mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-06 12:09:26 +08:00
11329 lines
320 KiB
C
11329 lines
320 KiB
C
/* Xtensa-specific support for 32-bit ELF.
|
||
Copyright (C) 2003-2019 Free Software Foundation, Inc.
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or
|
||
modify it under the terms of the GNU General Public License as
|
||
published by the Free Software Foundation; either version 3 of the
|
||
License, or (at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful, but
|
||
WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
#include "sysdep.h"
|
||
#include "bfd.h"
|
||
|
||
#include <stdarg.h>
|
||
#include <strings.h>
|
||
|
||
#include "bfdlink.h"
|
||
#include "libbfd.h"
|
||
#include "elf-bfd.h"
|
||
#include "elf/xtensa.h"
|
||
#include "splay-tree.h"
|
||
#include "xtensa-isa.h"
|
||
#include "xtensa-config.h"
|
||
|
||
#define XTENSA_NO_NOP_REMOVAL 0
|
||
|
||
/* Local helper functions. */
|
||
|
||
static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
|
||
static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
|
||
static bfd_reloc_status_type bfd_elf_xtensa_reloc
|
||
(bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
|
||
static bfd_boolean do_fix_for_relocatable_link
|
||
(Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
|
||
static void do_fix_for_final_link
|
||
(Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
|
||
|
||
/* Local functions to handle Xtensa configurability. */
|
||
|
||
static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
|
||
static bfd_boolean is_direct_call_opcode (xtensa_opcode);
|
||
static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
|
||
static xtensa_opcode get_const16_opcode (void);
|
||
static xtensa_opcode get_l32r_opcode (void);
|
||
static bfd_vma l32r_offset (bfd_vma, bfd_vma);
|
||
static int get_relocation_opnd (xtensa_opcode, int);
|
||
static int get_relocation_slot (int);
|
||
static xtensa_opcode get_relocation_opcode
|
||
(bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
|
||
static bfd_boolean is_l32r_relocation
|
||
(bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
|
||
static bfd_boolean is_alt_relocation (int);
|
||
static bfd_boolean is_operand_relocation (int);
|
||
static bfd_size_type insn_decode_len
|
||
(bfd_byte *, bfd_size_type, bfd_size_type);
|
||
static xtensa_opcode insn_decode_opcode
|
||
(bfd_byte *, bfd_size_type, bfd_size_type, int);
|
||
static bfd_boolean check_branch_target_aligned
|
||
(bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
|
||
static bfd_boolean check_loop_aligned
|
||
(bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
|
||
static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
|
||
static bfd_size_type get_asm_simplify_size
|
||
(bfd_byte *, bfd_size_type, bfd_size_type);
|
||
|
||
/* Functions for link-time code simplifications. */
|
||
|
||
static bfd_reloc_status_type elf_xtensa_do_asm_simplify
|
||
(bfd_byte *, bfd_vma, bfd_vma, char **);
|
||
static bfd_reloc_status_type contract_asm_expansion
|
||
(bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
|
||
static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
|
||
static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
|
||
|
||
/* Access to internal relocations, section contents and symbols. */
|
||
|
||
static Elf_Internal_Rela *retrieve_internal_relocs
|
||
(bfd *, asection *, bfd_boolean);
|
||
static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
|
||
static void release_internal_relocs (asection *, Elf_Internal_Rela *);
|
||
static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
|
||
static void pin_contents (asection *, bfd_byte *);
|
||
static void release_contents (asection *, bfd_byte *);
|
||
static Elf_Internal_Sym *retrieve_local_syms (bfd *);
|
||
|
||
/* Miscellaneous utility functions. */
|
||
|
||
static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
|
||
static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
|
||
static asection *get_elf_r_symndx_section (bfd *, unsigned long);
|
||
static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
|
||
(bfd *, unsigned long);
|
||
static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
|
||
static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
|
||
static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
|
||
static bfd_boolean xtensa_is_property_section (asection *);
|
||
static bfd_boolean xtensa_is_insntable_section (asection *);
|
||
static bfd_boolean xtensa_is_littable_section (asection *);
|
||
static bfd_boolean xtensa_is_proptable_section (asection *);
|
||
static int internal_reloc_compare (const void *, const void *);
|
||
static int internal_reloc_matches (const void *, const void *);
|
||
static asection *xtensa_get_property_section (asection *, const char *);
|
||
static flagword xtensa_get_property_predef_flags (asection *);
|
||
|
||
/* Other functions called directly by the linker. */
|
||
|
||
typedef void (*deps_callback_t)
|
||
(asection *, bfd_vma, asection *, bfd_vma, void *);
|
||
extern bfd_boolean xtensa_callback_required_dependence
|
||
(bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
|
||
|
||
|
||
/* Globally visible flag for choosing size optimization of NOP removal
|
||
instead of branch-target-aware minimization for NOP removal.
|
||
When nonzero, narrow all instructions and remove all NOPs possible
|
||
around longcall expansions. */
|
||
|
||
int elf32xtensa_size_opt;
|
||
|
||
|
||
/* The "new_section_hook" is used to set up a per-section
|
||
"xtensa_relax_info" data structure with additional information used
|
||
during relaxation. */
|
||
|
||
typedef struct xtensa_relax_info_struct xtensa_relax_info;
|
||
|
||
|
||
/* The GNU tools do not easily allow extending interfaces to pass around
|
||
the pointer to the Xtensa ISA information, so instead we add a global
|
||
variable here (in BFD) that can be used by any of the tools that need
|
||
this information. */
|
||
|
||
xtensa_isa xtensa_default_isa;
|
||
|
||
|
||
/* When this is true, relocations may have been modified to refer to
|
||
symbols from other input files. The per-section list of "fix"
|
||
records needs to be checked when resolving relocations. */
|
||
|
||
static bfd_boolean relaxing_section = FALSE;
|
||
|
||
/* When this is true, during final links, literals that cannot be
|
||
coalesced and their relocations may be moved to other sections. */
|
||
|
||
int elf32xtensa_no_literal_movement = 1;
|
||
|
||
/* Place property records for a section into individual property section
|
||
with xt.prop. prefix. */
|
||
|
||
bfd_boolean elf32xtensa_separate_props = FALSE;
|
||
|
||
/* Rename one of the generic section flags to better document how it
|
||
is used here. */
|
||
/* Whether relocations have been processed. */
|
||
#define reloc_done sec_flg0
|
||
|
||
static reloc_howto_type elf_howto_table[] =
|
||
{
|
||
HOWTO (R_XTENSA_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
|
||
FALSE, 0, 0, FALSE),
|
||
HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_32",
|
||
TRUE, 0xffffffff, 0xffffffff, FALSE),
|
||
|
||
/* Replace a 32-bit value with a value from the runtime linker (only
|
||
used by linker-generated stub functions). The r_addend value is
|
||
special: 1 means to substitute a pointer to the runtime linker's
|
||
dynamic resolver function; 2 means to substitute the link map for
|
||
the shared object. */
|
||
HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
|
||
NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
|
||
|
||
HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
|
||
FALSE, 0, 0xffffffff, FALSE),
|
||
HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
|
||
FALSE, 0, 0xffffffff, FALSE),
|
||
HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
|
||
FALSE, 0, 0xffffffff, FALSE),
|
||
HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
|
||
FALSE, 0, 0xffffffff, FALSE),
|
||
|
||
EMPTY_HOWTO (7),
|
||
|
||
/* Old relocations for backward compatibility. */
|
||
HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
|
||
|
||
/* Assembly auto-expansion. */
|
||
HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
|
||
/* Relax assembly auto-expansion. */
|
||
HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
|
||
|
||
EMPTY_HOWTO (13),
|
||
|
||
HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
|
||
FALSE, 0, 0xffffffff, TRUE),
|
||
|
||
/* GNU extension to record C++ vtable hierarchy. */
|
||
HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
|
||
NULL, "R_XTENSA_GNU_VTINHERIT",
|
||
FALSE, 0, 0, FALSE),
|
||
/* GNU extension to record C++ vtable member usage. */
|
||
HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
|
||
_bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
|
||
FALSE, 0, 0, FALSE),
|
||
|
||
/* Relocations for supporting difference of symbols. */
|
||
HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
|
||
HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
|
||
HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
|
||
|
||
/* General immediate operand relocations. */
|
||
HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
|
||
|
||
/* "Alternate" relocations. The meaning of these is opcode-specific. */
|
||
HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
|
||
HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
|
||
|
||
/* TLS relocations. */
|
||
HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
|
||
FALSE, 0, 0xffffffff, FALSE),
|
||
HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
|
||
FALSE, 0, 0xffffffff, FALSE),
|
||
HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
|
||
FALSE, 0, 0xffffffff, FALSE),
|
||
HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
|
||
FALSE, 0, 0xffffffff, FALSE),
|
||
HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
|
||
FALSE, 0, 0, FALSE),
|
||
HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
|
||
FALSE, 0, 0, FALSE),
|
||
HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
|
||
FALSE, 0, 0, FALSE),
|
||
};
|
||
|
||
#if DEBUG_GEN_RELOC
|
||
#define TRACE(str) \
|
||
fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
|
||
#else
|
||
#define TRACE(str)
|
||
#endif
|
||
|
||
static reloc_howto_type *
|
||
elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
|
||
bfd_reloc_code_real_type code)
|
||
{
|
||
switch (code)
|
||
{
|
||
case BFD_RELOC_NONE:
|
||
TRACE ("BFD_RELOC_NONE");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
|
||
|
||
case BFD_RELOC_32:
|
||
TRACE ("BFD_RELOC_32");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_32 ];
|
||
|
||
case BFD_RELOC_32_PCREL:
|
||
TRACE ("BFD_RELOC_32_PCREL");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
|
||
|
||
case BFD_RELOC_XTENSA_DIFF8:
|
||
TRACE ("BFD_RELOC_XTENSA_DIFF8");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
|
||
|
||
case BFD_RELOC_XTENSA_DIFF16:
|
||
TRACE ("BFD_RELOC_XTENSA_DIFF16");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
|
||
|
||
case BFD_RELOC_XTENSA_DIFF32:
|
||
TRACE ("BFD_RELOC_XTENSA_DIFF32");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
|
||
|
||
case BFD_RELOC_XTENSA_RTLD:
|
||
TRACE ("BFD_RELOC_XTENSA_RTLD");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
|
||
|
||
case BFD_RELOC_XTENSA_GLOB_DAT:
|
||
TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
|
||
|
||
case BFD_RELOC_XTENSA_JMP_SLOT:
|
||
TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
|
||
|
||
case BFD_RELOC_XTENSA_RELATIVE:
|
||
TRACE ("BFD_RELOC_XTENSA_RELATIVE");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
|
||
|
||
case BFD_RELOC_XTENSA_PLT:
|
||
TRACE ("BFD_RELOC_XTENSA_PLT");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
|
||
|
||
case BFD_RELOC_XTENSA_OP0:
|
||
TRACE ("BFD_RELOC_XTENSA_OP0");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
|
||
|
||
case BFD_RELOC_XTENSA_OP1:
|
||
TRACE ("BFD_RELOC_XTENSA_OP1");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
|
||
|
||
case BFD_RELOC_XTENSA_OP2:
|
||
TRACE ("BFD_RELOC_XTENSA_OP2");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
|
||
|
||
case BFD_RELOC_XTENSA_ASM_EXPAND:
|
||
TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
|
||
|
||
case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
|
||
TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
|
||
|
||
case BFD_RELOC_VTABLE_INHERIT:
|
||
TRACE ("BFD_RELOC_VTABLE_INHERIT");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
|
||
|
||
case BFD_RELOC_VTABLE_ENTRY:
|
||
TRACE ("BFD_RELOC_VTABLE_ENTRY");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
|
||
|
||
case BFD_RELOC_XTENSA_TLSDESC_FN:
|
||
TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
|
||
|
||
case BFD_RELOC_XTENSA_TLSDESC_ARG:
|
||
TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
|
||
|
||
case BFD_RELOC_XTENSA_TLS_DTPOFF:
|
||
TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
|
||
|
||
case BFD_RELOC_XTENSA_TLS_TPOFF:
|
||
TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
|
||
|
||
case BFD_RELOC_XTENSA_TLS_FUNC:
|
||
TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
|
||
|
||
case BFD_RELOC_XTENSA_TLS_ARG:
|
||
TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
|
||
|
||
case BFD_RELOC_XTENSA_TLS_CALL:
|
||
TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
|
||
|
||
default:
|
||
if (code >= BFD_RELOC_XTENSA_SLOT0_OP
|
||
&& code <= BFD_RELOC_XTENSA_SLOT14_OP)
|
||
{
|
||
unsigned n = (R_XTENSA_SLOT0_OP +
|
||
(code - BFD_RELOC_XTENSA_SLOT0_OP));
|
||
return &elf_howto_table[n];
|
||
}
|
||
|
||
if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
|
||
&& code <= BFD_RELOC_XTENSA_SLOT14_ALT)
|
||
{
|
||
unsigned n = (R_XTENSA_SLOT0_ALT +
|
||
(code - BFD_RELOC_XTENSA_SLOT0_ALT));
|
||
return &elf_howto_table[n];
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
/* xgettext:c-format */
|
||
_bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, (int) code);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
TRACE ("Unknown");
|
||
return NULL;
|
||
}
|
||
|
||
static reloc_howto_type *
|
||
elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
|
||
const char *r_name)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
|
||
if (elf_howto_table[i].name != NULL
|
||
&& strcasecmp (elf_howto_table[i].name, r_name) == 0)
|
||
return &elf_howto_table[i];
|
||
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* Given an ELF "rela" relocation, find the corresponding howto and record
|
||
it in the BFD internal arelent representation of the relocation. */
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_info_to_howto_rela (bfd *abfd,
|
||
arelent *cache_ptr,
|
||
Elf_Internal_Rela *dst)
|
||
{
|
||
unsigned int r_type = ELF32_R_TYPE (dst->r_info);
|
||
|
||
if (r_type >= (unsigned int) R_XTENSA_max)
|
||
{
|
||
/* xgettext:c-format */
|
||
_bfd_error_handler (_("%pB: unsupported relocation type %#x"),
|
||
abfd, r_type);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
cache_ptr->howto = &elf_howto_table[r_type];
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Functions for the Xtensa ELF linker. */
|
||
|
||
/* The name of the dynamic interpreter. This is put in the .interp
|
||
section. */
|
||
|
||
#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
|
||
|
||
/* The size in bytes of an entry in the procedure linkage table.
|
||
(This does _not_ include the space for the literals associated with
|
||
the PLT entry.) */
|
||
|
||
#define PLT_ENTRY_SIZE 16
|
||
|
||
/* For _really_ large PLTs, we may need to alternate between literals
|
||
and code to keep the literals within the 256K range of the L32R
|
||
instructions in the code. It's unlikely that anyone would ever need
|
||
such a big PLT, but an arbitrary limit on the PLT size would be bad.
|
||
Thus, we split the PLT into chunks. Since there's very little
|
||
overhead (2 extra literals) for each chunk, the chunk size is kept
|
||
small so that the code for handling multiple chunks get used and
|
||
tested regularly. With 254 entries, there are 1K of literals for
|
||
each chunk, and that seems like a nice round number. */
|
||
|
||
#define PLT_ENTRIES_PER_CHUNK 254
|
||
|
||
/* PLT entries are actually used as stub functions for lazy symbol
|
||
resolution. Once the symbol is resolved, the stub function is never
|
||
invoked. Note: the 32-byte frame size used here cannot be changed
|
||
without a corresponding change in the runtime linker. */
|
||
|
||
static const bfd_byte elf_xtensa_be_plt_entry[][PLT_ENTRY_SIZE] =
|
||
{
|
||
{
|
||
0x6c, 0x10, 0x04, /* entry sp, 32 */
|
||
0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
|
||
0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
|
||
0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
|
||
0x0a, 0x80, 0x00, /* jx a8 */
|
||
0 /* unused */
|
||
},
|
||
{
|
||
0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
|
||
0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
|
||
0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
|
||
0x0a, 0x80, 0x00, /* jx a8 */
|
||
0 /* unused */
|
||
}
|
||
};
|
||
|
||
static const bfd_byte elf_xtensa_le_plt_entry[][PLT_ENTRY_SIZE] =
|
||
{
|
||
{
|
||
0x36, 0x41, 0x00, /* entry sp, 32 */
|
||
0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
|
||
0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
|
||
0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
|
||
0xa0, 0x08, 0x00, /* jx a8 */
|
||
0 /* unused */
|
||
},
|
||
{
|
||
0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
|
||
0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
|
||
0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
|
||
0xa0, 0x08, 0x00, /* jx a8 */
|
||
0 /* unused */
|
||
}
|
||
};
|
||
|
||
/* The size of the thread control block. */
|
||
#define TCB_SIZE 8
|
||
|
||
struct elf_xtensa_link_hash_entry
|
||
{
|
||
struct elf_link_hash_entry elf;
|
||
|
||
bfd_signed_vma tlsfunc_refcount;
|
||
|
||
#define GOT_UNKNOWN 0
|
||
#define GOT_NORMAL 1
|
||
#define GOT_TLS_GD 2 /* global or local dynamic */
|
||
#define GOT_TLS_IE 4 /* initial or local exec */
|
||
#define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
|
||
unsigned char tls_type;
|
||
};
|
||
|
||
#define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
|
||
|
||
struct elf_xtensa_obj_tdata
|
||
{
|
||
struct elf_obj_tdata root;
|
||
|
||
/* tls_type for each local got entry. */
|
||
char *local_got_tls_type;
|
||
|
||
bfd_signed_vma *local_tlsfunc_refcounts;
|
||
};
|
||
|
||
#define elf_xtensa_tdata(abfd) \
|
||
((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
|
||
|
||
#define elf_xtensa_local_got_tls_type(abfd) \
|
||
(elf_xtensa_tdata (abfd)->local_got_tls_type)
|
||
|
||
#define elf_xtensa_local_tlsfunc_refcounts(abfd) \
|
||
(elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
|
||
|
||
#define is_xtensa_elf(bfd) \
|
||
(bfd_get_flavour (bfd) == bfd_target_elf_flavour \
|
||
&& elf_tdata (bfd) != NULL \
|
||
&& elf_object_id (bfd) == XTENSA_ELF_DATA)
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_mkobject (bfd *abfd)
|
||
{
|
||
return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
|
||
XTENSA_ELF_DATA);
|
||
}
|
||
|
||
/* Xtensa ELF linker hash table. */
|
||
|
||
struct elf_xtensa_link_hash_table
|
||
{
|
||
struct elf_link_hash_table elf;
|
||
|
||
/* Short-cuts to get to dynamic linker sections. */
|
||
asection *sgotloc;
|
||
asection *spltlittbl;
|
||
|
||
/* Total count of PLT relocations seen during check_relocs.
|
||
The actual PLT code must be split into multiple sections and all
|
||
the sections have to be created before size_dynamic_sections,
|
||
where we figure out the exact number of PLT entries that will be
|
||
needed. It is OK if this count is an overestimate, e.g., some
|
||
relocations may be removed by GC. */
|
||
int plt_reloc_count;
|
||
|
||
struct elf_xtensa_link_hash_entry *tlsbase;
|
||
};
|
||
|
||
/* Get the Xtensa ELF linker hash table from a link_info structure. */
|
||
|
||
#define elf_xtensa_hash_table(p) \
|
||
(elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
|
||
== XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
|
||
|
||
/* Create an entry in an Xtensa ELF linker hash table. */
|
||
|
||
static struct bfd_hash_entry *
|
||
elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
|
||
struct bfd_hash_table *table,
|
||
const char *string)
|
||
{
|
||
/* Allocate the structure if it has not already been allocated by a
|
||
subclass. */
|
||
if (entry == NULL)
|
||
{
|
||
entry = bfd_hash_allocate (table,
|
||
sizeof (struct elf_xtensa_link_hash_entry));
|
||
if (entry == NULL)
|
||
return entry;
|
||
}
|
||
|
||
/* Call the allocation method of the superclass. */
|
||
entry = _bfd_elf_link_hash_newfunc (entry, table, string);
|
||
if (entry != NULL)
|
||
{
|
||
struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
|
||
eh->tlsfunc_refcount = 0;
|
||
eh->tls_type = GOT_UNKNOWN;
|
||
}
|
||
|
||
return entry;
|
||
}
|
||
|
||
/* Create an Xtensa ELF linker hash table. */
|
||
|
||
static struct bfd_link_hash_table *
|
||
elf_xtensa_link_hash_table_create (bfd *abfd)
|
||
{
|
||
struct elf_link_hash_entry *tlsbase;
|
||
struct elf_xtensa_link_hash_table *ret;
|
||
bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
|
||
|
||
ret = bfd_zmalloc (amt);
|
||
if (ret == NULL)
|
||
return NULL;
|
||
|
||
if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
|
||
elf_xtensa_link_hash_newfunc,
|
||
sizeof (struct elf_xtensa_link_hash_entry),
|
||
XTENSA_ELF_DATA))
|
||
{
|
||
free (ret);
|
||
return NULL;
|
||
}
|
||
|
||
/* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
|
||
for it later. */
|
||
tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
|
||
TRUE, FALSE, FALSE);
|
||
tlsbase->root.type = bfd_link_hash_new;
|
||
tlsbase->root.u.undef.abfd = NULL;
|
||
tlsbase->non_elf = 0;
|
||
ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
|
||
ret->tlsbase->tls_type = GOT_UNKNOWN;
|
||
|
||
return &ret->elf.root;
|
||
}
|
||
|
||
/* Copy the extra info we tack onto an elf_link_hash_entry. */
|
||
|
||
static void
|
||
elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
|
||
struct elf_link_hash_entry *dir,
|
||
struct elf_link_hash_entry *ind)
|
||
{
|
||
struct elf_xtensa_link_hash_entry *edir, *eind;
|
||
|
||
edir = elf_xtensa_hash_entry (dir);
|
||
eind = elf_xtensa_hash_entry (ind);
|
||
|
||
if (ind->root.type == bfd_link_hash_indirect)
|
||
{
|
||
edir->tlsfunc_refcount += eind->tlsfunc_refcount;
|
||
eind->tlsfunc_refcount = 0;
|
||
|
||
if (dir->got.refcount <= 0)
|
||
{
|
||
edir->tls_type = eind->tls_type;
|
||
eind->tls_type = GOT_UNKNOWN;
|
||
}
|
||
}
|
||
|
||
_bfd_elf_link_hash_copy_indirect (info, dir, ind);
|
||
}
|
||
|
||
static inline bfd_boolean
|
||
elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
|
||
struct bfd_link_info *info)
|
||
{
|
||
/* Check if we should do dynamic things to this symbol. The
|
||
"ignore_protected" argument need not be set, because Xtensa code
|
||
does not require special handling of STV_PROTECTED to make function
|
||
pointer comparisons work properly. The PLT addresses are never
|
||
used for function pointers. */
|
||
|
||
return _bfd_elf_dynamic_symbol_p (h, info, 0);
|
||
}
|
||
|
||
|
||
static int
|
||
property_table_compare (const void *ap, const void *bp)
|
||
{
|
||
const property_table_entry *a = (const property_table_entry *) ap;
|
||
const property_table_entry *b = (const property_table_entry *) bp;
|
||
|
||
if (a->address == b->address)
|
||
{
|
||
if (a->size != b->size)
|
||
return (a->size - b->size);
|
||
|
||
if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
|
||
return ((b->flags & XTENSA_PROP_ALIGN)
|
||
- (a->flags & XTENSA_PROP_ALIGN));
|
||
|
||
if ((a->flags & XTENSA_PROP_ALIGN)
|
||
&& (GET_XTENSA_PROP_ALIGNMENT (a->flags)
|
||
!= GET_XTENSA_PROP_ALIGNMENT (b->flags)))
|
||
return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
|
||
- GET_XTENSA_PROP_ALIGNMENT (b->flags));
|
||
|
||
if ((a->flags & XTENSA_PROP_UNREACHABLE)
|
||
!= (b->flags & XTENSA_PROP_UNREACHABLE))
|
||
return ((b->flags & XTENSA_PROP_UNREACHABLE)
|
||
- (a->flags & XTENSA_PROP_UNREACHABLE));
|
||
|
||
return (a->flags - b->flags);
|
||
}
|
||
|
||
return (a->address - b->address);
|
||
}
|
||
|
||
|
||
static int
|
||
property_table_matches (const void *ap, const void *bp)
|
||
{
|
||
const property_table_entry *a = (const property_table_entry *) ap;
|
||
const property_table_entry *b = (const property_table_entry *) bp;
|
||
|
||
/* Check if one entry overlaps with the other. */
|
||
if ((b->address >= a->address && b->address < (a->address + a->size))
|
||
|| (a->address >= b->address && a->address < (b->address + b->size)))
|
||
return 0;
|
||
|
||
return (a->address - b->address);
|
||
}
|
||
|
||
|
||
/* Get the literal table or property table entries for the given
|
||
section. Sets TABLE_P and returns the number of entries. On
|
||
error, returns a negative value. */
|
||
|
||
int
|
||
xtensa_read_table_entries (bfd *abfd,
|
||
asection *section,
|
||
property_table_entry **table_p,
|
||
const char *sec_name,
|
||
bfd_boolean output_addr)
|
||
{
|
||
asection *table_section;
|
||
bfd_size_type table_size = 0;
|
||
bfd_byte *table_data;
|
||
property_table_entry *blocks;
|
||
int blk, block_count;
|
||
bfd_size_type num_records;
|
||
Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
|
||
bfd_vma section_addr, off;
|
||
flagword predef_flags;
|
||
bfd_size_type table_entry_size, section_limit;
|
||
|
||
if (!section
|
||
|| !(section->flags & SEC_ALLOC)
|
||
|| (section->flags & SEC_DEBUGGING))
|
||
{
|
||
*table_p = NULL;
|
||
return 0;
|
||
}
|
||
|
||
table_section = xtensa_get_property_section (section, sec_name);
|
||
if (table_section)
|
||
table_size = table_section->size;
|
||
|
||
if (table_size == 0)
|
||
{
|
||
*table_p = NULL;
|
||
return 0;
|
||
}
|
||
|
||
predef_flags = xtensa_get_property_predef_flags (table_section);
|
||
table_entry_size = 12;
|
||
if (predef_flags)
|
||
table_entry_size -= 4;
|
||
|
||
num_records = table_size / table_entry_size;
|
||
table_data = retrieve_contents (abfd, table_section, TRUE);
|
||
blocks = (property_table_entry *)
|
||
bfd_malloc (num_records * sizeof (property_table_entry));
|
||
block_count = 0;
|
||
|
||
if (output_addr)
|
||
section_addr = section->output_section->vma + section->output_offset;
|
||
else
|
||
section_addr = section->vma;
|
||
|
||
internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
|
||
if (internal_relocs && !table_section->reloc_done)
|
||
{
|
||
qsort (internal_relocs, table_section->reloc_count,
|
||
sizeof (Elf_Internal_Rela), internal_reloc_compare);
|
||
irel = internal_relocs;
|
||
}
|
||
else
|
||
irel = NULL;
|
||
|
||
section_limit = bfd_get_section_limit (abfd, section);
|
||
rel_end = internal_relocs + table_section->reloc_count;
|
||
|
||
for (off = 0; off < table_size; off += table_entry_size)
|
||
{
|
||
bfd_vma address = bfd_get_32 (abfd, table_data + off);
|
||
|
||
/* Skip any relocations before the current offset. This should help
|
||
avoid confusion caused by unexpected relocations for the preceding
|
||
table entry. */
|
||
while (irel &&
|
||
(irel->r_offset < off
|
||
|| (irel->r_offset == off
|
||
&& ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
|
||
{
|
||
irel += 1;
|
||
if (irel >= rel_end)
|
||
irel = 0;
|
||
}
|
||
|
||
if (irel && irel->r_offset == off)
|
||
{
|
||
bfd_vma sym_off;
|
||
unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
|
||
BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
|
||
|
||
if (get_elf_r_symndx_section (abfd, r_symndx) != section)
|
||
continue;
|
||
|
||
sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
|
||
BFD_ASSERT (sym_off == 0);
|
||
address += (section_addr + sym_off + irel->r_addend);
|
||
}
|
||
else
|
||
{
|
||
if (address < section_addr
|
||
|| address >= section_addr + section_limit)
|
||
continue;
|
||
}
|
||
|
||
blocks[block_count].address = address;
|
||
blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
|
||
if (predef_flags)
|
||
blocks[block_count].flags = predef_flags;
|
||
else
|
||
blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
|
||
block_count++;
|
||
}
|
||
|
||
release_contents (table_section, table_data);
|
||
release_internal_relocs (table_section, internal_relocs);
|
||
|
||
if (block_count > 0)
|
||
{
|
||
/* Now sort them into address order for easy reference. */
|
||
qsort (blocks, block_count, sizeof (property_table_entry),
|
||
property_table_compare);
|
||
|
||
/* Check that the table contents are valid. Problems may occur,
|
||
for example, if an unrelocated object file is stripped. */
|
||
for (blk = 1; blk < block_count; blk++)
|
||
{
|
||
/* The only circumstance where two entries may legitimately
|
||
have the same address is when one of them is a zero-size
|
||
placeholder to mark a place where fill can be inserted.
