always-inserted on. The bug is easy to trigger with always-inserted on. The issue is that since the target-side breakpoint conditions support, if the stub/server supports evaluating breakpoint conditions on the target side, then GDB is sending duplicate Zx packets to the target without removing them before, and GDBserver is not really expecting that for Z packets other than Z0/z0. E.g., with "set breakpoint always-inserted on" and "set debug remote 1": (gdb) b main Sending packet: $m410943,1#ff...Packet received: 48 Breakpoint 4 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028. Sending packet: $Z0,410943,1#48...Packet received: OK ^^^^^^^^^^^^ (gdb) b main Note: breakpoint 4 also set at pc 0x410943. Sending packet: $m410943,1#ff...Packet received: 48 Breakpoint 5 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028. Sending packet: $Z0,410943,1#48...Packet received: OK ^^^^^^^^^^^^ (gdb) b main Note: breakpoints 4 and 5 also set at pc 0x410943. Sending packet: $m410943,1#ff...Packet received: 48 Breakpoint 6 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028. Sending packet: $Z0,410943,1#48...Packet received: OK ^^^^^^^^^^^^ (gdb) del Delete all breakpoints? (y or n) y Sending packet: $Z0,410943,1#48...Packet received: OK Sending packet: $Z0,410943,1#48...Packet received: OK Sending packet: $z0,410943,1#68...Packet received: OK And for Z1, similarly: (gdb) hbreak main Sending packet: $m410943,1#ff...Packet received: 48 Hardware assisted breakpoint 4 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028. Sending packet: $Z1,410943,1#49...Packet received: OK ^^^^^^^^^^^^ Packet Z1 (hardware-breakpoint) is supported (gdb) hbreak main Note: breakpoint 4 also set at pc 0x410943. Sending packet: $m410943,1#ff...Packet received: 48 Hardware assisted breakpoint 5 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028. Sending packet: $Z1,410943,1#49...Packet received: OK ^^^^^^^^^^^^ (gdb) hbreak main Note: breakpoints 4 and 5 also set at pc 0x410943. Sending packet: $m410943,1#ff...Packet received: 48 Hardware assisted breakpoint 6 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028. Sending packet: $Z1,410943,1#49...Packet received: OK ^^^^^^^^^^^^ (gdb) del Delete all breakpoints? (y or n) y Sending packet: $Z1,410943,1#49...Packet received: OK ^^^^^^^^^^^^ Sending packet: $Z1,410943,1#49...Packet received: OK ^^^^^^^^^^^^ Sending packet: $z1,410943,1#69...Packet received: OK ^^^^^^^^^^^^ So GDB sent a bunch of Z1 packets, and then when finally removing the breakpoint, only one z1 packet was sent. On the GDBserver side (with monitor set debug-hw-points 1), in the Z1 case, we see: $ ./gdbserver :9999 ./gdbserver Process ./gdbserver created; pid = 8629 Listening on port 9999 Remote debugging from host 127.0.0.1 insert_watchpoint (addr=410943, len=1, type=instruction-execute): CONTROL (DR7): 00000101 STATUS (DR6): 00000000 DR0: addr=0x410943, ref.count=1 DR1: addr=0x0, ref.count=0 DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0 insert_watchpoint (addr=410943, len=1, type=instruction-execute): CONTROL (DR7): 00000101 STATUS (DR6): 00000000 DR0: addr=0x410943, ref.count=2 DR1: addr=0x0, ref.count=0 DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0 insert_watchpoint (addr=410943, len=1, type=instruction-execute): CONTROL (DR7): 00000101 STATUS (DR6): 00000000 DR0: addr=0x410943, ref.count=3 DR1: addr=0x0, ref.count=0 DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0 insert_watchpoint (addr=410943, len=1, type=instruction-execute): CONTROL (DR7): 00000101 STATUS (DR6): 00000000 DR0: addr=0x410943, ref.count=4 DR1: addr=0x0, ref.count=0 DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0 insert_watchpoint (addr=410943, len=1, type=instruction-execute): CONTROL (DR7): 00000101 STATUS (DR6): 00000000 DR0: addr=0x410943, ref.count=5 DR1: addr=0x0, ref.count=0 DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0 remove_watchpoint (addr=410943, len=1, type=instruction-execute): CONTROL (DR7): 00000101 STATUS (DR6): 00000000 DR0: addr=0x410943, ref.count=4 DR1: addr=0x0, ref.count=0 DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0 That's one insert_watchpoint call for each Z1 packet, and then one remove_watchpoint call for the z1 packet. Notice how ref.count increased for each insert_watchpoint call, and then in the end, after GDB told GDBserver to forget about the hardware breakpoint, GDBserver ends with the the first debug register still with ref.count=4! IOW, the hardware breakpoint is left armed on the target, while on the GDB end it's gone. If the program happens to execute 0x410943 afterwards, then the CPU traps, GDBserver reports the trap to GDB, and GDB not having a breakpoint set at that address anymore, reports to the user a spurious SIGTRAP. This is exactly what is happening in the hbreak2.exp test, though in that case, it's a shared library event that triggers a breakpoint_re_set, when breakpoints are still inserted (because nowadays GDB doesn't remove breakpoints while handling internal events), and that recreates breakpoint locations, which likewise forces breakpoint reinsertion and Zx packet resends... That is a lot of bogus Zx duplication that should possibly be addressed on the GDB side. GDB resends Zx packets because the way to change the target-side condition, is to resend the breakpoint to the server with the new condition. (That's an option in the packet: e.g., "Z1,410943,1;X3,220027" for "hbreak main if 0". The packets in the examples above are shorter because the breakpoints don't have conditions attached). GDB doesn't remove the breakpoint first before reinserting it because that'd be bad for non-stop, as it'd open a window where the inferior could miss the breakpoint. The conditions actually haven't changed between the resends, but GDB isn't smart enough to realize that. (TBC, if the target doesn't support target-side conditions, then GDB doesn't trigger these resends (init_bp_location calls mark_breakpoint_location_modified, and