|
||
The zero-size entry should come first. */
|
||
if (blocks[blk - 1].address == blocks[blk].address &&
|
||
blocks[blk - 1].size != 0)
|
||
{
|
||
/* xgettext:c-format */
|
||
_bfd_error_handler (_("%pB(%pA): invalid property table"),
|
||
abfd, section);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
free (blocks);
|
||
return -1;
|
||
}
|
||
}
|
||
}
|
||
|
||
*table_p = blocks;
|
||
return block_count;
|
||
}
|
||
|
||
|
||
static property_table_entry *
|
||
elf_xtensa_find_property_entry (property_table_entry *property_table,
|
||
int property_table_size,
|
||
bfd_vma addr)
|
||
{
|
||
property_table_entry entry;
|
||
property_table_entry *rv;
|
||
|
||
if (property_table_size == 0)
|
||
return NULL;
|
||
|
||
entry.address = addr;
|
||
entry.size = 1;
|
||
entry.flags = 0;
|
||
|
||
rv = bsearch (&entry, property_table, property_table_size,
|
||
sizeof (property_table_entry), property_table_matches);
|
||
return rv;
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_in_literal_pool (property_table_entry *lit_table,
|
||
int lit_table_size,
|
||
bfd_vma addr)
|
||
{
|
||
if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
|
||
return TRUE;
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
|
||
/* Look through the relocs for a section during the first phase, and
|
||
calculate needed space in the dynamic reloc sections. */
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_check_relocs (bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
asection *sec,
|
||
const Elf_Internal_Rela *relocs)
|
||
{
|
||
struct elf_xtensa_link_hash_table *htab;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
const Elf_Internal_Rela *rel;
|
||
const Elf_Internal_Rela *rel_end;
|
||
|
||
if (bfd_link_relocatable (info) || (sec->flags & SEC_ALLOC) == 0)
|
||
return TRUE;
|
||
|
||
BFD_ASSERT (is_xtensa_elf (abfd));
|
||
|
||
htab = elf_xtensa_hash_table (info);
|
||
if (htab == NULL)
|
||
return FALSE;
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
sym_hashes = elf_sym_hashes (abfd);
|
||
|
||
rel_end = relocs + sec->reloc_count;
|
||
for (rel = relocs; rel < rel_end; rel++)
|
||
{
|
||
unsigned int r_type;
|
||
unsigned r_symndx;
|
||
struct elf_link_hash_entry *h = NULL;
|
||
struct elf_xtensa_link_hash_entry *eh;
|
||
int tls_type, old_tls_type;
|
||
bfd_boolean is_got = FALSE;
|
||
bfd_boolean is_plt = FALSE;
|
||
bfd_boolean is_tlsfunc = FALSE;
|
||
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
r_type = ELF32_R_TYPE (rel->r_info);
|
||
|
||
if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
|
||
{
|
||
/* xgettext:c-format */
|
||
_bfd_error_handler (_("%pB: bad symbol index: %d"),
|
||
abfd, r_symndx);
|
||
return FALSE;
|
||
}
|
||
|
||
if (r_symndx >= symtab_hdr->sh_info)
|
||
{
|
||
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
}
|
||
eh = elf_xtensa_hash_entry (h);
|
||
|
||
switch (r_type)
|
||
{
|
||
case R_XTENSA_TLSDESC_FN:
|
||
if (bfd_link_pic (info))
|
||
{
|
||
tls_type = GOT_TLS_GD;
|
||
is_got = TRUE;
|
||
is_tlsfunc = TRUE;
|
||
}
|
||
else
|
||
tls_type = GOT_TLS_IE;
|
||
break;
|
||
|
||
case R_XTENSA_TLSDESC_ARG:
|
||
if (bfd_link_pic (info))
|
||
{
|
||
tls_type = GOT_TLS_GD;
|
||
is_got = TRUE;
|
||
}
|
||
else
|
||
{
|
||
tls_type = GOT_TLS_IE;
|
||
if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
|
||
is_got = TRUE;
|
||
}
|
||
break;
|
||
|
||
case R_XTENSA_TLS_DTPOFF:
|
||
if (bfd_link_pic (info))
|
||
tls_type = GOT_TLS_GD;
|
||
else
|
||
tls_type = GOT_TLS_IE;
|
||
break;
|
||
|
||
case R_XTENSA_TLS_TPOFF:
|
||
tls_type = GOT_TLS_IE;
|
||
if (bfd_link_pic (info))
|
||
info->flags |= DF_STATIC_TLS;
|
||
if (bfd_link_pic (info) || h)
|
||
is_got = TRUE;
|
||
break;
|
||
|
||
case R_XTENSA_32:
|
||
tls_type = GOT_NORMAL;
|
||
is_got = TRUE;
|
||
break;
|
||
|
||
case R_XTENSA_PLT:
|
||
tls_type = GOT_NORMAL;
|
||
is_plt = TRUE;
|
||
break;
|
||
|
||
case R_XTENSA_GNU_VTINHERIT:
|
||
/* This relocation describes the C++ object vtable hierarchy.
|
||
Reconstruct it for later use during GC. */
|
||
if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
|
||
return FALSE;
|
||
continue;
|
||
|
||
case R_XTENSA_GNU_VTENTRY:
|
||
/* This relocation describes which C++ vtable entries are actually
|
||
used. Record for later use during GC. */
|
||
BFD_ASSERT (h != NULL);
|
||
if (h != NULL
|
||
&& !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
|
||
return FALSE;
|
||
continue;
|
||
|
||
default:
|
||
/* Nothing to do for any other relocations. */
|
||
continue;
|
||
}
|
||
|
||
if (h)
|
||
{
|
||
if (is_plt)
|
||
{
|
||
if (h->plt.refcount <= 0)
|
||
{
|
||
h->needs_plt = 1;
|
||
h->plt.refcount = 1;
|
||
}
|
||
else
|
||
h->plt.refcount += 1;
|
||
|
||
/* Keep track of the total PLT relocation count even if we
|
||
don't yet know whether the dynamic sections will be
|
||
created. */
|
||
htab->plt_reloc_count += 1;
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
if (! add_extra_plt_sections (info, htab->plt_reloc_count))
|
||
return FALSE;
|
||
}
|
||
}
|
||
else if (is_got)
|
||
{
|
||
if (h->got.refcount <= 0)
|
||
h->got.refcount = 1;
|
||
else
|
||
h->got.refcount += 1;
|
||
}
|
||
|
||
if (is_tlsfunc)
|
||
eh->tlsfunc_refcount += 1;
|
||
|
||
old_tls_type = eh->tls_type;
|
||
}
|
||
else
|
||
{
|
||
/* Allocate storage the first time. */
|
||
if (elf_local_got_refcounts (abfd) == NULL)
|
||
{
|
||
bfd_size_type size = symtab_hdr->sh_info;
|
||
void *mem;
|
||
|
||
mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
|
||
if (mem == NULL)
|
||
return FALSE;
|
||
elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
|
||
|
||
mem = bfd_zalloc (abfd, size);
|
||
if (mem == NULL)
|
||
return FALSE;
|
||
elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
|
||
|
||
mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
|
||
if (mem == NULL)
|
||
return FALSE;
|
||
elf_xtensa_local_tlsfunc_refcounts (abfd)
|
||
= (bfd_signed_vma *) mem;
|
||
}
|
||
|
||
/* This is a global offset table entry for a local symbol. */
|
||
if (is_got || is_plt)
|
||
elf_local_got_refcounts (abfd) [r_symndx] += 1;
|
||
|
||
if (is_tlsfunc)
|
||
elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
|
||
|
||
old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
|
||
}
|
||
|
||
if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
|
||
tls_type |= old_tls_type;
|
||
/* If a TLS symbol is accessed using IE at least once,
|
||
there is no point to use a dynamic model for it. */
|
||
else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
|
||
&& ((old_tls_type & GOT_TLS_GD) == 0
|
||
|| (tls_type & GOT_TLS_IE) == 0))
|
||
{
|
||
if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
|
||
tls_type = old_tls_type;
|
||
else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
|
||
tls_type |= old_tls_type;
|
||
else
|
||
{
|
||
_bfd_error_handler
|
||
/* xgettext:c-format */
|
||
(_("%pB: `%s' accessed both as normal and thread local symbol"),
|
||
abfd,
|
||
h ? h->root.root.string : "<local>");
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
if (old_tls_type != tls_type)
|
||
{
|
||
if (eh)
|
||
eh->tls_type = tls_type;
|
||
else
|
||
elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
static void
|
||
elf_xtensa_make_sym_local (struct bfd_link_info *info,
|
||
struct elf_link_hash_entry *h)
|
||
{
|
||
if (bfd_link_pic (info))
|
||
{
|
||
if (h->plt.refcount > 0)
|
||
{
|
||
/* For shared objects, there's no need for PLT entries for local
|
||
symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
|
||
if (h->got.refcount < 0)
|
||
h->got.refcount = 0;
|
||
h->got.refcount += h->plt.refcount;
|
||
h->plt.refcount = 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Don't need any dynamic relocations at all. */
|
||
h->plt.refcount = 0;
|
||
h->got.refcount = 0;
|
||
}
|
||
}
|
||
|
||
|
||
static void
|
||
elf_xtensa_hide_symbol (struct bfd_link_info *info,
|
||
struct elf_link_hash_entry *h,
|
||
bfd_boolean force_local)
|
||
{
|
||
/* For a shared link, move the plt refcount to the got refcount to leave
|
||
space for RELATIVE relocs. */
|
||
elf_xtensa_make_sym_local (info, h);
|
||
|
||
_bfd_elf_link_hash_hide_symbol (info, h, force_local);
|
||
}
|
||
|
||
|
||
/* Return the section that should be marked against GC for a given
|
||
relocation. */
|
||
|
||
static asection *
|
||
elf_xtensa_gc_mark_hook (asection *sec,
|
||
struct bfd_link_info *info,
|
||
Elf_Internal_Rela *rel,
|
||
struct elf_link_hash_entry *h,
|
||
Elf_Internal_Sym *sym)
|
||
{
|
||
/* Property sections are marked "KEEP" in the linker scripts, but they
|
||
should not cause other sections to be marked. (This approach relies
|
||
on elf_xtensa_discard_info to remove property table entries that
|
||
describe discarded sections. Alternatively, it might be more
|
||
efficient to avoid using "KEEP" in the linker scripts and instead use
|
||
the gc_mark_extra_sections hook to mark only the property sections
|
||
that describe marked sections. That alternative does not work well
|
||
with the current property table sections, which do not correspond
|
||
one-to-one with the sections they describe, but that should be fixed
|
||
someday.) */
|
||
if (xtensa_is_property_section (sec))
|
||
return NULL;
|
||
|
||
if (h != NULL)
|
||
switch (ELF32_R_TYPE (rel->r_info))
|
||
{
|
||
case R_XTENSA_GNU_VTINHERIT:
|
||
case R_XTENSA_GNU_VTENTRY:
|
||
return NULL;
|
||
}
|
||
|
||
return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
|
||
}
|
||
|
||
|
||
/* Create all the dynamic sections. */
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
|
||
{
|
||
struct elf_xtensa_link_hash_table *htab;
|
||
flagword flags, noalloc_flags;
|
||
|
||
htab = elf_xtensa_hash_table (info);
|
||
if (htab == NULL)
|
||
return FALSE;
|
||
|
||
/* First do all the standard stuff. */
|
||
if (! _bfd_elf_create_dynamic_sections (dynobj, info))
|
||
return FALSE;
|
||
|
||
/* Create any extra PLT sections in case check_relocs has already
|
||
been called on all the non-dynamic input files. */
|
||
if (! add_extra_plt_sections (info, htab->plt_reloc_count))
|
||
return FALSE;
|
||
|
||
noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
|
||
| SEC_LINKER_CREATED | SEC_READONLY);
|
||
flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
|
||
|
||
/* Mark the ".got.plt" section READONLY. */
|
||
if (htab->elf.sgotplt == NULL
|
||
|| ! bfd_set_section_flags (dynobj, htab->elf.sgotplt, flags))
|
||
return FALSE;
|
||
|
||
/* Create ".got.loc" (literal tables for use by dynamic linker). */
|
||
htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
|
||
flags);
|
||
if (htab->sgotloc == NULL
|
||
|| ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
|
||
return FALSE;
|
||
|
||
/* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
|
||
htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
|
||
noalloc_flags);
|
||
if (htab->spltlittbl == NULL
|
||
|| ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
|
||
return FALSE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
add_extra_plt_sections (struct bfd_link_info *info, int count)
|
||
{
|
||
bfd *dynobj = elf_hash_table (info)->dynobj;
|
||
int chunk;
|
||
|
||
/* Iterate over all chunks except 0 which uses the standard ".plt" and
|
||
".got.plt" sections. */
|
||
for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
|
||
{
|
||
char *sname;
|
||
flagword flags;
|
||
asection *s;
|
||
|
||
/* Stop when we find a section has already been created. */
|
||
if (elf_xtensa_get_plt_section (info, chunk))
|
||
break;
|
||
|
||
flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
|
||
| SEC_LINKER_CREATED | SEC_READONLY);
|
||
|
||
sname = (char *) bfd_malloc (10);
|
||
sprintf (sname, ".plt.%u", chunk);
|
||
s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
|
||
if (s == NULL
|
||
|| ! bfd_set_section_alignment (dynobj, s, 2))
|
||
return FALSE;
|
||
|
||
sname = (char *) bfd_malloc (14);
|
||
sprintf (sname, ".got.plt.%u", chunk);
|
||
s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
|
||
if (s == NULL
|
||
|| ! bfd_set_section_alignment (dynobj, s, 2))
|
||
return FALSE;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Adjust a symbol defined by a dynamic object and referenced by a
|
||
regular object. The current definition is in some section of the
|
||
dynamic object, but we're not including those sections. We have to
|
||
change the definition to something the rest of the link can
|
||
understand. */
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
||
struct elf_link_hash_entry *h)
|
||
{
|
||
/* If this is a weak symbol, and there is a real definition, the
|
||
processor independent code will have arranged for us to see the
|
||
real definition first, and we can just use the same value. */
|
||
if (h->is_weakalias)
|
||
{
|
||
struct elf_link_hash_entry *def = weakdef (h);
|
||
BFD_ASSERT (def->root.type == bfd_link_hash_defined);
|
||
h->root.u.def.section = def->root.u.def.section;
|
||
h->root.u.def.value = def->root.u.def.value;
|
||
return TRUE;
|
||
}
|
||
|
||
/* This is a reference to a symbol defined by a dynamic object. The
|
||
reference must go through the GOT, so there's no need for COPY relocs,
|
||
.dynbss, etc. */
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
|
||
{
|
||
struct bfd_link_info *info;
|
||
struct elf_xtensa_link_hash_table *htab;
|
||
struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
|
||
|
||
if (h->root.type == bfd_link_hash_indirect)
|
||
return TRUE;
|
||
|
||
info = (struct bfd_link_info *) arg;
|
||
htab = elf_xtensa_hash_table (info);
|
||
if (htab == NULL)
|
||
return FALSE;
|
||
|
||
/* If we saw any use of an IE model for this symbol, we can then optimize
|
||
away GOT entries for any TLSDESC_FN relocs. */
|
||
if ((eh->tls_type & GOT_TLS_IE) != 0)
|
||
{
|
||
BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
|
||
h->got.refcount -= eh->tlsfunc_refcount;
|
||
}
|
||
|
||
if (! elf_xtensa_dynamic_symbol_p (h, info))
|
||
elf_xtensa_make_sym_local (info, h);
|
||
|
||
if (! elf_xtensa_dynamic_symbol_p (h, info)
|
||
&& h->root.type == bfd_link_hash_undefweak)
|
||
return TRUE;
|
||
|
||
if (h->plt.refcount > 0)
|
||
htab->elf.srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
|
||
|
||
if (h->got.refcount > 0)
|
||
htab->elf.srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
static void
|
||
elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
|
||
{
|
||
struct elf_xtensa_link_hash_table *htab;
|
||
bfd *i;
|
||
|
||
htab = elf_xtensa_hash_table (info);
|
||
if (htab == NULL)
|
||
return;
|
||
|
||
for (i = info->input_bfds; i; i = i->link.next)
|
||
{
|
||
bfd_signed_vma *local_got_refcounts;
|
||
bfd_size_type j, cnt;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
|
||
local_got_refcounts = elf_local_got_refcounts (i);
|
||
if (!local_got_refcounts)
|
||
continue;
|
||
|
||
symtab_hdr = &elf_tdata (i)->symtab_hdr;
|
||
cnt = symtab_hdr->sh_info;
|
||
|
||
for (j = 0; j < cnt; ++j)
|
||
{
|
||
/* If we saw any use of an IE model for this symbol, we can
|
||
then optimize away GOT entries for any TLSDESC_FN relocs. */
|
||
if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
|
||
{
|
||
bfd_signed_vma *tlsfunc_refcount
|
||
= &elf_xtensa_local_tlsfunc_refcounts (i) [j];
|
||
BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
|
||
local_got_refcounts[j] -= *tlsfunc_refcount;
|
||
}
|
||
|
||
if (local_got_refcounts[j] > 0)
|
||
htab->elf.srelgot->size += (local_got_refcounts[j]
|
||
* sizeof (Elf32_External_Rela));
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Set the sizes of the dynamic sections. */
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
|
||
struct bfd_link_info *info)
|
||
{
|
||
struct elf_xtensa_link_hash_table *htab;
|
||
bfd *dynobj, *abfd;
|
||
asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
|
||
bfd_boolean relplt, relgot;
|
||
int plt_entries, plt_chunks, chunk;
|
||
|
||
plt_entries = 0;
|
||
plt_chunks = 0;
|
||
|
||
htab = elf_xtensa_hash_table (info);
|
||
if (htab == NULL)
|
||
return FALSE;
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
if (dynobj == NULL)
|
||
abort ();
|
||
srelgot = htab->elf.srelgot;
|
||
srelplt = htab->elf.srelplt;
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
BFD_ASSERT (htab->elf.srelgot != NULL
|
||
&& htab->elf.srelplt != NULL
|
||
&& htab->elf.sgot != NULL
|
||
&& htab->spltlittbl != NULL
|
||
&& htab->sgotloc != NULL);
|
||
|
||
/* Set the contents of the .interp section to the interpreter. */
|
||
if (bfd_link_executable (info) && !info->nointerp)
|
||
{
|
||
s = bfd_get_linker_section (dynobj, ".interp");
|
||
if (s == NULL)
|
||
abort ();
|
||
s->size = sizeof ELF_DYNAMIC_INTERPRETER;
|
||
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
|
||
}
|
||
|
||
/* Allocate room for one word in ".got". */
|
||
htab->elf.sgot->size = 4;
|
||
|
||
/* Allocate space in ".rela.got" for literals that reference global
|
||
symbols and space in ".rela.plt" for literals that have PLT
|
||
entries. */
|
||
elf_link_hash_traverse (elf_hash_table (info),
|
||
elf_xtensa_allocate_dynrelocs,
|
||
(void *) info);
|
||
|
||
/* If we are generating a shared object, we also need space in
|
||
".rela.got" for R_XTENSA_RELATIVE relocs for literals that
|
||
reference local symbols. */
|
||
if (bfd_link_pic (info))
|
||
elf_xtensa_allocate_local_got_size (info);
|
||
|
||
/* Allocate space in ".plt" to match the size of ".rela.plt". For
|
||
each PLT entry, we need the PLT code plus a 4-byte literal.