that does nothing if condition evaluation is on the host side. The resends are caused by the 'loc->condition_changed = condition_modified.' line.) But, even if GDB was made smarter, GDBserver should really still handle the resends anyway. So target-side conditions also aren't really to blame. The documentation of the Z/z packets says: "To avoid potential problems with duplicate packets, the operations should be implemented in an idempotent way." As such, we may want to fix GDB, but we should definitely fix GDBserver. The fix is a prerequisite for target-side conditions on hardware breakpoints anyway (and while at it, on watchpoints too). GDBserver indeed already treats duplicate Z0 packets in an idempotent way. mem-break.c has the concept of high-level and low-level breakpoints, somewhat similar to GDB's split of breakpoints vs breakpoint locations, and keeps track of multiple breakpoints referencing the same address/location, for the case of an internal GDBserver breakpoint or a tracepoint being set at the same address as a GDB breakpoint. But, it only allows GDB to ever contribute one reference to a software breakpoint location. IOW, if gdbserver sees a Z0 packet for the same address where it already had a GDB breakpoint set, then GDBserver won't create another high-level GDB breakpoint. However, mem-break.c only tracks GDB Z0 breakpoints. The same logic should apply to all kinds of Zx packets. Currently, gdbserver passes down each duplicate Zx (other than Z0) request directly to the target->insert_point routine. The x86 watchpoint support itself refcounts watchpoint / hw breakpoint requests, to handle overlapping watchpoints, and save debug registers. But that code doesn't (and really shouldn't) handle the duplicate requests, assuming that for each insert there will be a corresponding remove. So the fix is to generalize mem-break.c to track all kinds of Zx breakpoints, and filter out duplicates. As mentioned, this ends up adding support for target-side conditions on hardware breakpoints and watchpoints too (though GDB itself doesn't support the latter yet). Probably the least obvious change in the patch is that it kind of turns the breakpoint insert/remove APIs inside out. Before, the target methods were only called for GDB breakpoints. The internal breakpoint set/delete methods inserted memory breakpoints directly bypassing the insert/remove target methods. That's not good when the target should use a debug API to set software breakpoints, instead of relying on GDBserver patching memory with breakpoint instructions, as is the case of NTO. Now removal/insertion of all kinds of breakpoints/watchpoints, either internal, or from GDB, always go through the target methods. The insert_point/remove_point methods no longer get passed a Z packet type, but an internal/raw breakpoint type. They're also passed a pointer to the raw breakpoint itself (note that's still opaque outside mem-break.c), so that insert_memory_breakpoint / remove_memory_breakpoint have access to the breakpoint's shadow buffer. I first tried passing down a new structure based on GDB's "struct bp_target_info" (actually with that name exactly), but then decided against it as unnecessary complication. As software/memory breakpoints work by poking at memory, when setting a GDB Z0 breakpoint (but not internal breakpoints, as those can assume the conditions are already right), we need to tell the target to prepare to access memory (which on Linux means stop threads). If that operation fails, we need to return error to GDB. Seeing an error, if this is the first breakpoint of that type that GDB tries to insert, GDB would then assume the breakpoint type is supported, but it may actually not be. So we need to check whether the type is supported at all before preparing to access memory. And to solve that, the patch adds a new target->supports_z_point_type method that is called before actually trying to insert the breakpoint. Other than that, hopefully the change is more or less obvious. New test added that exercises the hbreak2.exp regression in a more direct way, without relying on a breakpoint re-set happening before main is reached. Tested by building GDBserver for: aarch64-linux-gnu arm-linux-gnueabihf i686-pc-linux-gnu i686-w64-mingw32 m68k-linux-gnu mips-linux-gnu mips-uclinux nios2-linux-gnu powerpc-linux-gnu sh-linux-gnu tilegx-unknown-linux-gnu x86_64-redhat-linux x86_64-w64-mingw32 And also regression tested on x86_64 Fedora 20. gdb/gdbserver/ 2014-05-20 Pedro Alves <palves@redhat.com> * linux-aarch64-low.c (aarch64_insert_point) (aarch64_remove_point): No longer check whether the type is supported here. Adjust to new interface. (the_low_target): Install aarch64_supports_z_point_type as supports_z_point_type method. * linux-arm-low.c (raw_bkpt_type_to_arm_hwbp_type): New function. (arm_linux_hw_point_initialize): Take an enum raw_bkpt_type instead of a Z packet char. Adjust. (arm_supports_z_point_type): New function. (arm_insert_point, arm_remove_point): Adjust to new interface. (the_low_target): Install arm_supports_z_point_type. * linux-crisv32-low.c (cris_supports_z_point_type): New function. (cris_insert_point, cris_remove_point): Adjust to new interface. Don't check whether the type is supported here. (the_low_target): Install cris_supports_z_point_type. * linux-low.c (linux_supports_z_point_type): New function. (linux_insert_point, linux_remove_point): Adjust to new interface. * linux-low.h (struct linux_target_ops) <insert_point, remove_point>: Take an enum raw_bkpt_type instead of a char. Add raw_breakpoint pointer parameter. <supports_z_point_type>: New method. * linux-mips-low.c (mips_supports_z_point_type): New function. (mips_insert_point, mips_remove_point): Adjust to new interface. Use mips_supports_z_point_type. (the_low_target): Install mips_supports_z_point_type. * linux-ppc-low.c (the_low_target): Install NULL as supports_z_point_type method. * linux-s390-low.c (the_low_target): Install NULL as supports_z_point_type method. * linux-sparc-low.c (the_low_target): Install NULL as supports_z_point_type method. * linux-x86-low.c (x86_supports_z_point_type): New function. (x86_insert_point): Adjust to new insert_point interface. Use insert_memory_breakpoint. Adjust to new i386_low_insert_watchpoint interface. (x86_remove_point): Adjust to remove_point interface. Use remove_memory_breakpoint. Adjust to new i386_low_remove_watchpoint interface. (the_low_target): Install x86_supports_z_point_type. * lynx-low.c (lynx_target_ops): Install NULL as supports_z_point_type callback. * nto-low.c (nto_supports_z_point_type): New. (nto_insert_point, nto_remove_point): Adjust to new interface. (nto_target_ops): Install nto_supports_z_point_type. * mem-break.c: Adjust intro comment. (struct raw_breakpoint) <raw_type, size>: New fields. <inserted>: Update comment. <shlib_disabled>: Delete field. (enum bkpt_type) <gdb_breakpoint>: Delete value. <gdb_breakpoint_Z0, gdb_breakpoint_Z1, gdb_breakpoint_Z2, gdb_breakpoint_Z3, gdb_breakpoint_Z4>: New values. (raw_bkpt_type_to_target_hw_bp_type): New function. (find_enabled_raw_code_breakpoint_at): New function. (find_raw_breakpoint_at): New type and size parameters. Use them. (insert_memory_breakpoint): New function, based off set_raw_breakpoint_at. (remove_memory_breakpoint): New function. (set_raw_breakpoint_at): Reimplement. (set_breakpoint): New, based on set_breakpoint_at. (set_breakpoint_at): Reimplement. (delete_raw_breakpoint): Go through the_target->remove_point instead of assuming memory breakpoints. (find_gdb_breakpoint_at): Delete. (Z_packet_to_bkpt_type, Z_packet_to_raw_bkpt_type): New functions. (find_gdb_breakpoint): New function. (set_gdb_breakpoint_at): Delete. (z_type_supported): New function. (set_gdb_breakpoint_1): New function, loosely based off set_gdb_breakpoint_at. (check_gdb_bp_preconditions, set_gdb_breakpoint): New functions. (delete_gdb_breakpoint_at): Delete. (delete_gdb_breakpoint_1): New function, loosely based off delete_gdb_breakpoint_at. (delete_gdb_breakpoint): New function. (clear_gdb_breakpoint_conditions): Rename to ... (clear_breakpoint_conditions): ... this. Don't handle a NULL breakpoint. (add_condition_to_breakpoint): Make static. (add_breakpoint_condition): Take a struct breakpoint pointer instead of an address. Adjust. (gdb_condition_true_at_breakpoint): Rename to ... (gdb_condition_true_at_breakpoint_z_type): ... this, and add z_type parameter. (gdb_condition_true_at_breakpoint): Reimplement. (add_breakpoint_commands): Take a struct breakpoint pointer instead of an address. Adjust. (gdb_no_commands_at_breakpoint): Rename to ... (gdb_no_commands_at_breakpoint_z_type): ... this. Add z_type parameter. Return true if no breakpoint was found. Change debug output. (gdb_no_commands_at_breakpoint): Reimplement. (run_breakpoint_commands): Rename to ... (run_breakpoint_commands_z_type): ... this. Add z_type parameter, and change return type to boolean. (run_breakpoint_commands): New function. (gdb_breakpoint_here): Also check for Z1 breakpoints. (uninsert_raw_breakpoint): Don't try to reinsert a disabled breakpoint. Go through the_target->remove_point instead of assuming memory breakpoint. (uninsert_breakpoints_at, uninsert_all_breakpoints): Uninsert software and hardware breakpoints. (reinsert_raw_breakpoint): Go through the_target->insert_point instead of assuming memory breakpoint. (reinsert_breakpoints_at, reinsert_all_breakpoints): Reinsert software and hardware breakpoints. (check_breakpoints, breakpoint_here, breakpoint_inserted_here): Check both software and hardware breakpoints. (validate_inserted_breakpoint): Assert the breakpoint is a software breakpoint. Set the inserted flag to -1 instead of setting shlib_disabled. (delete_disabled_breakpoints): Adjust. (validate_breakpoints): Only validate software breakpoints. Adjust to inserted flag change. (check_mem_read, check_mem_write): Skip breakpoint types other than software breakpoints. Adjust to inserted flag change. * mem-break.h (enum raw_bkpt_type): New enum. (raw_breakpoint, struct process_info): Forward declare. (Z_packet_to_target_hw_bp_type): Delete declaration. (raw_bkpt_type_to_target_hw_bp_type, Z_packet_to_raw_bkpt_type) (set_gdb_breakpoint, delete_gdb_breakpoint) (clear_breakpoint_conditions): New declarations. (set_gdb_breakpoint_at, clear_gdb_breakpoint_conditions): Delete. (breakpoint_inserted_here): Update comment. (add_breakpoint_condition, add_breakpoint_commands): Replace address parameter with a breakpoint pointer parameter. (gdb_breakpoint_here): Update comment. (delete_gdb_breakpoint_at): Delete. (insert_memory_breakpoint, remove_memory_breakpoint): Declare. * server.c (process_point_options): Take a struct breakpoint pointer instead of an address. Adjust. (process_serial_event) <Z/z packets>: Use set_gdb_breakpoint and delete_gdb_breakpoint. * spu-low.c (spu_target_ops): Install NULL as supports_z_point_type method. * target.h: Include mem-break.h. (struct target_ops) <prepare_to_access_memory>: Update comment. <supports_z_point_type>: New field. <insert_point, remove_point>: Take an enum raw_bkpt_type argument instead of a char. Also take a raw breakpoint pointer. * win32-arm-low.c (the_low_target): Install NULL as supports_z_point_type. * win32-i386-low.c (i386_supports_z_point_type): New function. (i386_insert_point, i386_remove_point): Adjust to new interface. (the_low_target): Install i386_supports_z_point_type. * win32-low.c (win32_supports_z_point_type): New function. (win32_insert_point, win32_remove_point): Adjust to new interface. (win32_target_ops): Install win32_supports_z_point_type. * win32-low.h (struct win32_target_ops): <supports_z_point_type>: New method. <insert_point, remove_point>: Take an enum raw_bkpt_type argument instead of a char. Also take a raw breakpoint pointer. gdb/testsuite/ 2014-05-20 Pedro Alves <palves@redhat.com> * gdb.base/break-idempotent.c: New file. * gdb.base/break-idempotent.exp: New file.