|
||
For each chunk of ".plt", we also need two more 4-byte
|
||
literals, two corresponding entries in ".rela.got", and an
|
||
8-byte entry in ".xt.lit.plt". */
|
||
spltlittbl = htab->spltlittbl;
|
||
plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
|
||
plt_chunks =
|
||
(plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
|
||
|
||
/* Iterate over all the PLT chunks, including any extra sections
|
||
created earlier because the initial count of PLT relocations
|
||
was an overestimate. */
|
||
for (chunk = 0;
|
||
(splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
|
||
chunk++)
|
||
{
|
||
int chunk_entries;
|
||
|
||
sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
|
||
BFD_ASSERT (sgotplt != NULL);
|
||
|
||
if (chunk < plt_chunks - 1)
|
||
chunk_entries = PLT_ENTRIES_PER_CHUNK;
|
||
else if (chunk == plt_chunks - 1)
|
||
chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
|
||
else
|
||
chunk_entries = 0;
|
||
|
||
if (chunk_entries != 0)
|
||
{
|
||
sgotplt->size = 4 * (chunk_entries + 2);
|
||
splt->size = PLT_ENTRY_SIZE * chunk_entries;
|
||
srelgot->size += 2 * sizeof (Elf32_External_Rela);
|
||
spltlittbl->size += 8;
|
||
}
|
||
else
|
||
{
|
||
sgotplt->size = 0;
|
||
splt->size = 0;
|
||
}
|
||
}
|
||
|
||
/* Allocate space in ".got.loc" to match the total size of all the
|
||
literal tables. */
|
||
sgotloc = htab->sgotloc;
|
||
sgotloc->size = spltlittbl->size;
|
||
for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
|
||
{
|
||
if (abfd->flags & DYNAMIC)
|
||
continue;
|
||
for (s = abfd->sections; s != NULL; s = s->next)
|
||
{
|
||
if (! discarded_section (s)
|
||
&& xtensa_is_littable_section (s)
|
||
&& s != spltlittbl)
|
||
sgotloc->size += s->size;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Allocate memory for dynamic sections. */
|
||
relplt = FALSE;
|
||
relgot = FALSE;
|
||
for (s = dynobj->sections; s != NULL; s = s->next)
|
||
{
|
||
const char *name;
|
||
|
||
if ((s->flags & SEC_LINKER_CREATED) == 0)
|
||
continue;
|
||
|
||
/* It's OK to base decisions on the section name, because none
|
||
of the dynobj section names depend upon the input files. */
|
||
name = bfd_get_section_name (dynobj, s);
|
||
|
||
if (CONST_STRNEQ (name, ".rela"))
|
||
{
|
||
if (s->size != 0)
|
||
{
|
||
if (strcmp (name, ".rela.plt") == 0)
|
||
relplt = TRUE;
|
||
else if (strcmp (name, ".rela.got") == 0)
|
||
relgot = TRUE;
|
||
|
||
/* We use the reloc_count field as a counter if we need
|
||
to copy relocs into the output file. */
|
||
s->reloc_count = 0;
|
||
}
|
||
}
|
||
else if (! CONST_STRNEQ (name, ".plt.")
|
||
&& ! CONST_STRNEQ (name, ".got.plt.")
|
||
&& strcmp (name, ".got") != 0
|
||
&& strcmp (name, ".plt") != 0
|
||
&& strcmp (name, ".got.plt") != 0
|
||
&& strcmp (name, ".xt.lit.plt") != 0
|
||
&& strcmp (name, ".got.loc") != 0)
|
||
{
|
||
/* It's not one of our sections, so don't allocate space. */
|
||
continue;
|
||
}
|
||
|
||
if (s->size == 0)
|
||
{
|
||
/* If we don't need this section, strip it from the output
|
||
file. We must create the ".plt*" and ".got.plt*"
|
||
sections in create_dynamic_sections and/or check_relocs
|
||
based on a conservative estimate of the PLT relocation
|
||
count, because the sections must be created before the
|
||
linker maps input sections to output sections. The
|
||
linker does that before size_dynamic_sections, where we
|
||
compute the exact size of the PLT, so there may be more
|
||
of these sections than are actually needed. */
|
||
s->flags |= SEC_EXCLUDE;
|
||
}
|
||
else if ((s->flags & SEC_HAS_CONTENTS) != 0)
|
||
{
|
||
/* Allocate memory for the section contents. */
|
||
s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
|
||
if (s->contents == NULL)
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
/* Add the special XTENSA_RTLD relocations now. The offsets won't be
|
||
known until finish_dynamic_sections, but we need to get the relocs
|
||
in place before they are sorted. */
|
||
for (chunk = 0; chunk < plt_chunks; chunk++)
|
||
{
|
||
Elf_Internal_Rela irela;
|
||
bfd_byte *loc;
|
||
|
||
irela.r_offset = 0;
|
||
irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
|
||
irela.r_addend = 0;
|
||
|
||
loc = (srelgot->contents
|
||
+ srelgot->reloc_count * sizeof (Elf32_External_Rela));
|
||
bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
|
||
bfd_elf32_swap_reloca_out (output_bfd, &irela,
|
||
loc + sizeof (Elf32_External_Rela));
|
||
srelgot->reloc_count += 2;
|
||
}
|
||
|
||
/* Add some entries to the .dynamic section. We fill in the
|
||
values later, in elf_xtensa_finish_dynamic_sections, but we
|
||
must add the entries now so that we get the correct size for
|
||
the .dynamic section. The DT_DEBUG entry is filled in by the
|
||
dynamic linker and used by the debugger. */
|
||
#define add_dynamic_entry(TAG, VAL) \
|
||
_bfd_elf_add_dynamic_entry (info, TAG, VAL)
|
||
|
||
if (bfd_link_executable (info))
|
||
{
|
||
if (!add_dynamic_entry (DT_DEBUG, 0))
|
||
return FALSE;
|
||
}
|
||
|
||
if (relplt)
|
||
{
|
||
if (!add_dynamic_entry (DT_PLTRELSZ, 0)
|
||
|| !add_dynamic_entry (DT_PLTREL, DT_RELA)
|
||
|| !add_dynamic_entry (DT_JMPREL, 0))
|
||
return FALSE;
|
||
}
|
||
|
||
if (relgot)
|
||
{
|
||
if (!add_dynamic_entry (DT_RELA, 0)
|
||
|| !add_dynamic_entry (DT_RELASZ, 0)
|
||
|| !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
|
||
return FALSE;
|
||
}
|
||
|
||
if (!add_dynamic_entry (DT_PLTGOT, 0)
|
||
|| !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
|
||
|| !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
|
||
return FALSE;
|
||
}
|
||
#undef add_dynamic_entry
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_always_size_sections (bfd *output_bfd,
|
||
struct bfd_link_info *info)
|
||
{
|
||
struct elf_xtensa_link_hash_table *htab;
|
||
asection *tls_sec;
|
||
|
||
htab = elf_xtensa_hash_table (info);
|
||
if (htab == NULL)
|
||
return FALSE;
|
||
|
||
tls_sec = htab->elf.tls_sec;
|
||
|
||
if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
|
||
{
|
||
struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
|
||
struct bfd_link_hash_entry *bh = &tlsbase->root;
|
||
const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
|
||
|
||
tlsbase->type = STT_TLS;
|
||
if (!(_bfd_generic_link_add_one_symbol
|
||
(info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
|
||
tls_sec, 0, NULL, FALSE,
|
||
bed->collect, &bh)))
|
||
return FALSE;
|
||
tlsbase->def_regular = 1;
|
||
tlsbase->other = STV_HIDDEN;
|
||
(*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Return the base VMA address which should be subtracted from real addresses
|
||
when resolving @dtpoff relocation.
|
||
This is PT_TLS segment p_vaddr. */
|
||
|
||
static bfd_vma
|
||
dtpoff_base (struct bfd_link_info *info)
|
||
{
|
||
/* If tls_sec is NULL, we should have signalled an error already. */
|
||
if (elf_hash_table (info)->tls_sec == NULL)
|
||
return 0;
|
||
return elf_hash_table (info)->tls_sec->vma;
|
||
}
|
||
|
||
/* Return the relocation value for @tpoff relocation
|
||
if STT_TLS virtual address is ADDRESS. */
|
||
|
||
static bfd_vma
|
||
tpoff (struct bfd_link_info *info, bfd_vma address)
|
||
{
|
||
struct elf_link_hash_table *htab = elf_hash_table (info);
|
||
bfd_vma base;
|
||
|
||
/* If tls_sec is NULL, we should have signalled an error already. */
|
||
if (htab->tls_sec == NULL)
|
||
return 0;
|
||
base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
|
||
return address - htab->tls_sec->vma + base;
|
||
}
|
||
|
||
/* Perform the specified relocation. The instruction at (contents + address)
|
||
is modified to set one operand to represent the value in "relocation". The
|
||
operand position is determined by the relocation type recorded in the
|
||
howto. */
|
||
|
||
#define CALL_SEGMENT_BITS (30)
|
||
#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
|
||
|
||
static bfd_reloc_status_type
|
||
elf_xtensa_do_reloc (reloc_howto_type *howto,
|
||
bfd *abfd,
|
||
asection *input_section,
|
||
bfd_vma relocation,
|
||
bfd_byte *contents,
|
||
bfd_vma address,
|
||
bfd_boolean is_weak_undef,
|
||
char **error_message)
|
||
{
|
||
xtensa_format fmt;
|
||
xtensa_opcode opcode;
|
||
xtensa_isa isa = xtensa_default_isa;
|
||
static xtensa_insnbuf ibuff = NULL;
|
||
static xtensa_insnbuf sbuff = NULL;
|
||
bfd_vma self_address;
|
||
bfd_size_type input_size;
|
||
int opnd, slot;
|
||
uint32 newval;
|
||
|
||
if (!ibuff)
|
||
{
|
||
ibuff = xtensa_insnbuf_alloc (isa);
|
||
sbuff = xtensa_insnbuf_alloc (isa);
|
||
}
|
||
|
||
input_size = bfd_get_section_limit (abfd, input_section);
|
||
|
||
/* Calculate the PC address for this instruction. */
|
||
self_address = (input_section->output_section->vma
|
||
+ input_section->output_offset
|
||
+ address);
|
||
|
||
switch (howto->type)
|
||
{
|
||
case R_XTENSA_NONE:
|
||
case R_XTENSA_DIFF8:
|
||
case R_XTENSA_DIFF16:
|
||
case R_XTENSA_DIFF32:
|
||
case R_XTENSA_TLS_FUNC:
|
||
case R_XTENSA_TLS_ARG:
|
||
case R_XTENSA_TLS_CALL:
|
||
return bfd_reloc_ok;
|
||
|
||
case R_XTENSA_ASM_EXPAND:
|
||
if (!is_weak_undef)
|
||
{
|
||
/* Check for windowed CALL across a 1GB boundary. */
|
||
opcode = get_expanded_call_opcode (contents + address,
|
||
input_size - address, 0);
|
||
if (is_windowed_call_opcode (opcode))
|
||
{
|
||
if ((self_address >> CALL_SEGMENT_BITS)
|
||
!= (relocation >> CALL_SEGMENT_BITS))
|
||
{
|
||
*error_message = "windowed longcall crosses 1GB boundary; "
|
||
"return may fail";
|
||
return bfd_reloc_dangerous;
|
||
}
|
||
}
|
||
}
|
||
return bfd_reloc_ok;
|
||
|
||
case R_XTENSA_ASM_SIMPLIFY:
|
||
{
|
||
/* Convert the L32R/CALLX to CALL. */
|
||
bfd_reloc_status_type retval =
|
||
elf_xtensa_do_asm_simplify (contents, address, input_size,
|
||
error_message);
|
||
if (retval != bfd_reloc_ok)
|
||
return bfd_reloc_dangerous;
|
||
|
||
/* The CALL needs to be relocated. Continue below for that part. */
|
||
address += 3;
|
||
self_address += 3;
|
||
howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
|
||
}
|
||
break;
|
||
|
||
case R_XTENSA_32:
|
||
{
|
||
bfd_vma x;
|
||
x = bfd_get_32 (abfd, contents + address);
|
||
x = x + relocation;
|
||
bfd_put_32 (abfd, x, contents + address);
|
||
}
|
||
return bfd_reloc_ok;
|
||
|
||
case R_XTENSA_32_PCREL:
|
||
bfd_put_32 (abfd, relocation - self_address, contents + address);
|
||
return bfd_reloc_ok;
|
||
|
||
case R_XTENSA_PLT:
|
||
case R_XTENSA_TLSDESC_FN:
|
||
case R_XTENSA_TLSDESC_ARG:
|
||
case R_XTENSA_TLS_DTPOFF:
|
||
case R_XTENSA_TLS_TPOFF:
|
||
bfd_put_32 (abfd, relocation, contents + address);
|
||
return bfd_reloc_ok;
|
||
}
|
||
|
||
/* Only instruction slot-specific relocations handled below.... */
|
||
slot = get_relocation_slot (howto->type);
|
||
if (slot == XTENSA_UNDEFINED)
|
||
{
|
||
*error_message = "unexpected relocation";
|
||
return bfd_reloc_dangerous;
|
||
}
|
||
|
||
/* Read the instruction into a buffer and decode the opcode. */
|
||
xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
|
||
input_size - address);
|
||
fmt = xtensa_format_decode (isa, ibuff);
|
||
if (fmt == XTENSA_UNDEFINED)
|
||
{
|
||
*error_message = "cannot decode instruction format";
|
||
return bfd_reloc_dangerous;
|
||
}
|
||
|
||
xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
|
||
|
||
opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
|
||
if (opcode == XTENSA_UNDEFINED)
|
||
{
|
||
*error_message = "cannot decode instruction opcode";
|
||
return bfd_reloc_dangerous;
|
||
}
|
||
|
||
/* Check for opcode-specific "alternate" relocations. */
|
||
if (is_alt_relocation (howto->type))
|
||
{
|
||
if (opcode == get_l32r_opcode ())
|
||
{
|
||
/* Handle the special-case of non-PC-relative L32R instructions. */
|
||
bfd *output_bfd = input_section->output_section->owner;
|
||
asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
|
||
if (!lit4_sec)
|
||
{
|
||
*error_message = "relocation references missing .lit4 section";
|
||
return bfd_reloc_dangerous;
|
||
}
|
||
self_address = ((lit4_sec->vma & ~0xfff)
|
||
+ 0x40000 - 3); /* -3 to compensate for do_reloc */
|
||
newval = relocation;
|
||
opnd = 1;
|
||
}
|
||
else if (opcode == get_const16_opcode ())
|
||
{
|
||
/* ALT used for high 16 bits.
|
||
Ignore 32-bit overflow. */
|
||
newval = (relocation >> 16) & 0xffff;
|
||
opnd = 1;
|
||
}
|
||
else
|
||
{
|
||
/* No other "alternate" relocations currently defined. */
|
||
*error_message = "unexpected relocation";
|
||
return bfd_reloc_dangerous;
|
||
}
|
||
}
|
||
else /* Not an "alternate" relocation.... */
|
||
{
|
||
if (opcode == get_const16_opcode ())
|
||
{
|
||
newval = relocation & 0xffff;
|
||
opnd = 1;
|
||
}
|
||
else
|
||
{
|
||
/* ...normal PC-relative relocation.... */
|
||
|
||
/* Determine which operand is being relocated. */
|
||
opnd = get_relocation_opnd (opcode, howto->type);
|
||
if (opnd == XTENSA_UNDEFINED)
|
||
{
|
||
*error_message = "unexpected relocation";
|
||
return bfd_reloc_dangerous;
|
||
}
|
||
|
||
if (!howto->pc_relative)
|
||
{
|
||
*error_message = "expected PC-relative relocation";
|
||
return bfd_reloc_dangerous;
|
||
}
|
||
|
||
newval = relocation;
|
||
}
|
||
}
|
||
|
||
/* Apply the relocation. */
|
||
if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
|
||
|| xtensa_operand_encode (isa, opcode, opnd, &newval)
|
||
|| xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
|
||
sbuff, newval))
|
||
{
|
||
const char *opname = xtensa_opcode_name (isa, opcode);
|
||
const char *msg;
|
||
|
||
msg = "cannot encode";
|
||
if (is_direct_call_opcode (opcode))
|
||
{
|
||
if ((relocation & 0x3) != 0)
|
||
msg = "misaligned call target";
|
||
else
|
||
msg = "call target out of range";
|
||
}
|
||
else if (opcode == get_l32r_opcode ())
|
||
{
|
||
if ((relocation & 0x3) != 0)
|
||
msg = "misaligned literal target";
|
||
else if (is_alt_relocation (howto->type))
|
||
msg = "literal target out of range (too many literals)";
|
||
else if (self_address > relocation)
|
||
msg = "literal target out of range (try using text-section-literals)";
|
||
else
|
||
msg = "literal placed after use";
|
||
}
|
||
|
||
*error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
|
||
return bfd_reloc_dangerous;
|
||
}
|
||
|
||
/* Check for calls across 1GB boundaries. */
|
||
if (is_direct_call_opcode (opcode)
|
||
&& is_windowed_call_opcode (opcode))
|
||
{
|
||
if ((self_address >> CALL_SEGMENT_BITS)
|
||
!= (relocation >> CALL_SEGMENT_BITS))
|
||
{
|
||
*error_message =
|
||
"windowed call crosses 1GB boundary; return may fail";
|
||
return bfd_reloc_dangerous;
|
||
}
|
||
}
|
||
|
||
/* Write the modified instruction back out of the buffer. */
|
||
xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
|
||
xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
|
||
input_size - address);
|
||
return bfd_reloc_ok;
|
||
}
|
||
|
||
|
||
static char *
|
||
vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
|
||
{
|
||
/* To reduce the size of the memory leak,
|
||
we only use a single message buffer. */
|
||
static bfd_size_type alloc_size = 0;
|
||
static char *message = NULL;
|
||
bfd_size_type orig_len, len = 0;
|
||
bfd_boolean is_append;
|
||
va_list ap;
|
||
|
||
va_start (ap, arglen);
|
||
|
||
is_append = (origmsg == message);
|
||
|
||
orig_len = strlen (origmsg);
|
||
len = orig_len + strlen (fmt) + arglen + 20;
|
||
if (len > alloc_size)
|
||
{
|
||
message = (char *) bfd_realloc_or_free (message, len);
|
||
alloc_size = len;
|
||
}
|
||
if (message != NULL)
|
||
{
|
||
if (!is_append)
|
||
memcpy (message, origmsg, orig_len);
|
||
vsprintf (message + orig_len, fmt, ap);
|
||
}
|
||
va_end (ap);
|
||
return message;
|
||
}
|
||
|
||
|
||
/* This function is registered as the "special_function" in the
|
||
Xtensa howto for handling simplify operations.
|
||
bfd_perform_relocation / bfd_install_relocation use it to
|
||
perform (install) the specified relocation. Since this replaces the code
|
||
in bfd_perform_relocation, it is basically an Xtensa-specific,
|
||
stripped-down version of bfd_perform_relocation. */
|
||
|
||
static bfd_reloc_status_type
|
||
bfd_elf_xtensa_reloc (bfd *abfd,
|
||
arelent *reloc_entry,
|
||
asymbol *symbol,
|
||
void *data,
|
||
asection *input_section,
|
||
bfd *output_bfd,
|
||
char **error_message)
|
||
{
|
||
bfd_vma relocation;
|
||
bfd_reloc_status_type flag;
|
||
bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
|
||
bfd_vma output_base = 0;
|
||
reloc_howto_type *howto = reloc_entry->howto;
|
||
asection *reloc_target_output_section;
|
||
bfd_boolean is_weak_undef;
|
||
|
||
if (!xtensa_default_isa)
|
||
xtensa_default_isa = xtensa_isa_init (0, 0);
|
||
|
||
/* ELF relocs are against symbols. If we are producing relocatable
|
||
output, and the reloc is against an external symbol, the resulting
|
||
reloc will also be against the same symbol. In such a case, we
|
||
don't want to change anything about the way the reloc is handled,
|
||
since it will all be done at final link time. This test is similar
|
||
to what bfd_elf_generic_reloc does except that it lets relocs with
|
||
howto->partial_inplace go through even if the addend is non-zero.
|
||
(The real problem is that partial_inplace is set for XTENSA_32
|
||
relocs to begin with, but that's a long story and there's little we
|
||
can do about it now....) */
|
||
|
||
if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
|
||
{
|
||
reloc_entry->address += input_section->output_offset;
|
||
return bfd_reloc_ok;
|
||
}
|
||
|
||
/* Is the address of the relocation really within the section? */
|
||
if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
|
||
return bfd_reloc_outofrange;
|
||
|
||
/* Work out which section the relocation is targeted at and the
|
||
initial relocation command value. */
|
||
|
||
/* Get symbol value. (Common symbols are special.) */
|
||
if (bfd_is_com_section (symbol->section))
|
||
relocation = 0;
|
||
else
|
||
relocation = symbol->value;
|
||
|
||
reloc_target_output_section = symbol->section->output_section;
|
||
|
||
/* Convert input-section-relative symbol value to absolute. */
|
||
if ((output_bfd && !howto->partial_inplace)
|
||
|| reloc_target_output_section == NULL)
|
||
output_base = 0;
|
||
else
|
||
output_base = reloc_target_output_section->vma;
|
||
|
||
relocation += output_base + symbol->section->output_offset;
|
||
|
||
/* Add in supplied addend. */
|
||
relocation += reloc_entry->addend;
|
||
|
||
/* Here the variable relocation holds the final address of the
|
||
symbol we are relocating against, plus any addend. */
|
||
if (output_bfd)
|
||
{
|
||
if (!howto->partial_inplace)
|
||
{
|
||
/* This is a partial relocation, and we want to apply the relocation
|
||
to the reloc entry rather than the raw data. Everything except
|
||
relocations against section symbols has already been handled
|
||
above. */
|
||
|
||
BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
|
||
reloc_entry->addend = relocation;
|
||
reloc_entry->address += input_section->output_offset;
|
||
return bfd_reloc_ok;
|
||
}
|
||
else
|
||
{
|
||
reloc_entry->address += input_section->output_offset;
|
||
reloc_entry->addend = 0;
|
||
}
|
||
}
|
||
|
||
is_weak_undef = (bfd_is_und_section (symbol->section)
|
||
&& (symbol->flags & BSF_WEAK) != 0);
|
||
flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
|
||
(bfd_byte *) data, (bfd_vma) octets,
|
||
is_weak_undef, error_message);
|
||
|
||
if (flag == bfd_reloc_dangerous)
|
||
{
|
||
/* Add the symbol name to the error message. */
|
||
if (! *error_message)
|
||
*error_message = "";
|
||
*error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
|
||
strlen (symbol->name) + 17,
|
||
symbol->name,
|
||
(unsigned long) reloc_entry->addend);
|
||
}
|
||
|
||
return flag;
|
||
}
|
||
|
||
|
||
/* Set up an entry in the procedure linkage table. */
|
||
|
||
static bfd_vma
|
||
elf_xtensa_create_plt_entry (struct bfd_link_info *info,
|
||
bfd *output_bfd,
|
||
unsigned reloc_index)
|
||
{
|
||
asection *splt, *sgotplt;
|
||
bfd_vma plt_base, got_base;
|
||
bfd_vma code_offset, lit_offset, abi_offset;
|
||
int chunk;
|
||
|
||
chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
|
||
splt = elf_xtensa_get_plt_section (info, chunk);
|
||
sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
|
||
BFD_ASSERT (splt != NULL && sgotplt != NULL);
|
||
|
||
plt_base = splt->output_section->vma + splt->output_offset;
|
||
got_base = sgotplt->output_section->vma + sgotplt->output_offset;
|
||
|
||
lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
|
||
code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
|
||
|
||
/* Fill in the literal entry. This is the offset of the dynamic
|
||
relocation entry. */
|
||
bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
|
||
sgotplt->contents + lit_offset);
|
||
|
||
/* Fill in the entry in the procedure linkage table. */
|
||
memcpy (splt->contents + code_offset,
|
||
(bfd_big_endian (output_bfd)
|
||
? elf_xtensa_be_plt_entry[XSHAL_ABI != XTHAL_ABI_WINDOWED]
|
||
: elf_xtensa_le_plt_entry[XSHAL_ABI != XTHAL_ABI_WINDOWED]),
|
||
PLT_ENTRY_SIZE);
|
||
abi_offset = XSHAL_ABI == XTHAL_ABI_WINDOWED ? 3 : 0;
|
||
bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
|
||
plt_base + code_offset + abi_offset),
|
||
splt->contents + code_offset + abi_offset + 1);
|
||
bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
|
||
plt_base + code_offset + abi_offset + 3),
|
||
splt->contents + code_offset + abi_offset + 4);
|
||
bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
|
||
plt_base + code_offset + abi_offset + 6),
|
||
splt->contents + code_offset + abi_offset + 7);
|
||
|
||
return plt_base + code_offset;
|
||
}
|
||
|
||
|
||
static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
|
||
|
||
static bfd_boolean
|
||
replace_tls_insn (Elf_Internal_Rela *rel,
|
||
bfd *abfd,
|
||
asection *input_section,
|
||
bfd_byte *contents,
|
||
bfd_boolean is_ld_model,
|
||
char **error_message)
|
||
{
|
||
static xtensa_insnbuf ibuff = NULL;
|
||
static xtensa_insnbuf sbuff = NULL;
|
||
xtensa_isa isa = xtensa_default_isa;
|
||
xtensa_format fmt;
|
||
xtensa_opcode old_op, new_op;
|
||
bfd_size_type input_size;
|
||
int r_type;
|
||
unsigned dest_reg, src_reg;
|
||
|
||
if (ibuff == NULL)
|
||
{
|
||
ibuff = xtensa_insnbuf_alloc (isa);
|
||
sbuff = xtensa_insnbuf_alloc (isa);
|
||
}
|
||
|
||
input_size = bfd_get_section_limit (abfd, input_section);
|
||
|
||
/* Read the instruction into a buffer and decode the opcode. */
|
||
xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
|
||
input_size - rel->r_offset);
|
||
fmt = xtensa_format_decode (isa, ibuff);
|
||
if (fmt == XTENSA_UNDEFINED)
|
||
{
|
||
*error_message = "cannot decode instruction format";
|
||
return FALSE;
|
||
}
|
||
|
||
BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
|
||
xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
|
||
|
||
old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
|
||
if (old_op == XTENSA_UNDEFINED)
|
||
{
|
||
*error_message = "cannot decode instruction opcode";
|
||
return FALSE;
|
||
}
|
||
|
||
r_type = ELF32_R_TYPE (rel->r_info);
|
||
switch (r_type)
|
||
{
|
||
case R_XTENSA_TLS_FUNC:
|
||
case R_XTENSA_TLS_ARG:
|
||
if (old_op != get_l32r_opcode ()
|
||
|| xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
|
||
sbuff, &dest_reg) != 0)
|
||
{
|
||
*error_message = "cannot extract L32R destination for TLS access";
|
||
return FALSE;
|
||
}
|
||
break;
|
||
|
||
case R_XTENSA_TLS_CALL:
|
||
if (! get_indirect_call_dest_reg (old_op, &dest_reg)
|
||
|| xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
|
||
sbuff, &src_reg) != 0)
|
||
{
|
||
*error_message = "cannot extract CALLXn operands for TLS access";
|
||
return FALSE;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
if (is_ld_model)
|
||
{
|
||
switch (r_type)
|
||
{
|
||
case R_XTENSA_TLS_FUNC:
|
||
case R_XTENSA_TLS_ARG:
|
||
/* Change the instruction to a NOP (or "OR a1, a1, a1" for older
|
||
versions of Xtensa). */
|
||
new_op = xtensa_opcode_lookup (isa, "nop");
|
||
if (new_op == XTENSA_UNDEFINED)
|
||
{
|
||
new_op = xtensa_opcode_lookup (isa, "or");
|
||
if (new_op == XTENSA_UNDEFINED
|
||
|| xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
|
||
|| xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
|
||
sbuff, 1) != 0
|
||
|| xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
|
||
sbuff, 1) != 0
|
||
|| xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
|
||
sbuff, 1) != 0)
|
||
{
|
||
*error_message = "cannot encode OR for TLS access";
|
||
return FALSE;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
|
||
{
|
||
*error_message = "cannot encode NOP for TLS access";
|
||
return FALSE;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case R_XTENSA_TLS_CALL:
|
||
/* Read THREADPTR into the CALLX's return value register. */
|
||
new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
|
||
if (new_op == XTENSA_UNDEFINED
|
||
|| xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
|
||
|| xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
|
||
sbuff, dest_reg + 2) != 0)
|
||
{
|
||
*error_message = "cannot encode RUR.THREADPTR for TLS access";
|
||
return FALSE;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
switch (r_type)
|
||
{
|
||
case R_XTENSA_TLS_FUNC:
|
||
new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
|
||
if (new_op == XTENSA_UNDEFINED
|
||
|| xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
|
||
|| xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
|
||
sbuff, dest_reg) != 0)
|
||
{
|
||
*error_message = "cannot encode RUR.THREADPTR for TLS access";
|
||
return FALSE;
|
||
}
|
||
break;
|
||
|
||
case R_XTENSA_TLS_ARG:
|
||
/* Nothing to do. Keep the original L32R instruction. */
|
||
return TRUE;
|
||
|
||
case R_XTENSA_TLS_CALL:
|
||
/* Add the CALLX's src register (holding the THREADPTR value)
|
||
to the first argument register (holding the offset) and put
|
||
the result in the CALLX's return value register. */
|
||
new_op = xtensa_opcode_lookup (isa, "add");
|
||
if (new_op == XTENSA_UNDEFINED
|
||
|| xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
|
||
|| xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
|
||
sbuff, dest_reg + 2) != 0
|
||
|| xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
|
||
sbuff, dest_reg + 2) != 0
|
||
|| xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
|
||
sbuff, src_reg) != 0)
|
||
{
|
||
*error_message = "cannot encode ADD for TLS access";
|
||
return FALSE;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
|
||
xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
|
||
input_size - rel->r_offset);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
#define IS_XTENSA_TLS_RELOC(R_TYPE) \
|
||
((R_TYPE) == R_XTENSA_TLSDESC_FN \
|
||
|| (R_TYPE) == R_XTENSA_TLSDESC_ARG \
|
||
|| (R_TYPE) == R_XTENSA_TLS_DTPOFF \
|
||
|| (R_TYPE) == R_XTENSA_TLS_TPOFF \
|
||
|| (R_TYPE) == R_XTENSA_TLS_FUNC \
|
||
|| (R_TYPE) == R_XTENSA_TLS_ARG \
|
||
|| (R_TYPE) == R_XTENSA_TLS_CALL)
|
||
|
||
/* Relocate an Xtensa ELF section. This is invoked by the linker for
|
||
both relocatable and final links. */
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_relocate_section (bfd *output_bfd,
|
||
struct bfd_link_info *info,
|
||
bfd *input_bfd,
|
||
asection *input_section,
|
||
bfd_byte *contents,
|
||
Elf_Internal_Rela *relocs,
|
||
Elf_Internal_Sym *local_syms,
|
||
asection **local_sections)
|
||
{
|
||
struct elf_xtensa_link_hash_table *htab;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
Elf_Internal_Rela *rel;
|
||
Elf_Internal_Rela *relend;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
property_table_entry *lit_table = 0;
|
||
int ltblsize = 0;
|
||
char *local_got_tls_types;
|
||
char *error_message = NULL;
|
||
bfd_size_type input_size;
|
||
int tls_type;
|
||
|
||
if (!xtensa_default_isa)
|
||
xtensa_default_isa = xtensa_isa_init (0, 0);
|
||
|
||
if (!is_xtensa_elf (input_bfd))
|
||
{
|
||
bfd_set_error (bfd_error_wrong_format);
|
||
return FALSE;
|
||
}
|
||
|
||
htab = elf_xtensa_hash_table (info);
|
||
if (htab == NULL)
|
||
return FALSE;
|
||
|
||
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
||
sym_hashes = elf_sym_hashes (input_bfd);
|
||
local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
ltblsize = xtensa_read_table_entries (input_bfd, input_section,
|
||
&lit_table, XTENSA_LIT_SEC_NAME,
|
||
TRUE);
|
||
if (ltblsize < 0)
|
||
return FALSE;
|
||
}
|
||
|
||
input_size = bfd_get_section_limit (input_bfd, input_section);
|
||
|
||
rel = relocs;
|
||
relend = relocs + input_section->reloc_count;
|
||
for (; rel < relend; rel++)
|
||
{
|
||
int r_type;
|
||
reloc_howto_type *howto;
|
||
unsigned long r_symndx;
|
||
struct elf_link_hash_entry *h;
|
||
Elf_Internal_Sym *sym;
|
||
char sym_type;
|
||
const char *name;
|
||
asection *sec;
|
||
bfd_vma relocation;
|
||
bfd_reloc_status_type r;
|
||
bfd_boolean is_weak_undef;
|
||
bfd_boolean unresolved_reloc;
|
||
bfd_boolean warned;
|
||
bfd_boolean dynamic_symbol;
|
||
|
||
r_type = ELF32_R_TYPE (rel->r_info);
|
||
if (r_type == (int) R_XTENSA_GNU_VTINHERIT
|
||
|| r_type == (int) R_XTENSA_GNU_VTENTRY)
|
||
continue;
|
||
|
||
if (r_type < 0 || r_type >= (int) R_XTENSA_max)
|
||
{
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
howto = &elf_howto_table[r_type];
|
||
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
|
||
h = NULL;
|
||
sym = NULL;
|
||
sec = NULL;
|
||
is_weak_undef = FALSE;
|
||
unresolved_reloc = FALSE;
|
||
warned = FALSE;
|
||
|
||
if (howto->partial_inplace && !bfd_link_relocatable (info))
|
||
{
|
||
/* Because R_XTENSA_32 was made partial_inplace to fix some
|
||
problems with DWARF info in partial links, there may be
|
||
an addend stored in the contents. Take it out of there
|
||
and move it back into the addend field of the reloc. */
|
||
rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
|
||
bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
|
||
}
|
||
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
{
|
||
sym = local_syms + r_symndx;
|
||
sym_type = ELF32_ST_TYPE (sym->st_info);
|
||
sec = local_sections[r_symndx];
|
||
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
|
||
}
|
||
else
|
||
{
|
||
bfd_boolean ignored;
|
||
|
||
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
|
||
r_symndx, symtab_hdr, sym_hashes,
|
||
h, sec, relocation,
|
||
unresolved_reloc, warned, ignored);
|
||
|
||
if (relocation == 0
|
||
&& !unresolved_reloc
|
||
&& h->root.type == bfd_link_hash_undefweak)
|
||
is_weak_undef = TRUE;
|
||
|
||
sym_type = h->type;
|
||
}
|
||
|
||
if (sec != NULL && discarded_section (sec))
|
||
RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
|
||
rel, 1, relend, howto, 0, contents);
|
||
|
||
if (bfd_link_relocatable (info))
|
||
{
|
||
bfd_vma dest_addr;
|
||
asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
|
||
|
||
/* This is a relocatable link.
|
||
1) If the reloc is against a section symbol, adjust
|
||
according to the output section.
|
||
2) If there is a new target for this relocation,
|
||
the new target will be in the same output section.
|
||
We adjust the relocation by the output section
|
||
difference. */
|
||
|
||
if (relaxing_section)
|
||
{
|
||
/* Check if this references a section in another input file. */
|
||
if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
|
||
contents))
|
||
return FALSE;
|
||
}
|
||
|
||
dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
|
||
+ get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
|
||
|
||
if (r_type == R_XTENSA_ASM_SIMPLIFY)
|
||
{
|
||
error_message = NULL;
|
||
/* Convert ASM_SIMPLIFY into the simpler relocation
|
||
so that they never escape a relaxing link. */
|
||
r = contract_asm_expansion (contents, input_size, rel,
|
||
&error_message);
|
||
if (r != bfd_reloc_ok)
|
||
(*info->callbacks->reloc_dangerous)
|
||
(info, error_message,
|
||
input_bfd, input_section, rel->r_offset);
|
||
|
||
r_type = ELF32_R_TYPE (rel->r_info);
|
||
}
|
||
|
||
/* This is a relocatable link, so we don't have to change
|
||
anything unless the reloc is against a section symbol,
|
||
in which case we have to adjust according to where the
|
||
section symbol winds up in the output section. */
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
{
|
||
sym = local_syms + r_symndx;
|
||
if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
|
||
{
|
||
sec = local_sections[r_symndx];
|
||
rel->r_addend += sec->output_offset + sym->st_value;
|
||
}
|
||
}
|
||
|
||
/* If there is an addend with a partial_inplace howto,
|
||
then move the addend to the contents. This is a hack
|
||
to work around problems with DWARF in relocatable links
|
||
with some previous version of BFD. Now we can't easily get
|
||
rid of the hack without breaking backward compatibility.... */
|
||
r = bfd_reloc_ok;
|
||
howto = &elf_howto_table[r_type];
|
||
if (howto->partial_inplace && rel->r_addend)
|
||
{
|
||
r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
|
||
rel->r_addend, contents,
|
||
rel->r_offset, FALSE,
|
||
&error_message);
|
||
rel->r_addend = 0;
|
||
}
|
||
else
|
||
{
|
||
/* Put the correct bits in the target instruction, even
|
||
though the relocation will still be present in the output
|
||
file. This makes disassembly clearer, as well as
|
||
allowing loadable kernel modules to work without needing
|
||
relocations on anything other than calls and l32r's. */
|
||
|
||
/* If it is not in the same section, there is nothing we can do. */
|
||
if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
|
||
sym_sec->output_section == input_section->output_section)
|
||
{
|
||
r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
|
||
dest_addr, contents,
|
||
rel->r_offset, FALSE,
|
||
&error_message);
|
||
}
|
||
}
|
||
if (r != bfd_reloc_ok)
|
||
(*info->callbacks->reloc_dangerous)
|
||
(info, error_message,
|
||
input_bfd, input_section, rel->r_offset);
|
||
|
||
/* Done with work for relocatable link; continue with next reloc. */
|
||
continue;
|
||
}
|
||
|
||
/* This is a final link. */
|
||
|
||
if (relaxing_section)
|
||
{
|
||
/* Check if this references a section in another input file. */
|
||
do_fix_for_final_link (rel, input_bfd, input_section, contents,
|
||
&relocation);
|
||
}
|
||
|
||
/* Sanity check the address. */
|
||
if (rel->r_offset >= input_size
|
||
&& ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
|
||
{
|
||
_bfd_error_handler
|
||
/* xgettext:c-format */
|
||
(_("%pB(%pA+%#" PRIx64 "): "
|
||
"relocation offset out of range (size=%#" PRIx64 ")"),
|
||
input_bfd, input_section, (uint64_t) rel->r_offset,
|
||
(uint64_t) input_size);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
|
||
if (h != NULL)
|
||
name = h->root.root.string;
|
||
else
|
||
{
|
||
name = (bfd_elf_string_from_elf_section
|
||
(input_bfd, symtab_hdr->sh_link, sym->st_name));
|
||
if (name == NULL || *name == '\0')
|
||
name = bfd_section_name (input_bfd, sec);
|
||
}
|
||
|
||
if (r_symndx != STN_UNDEF
|
||
&& r_type != R_XTENSA_NONE
|
||
&& (h == NULL
|
||
|| h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak)
|
||
&& IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
|
||
{
|
||
_bfd_error_handler
|
||
((sym_type == STT_TLS
|
||
/* xgettext:c-format */
|
||
? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
|
||
/* xgettext:c-format */
|
||
: _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
|
||
input_bfd,
|
||
input_section,
|
||
(uint64_t) rel->r_offset,
|
||
howto->name,
|
||
name);
|
||
}
|
||
|
||
dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
|
||
|
||
tls_type = GOT_UNKNOWN;
|
||
if (h)
|
||
tls_type = elf_xtensa_hash_entry (h)->tls_type;
|
||
else if (local_got_tls_types)
|
||
tls_type = local_got_tls_types [r_symndx];
|
||
|
||
switch (r_type)
|
||
{
|
||
case R_XTENSA_32:
|
||
case R_XTENSA_PLT:
|
||
if (elf_hash_table (info)->dynamic_sections_created
|
||
&& (input_section->flags & SEC_ALLOC) != 0
|
||
&& (dynamic_symbol || bfd_link_pic (info)))
|
||
{
|
||
Elf_Internal_Rela outrel;
|
||
bfd_byte *loc;
|
||
asection *srel;
|
||
|
||
if (dynamic_symbol && r_type == R_XTENSA_PLT)
|
||
srel = htab->elf.srelplt;
|
||
else
|
||
srel = htab->elf.srelgot;
|
||
|
||
BFD_ASSERT (srel != NULL);
|
||
|
||
outrel.r_offset =
|
||
_bfd_elf_section_offset (output_bfd, info,
|
||
input_section, rel->r_offset);
|
||
|
||
if ((outrel.r_offset | 1) == (bfd_vma) -1)
|
||
memset (&outrel, 0, sizeof outrel);
|
||
else
|
||
{
|
||
outrel.r_offset += (input_section->output_section->vma
|
||
+ input_section->output_offset);
|
||
|
||
/* Complain if the relocation is in a read-only section
|
||
and not in a literal pool. */
|
||
if ((input_section->flags & SEC_READONLY) != 0
|
||
&& !elf_xtensa_in_literal_pool (lit_table, ltblsize,
|
||
outrel.r_offset))
|
||
{
|
||
error_message =
|
||
_("dynamic relocation in read-only section");
|
||
(*info->callbacks->reloc_dangerous)
|
||
(info, error_message,
|
||
input_bfd, input_section, rel->r_offset);
|
||
}
|
||
|
||
if (dynamic_symbol)
|
||
{
|
||
outrel.r_addend = rel->r_addend;
|
||
rel->r_addend = 0;
|
||
|
||
if (r_type == R_XTENSA_32)
|
||
{
|
||
outrel.r_info =
|
||
ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
|
||
relocation = 0;
|
||
}
|
||
else /* r_type == R_XTENSA_PLT */
|
||
{
|
||
outrel.r_info =
|
||
ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
|
||
|
||
/* Create the PLT entry and set the initial
|
||
contents of the literal entry to the address of
|
||
the PLT entry. */
|
||
relocation =
|
||
elf_xtensa_create_plt_entry (info, output_bfd,
|
||
srel->reloc_count);
|
||
}
|
||
unresolved_reloc = FALSE;
|
||
}
|
||
else if (!is_weak_undef)
|
||
{
|
||
/* Generate a RELATIVE relocation. */
|
||
outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
|
||
outrel.r_addend = 0;
|
||
}
|
||
else
|
||
{
|
||
continue;
|
||
}
|
||
}
|
||
|
||
loc = (srel->contents
|
||
+ srel->reloc_count++ * sizeof (Elf32_External_Rela));
|
||
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
||
BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
|
||
<= srel->size);
|
||
}
|
||
else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
|
||
{
|
||
/* This should only happen for non-PIC code, which is not
|
||
supposed to be used on systems with dynamic linking.
|
||
Just ignore these relocations. */
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case R_XTENSA_TLS_TPOFF:
|
||
/* Switch to LE model for local symbols in an executable. */
|
||
if (! bfd_link_pic (info) && ! dynamic_symbol)
|
||
{
|
||
relocation = tpoff (info, relocation);
|
||
break;
|
||
}
|
||
/* fall through */
|
||
|
||
case R_XTENSA_TLSDESC_FN:
|
||
case R_XTENSA_TLSDESC_ARG:
|
||
{
|
||
if (r_type == R_XTENSA_TLSDESC_FN)
|
||
{
|
||
if (! bfd_link_pic (info) || (tls_type & GOT_TLS_IE) != 0)
|
||
r_type = R_XTENSA_NONE;
|
||
}
|
||
else if (r_type == R_XTENSA_TLSDESC_ARG)
|
||
{
|
||
if (bfd_link_pic (info))
|
||
{
|
||
if ((tls_type & GOT_TLS_IE) != 0)
|
||
r_type = R_XTENSA_TLS_TPOFF;
|
||
}
|
||
else
|
||
{
|
||
r_type = R_XTENSA_TLS_TPOFF;
|
||
if (! dynamic_symbol)
|
||
{
|
||
relocation = tpoff (info, relocation);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (r_type == R_XTENSA_NONE)
|
||
/* Nothing to do here; skip to the next reloc. */
|
||
continue;
|
||
|
||
if (! elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
error_message =
|
||
_("TLS relocation invalid without dynamic sections");
|
||
(*info->callbacks->reloc_dangerous)
|
||
(info, error_message,
|
||
input_bfd, input_section, rel->r_offset);
|
||
}
|
||
else
|
||
{
|
||
Elf_Internal_Rela outrel;
|
||
bfd_byte *loc;
|
||
asection *srel = htab->elf.srelgot;
|
||
int indx;
|
||
|
||
outrel.r_offset = (input_section->output_section->vma
|
||
+ input_section->output_offset
|
||
+ rel->r_offset);
|
||
|
||
/* Complain if the relocation is in a read-only section
|
||
and not in a literal pool. */
|
||
if ((input_section->flags & SEC_READONLY) != 0
|
||
&& ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
|
||
outrel.r_offset))
|
||
{
|
||
error_message =
|
||
_("dynamic relocation in read-only section");
|
||
(*info->callbacks->reloc_dangerous)
|
||
(info, error_message,
|
||
input_bfd, input_section, rel->r_offset);
|
||
}
|
||
|
||
indx = h && h->dynindx != -1 ? h->dynindx : 0;
|
||
if (indx == 0)
|
||
outrel.r_addend = relocation - dtpoff_base (info);
|
||
else
|
||
outrel.r_addend = 0;
|
||
rel->r_addend = 0;
|
||
|
||
outrel.r_info = ELF32_R_INFO (indx, r_type);
|
||
relocation = 0;
|
||
unresolved_reloc = FALSE;
|
||
|
||
BFD_ASSERT (srel);
|
||
loc = (srel->contents
|
||
+ srel->reloc_count++ * sizeof (Elf32_External_Rela));
|
||
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
||
BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
|
||
<= srel->size);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case R_XTENSA_TLS_DTPOFF:
|
||
if (! bfd_link_pic (info))
|
||
/* Switch from LD model to LE model. */
|
||
relocation = tpoff (info, relocation);
|
||
else
|
||
relocation -= dtpoff_base (info);
|
||
break;
|
||
|
||
case R_XTENSA_TLS_FUNC:
|
||
case R_XTENSA_TLS_ARG:
|
||
case R_XTENSA_TLS_CALL:
|
||
/* Check if optimizing to IE or LE model. */
|
||
if ((tls_type & GOT_TLS_IE) != 0)
|
||
{
|
||
bfd_boolean is_ld_model =
|
||
(h && elf_xtensa_hash_entry (h) == htab->tlsbase);
|
||
if (! replace_tls_insn (rel, input_bfd, input_section, contents,
|
||
is_ld_model, &error_message))
|
||
(*info->callbacks->reloc_dangerous)
|
||
(info, error_message,
|
||
input_bfd, input_section, rel->r_offset);
|
||
|
||
if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
|
||
{
|
||
/* Skip subsequent relocations on the same instruction. */
|
||
while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
|
||
rel++;
|
||
}
|
||
}
|
||
continue;
|
||
|
||
default:
|
||
if (elf_hash_table (info)->dynamic_sections_created
|
||
&& dynamic_symbol && (is_operand_relocation (r_type)
|
||
|| r_type == R_XTENSA_32_PCREL))
|
||
{
|
||
error_message =
|
||
vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
|
||
strlen (name) + 2, name);
|
||
(*info->callbacks->reloc_dangerous)
|
||
(info, error_message, input_bfd, input_section, rel->r_offset);
|
||
continue;
|
||
}
|
||
break;
|
||
}
|
||
|
||
/* Dynamic relocs are not propagated for SEC_DEBUGGING sections
|
||
because such sections are not SEC_ALLOC and thus ld.so will
|
||
not process them. */
|
||
if (unresolved_reloc
|
||
&& !((input_section->flags & SEC_DEBUGGING) != 0
|
||
&& h->def_dynamic)
|
||
&& _bfd_elf_section_offset (output_bfd, info, input_section,
|
||
rel->r_offset) != (bfd_vma) -1)
|
||
{
|
||
_bfd_error_handler
|
||
/* xgettext:c-format */
|
||
(_("%pB(%pA+%#" PRIx64 "): "
|
||
"unresolvable %s relocation against symbol `%s'"),
|
||
input_bfd,
|
||
input_section,
|
||
(uint64_t) rel->r_offset,
|
||
howto->name,
|
||
name);
|
||
return FALSE;
|
||
}
|
||
|
||
/* TLS optimizations may have changed r_type; update "howto". */
|
||
howto = &elf_howto_table[r_type];
|
||
|
||
/* There's no point in calling bfd_perform_relocation here.
|
||
Just go directly to our "special function". */
|
||
r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
|
||
relocation + rel->r_addend,
|
||
contents, rel->r_offset, is_weak_undef,
|
||
&error_message);
|
||
|
||
if (r != bfd_reloc_ok && !warned)
|
||
{
|
||
BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
|
||
BFD_ASSERT (error_message != NULL);
|
||
|
||
if (rel->r_addend == 0)
|
||
error_message = vsprint_msg (error_message, ": %s",
|
||
strlen (name) + 2, name);
|
||
else
|
||
error_message = vsprint_msg (error_message, ": (%s+0x%x)",
|
||
strlen (name) + 22,
|
||
name, (int) rel->r_addend);
|
||
|
||
(*info->callbacks->reloc_dangerous)
|
||
(info, error_message, input_bfd, input_section, rel->r_offset);
|
||
}
|
||
}
|
||
|
||
if (lit_table)
|
||
free (lit_table);
|
||
|
||
input_section->reloc_done = TRUE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Finish up dynamic symbol handling. There's not much to do here since
|
||
the PLT and GOT entries are all set up by relocate_section. */
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
||
struct elf_link_hash_entry *h,
|
||
Elf_Internal_Sym *sym)
|
||
{
|
||
if (h->needs_plt && !h->def_regular)
|
||
{
|
||
/* Mark the symbol as undefined, rather than as defined in
|
||
the .plt section. Leave the value alone. */
|
||
sym->st_shndx = SHN_UNDEF;
|
||
/* If the symbol is weak, we do need to clear the value.