764 lines
20 KiB
C
764 lines
20 KiB
C
/* Copyright (C) 2009-2014 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "server.h"
|
|
#include "target.h"
|
|
#include "lynx-low.h"
|
|
|
|
#include <limits.h>
|
|
#include <sys/ptrace.h>
|
|
#include <sys/piddef.h> /* Provides PIDGET, TIDGET, BUILDPID, etc. */
|
|
#include <unistd.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/types.h>
|
|
#include "gdb_wait.h"
|
|
#include <signal.h>
|
|
#include "filestuff.h"
|
|
|
|
int using_threads = 1;
|
|
|
|
const struct target_desc *lynx_tdesc;
|
|
|
|
/* Per-process private data. */
|
|
|
|
struct process_info_private
|
|
{
|
|
/* The PTID obtained from the last wait performed on this process.
|
|
Initialized to null_ptid until the first wait is performed. */
|
|
ptid_t last_wait_event_ptid;
|
|
};
|
|
|
|
/* Print a debug trace on standard output if debug_threads is set. */
|
|
|
|
static void
|
|
lynx_debug (char *string, ...)
|
|
{
|
|
va_list args;
|
|
|
|
if (!debug_threads)
|
|
return;
|
|
|
|
va_start (args, string);
|
|
fprintf (stderr, "DEBUG(lynx): ");
|
|
vfprintf (stderr, string, args);
|
|
fprintf (stderr, "\n");
|
|
va_end (args);
|
|
}
|
|
|
|
/* Build a ptid_t given a PID and a LynxOS TID. */
|
|
|
|
static ptid_t
|
|
lynx_ptid_build (int pid, long tid)
|
|
{
|
|
/* brobecker/2010-06-21: It looks like the LWP field in ptids
|
|
should be distinct for each thread (see write_ptid where it
|
|
writes the thread ID from the LWP). So instead of storing
|
|
the LynxOS tid in the tid field of the ptid, we store it in
|
|
the lwp field. */
|
|
return ptid_build (pid, tid, 0);
|
|
}
|
|
|
|
/* Return the process ID of the given PTID.
|
|
|
|
This function has little reason to exist, it's just a wrapper around
|
|
ptid_get_pid. But since we have a getter function for the lynxos
|
|
ptid, it feels cleaner to have a getter for the pid as well. */
|
|
|
|
static int
|
|
lynx_ptid_get_pid (ptid_t ptid)
|
|
{
|
|
return ptid_get_pid (ptid);
|
|
}
|
|
|
|
/* Return the LynxOS tid of the given PTID. */
|
|
|
|
static long
|
|
lynx_ptid_get_tid (ptid_t ptid)
|
|
{
|
|
/* See lynx_ptid_build: The LynxOS tid is stored inside the lwp field
|
|
of the ptid. */
|
|
return ptid_get_lwp (ptid);
|
|
}
|
|
|
|
/* For a given PTID, return the associated PID as known by the LynxOS
|
|
ptrace layer. */
|
|
|
|
static int
|
|
lynx_ptrace_pid_from_ptid (ptid_t ptid)
|
|
{
|
|
return BUILDPID (lynx_ptid_get_pid (ptid), lynx_ptid_get_tid (ptid));
|
|
}
|
|
|
|
/* Return a string image of the ptrace REQUEST number. */
|
|
|
|
static char *
|
|
ptrace_request_to_str (int request)
|
|
{
|
|
#define CASE(X) case X: return #X
|
|
switch (request)
|
|
{
|
|
CASE(PTRACE_TRACEME);
|
|
CASE(PTRACE_PEEKTEXT);
|
|
CASE(PTRACE_PEEKDATA);
|
|
CASE(PTRACE_PEEKUSER);
|
|
CASE(PTRACE_POKETEXT);
|
|
CASE(PTRACE_POKEDATA);
|
|
CASE(PTRACE_POKEUSER);
|
|
CASE(PTRACE_CONT);
|
|
CASE(PTRACE_KILL);
|
|
CASE(PTRACE_SINGLESTEP);
|
|
CASE(PTRACE_ATTACH);
|
|
CASE(PTRACE_DETACH);
|
|
CASE(PTRACE_GETREGS);
|
|
CASE(PTRACE_SETREGS);
|
|
CASE(PTRACE_GETFPREGS);
|
|
CASE(PTRACE_SETFPREGS);
|
|
CASE(PTRACE_READDATA);
|
|
CASE(PTRACE_WRITEDATA);
|
|
CASE(PTRACE_READTEXT);
|
|
CASE(PTRACE_WRITETEXT);
|
|