|
||
Otherwise, the PLT entry would provide a definition for
|
||
the symbol even if the symbol wasn't defined anywhere,
|
||
and so the symbol would never be NULL. */
|
||
if (!h->ref_regular_nonweak)
|
||
sym->st_value = 0;
|
||
}
|
||
|
||
/* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
|
||
if (h == elf_hash_table (info)->hdynamic
|
||
|| h == elf_hash_table (info)->hgot)
|
||
sym->st_shndx = SHN_ABS;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Combine adjacent literal table entries in the output. Adjacent
|
||
entries within each input section may have been removed during
|
||
relaxation, but we repeat the process here, even though it's too late
|
||
to shrink the output section, because it's important to minimize the
|
||
number of literal table entries to reduce the start-up work for the
|
||
runtime linker. Returns the number of remaining table entries or -1
|
||
on error. */
|
||
|
||
static int
|
||
elf_xtensa_combine_prop_entries (bfd *output_bfd,
|
||
asection *sxtlit,
|
||
asection *sgotloc)
|
||
{
|
||
bfd_byte *contents;
|
||
property_table_entry *table;
|
||
bfd_size_type section_size, sgotloc_size;
|
||
bfd_vma offset;
|
||
int n, m, num;
|
||
|
||
section_size = sxtlit->size;
|
||
BFD_ASSERT (section_size % 8 == 0);
|
||
num = section_size / 8;
|
||
|
||
sgotloc_size = sgotloc->size;
|
||
if (sgotloc_size != section_size)
|
||
{
|
||
_bfd_error_handler
|
||
(_("internal inconsistency in size of .got.loc section"));
|
||
return -1;
|
||
}
|
||
|
||
table = bfd_malloc (num * sizeof (property_table_entry));
|
||
if (table == 0)
|
||
return -1;
|
||
|
||
/* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
|
||
propagates to the output section, where it doesn't really apply and
|
||
where it breaks the following call to bfd_malloc_and_get_section. */
|
||
sxtlit->flags &= ~SEC_IN_MEMORY;
|
||
|
||
if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
|
||
{
|
||
if (contents != 0)
|
||
free (contents);
|
||
free (table);
|
||
return -1;
|
||
}
|
||
|
||
/* There should never be any relocations left at this point, so this
|
||
is quite a bit easier than what is done during relaxation. */
|
||
|
||
/* Copy the raw contents into a property table array and sort it. */
|
||
offset = 0;
|
||
for (n = 0; n < num; n++)
|
||
{
|
||
table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
|
||
table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
|
||
offset += 8;
|
||
}
|
||
qsort (table, num, sizeof (property_table_entry), property_table_compare);
|
||
|
||
for (n = 0; n < num; n++)
|
||
{
|
||
bfd_boolean remove_entry = FALSE;
|
||
|
||
if (table[n].size == 0)
|
||
remove_entry = TRUE;
|
||
else if (n > 0
|
||
&& (table[n-1].address + table[n-1].size == table[n].address))
|
||
{
|
||
table[n-1].size += table[n].size;
|
||
remove_entry = TRUE;
|
||
}
|
||
|
||
if (remove_entry)
|
||
{
|
||
for (m = n; m < num - 1; m++)
|
||
{
|
||
table[m].address = table[m+1].address;
|
||
table[m].size = table[m+1].size;
|
||
}
|
||
|
||
n--;
|
||
num--;
|
||
}
|
||
}
|
||
|
||
/* Copy the data back to the raw contents. */
|
||
offset = 0;
|
||
for (n = 0; n < num; n++)
|
||
{
|
||
bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
|
||
bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
|
||
offset += 8;
|
||
}
|
||
|
||
/* Clear the removed bytes. */
|
||
if ((bfd_size_type) (num * 8) < section_size)
|
||
memset (&contents[num * 8], 0, section_size - num * 8);
|
||
|
||
if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
|
||
section_size))
|
||
return -1;
|
||
|
||
/* Copy the contents to ".got.loc". */
|
||
memcpy (sgotloc->contents, contents, section_size);
|
||
|
||
free (contents);
|
||
free (table);
|
||
return num;
|
||
}
|
||
|
||
|
||
/* Finish up the dynamic sections. */
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
|
||
struct bfd_link_info *info)
|
||
{
|
||
struct elf_xtensa_link_hash_table *htab;
|
||
bfd *dynobj;
|
||
asection *sdyn, *srelplt, *srelgot, *sgot, *sxtlit, *sgotloc;
|
||
Elf32_External_Dyn *dyncon, *dynconend;
|
||
int num_xtlit_entries = 0;
|
||
|
||
if (! elf_hash_table (info)->dynamic_sections_created)
|
||
return TRUE;
|
||
|
||
htab = elf_xtensa_hash_table (info);
|
||
if (htab == NULL)
|
||
return FALSE;
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
sdyn = bfd_get_linker_section (dynobj, ".dynamic");
|
||
BFD_ASSERT (sdyn != NULL);
|
||
|
||
/* Set the first entry in the global offset table to the address of
|
||
the dynamic section. */
|
||
sgot = htab->elf.sgot;
|
||
if (sgot)
|
||
{
|
||
BFD_ASSERT (sgot->size == 4);
|
||
if (sdyn == NULL)
|
||
bfd_put_32 (output_bfd, 0, sgot->contents);
|
||
else
|
||
bfd_put_32 (output_bfd,
|
||
sdyn->output_section->vma + sdyn->output_offset,
|
||
sgot->contents);
|
||
}
|
||
|
||
srelplt = htab->elf.srelplt;
|
||
srelgot = htab->elf.srelgot;
|
||
if (srelplt && srelplt->size != 0)
|
||
{
|
||
asection *sgotplt, *spltlittbl;
|
||
int chunk, plt_chunks, plt_entries;
|
||
Elf_Internal_Rela irela;
|
||
bfd_byte *loc;
|
||
unsigned rtld_reloc;
|
||
|
||
spltlittbl = htab->spltlittbl;
|
||
BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
|
||
|
||
/* Find the first XTENSA_RTLD relocation. Presumably the rest
|
||
of them follow immediately after.... */
|
||
for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
|
||
{
|
||
loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
|
||
bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
|
||
if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
|
||
break;
|
||
}
|
||
BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
|
||
|
||
plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
|
||
plt_chunks =
|
||
(plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
|
||
|
||
for (chunk = 0; chunk < plt_chunks; chunk++)
|
||
{
|
||
int chunk_entries = 0;
|
||
|
||
sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
|
||
BFD_ASSERT (sgotplt != NULL);
|
||
|
||
/* Emit special RTLD relocations for the first two entries in
|
||
each chunk of the .got.plt section. */
|
||
|
||
loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
|
||
bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
|
||
BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
|
||
irela.r_offset = (sgotplt->output_section->vma
|
||
+ sgotplt->output_offset);
|
||
irela.r_addend = 1; /* tell rtld to set value to resolver function */
|
||
bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
|
||
rtld_reloc += 1;
|
||
BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
|
||
|
||
/* Next literal immediately follows the first. */
|
||
loc += sizeof (Elf32_External_Rela);
|
||
bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
|
||
BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
|
||
irela.r_offset = (sgotplt->output_section->vma
|
||
+ sgotplt->output_offset + 4);
|
||
/* Tell rtld to set value to object's link map. */
|
||
irela.r_addend = 2;
|
||
bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
|
||
rtld_reloc += 1;
|
||
BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
|
||
|
||
/* Fill in the literal table. */
|
||
if (chunk < plt_chunks - 1)
|
||
chunk_entries = PLT_ENTRIES_PER_CHUNK;
|
||
else
|
||
chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
|
||
|
||
BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
|
||
bfd_put_32 (output_bfd,
|
||
sgotplt->output_section->vma + sgotplt->output_offset,
|
||
spltlittbl->contents + (chunk * 8) + 0);
|
||
bfd_put_32 (output_bfd,
|
||
8 + (chunk_entries * 4),
|
||
spltlittbl->contents + (chunk * 8) + 4);
|
||
}
|
||
|
||
/* The .xt.lit.plt section has just been modified. This must
|
||
happen before the code below which combines adjacent literal
|
||
table entries, and the .xt.lit.plt contents have to be forced to
|
||
the output here. */
|
||
if (! bfd_set_section_contents (output_bfd,
|
||
spltlittbl->output_section,
|
||
spltlittbl->contents,
|
||
spltlittbl->output_offset,
|
||
spltlittbl->size))
|
||
return FALSE;
|
||
/* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
|
||
spltlittbl->flags &= ~SEC_HAS_CONTENTS;
|
||
}
|
||
|
||
/* All the dynamic relocations have been emitted at this point.
|
||
Make sure the relocation sections are the correct size. */
|
||
if ((srelgot && srelgot->size != (sizeof (Elf32_External_Rela)
|
||
* srelgot->reloc_count))
|
||
|| (srelplt && srelplt->size != (sizeof (Elf32_External_Rela)
|
||
* srelplt->reloc_count)))
|
||
abort ();
|
||
|
||
/* Combine adjacent literal table entries. */
|
||
BFD_ASSERT (! bfd_link_relocatable (info));
|
||
sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
|
||
sgotloc = htab->sgotloc;
|
||
BFD_ASSERT (sgotloc);
|
||
if (sxtlit)
|
||
{
|
||
num_xtlit_entries =
|
||
elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
|
||
if (num_xtlit_entries < 0)
|
||
return FALSE;
|
||
}
|
||
|
||
dyncon = (Elf32_External_Dyn *) sdyn->contents;
|
||
dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
|
||
for (; dyncon < dynconend; dyncon++)
|
||
{
|
||
Elf_Internal_Dyn dyn;
|
||
|
||
bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
|
||
|
||
switch (dyn.d_tag)
|
||
{
|
||
default:
|
||
break;
|
||
|
||
case DT_XTENSA_GOT_LOC_SZ:
|
||
dyn.d_un.d_val = num_xtlit_entries;
|
||
break;
|
||
|
||
case DT_XTENSA_GOT_LOC_OFF:
|
||
dyn.d_un.d_ptr = (htab->sgotloc->output_section->vma
|
||
+ htab->sgotloc->output_offset);
|
||
break;
|
||
|
||
case DT_PLTGOT:
|
||
dyn.d_un.d_ptr = (htab->elf.sgot->output_section->vma
|
||
+ htab->elf.sgot->output_offset);
|
||
break;
|
||
|
||
case DT_JMPREL:
|
||
dyn.d_un.d_ptr = (htab->elf.srelplt->output_section->vma
|
||
+ htab->elf.srelplt->output_offset);
|
||
break;
|
||
|
||
case DT_PLTRELSZ:
|
||
dyn.d_un.d_val = htab->elf.srelplt->size;
|
||
break;
|
||
}
|
||
|
||
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Functions for dealing with the e_flags field. */
|
||
|
||
/* Merge backend specific data from an object file to the output
|
||
object file when linking. */
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
|
||
{
|
||
bfd *obfd = info->output_bfd;
|
||
unsigned out_mach, in_mach;
|
||
flagword out_flag, in_flag;
|
||
|
||
/* Check if we have the same endianness. */
|
||
if (!_bfd_generic_verify_endian_match (ibfd, info))
|
||
return FALSE;
|
||
|
||
/* Don't even pretend to support mixed-format linking. */
|
||
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|
||
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
|
||
return FALSE;
|
||
|
||
out_flag = elf_elfheader (obfd)->e_flags;
|
||
in_flag = elf_elfheader (ibfd)->e_flags;
|
||
|
||
out_mach = out_flag & EF_XTENSA_MACH;
|
||
in_mach = in_flag & EF_XTENSA_MACH;
|
||
if (out_mach != in_mach)
|
||
{
|
||
_bfd_error_handler
|
||
/* xgettext:c-format */
|
||
(_("%pB: incompatible machine type; output is 0x%x; input is 0x%x"),
|
||
ibfd, out_mach, in_mach);
|
||
bfd_set_error (bfd_error_wrong_format);
|
||
return FALSE;
|
||
}
|
||
|
||
if (! elf_flags_init (obfd))
|
||
{
|
||
elf_flags_init (obfd) = TRUE;
|
||
elf_elfheader (obfd)->e_flags = in_flag;
|
||
|
||
if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
|
||
&& bfd_get_arch_info (obfd)->the_default)
|
||
return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
|
||
bfd_get_mach (ibfd));
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
|
||
elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
|
||
|
||
if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
|
||
elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
|
||
{
|
||
BFD_ASSERT (!elf_flags_init (abfd)
|
||
|| elf_elfheader (abfd)->e_flags == flags);
|
||
|
||
elf_elfheader (abfd)->e_flags |= flags;
|
||
elf_flags_init (abfd) = TRUE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
|
||
{
|
||
FILE *f = (FILE *) farg;
|
||
flagword e_flags = elf_elfheader (abfd)->e_flags;
|
||
|
||
fprintf (f, "\nXtensa header:\n");
|
||
if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
|
||
fprintf (f, "\nMachine = Base\n");
|
||
else
|
||
fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
|
||
|
||
fprintf (f, "Insn tables = %s\n",
|
||
(e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
|
||
|
||
fprintf (f, "Literal tables = %s\n",
|
||
(e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
|
||
|
||
return _bfd_elf_print_private_bfd_data (abfd, farg);
|
||
}
|
||
|
||
|
||
/* Set the right machine number for an Xtensa ELF file. */
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_object_p (bfd *abfd)
|
||
{
|
||
int mach;
|
||
unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
|
||
|
||
switch (arch)
|
||
{
|
||
case E_XTENSA_MACH:
|
||
mach = bfd_mach_xtensa;
|
||
break;
|
||
default:
|
||
return FALSE;
|
||
}
|
||
|
||
(void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* The final processing done just before writing out an Xtensa ELF object
|
||
file. This gets the Xtensa architecture right based on the machine
|
||
number. */
|
||
|
||
static void
|
||
elf_xtensa_final_write_processing (bfd *abfd,
|
||
bfd_boolean linker ATTRIBUTE_UNUSED)
|
||
{
|
||
int mach;
|
||
unsigned long val;
|
||
|
||
switch (mach = bfd_get_mach (abfd))
|
||
{
|
||
case bfd_mach_xtensa:
|
||
val = E_XTENSA_MACH;
|
||
break;
|
||
default:
|
||
return;
|
||
}
|
||
|
||
elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
|
||
elf_elfheader (abfd)->e_flags |= val;
|
||
}
|
||
|
||
|
||
static enum elf_reloc_type_class
|
||
elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
||
const asection *rel_sec ATTRIBUTE_UNUSED,
|
||
const Elf_Internal_Rela *rela)
|
||
{
|
||
switch ((int) ELF32_R_TYPE (rela->r_info))
|
||
{
|
||
case R_XTENSA_RELATIVE:
|
||
return reloc_class_relative;
|
||
case R_XTENSA_JMP_SLOT:
|
||
return reloc_class_plt;
|
||
default:
|
||
return reloc_class_normal;
|
||
}
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_discard_info_for_section (bfd *abfd,
|
||
struct elf_reloc_cookie *cookie,
|
||
struct bfd_link_info *info,
|
||
asection *sec)
|
||
{
|
||
bfd_byte *contents;
|
||
bfd_vma offset, actual_offset;
|
||
bfd_size_type removed_bytes = 0;
|
||
bfd_size_type entry_size;
|
||
|
||
if (sec->output_section
|
||
&& bfd_is_abs_section (sec->output_section))
|
||
return FALSE;
|
||
|
||
if (xtensa_is_proptable_section (sec))
|
||
entry_size = 12;
|
||
else
|
||
entry_size = 8;
|
||
|
||
if (sec->size == 0 || sec->size % entry_size != 0)
|
||
return FALSE;
|
||
|
||
contents = retrieve_contents (abfd, sec, info->keep_memory);
|
||
if (!contents)
|
||
return FALSE;
|
||
|
||
cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
|
||
if (!cookie->rels)
|
||
{
|
||
release_contents (sec, contents);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Sort the relocations. They should already be in order when
|
||
relaxation is enabled, but it might not be. */
|
||
qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
|
||
internal_reloc_compare);
|
||
|
||
cookie->rel = cookie->rels;
|
||
cookie->relend = cookie->rels + sec->reloc_count;
|
||
|
||
for (offset = 0; offset < sec->size; offset += entry_size)
|
||
{
|
||
actual_offset = offset - removed_bytes;
|
||
|
||
/* The ...symbol_deleted_p function will skip over relocs but it
|
||
won't adjust their offsets, so do that here. */
|
||
while (cookie->rel < cookie->relend
|
||
&& cookie->rel->r_offset < offset)
|
||
{
|
||
cookie->rel->r_offset -= removed_bytes;
|
||
cookie->rel++;
|
||
}
|
||
|
||
while (cookie->rel < cookie->relend
|
||
&& cookie->rel->r_offset == offset)
|
||
{
|
||
if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
|
||
{
|
||
/* Remove the table entry. (If the reloc type is NONE, then
|
||
the entry has already been merged with another and deleted
|
||
during relaxation.) */
|
||
if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
|
||
{
|
||
/* Shift the contents up. */
|
||
if (offset + entry_size < sec->size)
|
||
memmove (&contents[actual_offset],
|
||
&contents[actual_offset + entry_size],
|
||
sec->size - offset - entry_size);
|
||
removed_bytes += entry_size;
|
||
}
|
||
|
||
/* Remove this relocation. */
|
||
cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
|
||
}
|
||
|
||
/* Adjust the relocation offset for previous removals. This
|
||
should not be done before calling ...symbol_deleted_p
|
||
because it might mess up the offset comparisons there.
|
||
Make sure the offset doesn't underflow in the case where
|
||
the first entry is removed. */
|
||
if (cookie->rel->r_offset >= removed_bytes)
|
||
cookie->rel->r_offset -= removed_bytes;
|
||
else
|
||
cookie->rel->r_offset = 0;
|
||
|
||
cookie->rel++;
|
||
}
|
||
}
|
||
|
||
if (removed_bytes != 0)
|
||
{
|
||
/* Adjust any remaining relocs (shouldn't be any). */
|
||
for (; cookie->rel < cookie->relend; cookie->rel++)
|
||
{
|
||
if (cookie->rel->r_offset >= removed_bytes)
|
||
cookie->rel->r_offset -= removed_bytes;
|
||
else
|
||
cookie->rel->r_offset = 0;
|
||
}
|
||
|
||
/* Clear the removed bytes. */
|
||
memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
|
||
|
||
pin_contents (sec, contents);
|
||
pin_internal_relocs (sec, cookie->rels);
|
||
|
||
/* Shrink size. */
|
||
if (sec->rawsize == 0)
|
||
sec->rawsize = sec->size;
|
||
sec->size -= removed_bytes;
|
||
|
||
if (xtensa_is_littable_section (sec))
|
||
{
|
||
asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
|
||
if (sgotloc)
|
||
sgotloc->size -= removed_bytes;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
release_contents (sec, contents);
|
||
release_internal_relocs (sec, cookie->rels);
|
||
}
|
||
|
||
return (removed_bytes != 0);
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_discard_info (bfd *abfd,
|
||
struct elf_reloc_cookie *cookie,
|
||
struct bfd_link_info *info)
|
||
{
|
||
asection *sec;
|
||
bfd_boolean changed = FALSE;
|
||
|
||
for (sec = abfd->sections; sec != NULL; sec = sec->next)
|
||
{
|
||
if (xtensa_is_property_section (sec))
|
||
{
|
||
if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
|
||
changed = TRUE;
|
||
}
|
||
}
|
||
|
||
return changed;
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_ignore_discarded_relocs (asection *sec)
|
||
{
|
||
return xtensa_is_property_section (sec);
|
||
}
|
||
|
||
|
||
static unsigned int
|
||
elf_xtensa_action_discarded (asection *sec)
|
||
{
|
||
if (strcmp (".xt_except_table", sec->name) == 0)
|
||
return 0;
|
||
|
||
if (strcmp (".xt_except_desc", sec->name) == 0)
|
||
return 0;
|
||
|
||
return _bfd_elf_default_action_discarded (sec);
|
||
}
|
||
|
||
|
||
/* Support for core dump NOTE sections. */
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
|
||
{
|
||
int offset;
|
||
unsigned int size;
|
||
|
||
/* The size for Xtensa is variable, so don't try to recognize the format
|
||
based on the size. Just assume this is GNU/Linux. */
|
||
|
||
/* pr_cursig */
|
||
elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
|
||
|
||
/* pr_pid */
|
||
elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
|
||
|
||
/* pr_reg */
|
||
offset = 72;
|
||
size = note->descsz - offset - 4;
|
||
|
||
/* Make a ".reg/999" section. */
|
||
return _bfd_elfcore_make_pseudosection (abfd, ".reg",
|
||
size, note->descpos + offset);
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
|
||
{
|
||
switch (note->descsz)
|
||
{
|
||
default:
|
||
return FALSE;
|
||
|
||
case 128: /* GNU/Linux elf_prpsinfo */
|
||
elf_tdata (abfd)->core->program
|
||
= _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
|
||
elf_tdata (abfd)->core->command
|
||
= _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
|
||
}
|
||
|
||
/* Note that for some reason, a spurious space is tacked
|
||
onto the end of the args in some (at least one anyway)
|
||
implementations, so strip it off if it exists. */
|
||
|
||
{
|
||
char *command = elf_tdata (abfd)->core->command;
|
||
int n = strlen (command);
|
||
|
||
if (0 < n && command[n - 1] == ' ')
|
||
command[n - 1] = '\0';
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Generic Xtensa configurability stuff. */
|
||
|
||
static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
|
||
static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
|
||
static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
|
||
static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
|
||
static xtensa_opcode call0_op = XTENSA_UNDEFINED;
|
||
static xtensa_opcode call4_op = XTENSA_UNDEFINED;
|
||
static xtensa_opcode call8_op = XTENSA_UNDEFINED;
|
||
static xtensa_opcode call12_op = XTENSA_UNDEFINED;
|
||
|
||
static void
|
||
init_call_opcodes (void)
|
||
{
|
||
if (callx0_op == XTENSA_UNDEFINED)
|
||
{
|
||
callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
|
||
callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
|
||
callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
|
||
callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
|
||
call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
|
||
call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
|
||
call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
|
||
call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
|
||
}
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
is_indirect_call_opcode (xtensa_opcode opcode)
|
||
{
|
||
init_call_opcodes ();
|
||
return (opcode == callx0_op
|
||
|| opcode == callx4_op
|
||
|| opcode == callx8_op
|
||
|| opcode == callx12_op);
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
is_direct_call_opcode (xtensa_opcode opcode)
|
||
{
|
||
init_call_opcodes ();
|
||
return (opcode == call0_op
|
||
|| opcode == call4_op
|
||
|| opcode == call8_op
|
||
|| opcode == call12_op);
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
is_windowed_call_opcode (xtensa_opcode opcode)
|
||
{
|
||
init_call_opcodes ();
|
||
return (opcode == call4_op
|
||
|| opcode == call8_op
|
||
|| opcode == call12_op
|
||
|| opcode == callx4_op
|
||
|| opcode == callx8_op
|
||
|| opcode == callx12_op);
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
|
||
{
|
||
unsigned dst = (unsigned) -1;
|
||
|
||
init_call_opcodes ();
|
||
if (opcode == callx0_op)
|
||
dst = 0;
|
||
else if (opcode == callx4_op)
|
||
dst = 4;
|
||
else if (opcode == callx8_op)
|
||
dst = 8;
|
||
else if (opcode == callx12_op)
|
||
dst = 12;
|
||
|
||
if (dst == (unsigned) -1)
|
||
return FALSE;
|
||
|
||
*pdst = dst;
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
static xtensa_opcode
|
||
get_const16_opcode (void)
|
||
{
|
||
static bfd_boolean done_lookup = FALSE;
|
||
static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
|
||
if (!done_lookup)
|
||
{
|
||
const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
|
||
done_lookup = TRUE;
|
||
}
|
||
return const16_opcode;
|
||
}
|
||
|
||
|
||
static xtensa_opcode
|
||
get_l32r_opcode (void)
|
||
{
|
||
static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
|
||
static bfd_boolean done_lookup = FALSE;
|
||
|
||
if (!done_lookup)
|
||
{
|
||
l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
|
||
done_lookup = TRUE;
|
||
}
|
||
return l32r_opcode;
|
||
}
|
||
|
||
|
||
static bfd_vma
|
||
l32r_offset (bfd_vma addr, bfd_vma pc)
|
||
{
|
||
bfd_vma offset;
|
||
|
||
offset = addr - ((pc+3) & -4);
|
||
BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
|
||
offset = (signed int) offset >> 2;
|
||
BFD_ASSERT ((signed int) offset >> 16 == -1);
|
||
return offset;
|
||
}
|
||
|
||
|
||
static int
|
||
get_relocation_opnd (xtensa_opcode opcode, int r_type)
|
||
{
|
||
xtensa_isa isa = xtensa_default_isa;
|
||
int last_immed, last_opnd, opi;
|
||
|
||
if (opcode == XTENSA_UNDEFINED)
|
||
return XTENSA_UNDEFINED;
|
||
|
||
/* Find the last visible PC-relative immediate operand for the opcode.
|
||
If there are no PC-relative immediates, then choose the last visible
|
||
immediate; otherwise, fail and return XTENSA_UNDEFINED. */
|
||
last_immed = XTENSA_UNDEFINED;
|
||
last_opnd = xtensa_opcode_num_operands (isa, opcode);
|
||
for (opi = last_opnd - 1; opi >= 0; opi--)
|
||
{
|
||
if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
|
||
continue;
|
||
if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
|
||
{
|
||
last_immed = opi;
|
||
break;
|
||
}
|
||
if (last_immed == XTENSA_UNDEFINED
|
||
&& xtensa_operand_is_register (isa, opcode, opi) == 0)
|
||
last_immed = opi;
|
||
}
|
||
if (last_immed < 0)
|
||
return XTENSA_UNDEFINED;
|
||
|
||
/* If the operand number was specified in an old-style relocation,
|
||
check for consistency with the operand computed above. */
|
||
if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
|
||
{
|
||
int reloc_opnd = r_type - R_XTENSA_OP0;
|
||
if (reloc_opnd != last_immed)
|
||
return XTENSA_UNDEFINED;
|
||
}
|
||
|
||
return last_immed;
|
||
}
|
||
|
||
|
||
int
|
||
get_relocation_slot (int r_type)
|
||
{
|
||
switch (r_type)
|
||
{
|
||
case R_XTENSA_OP0:
|
||
case R_XTENSA_OP1:
|
||
case R_XTENSA_OP2:
|
||
return 0;
|
||
|
||
default:
|
||
if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
|
||
return r_type - R_XTENSA_SLOT0_OP;
|
||
if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
|
||
return r_type - R_XTENSA_SLOT0_ALT;
|
||
break;
|
||
}
|
||
|
||
return XTENSA_UNDEFINED;
|
||
}
|
||
|
||
|
||
/* Get the opcode for a relocation. */
|
||
|
||
static xtensa_opcode
|
||
get_relocation_opcode (bfd *abfd,
|
||
asection *sec,
|
||
bfd_byte *contents,
|
||
Elf_Internal_Rela *irel)
|
||
{
|
||
static xtensa_insnbuf ibuff = NULL;
|
||
static xtensa_insnbuf sbuff = NULL;
|
||
xtensa_isa isa = xtensa_default_isa;
|
||
xtensa_format fmt;
|
||
int slot;
|
||
|
||
if (contents == NULL)
|
||
return XTENSA_UNDEFINED;
|
||
|
||
if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
|
||
return XTENSA_UNDEFINED;
|
||
|
||
if (ibuff == NULL)
|
||
{
|
||
ibuff = xtensa_insnbuf_alloc (isa);
|
||
sbuff = xtensa_insnbuf_alloc (isa);
|
||
}
|
||
|
||
/* Decode the instruction. */
|
||
xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
|
||
sec->size - irel->r_offset);
|
||
fmt = xtensa_format_decode (isa, ibuff);
|
||
slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
|
||
if (slot == XTENSA_UNDEFINED)
|
||
return XTENSA_UNDEFINED;
|
||
xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
|
||
return xtensa_opcode_decode (isa, fmt, slot, sbuff);
|
||
}
|
||
|
||
|
||
bfd_boolean
|
||
is_l32r_relocation (bfd *abfd,
|
||
asection *sec,
|
||
bfd_byte *contents,
|
||
Elf_Internal_Rela *irel)
|
||
{
|
||
xtensa_opcode opcode;
|
||
if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
|
||
return FALSE;
|
||
opcode = get_relocation_opcode (abfd, sec, contents, irel);
|
||
return (opcode == get_l32r_opcode ());
|
||
}
|
||
|
||
|
||
static bfd_size_type
|
||
get_asm_simplify_size (bfd_byte *contents,
|
||
bfd_size_type content_len,
|
||
bfd_size_type offset)
|
||
{
|
||
bfd_size_type insnlen, size = 0;
|
||
|
||
/* Decode the size of the next two instructions. */
|
||
insnlen = insn_decode_len (contents, content_len, offset);
|
||
if (insnlen == 0)
|
||
return 0;
|
||
|
||
size += insnlen;
|
||
|
||
insnlen = insn_decode_len (contents, content_len, offset + size);
|
||
if (insnlen == 0)
|
||
return 0;
|
||
|
||
size += insnlen;
|
||
return size;
|
||
}
|
||
|
||
|
||
bfd_boolean
|
||
is_alt_relocation (int r_type)
|
||
{
|
||
return (r_type >= R_XTENSA_SLOT0_ALT
|
||
&& r_type <= R_XTENSA_SLOT14_ALT);
|
||
}
|
||
|
||
|
||
bfd_boolean
|
||
is_operand_relocation (int r_type)
|
||
{
|
||
switch (r_type)
|
||
{
|
||
case R_XTENSA_OP0:
|
||
case R_XTENSA_OP1:
|
||
case R_XTENSA_OP2:
|
||
return TRUE;
|
||
|
||
default:
|
||
if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
|
||
return TRUE;
|
||
if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
|
||
return TRUE;
|
||
break;
|
||
}
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
|
||
#define MIN_INSN_LENGTH 2
|
||
|
||
/* Return 0 if it fails to decode. */
|
||
|
||
bfd_size_type
|
||
insn_decode_len (bfd_byte *contents,
|
||
bfd_size_type content_len,
|
||
bfd_size_type offset)
|
||
{
|
||
int insn_len;
|
||
xtensa_isa isa = xtensa_default_isa;
|
||
xtensa_format fmt;
|
||
static xtensa_insnbuf ibuff = NULL;
|
||
|
||
if (offset + MIN_INSN_LENGTH > content_len)
|
||
return 0;
|
||
|
||
if (ibuff == NULL)
|
||
ibuff = xtensa_insnbuf_alloc (isa);
|
||
xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
|
||
content_len - offset);
|
||
fmt = xtensa_format_decode (isa, ibuff);
|
||
if (fmt == XTENSA_UNDEFINED)
|
||
return 0;
|
||
insn_len = xtensa_format_length (isa, fmt);
|
||
if (insn_len == XTENSA_UNDEFINED)
|
||
return 0;
|
||
return insn_len;
|
||
}
|
||
|
||
|
||
/* Decode the opcode for a single slot instruction.
|
||
Return 0 if it fails to decode or the instruction is multi-slot. */
|
||
|
||
xtensa_opcode
|
||
insn_decode_opcode (bfd_byte *contents,
|
||
bfd_size_type content_len,
|
||
bfd_size_type offset,
|
||
int slot)
|
||
{
|
||
xtensa_isa isa = xtensa_default_isa;
|
||
xtensa_format fmt;
|
||
static xtensa_insnbuf insnbuf = NULL;
|
||
static xtensa_insnbuf slotbuf = NULL;
|
||
|
||
if (offset + MIN_INSN_LENGTH > content_len)
|
||
return XTENSA_UNDEFINED;
|
||
|
||
if (insnbuf == NULL)
|
||
{
|
||
insnbuf = xtensa_insnbuf_alloc (isa);
|
||
slotbuf = xtensa_insnbuf_alloc (isa);
|
||
}
|
||
|
||
xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
|
||
content_len - offset);
|
||
fmt = xtensa_format_decode (isa, insnbuf);
|
||
if (fmt == XTENSA_UNDEFINED)
|
||
return XTENSA_UNDEFINED;
|
||
|
||
if (slot >= xtensa_format_num_slots (isa, fmt))
|
||
return XTENSA_UNDEFINED;
|
||
|
||
xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
|
||
return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
|
||
}
|
||
|
||
|
||
/* The offset is the offset in the contents.
|
||
The address is the address of that offset. */
|
||
|
||
static bfd_boolean
|
||
check_branch_target_aligned (bfd_byte *contents,
|
||
bfd_size_type content_length,
|
||
bfd_vma offset,
|
||
bfd_vma address)
|
||
{
|
||
bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
|
||
if (insn_len == 0)
|
||
return FALSE;
|
||
return check_branch_target_aligned_address (address, insn_len);
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
check_loop_aligned (bfd_byte *contents,
|
||
bfd_size_type content_length,
|
||
bfd_vma offset,
|
||
bfd_vma address)
|
||
{
|
||
bfd_size_type loop_len, insn_len;
|
||
xtensa_opcode opcode;
|
||
|
||
opcode = insn_decode_opcode (contents, content_length, offset, 0);
|
||
if (opcode == XTENSA_UNDEFINED
|
||
|| xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
|
||
{
|
||
BFD_ASSERT (FALSE);
|
||
return FALSE;
|
||
}
|
||
|
||
loop_len = insn_decode_len (contents, content_length, offset);
|
||
insn_len = insn_decode_len (contents, content_length, offset + loop_len);
|
||
if (loop_len == 0 || insn_len == 0)
|
||
{
|
||
BFD_ASSERT (FALSE);
|
||
return FALSE;
|
||
}
|
||
|
||
return check_branch_target_aligned_address (address + loop_len, insn_len);
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
check_branch_target_aligned_address (bfd_vma addr, int len)
|
||
{
|
||
if (len == 8)
|
||
return (addr % 8 == 0);
|
||
return ((addr >> 2) == ((addr + len - 1) >> 2));
|
||
}
|
||
|
||
|
||
/* Instruction widening and narrowing. */
|
||
|
||
/* When FLIX is available we need to access certain instructions only
|
||
when they are 16-bit or 24-bit instructions. This table caches
|
||
information about such instructions by walking through all the
|
||
opcodes and finding the smallest single-slot format into which each
|
||
can be encoded. */
|
||
|
||
static xtensa_format *op_single_fmt_table = NULL;
|
||
|
||
|
||
static void
|
||
init_op_single_format_table (void)
|
||
{
|
||
xtensa_isa isa = xtensa_default_isa;
|
||
xtensa_insnbuf ibuf;
|
||
xtensa_opcode opcode;
|
||
xtensa_format fmt;
|
||
int num_opcodes;
|
||
|
||
if (op_single_fmt_table)
|
||
return;
|
||
|
||
ibuf = xtensa_insnbuf_alloc (isa);
|
||
num_opcodes = xtensa_isa_num_opcodes (isa);
|
||
|
||
op_single_fmt_table = (xtensa_format *)
|
||
bfd_malloc (sizeof (xtensa_format) * num_opcodes);
|
||
for (opcode = 0; opcode < num_opcodes; opcode++)
|
||
{
|
||
op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
|
||
for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
|
||
{
|
||
if (xtensa_format_num_slots (isa, fmt) == 1
|
||
&& xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
|
||
{
|
||
xtensa_opcode old_fmt = op_single_fmt_table[opcode];
|
||
int fmt_length = xtensa_format_length (isa, fmt);
|
||
if (old_fmt == XTENSA_UNDEFINED
|
||
|| fmt_length < xtensa_format_length (isa, old_fmt))
|
||
op_single_fmt_table[opcode] = fmt;
|
||
}
|
||
}
|
||
}
|
||
xtensa_insnbuf_free (isa, ibuf);
|
||
}
|
||
|
||
|
||
static xtensa_format
|
||
get_single_format (xtensa_opcode opcode)
|
||
{
|
||
init_op_single_format_table ();
|
||
return op_single_fmt_table[opcode];
|
||
}
|
||
|
||
|
||
/* For the set of narrowable instructions we do NOT include the
|
||
narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
|
||
involved during linker relaxation that may require these to
|
||
re-expand in some conditions. Also, the narrowing "or" -> mov.n
|
||
requires special case code to ensure it only works when op1 == op2. */
|
||
|
||
struct string_pair
|
||
{
|
||
const char *wide;
|
||
const char *narrow;
|
||
};
|
||
|
||
struct string_pair narrowable[] =
|
||
{
|
||
{ "add", "add.n" },
|
||
{ "addi", "addi.n" },
|
||
{ "addmi", "addi.n" },
|
||
{ "l32i", "l32i.n" },
|
||
{ "movi", "movi.n" },
|
||
{ "ret", "ret.n" },
|
||
{ "retw", "retw.n" },
|
||
{ "s32i", "s32i.n" },
|
||
{ "or", "mov.n" } /* special case only when op1 == op2 */
|
||
};
|
||
|
||
struct string_pair widenable[] =
|
||
{
|
||
{ "add", "add.n" },
|
||
{ "addi", "addi.n" },
|
||
{ "addmi", "addi.n" },
|
||
{ "beqz", "beqz.n" },
|
||
{ "bnez", "bnez.n" },
|
||
{ "l32i", "l32i.n" },
|
||
{ "movi", "movi.n" },
|
||
{ "ret", "ret.n" },
|
||
{ "retw", "retw.n" },
|
||
{ "s32i", "s32i.n" },
|
||
{ "or", "mov.n" } /* special case only when op1 == op2 */
|
||
};
|
||
|
||
|
||
/* Check if an instruction can be "narrowed", i.e., changed from a standard
|
||
3-byte instruction to a 2-byte "density" instruction. If it is valid,
|
||
return the instruction buffer holding the narrow instruction. Otherwise,
|
||
return 0. The set of valid narrowing are specified by a string table
|
||
but require some special case operand checks in some cases. */
|
||
|
||
static xtensa_insnbuf
|
||
can_narrow_instruction (xtensa_insnbuf slotbuf,
|
||
xtensa_format fmt,
|
||
xtensa_opcode opcode)
|
||
{
|
||
xtensa_isa isa = xtensa_default_isa;
|
||
xtensa_format o_fmt;
|
||
unsigned opi;
|
||
|
||
static xtensa_insnbuf o_insnbuf = NULL;
|
||
static xtensa_insnbuf o_slotbuf = NULL;
|
||
|
||
if (o_insnbuf == NULL)
|
||
{
|
||
o_insnbuf = xtensa_insnbuf_alloc (isa);
|
||
o_slotbuf = xtensa_insnbuf_alloc (isa);
|
||
}
|
||
|
||
for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
|
||
{
|
||
bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
|
||
|
||
if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
|
||
{
|
||
uint32 value, newval;
|
||
int i, operand_count, o_operand_count;
|
||
xtensa_opcode o_opcode;
|
||
|
||
/* Address does not matter in this case. We might need to
|
||
fix it to handle branches/jumps. */
|
||
bfd_vma self_address = 0;
|
||
|
||
o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
|
||
if (o_opcode == XTENSA_UNDEFINED)
|
||
return 0;
|
||
o_fmt = get_single_format (o_opcode);
|
||
if (o_fmt == XTENSA_UNDEFINED)
|
||
return 0;
|
||
|
||
if (xtensa_format_length (isa, fmt) != 3
|
||
|| xtensa_format_length (isa, o_fmt) != 2)
|
||
return 0;
|
||
|
||
xtensa_format_encode (isa, o_fmt, o_insnbuf);
|
||
operand_count = xtensa_opcode_num_operands (isa, opcode);
|
||
o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
|
||
|
||
if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
|
||
return 0;
|
||
|
||
if (!is_or)
|
||
{
|
||
if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
uint32 rawval0, rawval1, rawval2;
|
||
|
||
if (o_operand_count + 1 != operand_count
|
||
|| xtensa_operand_get_field (isa, opcode, 0,
|
||
fmt, 0, slotbuf, &rawval0) != 0
|
||
|| xtensa_operand_get_field (isa, opcode, 1,
|
||
fmt, 0, slotbuf, &rawval1) != 0
|
||
|| xtensa_operand_get_field (isa, opcode, 2,
|
||
fmt, 0, slotbuf, &rawval2) != 0
|
||
|| rawval1 != rawval2
|
||
|| rawval0 == rawval1 /* it is a nop */)
|
||
return 0;
|
||
}
|
||
|
||
for (i = 0; i < o_operand_count; ++i)
|
||
{
|
||
if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
|
||
slotbuf, &value)
|
||
|| xtensa_operand_decode (isa, opcode, i, &value))
|
||
return 0;
|
||
|
||
/* PC-relative branches need adjustment, but
|
||
the PC-rel operand will always have a relocation. */
|
||
newval = value;
|
||
if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
|
||
self_address)
|
||
|| xtensa_operand_encode (isa, o_opcode, i, &newval)
|
||
|| xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
|
||
o_slotbuf, newval))
|
||
return 0;
|
||
}
|
||
|
||
if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
|
||
return 0;
|
||
|
||
return o_insnbuf;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Attempt to narrow an instruction. If the narrowing is valid, perform
|
||
the action in-place directly into the contents and return TRUE. Otherwise,
|
||
the return value is FALSE and the contents are not modified. */
|
||
|
||
static bfd_boolean
|
||
narrow_instruction (bfd_byte *contents,
|
||
bfd_size_type content_length,
|
||
bfd_size_type offset)
|
||
{
|
||
xtensa_opcode opcode;
|
||
bfd_size_type insn_len;
|
||
xtensa_isa isa = xtensa_default_isa;
|
||
xtensa_format fmt;
|
||
xtensa_insnbuf o_insnbuf;
|
||
|
||
static xtensa_insnbuf insnbuf = NULL;
|
||
static xtensa_insnbuf slotbuf = NULL;
|
||
|
||
if (insnbuf == NULL)
|
||
{
|
||
insnbuf = xtensa_insnbuf_alloc (isa);
|
||
slotbuf = xtensa_insnbuf_alloc (isa);
|
||
}
|
||
|
||
BFD_ASSERT (offset < content_length);
|
||
|
||
if (content_length < 2)
|
||
return FALSE;
|
||
|
||
/* We will hand-code a few of these for a little while.
|
||
These have all been specified in the assembler aleady. */
|
||
xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
|
||
content_length - offset);
|
||
fmt = xtensa_format_decode (isa, insnbuf);
|
||
if (xtensa_format_num_slots (isa, fmt) != 1)
|
||
return FALSE;
|
||
|
||
if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
|
||
return FALSE;
|
||
|
||
opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
|
||
if (opcode == XTENSA_UNDEFINED)
|
||
return FALSE;
|
||
insn_len = xtensa_format_length (isa, fmt);
|
||
if (insn_len > content_length)
|
||
return FALSE;
|
||
|
||
o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
|
||
if (o_insnbuf)
|
||
{
|
||
xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
|
||
content_length - offset);
|
||
return TRUE;
|
||
}
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
|
||
/* Check if an instruction can be "widened", i.e., changed from a 2-byte
|
||
"density" instruction to a standard 3-byte instruction. If it is valid,
|
||
return the instruction buffer holding the wide instruction. Otherwise,
|
||
return 0. The set of valid widenings are specified by a string table
|
||
but require some special case operand checks in some cases. */
|
||
|
||
static xtensa_insnbuf
|
||
can_widen_instruction (xtensa_insnbuf slotbuf,
|
||
xtensa_format fmt,
|
||
xtensa_opcode opcode)
|
||
{
|
||
xtensa_isa isa = xtensa_default_isa;
|
||
xtensa_format o_fmt;
|
||
unsigned opi;
|
||
|
||
static xtensa_insnbuf o_insnbuf = NULL;
|
||
static xtensa_insnbuf o_slotbuf = NULL;
|
||
|
||
if (o_insnbuf == NULL)
|
||
{
|
||
o_insnbuf = xtensa_insnbuf_alloc (isa);
|
||
o_slotbuf = xtensa_insnbuf_alloc (isa);
|
||
}
|
||
|
||
for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
|
||
{
|
||
bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
|
||
bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
|
||
|| strcmp ("bnez", widenable[opi].wide) == 0);
|
||
|
||
if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
|
||
{
|
||
uint32 value, newval;
|
||
int i, operand_count, o_operand_count, check_operand_count;
|
||
xtensa_opcode o_opcode;
|
||
|
||
/* Address does not matter in this case. We might need to fix it
|
||
to handle branches/jumps. */
|
||
bfd_vma self_address = 0;
|
||
|
||
o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
|
||
if (o_opcode == XTENSA_UNDEFINED)
|
||
return 0;
|
||
o_fmt = get_single_format (o_opcode);
|
||
if (o_fmt == XTENSA_UNDEFINED)
|
||
return 0;
|
||
|
||
if (xtensa_format_length (isa, fmt) != 2
|
||
|| xtensa_format_length (isa, o_fmt) != 3)
|
||
return 0;
|
||
|
||
xtensa_format_encode (isa, o_fmt, o_insnbuf);
|
||
operand_count = xtensa_opcode_num_operands (isa, opcode);
|
||
o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
|
||
check_operand_count = o_operand_count;
|
||
|
||
if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
|
||
return 0;
|
||
|
||
if (!is_or)
|
||
{
|
||
if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
uint32 rawval0, rawval1;
|
||
|
||
if (o_operand_count != operand_count + 1
|
||
|| xtensa_operand_get_field (isa, opcode, 0,
|
||
fmt, 0, slotbuf, &rawval0) != 0
|
||
|| xtensa_operand_get_field (isa, opcode, 1,
|
||
fmt, 0, slotbuf, &rawval1) != 0
|
||
|| rawval0 == rawval1 /* it is a nop */)
|
||
return 0;
|
||
}
|
||
if (is_branch)
|
||
check_operand_count--;
|
||
|
||
for (i = 0; i < check_operand_count; i++)
|
||
{
|
||
int new_i = i;
|
||
if (is_or && i == o_operand_count - 1)
|
||
new_i = i - 1;
|
||
if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
|
||
slotbuf, &value)
|
||
|| xtensa_operand_decode (isa, opcode, new_i, &value))
|
||
return 0;
|
||
|
||
/* PC-relative branches need adjustment, but
|
||
the PC-rel operand will always have a relocation. */
|
||
newval = value;
|
||
if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
|
||
self_address)
|
||
|| xtensa_operand_encode (isa, o_opcode, i, &newval)
|
||
|| xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
|
||
o_slotbuf, newval))
|
||
return 0;
|
||
}
|
||
|
||
if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
|
||
return 0;
|
||
|
||
return o_insnbuf;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Attempt to widen an instruction. If the widening is valid, perform
|
||
the action in-place directly into the contents and return TRUE. Otherwise,
|
||
the return value is FALSE and the contents are not modified. */
|
||
|
||
static bfd_boolean
|
||
widen_instruction (bfd_byte *contents,
|
||
bfd_size_type content_length,
|
||
bfd_size_type offset)
|
||
{
|
||
xtensa_opcode opcode;
|
||
bfd_size_type insn_len;
|
||
xtensa_isa isa = xtensa_default_isa;
|
||
xtensa_format fmt;
|
||
xtensa_insnbuf o_insnbuf;
|
||
|
||
static xtensa_insnbuf insnbuf = NULL;
|
||
static xtensa_insnbuf slotbuf = NULL;
|
||
|
||
if (insnbuf == NULL)
|
||
{
|
||
insnbuf = xtensa_insnbuf_alloc (isa);
|
||
slotbuf = xtensa_insnbuf_alloc (isa);
|
||
}
|
||
|
||
BFD_ASSERT (offset < content_length);
|
||
|
||
if (content_length < 2)
|
||
return FALSE;
|
||
|
||
/* We will hand-code a few of these for a little while.