CASE(PTRACE_GETFPAREGS);
|
|
CASE(PTRACE_SETFPAREGS);
|
|
CASE(PTRACE_GETWINDOW);
|
|
CASE(PTRACE_SETWINDOW);
|
|
CASE(PTRACE_SYSCALL);
|
|
CASE(PTRACE_DUMPCORE);
|
|
CASE(PTRACE_SETWRBKPT);
|
|
CASE(PTRACE_SETACBKPT);
|
|
CASE(PTRACE_CLRBKPT);
|
|
CASE(PTRACE_GET_UCODE);
|
|
#ifdef PT_READ_GPR
|
|
CASE(PT_READ_GPR);
|
|
#endif
|
|
#ifdef PT_WRITE_GPR
|
|
CASE(PT_WRITE_GPR);
|
|
#endif
|
|
#ifdef PT_READ_FPR
|
|
CASE(PT_READ_FPR);
|
|
#endif
|
|
#ifdef PT_WRITE_FPR
|
|
CASE(PT_WRITE_FPR);
|
|
#endif
|
|
#ifdef PT_READ_VPR
|
|
CASE(PT_READ_VPR);
|
|
#endif
|
|
#ifdef PT_WRITE_VPR
|
|
CASE(PT_WRITE_VPR);
|
|
#endif
|
|
#ifdef PTRACE_PEEKUSP
|
|
CASE(PTRACE_PEEKUSP);
|
|
#endif
|
|
#ifdef PTRACE_POKEUSP
|
|
CASE(PTRACE_POKEUSP);
|
|
#endif
|
|
CASE(PTRACE_PEEKTHREAD);
|
|
CASE(PTRACE_THREADUSER);
|
|
CASE(PTRACE_FPREAD);
|
|
CASE(PTRACE_FPWRITE);
|
|
CASE(PTRACE_SETSIG);
|
|
CASE(PTRACE_CONT_ONE);
|
|
CASE(PTRACE_KILL_ONE);
|
|
CASE(PTRACE_SINGLESTEP_ONE);
|
|
CASE(PTRACE_GETLOADINFO);
|
|
CASE(PTRACE_GETTRACESIG);
|
|
#ifdef PTRACE_GETTHREADLIST
|
|
CASE(PTRACE_GETTHREADLIST);
|
|
#endif
|
|
}
|
|
#undef CASE
|
|
|
|
return "<unknown-request>";
|
|
}
|
|
|
|
/* A wrapper around ptrace that allows us to print debug traces of
|
|
ptrace calls if debug traces are activated. */
|
|
|
|
static int
|
|
lynx_ptrace (int request, ptid_t ptid, int addr, int data, int addr2)
|
|
{
|
|
int result;
|
|
const int pid = lynx_ptrace_pid_from_ptid (ptid);
|
|
int saved_errno;
|
|
|
|
if (debug_threads)
|
|
fprintf (stderr, "PTRACE (%s, pid=%d(pid=%d, tid=%d), addr=0x%x, "
|
|
"data=0x%x, addr2=0x%x)",
|
|
ptrace_request_to_str (request), pid, PIDGET (pid), TIDGET (pid),
|
|
addr, data, addr2);
|
|
result = ptrace (request, pid, addr, data, addr2);
|
|
saved_errno = errno;
|
|
if (debug_threads)
|
|
fprintf (stderr, " -> %d (=0x%x)\n", result, result);
|
|
|
|
errno = saved_errno;
|
|
return result;
|
|
}
|
|
|
|
/* Call add_process with the given parameters, and initializes
|
|
the process' private data. */
|
|
|
|
static struct process_info *
|
|
lynx_add_process (int pid, int attached)
|
|
{
|
|
struct process_info *proc;
|
|
|
|
proc = add_process (pid, attached);
|
|
proc->tdesc = lynx_tdesc;
|
|
proc->private = xcalloc (1, sizeof (*proc->private));
|
|
proc->private->last_wait_event_ptid = null_ptid;
|
|
|
|
return proc;
|
|
}
|
|
|
|
/* Implement the create_inferior method of the target_ops vector. */
|
|
|
|
static int
|
|
lynx_create_inferior (char *program, char **allargs)
|
|
{
|
|
int pid;
|
|
|
|
lynx_debug ("lynx_create_inferior ()");
|
|
|
|
pid = fork ();
|
|
if (pid < 0)
|
|
perror_with_name ("fork");
|
|
|
|
if (pid == 0)
|
|
{
|
|
int pgrp;
|
|
|
|
close_most_fds ();
|
|
|
|
/* Switch child to its own process group so that signals won't
|
|
directly affect gdbserver. */
|
|
pgrp = getpid();
|
|
setpgid (0, pgrp);
|
|
ioctl (0, TIOCSPGRP, &pgrp);
|
|
lynx_ptrace (PTRACE_TRACEME, null_ptid, 0, 0, 0);
|
|
execv (program, allargs);
|
|
fprintf (stderr, "Cannot exec %s: %s.\n", program, strerror (errno));
|
|
fflush (stderr);
|
|
_exit (0177);
|
|
}
|
|
|
|
lynx_add_process (pid, 0);
|
|
/* Do not add the process thread just yet, as we do not know its tid.