|
||
These have all been specified in the assembler aleady. */
|
||
xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
|
||
content_length - offset);
|
||
fmt = xtensa_format_decode (isa, insnbuf);
|
||
if (xtensa_format_num_slots (isa, fmt) != 1)
|
||
return FALSE;
|
||
|
||
if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
|
||
return FALSE;
|
||
|
||
opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
|
||
if (opcode == XTENSA_UNDEFINED)
|
||
return FALSE;
|
||
insn_len = xtensa_format_length (isa, fmt);
|
||
if (insn_len > content_length)
|
||
return FALSE;
|
||
|
||
o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
|
||
if (o_insnbuf)
|
||
{
|
||
xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
|
||
content_length - offset);
|
||
return TRUE;
|
||
}
|
||
return FALSE;
|
||
}
|
||
|
||
|
||
/* Code for transforming CALLs at link-time. */
|
||
|
||
static bfd_reloc_status_type
|
||
elf_xtensa_do_asm_simplify (bfd_byte *contents,
|
||
bfd_vma address,
|
||
bfd_vma content_length,
|
||
char **error_message)
|
||
{
|
||
static xtensa_insnbuf insnbuf = NULL;
|
||
static xtensa_insnbuf slotbuf = NULL;
|
||
xtensa_format core_format = XTENSA_UNDEFINED;
|
||
xtensa_opcode opcode;
|
||
xtensa_opcode direct_call_opcode;
|
||
xtensa_isa isa = xtensa_default_isa;
|
||
bfd_byte *chbuf = contents + address;
|
||
int opn;
|
||
|
||
if (insnbuf == NULL)
|
||
{
|
||
insnbuf = xtensa_insnbuf_alloc (isa);
|
||
slotbuf = xtensa_insnbuf_alloc (isa);
|
||
}
|
||
|
||
if (content_length < address)
|
||
{
|
||
*error_message = _("attempt to convert L32R/CALLX to CALL failed");
|
||
return bfd_reloc_other;
|
||
}
|
||
|
||
opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
|
||
direct_call_opcode = swap_callx_for_call_opcode (opcode);
|
||
if (direct_call_opcode == XTENSA_UNDEFINED)
|
||
{
|
||
*error_message = _("attempt to convert L32R/CALLX to CALL failed");
|
||
return bfd_reloc_other;
|
||
}
|
||
|
||
/* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
|
||
core_format = xtensa_format_lookup (isa, "x24");
|
||
opcode = xtensa_opcode_lookup (isa, "or");
|
||
xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
|
||
for (opn = 0; opn < 3; opn++)
|
||
{
|
||
uint32 regno = 1;
|
||
xtensa_operand_encode (isa, opcode, opn, ®no);
|
||
xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
|
||
slotbuf, regno);
|
||
}
|
||
xtensa_format_encode (isa, core_format, insnbuf);
|
||
xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
|
||
xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
|
||
|
||
/* Assemble a CALL ("callN 0") into the 3 byte offset. */
|
||
xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
|
||
xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
|
||
|
||
xtensa_format_encode (isa, core_format, insnbuf);
|
||
xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
|
||
xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
|
||
content_length - address - 3);
|
||
|
||
return bfd_reloc_ok;
|
||
}
|
||
|
||
|
||
static bfd_reloc_status_type
|
||
contract_asm_expansion (bfd_byte *contents,
|
||
bfd_vma content_length,
|
||
Elf_Internal_Rela *irel,
|
||
char **error_message)
|
||
{
|
||
bfd_reloc_status_type retval =
|
||
elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
|
||
error_message);
|
||
|
||
if (retval != bfd_reloc_ok)
|
||
return bfd_reloc_dangerous;
|
||
|
||
/* Update the irel->r_offset field so that the right immediate and
|
||
the right instruction are modified during the relocation. */
|
||
irel->r_offset += 3;
|
||
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
|
||
return bfd_reloc_ok;
|
||
}
|
||
|
||
|
||
static xtensa_opcode
|
||
swap_callx_for_call_opcode (xtensa_opcode opcode)
|
||
{
|
||
init_call_opcodes ();
|
||
|
||
if (opcode == callx0_op) return call0_op;
|
||
if (opcode == callx4_op) return call4_op;
|
||
if (opcode == callx8_op) return call8_op;
|
||
if (opcode == callx12_op) return call12_op;
|
||
|
||
/* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
|
||
return XTENSA_UNDEFINED;
|
||
}
|
||
|
||
|
||
/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
|
||
CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
|
||
If not, return XTENSA_UNDEFINED. */
|
||
|
||
#define L32R_TARGET_REG_OPERAND 0
|
||
#define CONST16_TARGET_REG_OPERAND 0
|
||
#define CALLN_SOURCE_OPERAND 0
|
||
|
||
static xtensa_opcode
|
||
get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
|
||
{
|
||
static xtensa_insnbuf insnbuf = NULL;
|
||
static xtensa_insnbuf slotbuf = NULL;
|
||
xtensa_format fmt;
|
||
xtensa_opcode opcode;
|
||
xtensa_isa isa = xtensa_default_isa;
|
||
uint32 regno, const16_regno, call_regno;
|
||
int offset = 0;
|
||
|
||
if (insnbuf == NULL)
|
||
{
|
||
insnbuf = xtensa_insnbuf_alloc (isa);
|
||
slotbuf = xtensa_insnbuf_alloc (isa);
|
||
}
|
||
|
||
xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
|
||
fmt = xtensa_format_decode (isa, insnbuf);
|
||
if (fmt == XTENSA_UNDEFINED
|
||
|| xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
|
||
return XTENSA_UNDEFINED;
|
||
|
||
opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
|
||
if (opcode == XTENSA_UNDEFINED)
|
||
return XTENSA_UNDEFINED;
|
||
|
||
if (opcode == get_l32r_opcode ())
|
||
{
|
||
if (p_uses_l32r)
|
||
*p_uses_l32r = TRUE;
|
||
if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
|
||
fmt, 0, slotbuf, ®no)
|
||
|| xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
|
||
®no))
|
||
return XTENSA_UNDEFINED;
|
||
}
|
||
else if (opcode == get_const16_opcode ())
|
||
{
|
||
if (p_uses_l32r)
|
||
*p_uses_l32r = FALSE;
|
||
if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
|
||
fmt, 0, slotbuf, ®no)
|
||
|| xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
|
||
®no))
|
||
return XTENSA_UNDEFINED;
|
||
|
||
/* Check that the next instruction is also CONST16. */
|
||
offset += xtensa_format_length (isa, fmt);
|
||
xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
|
||
fmt = xtensa_format_decode (isa, insnbuf);
|
||
if (fmt == XTENSA_UNDEFINED
|
||
|| xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
|
||
return XTENSA_UNDEFINED;
|
||
opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
|
||
if (opcode != get_const16_opcode ())
|
||
return XTENSA_UNDEFINED;
|
||
|
||
if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
|
||
fmt, 0, slotbuf, &const16_regno)
|
||
|| xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
|
||
&const16_regno)
|
||
|| const16_regno != regno)
|
||
return XTENSA_UNDEFINED;
|
||
}
|
||
else
|
||
return XTENSA_UNDEFINED;
|
||
|
||
/* Next instruction should be an CALLXn with operand 0 == regno. */
|
||
offset += xtensa_format_length (isa, fmt);
|
||
xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
|
||
fmt = xtensa_format_decode (isa, insnbuf);
|
||
if (fmt == XTENSA_UNDEFINED
|
||
|| xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
|
||
return XTENSA_UNDEFINED;
|
||
opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
|
||
if (opcode == XTENSA_UNDEFINED
|
||
|| !is_indirect_call_opcode (opcode))
|
||
return XTENSA_UNDEFINED;
|
||
|
||
if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
|
||
fmt, 0, slotbuf, &call_regno)
|
||
|| xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
|
||
&call_regno))
|
||
return XTENSA_UNDEFINED;
|
||
|
||
if (call_regno != regno)
|
||
return XTENSA_UNDEFINED;
|
||
|
||
return opcode;
|
||
}
|
||
|
||
|
||
/* Data structures used during relaxation. */
|
||
|
||
/* r_reloc: relocation values. */
|
||
|
||
/* Through the relaxation process, we need to keep track of the values
|
||
that will result from evaluating relocations. The standard ELF
|
||
relocation structure is not sufficient for this purpose because we're
|
||
operating on multiple input files at once, so we need to know which
|
||
input file a relocation refers to. The r_reloc structure thus
|
||
records both the input file (bfd) and ELF relocation.
|
||
|
||
For efficiency, an r_reloc also contains a "target_offset" field to
|
||
cache the target-section-relative offset value that is represented by
|
||
the relocation.
|
||
|
||
The r_reloc also contains a virtual offset that allows multiple
|
||
inserted literals to be placed at the same "address" with
|
||
different offsets. */
|
||
|
||
typedef struct r_reloc_struct r_reloc;
|
||
|
||
struct r_reloc_struct
|
||
{
|
||
bfd *abfd;
|
||
Elf_Internal_Rela rela;
|
||
bfd_vma target_offset;
|
||
bfd_vma virtual_offset;
|
||
};
|
||
|
||
|
||
/* The r_reloc structure is included by value in literal_value, but not
|
||
every literal_value has an associated relocation -- some are simple
|
||
constants. In such cases, we set all the fields in the r_reloc
|
||
struct to zero. The r_reloc_is_const function should be used to
|
||
detect this case. */
|
||
|
||
static bfd_boolean
|
||
r_reloc_is_const (const r_reloc *r_rel)
|
||
{
|
||
return (r_rel->abfd == NULL);
|
||
}
|
||
|
||
|
||
static bfd_vma
|
||
r_reloc_get_target_offset (const r_reloc *r_rel)
|
||
{
|
||
bfd_vma target_offset;
|
||
unsigned long r_symndx;
|
||
|
||
BFD_ASSERT (!r_reloc_is_const (r_rel));
|
||
r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
|
||
target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
|
||
return (target_offset + r_rel->rela.r_addend);
|
||
}
|
||
|
||
|
||
static struct elf_link_hash_entry *
|
||
r_reloc_get_hash_entry (const r_reloc *r_rel)
|
||
{
|
||
unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
|
||
return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
|
||
}
|
||
|
||
|
||
static asection *
|
||
r_reloc_get_section (const r_reloc *r_rel)
|
||
{
|
||
unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
|
||
return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
r_reloc_is_defined (const r_reloc *r_rel)
|
||
{
|
||
asection *sec;
|
||
if (r_rel == NULL)
|
||
return FALSE;
|
||
|
||
sec = r_reloc_get_section (r_rel);
|
||
if (sec == bfd_abs_section_ptr
|
||
|| sec == bfd_com_section_ptr
|
||
|| sec == bfd_und_section_ptr)
|
||
return FALSE;
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
static void
|
||
r_reloc_init (r_reloc *r_rel,
|
||
bfd *abfd,
|
||
Elf_Internal_Rela *irel,
|
||
bfd_byte *contents,
|
||
bfd_size_type content_length)
|
||
{
|
||
int r_type;
|
||
reloc_howto_type *howto;
|
||
|
||
if (irel)
|
||
{
|
||
r_rel->rela = *irel;
|
||
r_rel->abfd = abfd;
|
||
r_rel->target_offset = r_reloc_get_target_offset (r_rel);
|
||
r_rel->virtual_offset = 0;
|
||
r_type = ELF32_R_TYPE (r_rel->rela.r_info);
|
||
howto = &elf_howto_table[r_type];
|
||
if (howto->partial_inplace)
|
||
{
|
||
bfd_vma inplace_val;
|
||
BFD_ASSERT (r_rel->rela.r_offset < content_length);
|
||
|
||
inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
|
||
r_rel->target_offset += inplace_val;
|
||
}
|
||
}
|
||
else
|
||
memset (r_rel, 0, sizeof (r_reloc));
|
||
}
|
||
|
||
|
||
#if DEBUG
|
||
|
||
static void
|
||
print_r_reloc (FILE *fp, const r_reloc *r_rel)
|
||
{
|
||
if (r_reloc_is_defined (r_rel))
|
||
{
|
||
asection *sec = r_reloc_get_section (r_rel);
|
||
fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
|
||
}
|
||
else if (r_reloc_get_hash_entry (r_rel))
|
||
fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
|
||
else
|
||
fprintf (fp, " ?? + ");
|
||
|
||
fprintf_vma (fp, r_rel->target_offset);
|
||
if (r_rel->virtual_offset)
|
||
{
|
||
fprintf (fp, " + ");
|
||
fprintf_vma (fp, r_rel->virtual_offset);
|
||
}
|
||
|
||
fprintf (fp, ")");
|
||
}
|
||
|
||
#endif /* DEBUG */
|
||
|
||
|
||
/* source_reloc: relocations that reference literals. */
|
||
|
||
/* To determine whether literals can be coalesced, we need to first
|
||
record all the relocations that reference the literals. The
|
||
source_reloc structure below is used for this purpose. The
|
||
source_reloc entries are kept in a per-literal-section array, sorted
|
||
by offset within the literal section (i.e., target offset).
|
||
|
||
The source_sec and r_rel.rela.r_offset fields identify the source of
|
||
the relocation. The r_rel field records the relocation value, i.e.,
|
||
the offset of the literal being referenced. The opnd field is needed
|
||
to determine the range of the immediate field to which the relocation
|
||
applies, so we can determine whether another literal with the same
|
||
value is within range. The is_null field is true when the relocation
|
||
is being removed (e.g., when an L32R is being removed due to a CALLX
|
||
that is converted to a direct CALL). */
|
||
|
||
typedef struct source_reloc_struct source_reloc;
|
||
|
||
struct source_reloc_struct
|
||
{
|
||
asection *source_sec;
|
||
r_reloc r_rel;
|
||
xtensa_opcode opcode;
|
||
int opnd;
|
||
bfd_boolean is_null;
|
||
bfd_boolean is_abs_literal;
|
||
};
|
||
|
||
|
||
static void
|
||
init_source_reloc (source_reloc *reloc,
|
||
asection *source_sec,
|
||
const r_reloc *r_rel,
|
||
xtensa_opcode opcode,
|
||
int opnd,
|
||
bfd_boolean is_abs_literal)
|
||
{
|
||
reloc->source_sec = source_sec;
|
||
reloc->r_rel = *r_rel;
|
||
reloc->opcode = opcode;
|
||
reloc->opnd = opnd;
|
||
reloc->is_null = FALSE;
|
||
reloc->is_abs_literal = is_abs_literal;
|
||
}
|
||
|
||
|
||
/* Find the source_reloc for a particular source offset and relocation
|
||
type. Note that the array is sorted by _target_ offset, so this is
|
||
just a linear search. */
|
||
|
||
static source_reloc *
|
||
find_source_reloc (source_reloc *src_relocs,
|
||
int src_count,
|
||
asection *sec,
|
||
Elf_Internal_Rela *irel)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < src_count; i++)
|
||
{
|
||
if (src_relocs[i].source_sec == sec
|
||
&& src_relocs[i].r_rel.rela.r_offset == irel->r_offset
|
||
&& (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
|
||
== ELF32_R_TYPE (irel->r_info)))
|
||
return &src_relocs[i];
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
|
||
static int
|
||
source_reloc_compare (const void *ap, const void *bp)
|
||
{
|
||
const source_reloc *a = (const source_reloc *) ap;
|
||
const source_reloc *b = (const source_reloc *) bp;
|
||
|
||
if (a->r_rel.target_offset != b->r_rel.target_offset)
|
||
return (a->r_rel.target_offset - b->r_rel.target_offset);
|
||
|
||
/* We don't need to sort on these criteria for correctness,
|
||
but enforcing a more strict ordering prevents unstable qsort
|
||
from behaving differently with different implementations.
|
||
Without the code below we get correct but different results
|
||
on Solaris 2.7 and 2.8. We would like to always produce the
|
||
same results no matter the host. */
|
||
|
||
if ((!a->is_null) - (!b->is_null))
|
||
return ((!a->is_null) - (!b->is_null));
|
||
return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
|
||
}
|
||
|
||
|
||
/* Literal values and value hash tables. */
|
||
|
||
/* Literals with the same value can be coalesced. The literal_value
|
||
structure records the value of a literal: the "r_rel" field holds the
|
||
information from the relocation on the literal (if there is one) and
|
||
the "value" field holds the contents of the literal word itself.
|
||
|
||
The value_map structure records a literal value along with the
|
||
location of a literal holding that value. The value_map hash table
|
||
is indexed by the literal value, so that we can quickly check if a
|
||
particular literal value has been seen before and is thus a candidate
|
||
for coalescing. */
|
||
|
||
typedef struct literal_value_struct literal_value;
|
||
typedef struct value_map_struct value_map;
|
||
typedef struct value_map_hash_table_struct value_map_hash_table;
|
||
|
||
struct literal_value_struct
|
||
{
|
||
r_reloc r_rel;
|
||
unsigned long value;
|
||
bfd_boolean is_abs_literal;
|
||
};
|
||
|
||
struct value_map_struct
|
||
{
|
||
literal_value val; /* The literal value. */
|
||
r_reloc loc; /* Location of the literal. */
|
||
value_map *next;
|
||
};
|
||
|
||
struct value_map_hash_table_struct
|
||
{
|
||
unsigned bucket_count;
|
||
value_map **buckets;
|
||
unsigned count;
|
||
bfd_boolean has_last_loc;
|
||
r_reloc last_loc;
|
||
};
|
||
|
||
|
||
static void
|
||
init_literal_value (literal_value *lit,
|
||
const r_reloc *r_rel,
|
||
unsigned long value,
|
||
bfd_boolean is_abs_literal)
|
||
{
|
||
lit->r_rel = *r_rel;
|
||
lit->value = value;
|
||
lit->is_abs_literal = is_abs_literal;
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
literal_value_equal (const literal_value *src1,
|
||
const literal_value *src2,
|
||
bfd_boolean final_static_link)
|
||
{
|
||
struct elf_link_hash_entry *h1, *h2;
|
||
|
||
if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
|
||
return FALSE;
|
||
|
||
if (r_reloc_is_const (&src1->r_rel))
|
||
return (src1->value == src2->value);
|
||
|
||
if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
|
||
!= ELF32_R_TYPE (src2->r_rel.rela.r_info))
|
||
return FALSE;
|
||
|
||
if (src1->r_rel.target_offset != src2->r_rel.target_offset)
|
||
return FALSE;
|
||
|
||
if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
|
||
return FALSE;
|
||
|
||
if (src1->value != src2->value)
|
||
return FALSE;
|
||
|
||
/* Now check for the same section (if defined) or the same elf_hash
|
||
(if undefined or weak). */
|
||
h1 = r_reloc_get_hash_entry (&src1->r_rel);
|
||
h2 = r_reloc_get_hash_entry (&src2->r_rel);
|
||
if (r_reloc_is_defined (&src1->r_rel)
|
||
&& (final_static_link
|
||
|| ((!h1 || h1->root.type != bfd_link_hash_defweak)
|
||
&& (!h2 || h2->root.type != bfd_link_hash_defweak))))
|
||
{
|
||
if (r_reloc_get_section (&src1->r_rel)
|
||
!= r_reloc_get_section (&src2->r_rel))
|
||
return FALSE;
|
||
}
|
||
else
|
||
{
|
||
/* Require that the hash entries (i.e., symbols) be identical. */
|
||
if (h1 != h2 || h1 == 0)
|
||
return FALSE;
|
||
}
|
||
|
||
if (src1->is_abs_literal != src2->is_abs_literal)
|
||
return FALSE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Must be power of 2. */
|
||
#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
|
||
|
||
static value_map_hash_table *
|
||
value_map_hash_table_init (void)
|
||
{
|
||
value_map_hash_table *values;
|
||
|
||
values = (value_map_hash_table *)
|
||
bfd_zmalloc (sizeof (value_map_hash_table));
|
||
values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
|
||
values->count = 0;
|
||
values->buckets = (value_map **)
|
||
bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
|
||
if (values->buckets == NULL)
|
||
{
|
||
free (values);
|
||
return NULL;
|
||
}
|
||
values->has_last_loc = FALSE;
|
||
|
||
return values;
|
||
}
|
||
|
||
|
||
static void
|
||
value_map_hash_table_delete (value_map_hash_table *table)
|
||
{
|
||
free (table->buckets);
|
||
free (table);
|
||
}
|
||
|
||
|
||
static unsigned
|
||
hash_bfd_vma (bfd_vma val)
|
||
{
|
||
return (val >> 2) + (val >> 10);
|
||
}
|
||
|
||
|
||
static unsigned
|
||
literal_value_hash (const literal_value *src)
|
||
{
|
||
unsigned hash_val;
|
||
|
||
hash_val = hash_bfd_vma (src->value);
|
||
if (!r_reloc_is_const (&src->r_rel))
|
||
{
|
||
void *sec_or_hash;
|
||
|
||
hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
|
||
hash_val += hash_bfd_vma (src->r_rel.target_offset);
|
||
hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
|
||
|
||
/* Now check for the same section and the same elf_hash. */
|
||
if (r_reloc_is_defined (&src->r_rel))
|
||
sec_or_hash = r_reloc_get_section (&src->r_rel);
|
||
else
|
||
sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
|
||
hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
|
||
}
|
||
return hash_val;
|
||
}
|
||
|
||
|
||
/* Check if the specified literal_value has been seen before. */
|
||
|
||
static value_map *
|
||
value_map_get_cached_value (value_map_hash_table *map,
|
||
const literal_value *val,
|
||
bfd_boolean final_static_link)
|
||
{
|
||
value_map *map_e;
|
||
value_map *bucket;
|
||
unsigned idx;
|
||
|
||
idx = literal_value_hash (val);
|
||
idx = idx & (map->bucket_count - 1);
|
||
bucket = map->buckets[idx];
|
||
for (map_e = bucket; map_e; map_e = map_e->next)
|
||
{
|
||
if (literal_value_equal (&map_e->val, val, final_static_link))
|
||
return map_e;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* Record a new literal value. It is illegal to call this if VALUE
|
||
already has an entry here. */
|
||
|
||
static value_map *
|
||
add_value_map (value_map_hash_table *map,
|
||
const literal_value *val,
|
||
const r_reloc *loc,
|
||
bfd_boolean final_static_link)
|
||
{
|
||
value_map **bucket_p;
|
||
unsigned idx;
|
||
|
||
value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
|
||
if (val_e == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return NULL;
|
||
}
|
||
|
||
BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
|
||
val_e->val = *val;
|
||
val_e->loc = *loc;
|
||
|
||
idx = literal_value_hash (val);
|
||
idx = idx & (map->bucket_count - 1);
|
||
bucket_p = &map->buckets[idx];
|
||
|
||
val_e->next = *bucket_p;
|
||
*bucket_p = val_e;
|
||
map->count++;
|
||
/* FIXME: Consider resizing the hash table if we get too many entries. */
|
||
|
||
return val_e;
|
||
}
|
||
|
||
|
||
/* Lists of text actions (ta_) for narrowing, widening, longcall
|
||
conversion, space fill, code & literal removal, etc. */
|
||
|
||
/* The following text actions are generated:
|
||
|
||
"ta_remove_insn" remove an instruction or instructions
|
||
"ta_remove_longcall" convert longcall to call
|
||
"ta_convert_longcall" convert longcall to nop/call
|
||
"ta_narrow_insn" narrow a wide instruction
|
||
"ta_widen" widen a narrow instruction
|
||
"ta_fill" add fill or remove fill
|
||
removed < 0 is a fill; branches to the fill address will be
|
||
changed to address + fill size (e.g., address - removed)
|
||
removed >= 0 branches to the fill address will stay unchanged
|
||
"ta_remove_literal" remove a literal; this action is
|
||
indicated when a literal is removed
|
||
or replaced.
|
||
"ta_add_literal" insert a new literal; this action is
|
||
indicated when a literal has been moved.
|
||
It may use a virtual_offset because
|
||
multiple literals can be placed at the
|
||
same location.