|
|
We will add it later, during the wait for the STOP event corresponding
|
|
to the lynx_ptrace (PTRACE_TRACEME) call above. */
|
|
return pid;
|
|
}
|
|
|
|
/* Assuming we've just attached to a running inferior whose pid is PID,
|
|
add all threads running in that process. */
|
|
|
|
static void
|
|
lynx_add_threads_after_attach (int pid)
|
|
{
|
|
/* Ugh! There appears to be no way to get the list of threads
|
|
in the program we just attached to. So get the list by calling
|
|
the "ps" command. This is only needed now, as we will then
|
|
keep the thread list up to date thanks to thread creation and
|
|
exit notifications. */
|
|
FILE *f;
|
|
char buf[256];
|
|
int thread_pid, thread_tid;
|
|
|
|
f = popen ("ps atx", "r");
|
|
if (f == NULL)
|
|
perror_with_name ("Cannot get thread list");
|
|
|
|
while (fgets (buf, sizeof (buf), f) != NULL)
|
|
if ((sscanf (buf, "%d %d", &thread_pid, &thread_tid) == 2
|
|
&& thread_pid == pid))
|
|
{
|
|
ptid_t thread_ptid = lynx_ptid_build (pid, thread_tid);
|
|
|
|
if (!find_thread_ptid (thread_ptid))
|
|
{
|
|
lynx_debug ("New thread: (pid = %d, tid = %d)",
|
|
pid, thread_tid);
|
|
add_thread (thread_ptid, NULL);
|
|
}
|
|
}
|
|
|
|
pclose (f);
|
|
}
|
|
|
|
/* Implement the attach target_ops method. */
|
|
|
|
static int
|
|
lynx_attach (unsigned long pid)
|
|
{
|
|
ptid_t ptid = lynx_ptid_build (pid, 0);
|
|
|
|
if (lynx_ptrace (PTRACE_ATTACH, ptid, 0, 0, 0) != 0)
|
|
error ("Cannot attach to process %lu: %s (%d)\n", pid,
|
|
strerror (errno), errno);
|
|
|
|
lynx_add_process (pid, 1);
|
|
lynx_add_threads_after_attach (pid);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Implement the resume target_ops method. */
|
|
|
|
static void
|
|
lynx_resume (struct thread_resume *resume_info, size_t n)
|
|
{
|
|
/* FIXME: Assume for now that n == 1. */
|
|
ptid_t ptid = resume_info[0].thread;
|
|
const int request = (resume_info[0].kind == resume_step
|
|
? PTRACE_SINGLESTEP : PTRACE_CONT);
|
|
const int signal = resume_info[0].sig;
|
|
|
|
/* If given a minus_one_ptid, then try using the current_process'
|
|
private->last_wait_event_ptid. On most LynxOS versions,
|
|
using any of the process' thread works well enough, but
|
|
LynxOS 178 is a little more sensitive, and triggers some
|
|
unexpected signals (Eg SIG61) when we resume the inferior
|
|
using a different thread. */
|
|
if (ptid_equal (ptid, minus_one_ptid))
|
|
ptid = current_process()->private->last_wait_event_ptid;
|
|
|
|
/* The ptid might still be minus_one_ptid; this can happen between
|
|
the moment we create the inferior or attach to a process, and
|
|
the moment we resume its execution for the first time. It is
|
|
fine to use the current_inferior's ptid in those cases. */
|
|
if (ptid_equal (ptid, minus_one_ptid))
|
|
ptid = thread_to_gdb_id (current_inferior);
|
|
|
|
regcache_invalidate ();
|
|
|
|
errno = 0;
|
|
lynx_ptrace (request, ptid, 1, signal, 0);
|
|
if (errno)
|
|
perror_with_name ("ptrace");
|
|
}
|
|
|
|
/* Resume the execution of the given PTID. */
|
|
|
|
static void
|
|
lynx_continue (ptid_t ptid)
|
|
{
|
|
struct thread_resume resume_info;
|
|
|
|
resume_info.thread = ptid;
|
|
resume_info.kind = resume_continue;
|
|
resume_info.sig = 0;
|
|
|
|
lynx_resume (&resume_info, 1);
|
|
}
|
|
|
|
/* A wrapper around waitpid that handles the various idiosyncrasies
|
|
of LynxOS' waitpid. */
|
|
|
|
static int
|
|
lynx_waitpid (int pid, int *stat_loc)
|
|
{
|
|
int ret = 0;
|
|
|
|
while (1)
|
|
{
|
|
ret = waitpid (pid, stat_loc, WNOHANG);
|
|
if (ret < 0)
|
|
{
|
|
/* An ECHILD error is not indicative of a real problem.
|
|
It happens for instance while waiting for the inferior
|
|
to stop after attaching to it. */
|
|
if (errno != ECHILD)
|
|
perror_with_name ("waitpid (WNOHANG)");
|
|
}
|
|
if (ret > 0)
|
|
break;
|
|
/* No event with WNOHANG. See if there is one with WUNTRACED. */
|
|
ret = waitpid (pid, stat_loc, WNOHANG | WUNTRACED);
|
|
if (ret < 0)
|
|
{
|
|
/* An ECHILD error is not indicative of a real problem.
|
|
It happens for instance while waiting for the inferior
|
|
to stop after attaching to it. */
|
|
if (errno != ECHILD)
|
|
perror_with_name ("waitpid (WNOHANG|WUNTRACED)");
|
|
}
|
|
if (ret > 0)
|
|
break;
|
|
usleep (1000);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Implement the wait target_ops method. */
|
|
|
|
static ptid_t
|
|
lynx_wait_1 (ptid_t ptid, struct target_waitstatus *status, int options)
|
|
{
|
|
int pid;
|
|
int ret;
|
|
int wstat;
|
|
ptid_t new_ptid;
|
|
|
|
if (ptid_equal (ptid, minus_one_ptid))
|
|
pid = lynx_ptid_get_pid (thread_to_gdb_id (current_inferior));
|
|
else
|
|
pid = BUILDPID (lynx_ptid_get_pid (ptid), lynx_ptid_get_tid (ptid));
|
|
|
|
retry:
|
|
|
|
ret = lynx_waitpid (pid, &wstat);
|
|
new_ptid = lynx_ptid_build (ret, ((union wait *) &wstat)->w_tid);
|
|
find_process_pid (ret)->private->last_wait_event_ptid = new_ptid;
|
|
|
|
/* If this is a new thread, then add it now. The reason why we do
|
|
this here instead of when handling new-thread events is because
|
|
we need to add the thread associated to the "main" thread - even
|
|
for non-threaded applications where the new-thread events are not
|
|
generated. */
|
|
if (!find_thread_ptid (new_ptid))
|
|
{
|
|
lynx_debug ("New thread: (pid = %d, tid = %d)",
|
|
lynx_ptid_get_pid (new_ptid), lynx_ptid_get_tid (new_ptid));
|
|
add_thread (new_ptid, NULL);
|
|
}
|
|
|
|
if (WIFSTOPPED (wstat))
|
|
{
|
|
status->kind = TARGET_WAITKIND_STOPPED;
|
|
status->value.integer = gdb_signal_from_host (WSTOPSIG (wstat));
|
|
lynx_debug ("process stopped with signal: %d",
|
|
status->value.integer);
|
|
}
|
|
else if (WIFEXITED (wstat))
|
|
{
|
|
status->kind = TARGET_WAITKIND_EXITED;
|
|
status->value.integer = WEXITSTATUS (wstat);
|
|
lynx_debug ("process exited with code: %d", status->value.integer);
|
|
}
|
|
else if (WIFSIGNALED (wstat))
|
|
{
|
|
status->kind = TARGET_WAITKIND_SIGNALLED;
|
|
status->value.integer = gdb_signal_from_host (WTERMSIG (wstat));
|
|
lynx_debug ("process terminated with code: %d",
|
|
status->value.integer);
|
|
}
|
|
else
|
|
{
|
|
/* Not sure what happened if we get here, or whether we can
|
|
in fact get here. But if we do, handle the event the best
|
|
we can. */
|
|
status->kind = TARGET_WAITKIND_STOPPED;
|
|
status->value.integer = gdb_signal_from_host (0);
|
|
lynx_debug ("unknown event ????");
|
|
}
|
|
|
|
/* SIGTRAP events are generated for situations other than single-step/
|
|
breakpoint events (Eg. new-thread events). Handle those other types
|
|
of events, and resume the execution if necessary. */
|
|
if (status->kind == TARGET_WAITKIND_STOPPED
|
|
&& status->value.integer == GDB_SIGNAL_TRAP)
|
|
{
|
|
const int realsig = lynx_ptrace (PTRACE_GETTRACESIG, new_ptid, 0, 0, 0);
|
|
|
|
lynx_debug ("(realsig = %d)", realsig);
|
|
switch (realsig)
|
|
{
|
|
case SIGNEWTHREAD:
|
|
/* We just added the new thread above. No need to do anything
|
|
further. Just resume the execution again. */
|
|
lynx_continue (new_ptid);
|
|
goto retry;
|
|
|
|
case SIGTHREADEXIT:
|
|
remove_thread (find_thread_ptid (new_ptid));
|
|
lynx_continue (new_ptid);
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
return new_ptid;
|
|
}
|
|
|
|
/* A wrapper around lynx_wait_1 that also prints debug traces when
|
|
such debug traces have been activated. */
|
|
|
|
static ptid_t
|
|
lynx_wait (ptid_t ptid, struct target_waitstatus *status, int options)
|
|
{
|
|
ptid_t new_ptid;
|
|
|
|
lynx_debug ("lynx_wait (pid = %d, tid = %ld)",
|
|
lynx_ptid_get_pid (ptid), lynx_ptid_get_tid (ptid));
|
|
new_ptid = lynx_wait_1 (ptid, status, options);
|
|
lynx_debug (" -> (pid=%d, tid=%ld, status->kind = %d)",
|
|
lynx_ptid_get_pid (new_ptid), lynx_ptid_get_tid (new_ptid),
|
|
status->kind);
|
|
return new_ptid;
|
|
}
|
|
|
|
/* Implement the kill target_ops method. */
|
|
|
|
static int
|
|
lynx_kill (int pid)
|
|
{
|
|
ptid_t ptid = lynx_ptid_build (pid, 0);
|
|
struct target_waitstatus status;
|
|
struct process_info *process;
|
|
|
|
process = find_process_pid (pid);
|
|
if (process == NULL)
|
|
return -1;
|
|
|
|
lynx_ptrace (PTRACE_KILL, ptid, 0, 0, 0);
|
|
lynx_wait (ptid, &status, 0);
|
|
the_target->mourn (process);
|
|
return 0;
|
|
}
|
|
|
|
/* Implement the detach target_ops method. */
|
|
|
|
static int
|
|
lynx_detach (int pid)
|
|
{
|
|
ptid_t ptid = lynx_ptid_build (pid, 0);
|
|
struct process_info *process;
|
|
|
|
process = find_process_pid (pid);
|
|
if (process == NULL)
|
|
return -1;
|
|
|
|
lynx_ptrace (PTRACE_DETACH, ptid, 0, 0, 0);
|
|
the_target->mourn (process);
|
|
return 0;
|
|
}
|
|
|
|
/* Implement the mourn target_ops method. */
|
|
|
|
static void
|
|
lynx_mourn (struct process_info *proc)
|
|
{
|
|
/* Free our private data. */
|
|
free (proc->private);
|
|
proc->private = NULL;
|
|
|
|
clear_inferiors ();
|
|
}
|
|
|
|
/* Implement the join target_ops method. */
|
|
|
|
static void
|
|
lynx_join (int pid)
|
|
{
|
|
/* The PTRACE_DETACH is sufficient to detach from the process.
|
|
So no need to do anything extra. */
|
|
}
|
|
|
|
/* Implement the thread_alive target_ops method. */
|
|
|
|
static int
|
|
lynx_thread_alive (ptid_t ptid)
|
|
{
|
|
/* The list of threads is updated at the end of each wait, so it
|
|
should be up to date. No need to re-fetch it. */
|
|
return (find_thread_ptid (ptid) != NULL);
|
|
}
|
|
|
|
/* Implement the fetch_registers target_ops method. */
|
|
|
|
static void
|
|
lynx_fetch_registers (struct regcache *regcache, int regno)
|
|
{
|
|
struct lynx_regset_info *regset = lynx_target_regsets;
|
|
ptid_t inferior_ptid = thread_to_gdb_id (current_inferior);
|
|
|
|
lynx_debug ("lynx_fetch_registers (regno = %d)", regno);
|
|
|
|
while (regset->size >= 0)
|
|
{
|
|
char *buf;
|
|
int res;
|
|
|
|
buf = xmalloc (regset->size);
|
|
res = lynx_ptrace (regset->get_request, inferior_ptid, (int) buf, 0, 0);
|
|
if (res < 0)
|
|
perror ("ptrace");
|
|
regset->store_function (regcache, buf);
|
|
free (buf);
|
|
regset++;
|
|
}
|
|
}
|
|
|
|
/* Implement the store_registers target_ops method. */
|
|
|
|
static void
|
|
lynx_store_registers (struct regcache *regcache, int regno)
|
|
{
|
|
struct lynx_regset_info *regset = lynx_target_regsets;
|
|
ptid_t inferior_ptid = thread_to_gdb_id (current_inferior);
|
|
|
|
lynx_debug ("lynx_store_registers (regno = %d)", regno);
|
|
|
|
while (regset->size >= 0)
|
|
{
|
|
char *buf;
|
|
int res;
|
|
|
|
buf = xmalloc (regset->size);
|
|
res = lynx_ptrace (regset->get_request, inferior_ptid, (int) buf, 0, 0);
|
|
if (res == 0)
|
|
{
|
|
/* Then overlay our cached registers on that. */
|
|
regset->fill_function (regcache, buf);
|
|
/* Only now do we write the register set. */
|
|
res = lynx_ptrace (regset->set_request, inferior_ptid, (int) buf,
|
|
0, 0);
|
|
}
|
|
if (res < 0)
|
|
perror ("ptrace");
|
|
free (buf);
|
|
regset++;
|
|
}
|
|
}
|
|
|
|
/* Implement the read_memory target_ops method. */
|
|
|
|
static int
|
|
lynx_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
|
|
{
|
|
/* On LynxOS, memory reads needs to be performed in chunks the size
|
|
of int types, and they should also be aligned accordingly. */
|
|
int buf;
|
|
const int xfer_size = sizeof (buf);
|
|
CORE_ADDR addr = memaddr & -(CORE_ADDR) xfer_size;
|
|
ptid_t inferior_ptid = thread_to_gdb_id (current_inferior);
|
|
|
|
while (addr < memaddr + len)
|
|
{
|
|
int skip = 0;
|
|
int truncate = 0;
|
|
|
|
errno = 0;
|
|
if (addr < memaddr)
|
|
skip = memaddr - addr;
|
|
if (addr + xfer_size > memaddr + len)
|
|
truncate = addr + xfer_size - memaddr - len;
|
|
buf = lynx_ptrace (PTRACE_PEEKTEXT, inferior_ptid, addr, 0, 0);
|
|
if (errno)
|
|
return errno;
|
|
memcpy (myaddr + (addr - memaddr) + skip, (gdb_byte *) &buf + skip,
|
|
xfer_size - skip - truncate);
|
|
addr += xfer_size;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Implement the write_memory target_ops method. */
|
|
|
|
static int
|
|
lynx_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
|
|
{
|
|
/* On LynxOS, memory writes needs to be performed in chunks the size
|
|
of int types, and they should also be aligned accordingly. */
|
|
int buf;
|
|
const int xfer_size = sizeof (buf);
|
|
CORE_ADDR addr = memaddr & -(CORE_ADDR) xfer_size;
|
|
ptid_t inferior_ptid = thread_to_gdb_id (current_inferior);
|
|
|
|
while (addr < memaddr + len)
|
|
{
|
|
int skip = 0;
|
|
int truncate = 0;
|
|
|
|
if (addr < memaddr)
|
|
skip = memaddr - addr;
|
|
if (addr + xfer_size > memaddr + len)
|
|
truncate = addr + xfer_size - memaddr - len;
|
|
if (skip > 0 || truncate > 0)
|
|
/* We need to read the memory at this address in order to preserve
|
|
the data that we are not overwriting. */
|
|
lynx_read_memory (addr, (unsigned char *) &buf, xfer_size);
|
|
if (errno)
|
|
return errno;
|
|
memcpy ((gdb_byte *) &buf + skip, myaddr + (addr - memaddr) + skip,
|
|
xfer_size - skip - truncate);
|
|
errno = 0;
|
|
lynx_ptrace (PTRACE_POKETEXT, inferior_ptid, addr, buf, 0);
|
|
if (errno)
|
|
return errno;
|
|
addr += xfer_size;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Implement the kill_request target_ops method. */
|
|
|
|
static void
|
|
lynx_request_interrupt (void)
|
|
{
|
|
ptid_t inferior_ptid = thread_to_gdb_id (current_inferior);
|
|
|
|
kill (lynx_ptid_get_pid (inferior_ptid), SIGINT);
|
|
}
|
|
|
|
/* The LynxOS target_ops vector. */
|
|
|
|
static struct target_ops lynx_target_ops = {
|
|
lynx_create_inferior,
|
|
lynx_attach,
|
|
lynx_kill,
|
|
lynx_detach,
|
|
lynx_mourn,
|
|
lynx_join,
|
|
lynx_thread_alive,
|
|
lynx_resume,
|
|
lynx_wait,
|
|
lynx_fetch_registers,
|
|
lynx_store_registers,
|
|
NULL, /* prepare_to_access_memory */
|
|
NULL, /* done_accessing_memory */
|
|
lynx_read_memory,
|
|
lynx_write_memory,
|
|
NULL, /* look_up_symbols */
|
|
lynx_request_interrupt,
|
|
NULL, /* read_auxv */
|
|
NULL, /* supports_z_point_type */
|
|
NULL, /* insert_point */
|
|
NULL, /* remove_point */
|
|
NULL, /* stopped_by_watchpoint */
|
|
NULL, /* stopped_data_address */
|
|
NULL, /* read_offsets */
|
|
NULL, /* get_tls_address */
|
|
NULL, /* qxfer_spu */
|
|
NULL, /* hostio_last_error */
|
|
NULL, /* qxfer_osdata */
|
|
NULL, /* qxfer_siginfo */
|
|
NULL, /* supports_non_stop */
|
|
NULL, /* async */
|
|
NULL, /* start_non_stop */
|
|
NULL, /* supports_multi_process */
|
|
NULL, /* handle_monitor_command */
|
|
};
|
|
|
|
void
|
|
initialize_low (void)
|
|
{
|
|
set_target_ops (&lynx_target_ops);
|
|
the_low_target.arch_setup ();
|
|
}
|
|
|