|
||
|
||
For each of these text actions, we also record the number of bytes
|
||
removed by performing the text action. In the case of a "ta_widen"
|
||
or a "ta_fill" that adds space, the removed_bytes will be negative. */
|
||
|
||
typedef struct text_action_struct text_action;
|
||
typedef struct text_action_list_struct text_action_list;
|
||
typedef enum text_action_enum_t text_action_t;
|
||
|
||
enum text_action_enum_t
|
||
{
|
||
ta_none,
|
||
ta_remove_insn, /* removed = -size */
|
||
ta_remove_longcall, /* removed = -size */
|
||
ta_convert_longcall, /* removed = 0 */
|
||
ta_narrow_insn, /* removed = -1 */
|
||
ta_widen_insn, /* removed = +1 */
|
||
ta_fill, /* removed = +size */
|
||
ta_remove_literal,
|
||
ta_add_literal
|
||
};
|
||
|
||
|
||
/* Structure for a text action record. */
|
||
struct text_action_struct
|
||
{
|
||
text_action_t action;
|
||
asection *sec; /* Optional */
|
||
bfd_vma offset;
|
||
bfd_vma virtual_offset; /* Zero except for adding literals. */
|
||
int removed_bytes;
|
||
literal_value value; /* Only valid when adding literals. */
|
||
};
|
||
|
||
struct removal_by_action_entry_struct
|
||
{
|
||
bfd_vma offset;
|
||
int removed;
|
||
int eq_removed;
|
||
int eq_removed_before_fill;
|
||
};
|
||
typedef struct removal_by_action_entry_struct removal_by_action_entry;
|
||
|
||
struct removal_by_action_map_struct
|
||
{
|
||
unsigned n_entries;
|
||
removal_by_action_entry *entry;
|
||
};
|
||
typedef struct removal_by_action_map_struct removal_by_action_map;
|
||
|
||
|
||
/* List of all of the actions taken on a text section. */
|
||
struct text_action_list_struct
|
||
{
|
||
unsigned count;
|
||
splay_tree tree;
|
||
removal_by_action_map map;
|
||
};
|
||
|
||
|
||
static text_action *
|
||
find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
|
||
{
|
||
text_action a;
|
||
|
||
/* It is not necessary to fill at the end of a section. */
|
||
if (sec->size == offset)
|
||
return NULL;
|
||
|
||
a.offset = offset;
|
||
a.action = ta_fill;
|
||
|
||
splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
|
||
if (node)
|
||
return (text_action *)node->value;
|
||
return NULL;
|
||
}
|
||
|
||
|
||
static int
|
||
compute_removed_action_diff (const text_action *ta,
|
||
asection *sec,
|
||
bfd_vma offset,
|
||
int removed,
|
||
int removable_space)
|
||
{
|
||
int new_removed;
|
||
int current_removed = 0;
|
||
|
||
if (ta)
|
||
current_removed = ta->removed_bytes;
|
||
|
||
BFD_ASSERT (ta == NULL || ta->offset == offset);
|
||
BFD_ASSERT (ta == NULL || ta->action == ta_fill);
|
||
|
||
/* It is not necessary to fill at the end of a section. Clean this up. */
|
||
if (sec->size == offset)
|
||
new_removed = removable_space - 0;
|
||
else
|
||
{
|
||
int space;
|
||
int added = -removed - current_removed;
|
||
/* Ignore multiples of the section alignment. */
|
||
added = ((1 << sec->alignment_power) - 1) & added;
|
||
new_removed = (-added);
|
||
|
||
/* Modify for removable. */
|
||
space = removable_space - new_removed;
|
||
new_removed = (removable_space
|
||
- (((1 << sec->alignment_power) - 1) & space));
|
||
}
|
||
return (new_removed - current_removed);
|
||
}
|
||
|
||
|
||
static void
|
||
adjust_fill_action (text_action *ta, int fill_diff)
|
||
{
|
||
ta->removed_bytes += fill_diff;
|
||
}
|
||
|
||
|
||
static int
|
||
text_action_compare (splay_tree_key a, splay_tree_key b)
|
||
{
|
||
text_action *pa = (text_action *)a;
|
||
text_action *pb = (text_action *)b;
|
||
static const int action_priority[] =
|
||
{
|
||
[ta_fill] = 0,
|
||
[ta_none] = 1,
|
||
[ta_convert_longcall] = 2,
|
||
[ta_narrow_insn] = 3,
|
||
[ta_remove_insn] = 4,
|
||
[ta_remove_longcall] = 5,
|
||
[ta_remove_literal] = 6,
|
||
[ta_widen_insn] = 7,
|
||
[ta_add_literal] = 8,
|
||
};
|
||
|
||
if (pa->offset == pb->offset)
|
||
{
|
||
if (pa->action == pb->action)
|
||
return 0;
|
||
return action_priority[pa->action] - action_priority[pb->action];
|
||
}
|
||
else
|
||
return pa->offset < pb->offset ? -1 : 1;
|
||
}
|
||
|
||
static text_action *
|
||
action_first (text_action_list *action_list)
|
||
{
|
||
splay_tree_node node = splay_tree_min (action_list->tree);
|
||
return node ? (text_action *)node->value : NULL;
|
||
}
|
||
|
||
static text_action *
|
||
action_next (text_action_list *action_list, text_action *action)
|
||
{
|
||
splay_tree_node node = splay_tree_successor (action_list->tree,
|
||
(splay_tree_key)action);
|
||
return node ? (text_action *)node->value : NULL;
|
||
}
|
||
|
||
/* Add a modification action to the text. For the case of adding or
|
||
removing space, modify any current fill and assume that
|
||
"unreachable_space" bytes can be freely contracted. Note that a
|
||
negative removed value is a fill. */
|
||
|
||
static void
|
||
text_action_add (text_action_list *l,
|
||
text_action_t action,
|
||
asection *sec,
|
||
bfd_vma offset,
|
||
int removed)
|
||
{
|
||
text_action *ta;
|
||
text_action a;
|
||
|
||
/* It is not necessary to fill at the end of a section. */
|
||
if (action == ta_fill && sec->size == offset)
|
||
return;
|
||
|
||
/* It is not necessary to fill 0 bytes. */
|
||
if (action == ta_fill && removed == 0)
|
||
return;
|
||
|
||
a.action = action;
|
||
a.offset = offset;
|
||
|
||
if (action == ta_fill)
|
||
{
|
||
splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
|
||
|
||
if (node)
|
||
{
|
||
ta = (text_action *)node->value;
|
||
ta->removed_bytes += removed;
|
||
return;
|
||
}
|
||
}
|
||
else
|
||
BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)&a) == NULL);
|
||
|
||
ta = (text_action *) bfd_zmalloc (sizeof (text_action));
|
||
ta->action = action;
|
||
ta->sec = sec;
|
||
ta->offset = offset;
|
||
ta->removed_bytes = removed;
|
||
splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
|
||
++l->count;
|
||
}
|
||
|
||
|
||
static void
|
||
text_action_add_literal (text_action_list *l,
|
||
text_action_t action,
|
||
const r_reloc *loc,
|
||
const literal_value *value,
|
||
int removed)
|
||
{
|
||
text_action *ta;
|
||
asection *sec = r_reloc_get_section (loc);
|
||
bfd_vma offset = loc->target_offset;
|
||
bfd_vma virtual_offset = loc->virtual_offset;
|
||
|
||
BFD_ASSERT (action == ta_add_literal);
|
||
|
||
/* Create a new record and fill it up. */
|
||
ta = (text_action *) bfd_zmalloc (sizeof (text_action));
|
||
ta->action = action;
|
||
ta->sec = sec;
|
||
ta->offset = offset;
|
||
ta->virtual_offset = virtual_offset;
|
||
ta->value = *value;
|
||
ta->removed_bytes = removed;
|
||
|
||
BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)ta) == NULL);
|
||
splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
|
||
++l->count;
|
||
}
|
||
|
||
|
||
/* Find the total offset adjustment for the relaxations specified by
|
||
text_actions, beginning from a particular starting action. This is
|
||
typically used from offset_with_removed_text to search an entire list of
|
||
actions, but it may also be called directly when adjusting adjacent offsets
|
||
so that each search may begin where the previous one left off. */
|
||
|
||
static int
|
||
removed_by_actions (text_action_list *action_list,
|
||
text_action **p_start_action,
|
||
bfd_vma offset,
|
||
bfd_boolean before_fill)
|
||
{
|
||
text_action *r;
|
||
int removed = 0;
|
||
|
||
r = *p_start_action;
|
||
if (r)
|
||
{
|
||
splay_tree_node node = splay_tree_lookup (action_list->tree,
|
||
(splay_tree_key)r);
|
||
BFD_ASSERT (node != NULL && r == (text_action *)node->value);
|
||
}
|
||
|
||
while (r)
|
||
{
|
||
if (r->offset > offset)
|
||
break;
|
||
|
||
if (r->offset == offset
|
||
&& (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
|
||
break;
|
||
|
||
removed += r->removed_bytes;
|
||
|
||
r = action_next (action_list, r);
|
||
}
|
||
|
||
*p_start_action = r;
|
||
return removed;
|
||
}
|
||
|
||
|
||
static bfd_vma
|
||
offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
|
||
{
|
||
text_action *r = action_first (action_list);
|
||
|
||
return offset - removed_by_actions (action_list, &r, offset, FALSE);
|
||
}
|
||
|
||
|
||
static unsigned
|
||
action_list_count (text_action_list *action_list)
|
||
{
|
||
return action_list->count;
|
||
}
|
||
|
||
typedef struct map_action_fn_context_struct map_action_fn_context;
|
||
struct map_action_fn_context_struct
|
||
{
|
||
int removed;
|
||
removal_by_action_map map;
|
||
bfd_boolean eq_complete;
|
||
};
|
||
|
||
static int
|
||
map_action_fn (splay_tree_node node, void *p)
|
||
{
|
||
map_action_fn_context *ctx = p;
|
||
text_action *r = (text_action *)node->value;
|
||
removal_by_action_entry *ientry = ctx->map.entry + ctx->map.n_entries;
|
||
|
||
if (ctx->map.n_entries && (ientry - 1)->offset == r->offset)
|
||
{
|
||
--ientry;
|
||
}
|
||
else
|
||
{
|
||
++ctx->map.n_entries;
|
||
ctx->eq_complete = FALSE;
|
||
ientry->offset = r->offset;
|
||
ientry->eq_removed_before_fill = ctx->removed;
|
||
}
|
||
|
||
if (!ctx->eq_complete)
|
||
{
|
||
if (r->action != ta_fill || r->removed_bytes >= 0)
|
||
{
|
||
ientry->eq_removed = ctx->removed;
|
||
ctx->eq_complete = TRUE;
|
||
}
|
||
else
|
||
ientry->eq_removed = ctx->removed + r->removed_bytes;
|
||
}
|
||
|
||
ctx->removed += r->removed_bytes;
|
||
ientry->removed = ctx->removed;
|
||
return 0;
|
||
}
|
||
|
||
static void
|
||
map_removal_by_action (text_action_list *action_list)
|
||
{
|
||
map_action_fn_context ctx;
|
||
|
||
ctx.removed = 0;
|
||
ctx.map.n_entries = 0;
|
||
ctx.map.entry = bfd_malloc (action_list_count (action_list) *
|
||
sizeof (removal_by_action_entry));
|
||
ctx.eq_complete = FALSE;
|
||
|
||
splay_tree_foreach (action_list->tree, map_action_fn, &ctx);
|
||
action_list->map = ctx.map;
|
||
}
|
||
|
||
static int
|
||
removed_by_actions_map (text_action_list *action_list, bfd_vma offset,
|
||
bfd_boolean before_fill)
|
||
{
|
||
unsigned a, b;
|
||
|
||
if (!action_list->map.entry)
|
||
map_removal_by_action (action_list);
|
||
|
||
if (!action_list->map.n_entries)
|
||
return 0;
|
||
|
||
a = 0;
|
||
b = action_list->map.n_entries;
|
||
|
||
while (b - a > 1)
|
||
{
|
||
unsigned c = (a + b) / 2;
|
||
|
||
if (action_list->map.entry[c].offset <= offset)
|
||
a = c;
|
||
else
|
||
b = c;
|
||
}
|
||
|
||
if (action_list->map.entry[a].offset < offset)
|
||
{
|
||
return action_list->map.entry[a].removed;
|
||
}
|
||
else if (action_list->map.entry[a].offset == offset)
|
||
{
|
||
return before_fill ?
|
||
action_list->map.entry[a].eq_removed_before_fill :
|
||
action_list->map.entry[a].eq_removed;
|
||
}
|
||
else
|
||
{
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
static bfd_vma
|
||
offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset)
|
||
{
|
||
int removed = removed_by_actions_map (action_list, offset, FALSE);
|
||
return offset - removed;
|
||
}
|
||
|
||
|
||
/* The find_insn_action routine will only find non-fill actions. */
|
||
|
||
static text_action *
|
||
find_insn_action (text_action_list *action_list, bfd_vma offset)
|
||
{
|
||
static const text_action_t action[] =
|
||
{
|
||
ta_convert_longcall,
|
||
ta_remove_longcall,
|
||
ta_widen_insn,
|
||
ta_narrow_insn,
|
||
ta_remove_insn,
|
||
};
|
||
text_action a;
|
||
unsigned i;
|
||
|
||
a.offset = offset;
|
||
for (i = 0; i < sizeof (action) / sizeof (*action); ++i)
|
||
{
|
||
splay_tree_node node;
|
||
|
||
a.action = action[i];
|
||
node = splay_tree_lookup (action_list->tree, (splay_tree_key)&a);
|
||
if (node)
|
||
return (text_action *)node->value;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
|
||
#if DEBUG
|
||
|
||
static void
|
||
print_action (FILE *fp, text_action *r)
|
||
{
|
||
const char *t = "unknown";
|
||
switch (r->action)
|
||
{
|
||
case ta_remove_insn:
|
||
t = "remove_insn"; break;
|
||
case ta_remove_longcall:
|
||
t = "remove_longcall"; break;
|
||
case ta_convert_longcall:
|
||
t = "convert_longcall"; break;
|
||
case ta_narrow_insn:
|
||
t = "narrow_insn"; break;
|
||
case ta_widen_insn:
|
||
t = "widen_insn"; break;
|
||
case ta_fill:
|
||
t = "fill"; break;
|
||
case ta_none:
|
||
t = "none"; break;
|
||
case ta_remove_literal:
|
||
t = "remove_literal"; break;
|
||
case ta_add_literal:
|
||
t = "add_literal"; break;
|
||
}
|
||
|
||
fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
|
||
r->sec->owner->filename,
|
||
r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
|
||
}
|
||
|
||
static int
|
||
print_action_list_fn (splay_tree_node node, void *p)
|
||
{
|
||
text_action *r = (text_action *)node->value;
|
||
|
||
print_action (p, r);
|
||
return 0;
|
||
}
|
||
|
||
static void
|
||
print_action_list (FILE *fp, text_action_list *action_list)
|
||
{
|
||
fprintf (fp, "Text Action\n");
|
||
splay_tree_foreach (action_list->tree, print_action_list_fn, fp);
|
||
}
|
||
|
||
#endif /* DEBUG */
|
||
|
||
|
||
/* Lists of literals being coalesced or removed. */
|
||
|
||
/* In the usual case, the literal identified by "from" is being
|
||
coalesced with another literal identified by "to". If the literal is
|
||
unused and is being removed altogether, "to.abfd" will be NULL.
|
||
The removed_literal entries are kept on a per-section list, sorted
|
||
by the "from" offset field. */
|
||
|
||
typedef struct removed_literal_struct removed_literal;
|
||
typedef struct removed_literal_map_entry_struct removed_literal_map_entry;
|
||
typedef struct removed_literal_list_struct removed_literal_list;
|
||
|
||
struct removed_literal_struct
|
||
{
|
||
r_reloc from;
|
||
r_reloc to;
|
||
removed_literal *next;
|
||
};
|
||
|
||
struct removed_literal_map_entry_struct
|
||
{
|
||
bfd_vma addr;
|
||
removed_literal *literal;
|
||
};
|
||
|
||
struct removed_literal_list_struct
|
||
{
|
||
removed_literal *head;
|
||
removed_literal *tail;
|
||
|
||
unsigned n_map;
|
||
removed_literal_map_entry *map;
|
||
};
|
||
|
||
|
||
/* Record that the literal at "from" is being removed. If "to" is not
|
||
NULL, the "from" literal is being coalesced with the "to" literal. */
|
||
|
||
static void
|
||
add_removed_literal (removed_literal_list *removed_list,
|
||
const r_reloc *from,
|
||
const r_reloc *to)
|
||
{
|
||
removed_literal *r, *new_r, *next_r;
|
||
|
||
new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
|
||
|
||
new_r->from = *from;
|
||
if (to)
|
||
new_r->to = *to;
|
||
else
|
||
new_r->to.abfd = NULL;
|
||
new_r->next = NULL;
|
||
|
||
r = removed_list->head;
|
||
if (r == NULL)
|
||
{
|
||
removed_list->head = new_r;
|
||
removed_list->tail = new_r;
|
||
}
|
||
/* Special check for common case of append. */
|
||
else if (removed_list->tail->from.target_offset < from->target_offset)
|
||
{
|
||
removed_list->tail->next = new_r;
|
||
removed_list->tail = new_r;
|
||
}
|
||
else
|
||
{
|
||
while (r->from.target_offset < from->target_offset && r->next)
|
||
{
|
||
r = r->next;
|
||
}
|
||
next_r = r->next;
|
||
r->next = new_r;
|
||
new_r->next = next_r;
|
||
if (next_r == NULL)
|
||
removed_list->tail = new_r;
|
||
}
|
||
}
|
||
|
||
static void
|
||
map_removed_literal (removed_literal_list *removed_list)
|
||
{
|
||
unsigned n_map = 0;
|
||
unsigned i;
|
||
removed_literal_map_entry *map = NULL;
|
||
removed_literal *r = removed_list->head;
|
||
|
||
for (i = 0; r; ++i, r = r->next)
|
||
{
|
||
if (i == n_map)
|
||
{
|
||
n_map = (n_map * 2) + 2;
|
||
map = bfd_realloc (map, n_map * sizeof (*map));
|
||
}
|
||
map[i].addr = r->from.target_offset;
|
||
map[i].literal = r;
|
||
}
|
||
removed_list->map = map;
|
||
removed_list->n_map = i;
|
||
}
|
||
|
||
static int
|
||
removed_literal_compare (const void *a, const void *b)
|
||
{
|
||
const removed_literal_map_entry *pa = a;
|
||
const removed_literal_map_entry *pb = b;
|
||
|
||
if (pa->addr == pb->addr)
|
||
return 0;
|
||
else
|
||
return pa->addr < pb->addr ? -1 : 1;
|
||
}
|
||
|
||
/* Check if the list of removed literals contains an entry for the
|
||
given address. Return the entry if found. */
|
||
|
||
static removed_literal *
|
||
find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
|
||
{
|
||
removed_literal_map_entry *p;
|
||
removed_literal *r = NULL;
|
||
|
||
if (removed_list->map == NULL)
|
||
map_removed_literal (removed_list);
|
||
|
||
p = bsearch (&addr, removed_list->map, removed_list->n_map,
|
||
sizeof (*removed_list->map), removed_literal_compare);
|
||
if (p)
|
||
{
|
||
while (p != removed_list->map && (p - 1)->addr == addr)
|
||
--p;
|
||
r = p->literal;
|
||
}
|
||
return r;
|
||
}
|
||
|
||
|
||
#if DEBUG
|
||
|
||
static void
|
||
print_removed_literals (FILE *fp, removed_literal_list *removed_list)
|
||
{
|
||
removed_literal *r;
|
||
r = removed_list->head;
|
||
if (r)
|
||
fprintf (fp, "Removed Literals\n");
|
||
for (; r != NULL; r = r->next)
|
||
{
|
||
print_r_reloc (fp, &r->from);
|
||
fprintf (fp, " => ");
|
||
if (r->to.abfd == NULL)
|
||
fprintf (fp, "REMOVED");
|
||
else
|
||
print_r_reloc (fp, &r->to);
|
||
fprintf (fp, "\n");
|
||
}
|
||
}
|
||
|
||
#endif /* DEBUG */
|
||
|
||
|
||
/* Per-section data for relaxation. */
|
||
|
||
typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
|
||
|
||
struct xtensa_relax_info_struct
|
||
{
|
||
bfd_boolean is_relaxable_literal_section;
|
||
bfd_boolean is_relaxable_asm_section;
|
||
int visited; /* Number of times visited. */
|
||
|
||
source_reloc *src_relocs; /* Array[src_count]. */
|
||
int src_count;
|
||
int src_next; /* Next src_relocs entry to assign. */
|
||
|
||
removed_literal_list removed_list;
|
||
text_action_list action_list;
|
||
|
||
reloc_bfd_fix *fix_list;
|
||
reloc_bfd_fix *fix_array;
|
||
unsigned fix_array_count;
|
||
|
||
/* Support for expanding the reloc array that is stored
|
||
in the section structure. If the relocations have been
|
||
reallocated, the newly allocated relocations will be referenced
|
||
here along with the actual size allocated. The relocation
|
||
count will always be found in the section structure. */
|
||
Elf_Internal_Rela *allocated_relocs;
|
||
unsigned relocs_count;
|
||
unsigned allocated_relocs_count;
|
||
};
|
||
|
||
struct elf_xtensa_section_data
|
||
{
|
||
struct bfd_elf_section_data elf;
|
||
xtensa_relax_info relax_info;
|
||
};
|
||
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
|
||
{
|
||
if (!sec->used_by_bfd)
|
||
{
|
||
struct elf_xtensa_section_data *sdata;
|
||
bfd_size_type amt = sizeof (*sdata);
|
||
|
||
sdata = bfd_zalloc (abfd, amt);
|
||
if (sdata == NULL)
|
||
return FALSE;
|
||
sec->used_by_bfd = sdata;
|
||
}
|
||
|
||
return _bfd_elf_new_section_hook (abfd, sec);
|
||
}
|
||
|
||
|
||
static xtensa_relax_info *
|
||
get_xtensa_relax_info (asection *sec)
|
||
{
|
||
struct elf_xtensa_section_data *section_data;
|
||
|
||
/* No info available if no section or if it is an output section. */
|
||
if (!sec || sec == sec->output_section)
|
||
return NULL;
|
||
|
||
section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
|
||
return §ion_data->relax_info;
|
||
}
|
||
|
||
|
||
static void
|
||
init_xtensa_relax_info (asection *sec)
|
||
{
|
||
xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
|
||
|
||
relax_info->is_relaxable_literal_section = FALSE;
|
||
relax_info->is_relaxable_asm_section = FALSE;
|
||
relax_info->visited = 0;
|
||
|
||
relax_info->src_relocs = NULL;
|
||
relax_info->src_count = 0;
|
||
relax_info->src_next = 0;
|
||
|
||
relax_info->removed_list.head = NULL;
|
||
relax_info->removed_list.tail = NULL;
|
||
|
||
relax_info->action_list.tree = splay_tree_new (text_action_compare,
|
||
NULL, NULL);
|
||
relax_info->action_list.map.n_entries = 0;
|
||
relax_info->action_list.map.entry = NULL;
|
||
|
||
relax_info->fix_list = NULL;
|
||
relax_info->fix_array = NULL;
|
||
relax_info->fix_array_count = 0;
|
||
|
||
relax_info->allocated_relocs = NULL;
|
||
relax_info->relocs_count = 0;
|
||
relax_info->allocated_relocs_count = 0;
|
||
}
|
||
|
||
|
||
/* Coalescing literals may require a relocation to refer to a section in
|
||
a different input file, but the standard relocation information
|
||
cannot express that. Instead, the reloc_bfd_fix structures are used
|
||
to "fix" the relocations that refer to sections in other input files.
|
||
These structures are kept on per-section lists. The "src_type" field
|
||
records the relocation type in case there are multiple relocations on
|
||
the same location. FIXME: This is ugly; an alternative might be to
|
||
add new symbols with the "owner" field to some other input file. */
|
||
|
||
struct reloc_bfd_fix_struct
|
||
{
|
||
asection *src_sec;
|
||
bfd_vma src_offset;
|
||
unsigned src_type; /* Relocation type. */
|
||
|
||
asection *target_sec;
|
||
bfd_vma target_offset;
|
||
bfd_boolean translated;
|
||
|
||
reloc_bfd_fix *next;
|
||
};
|
||
|
||
|
||
static reloc_bfd_fix *
|
||
reloc_bfd_fix_init (asection *src_sec,
|
||
bfd_vma src_offset,
|
||
unsigned src_type,
|
||
asection *target_sec,
|
||
bfd_vma target_offset,
|
||
bfd_boolean translated)
|
||
{
|
||
reloc_bfd_fix *fix;
|
||
|
||
fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
|
||
fix->src_sec = src_sec;
|
||
fix->src_offset = src_offset;
|
||
fix->src_type = src_type;
|
||
fix->target_sec = target_sec;
|
||
fix->target_offset = target_offset;
|
||
fix->translated = translated;
|
||
|
||
return fix;
|
||
}
|
||
|
||
|
||
static void
|
||
add_fix (asection *src_sec, reloc_bfd_fix *fix)
|
||
{
|
||
xtensa_relax_info *relax_info;
|
||
|
||
relax_info = get_xtensa_relax_info (src_sec);
|
||
fix->next = relax_info->fix_list;
|
||
relax_info->fix_list = fix;
|
||
}
|
||
|
||
|
||
static int
|
||
fix_compare (const void *ap, const void *bp)
|
||
{
|
||
const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
|
||
const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
|
||
|
||
if (a->src_offset != b->src_offset)
|
||
return (a->src_offset - b->src_offset);
|
||
return (a->src_type - b->src_type);
|
||
}
|
||
|
||
|
||
static void
|
||
cache_fix_array (asection *sec)
|
||
{
|
||
unsigned i, count = 0;
|
||
reloc_bfd_fix *r;
|
||
xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
|
||
|
||
if (relax_info == NULL)
|
||
return;
|
||
if (relax_info->fix_list == NULL)
|
||
return;
|
||
|
||
for (r = relax_info->fix_list; r != NULL; r = r->next)
|
||
count++;
|
||
|
||
relax_info->fix_array =
|
||
(reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
|
||
relax_info->fix_array_count = count;
|
||
|
||
r = relax_info->fix_list;
|
||
for (i = 0; i < count; i++, r = r->next)
|
||
{
|
||
relax_info->fix_array[count - 1 - i] = *r;
|
||
relax_info->fix_array[count - 1 - i].next = NULL;
|
||
}
|
||
|
||
qsort (relax_info->fix_array, relax_info->fix_array_count,
|
||
sizeof (reloc_bfd_fix), fix_compare);
|
||
}
|
||
|
||
|
||
static reloc_bfd_fix *
|
||
get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
|
||
{
|
||
xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
|
||
reloc_bfd_fix *rv;
|
||
reloc_bfd_fix key;
|
||
|
||
if (relax_info == NULL)
|
||
return NULL;
|
||
if (relax_info->fix_list == NULL)
|
||
return NULL;
|
||
|
||
if (relax_info->fix_array == NULL)
|
||
cache_fix_array (sec);
|
||
|
||
key.src_offset = offset;
|
||
key.src_type = type;
|
||
rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
|
||
sizeof (reloc_bfd_fix), fix_compare);
|
||
return rv;
|
||
}
|
||
|
||
|
||
/* Section caching. */
|
||
|
||
typedef struct section_cache_struct section_cache_t;
|
||
|
||
struct section_cache_struct
|
||
{
|
||
asection *sec;
|
||
|
||
bfd_byte *contents; /* Cache of the section contents. */
|
||
bfd_size_type content_length;
|
||
|
||
property_table_entry *ptbl; /* Cache of the section property table. */
|
||
unsigned pte_count;
|
||
|
||
Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
|
||
unsigned reloc_count;
|
||
};
|
||
|
||
|
||
static void
|
||
init_section_cache (section_cache_t *sec_cache)
|
||
{
|
||
memset (sec_cache, 0, sizeof (*sec_cache));
|
||
}
|
||
|
||
|
||
static void
|
||
free_section_cache (section_cache_t *sec_cache)
|
||
{
|
||
if (sec_cache->sec)
|
||
{
|
||
release_contents (sec_cache->sec, sec_cache->contents);
|
||
release_internal_relocs (sec_cache->sec, sec_cache->relocs);
|
||
if (sec_cache->ptbl)
|
||
free (sec_cache->ptbl);
|
||
}
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
section_cache_section (section_cache_t *sec_cache,
|
||
asection *sec,
|
||
struct bfd_link_info *link_info)
|
||
{
|
||
bfd *abfd;
|
||
property_table_entry *prop_table = NULL;
|
||
int ptblsize = 0;
|
||
bfd_byte *contents = NULL;
|
||
Elf_Internal_Rela *internal_relocs = NULL;
|
||
bfd_size_type sec_size;
|
||
|
||
if (sec == NULL)
|
||
return FALSE;
|
||
if (sec == sec_cache->sec)
|
||
return TRUE;
|
||
|
||
abfd = sec->owner;
|
||
sec_size = bfd_get_section_limit (abfd, sec);
|
||
|
||
/* Get the contents. */
|
||
contents = retrieve_contents (abfd, sec, link_info->keep_memory);
|
||
if (contents == NULL && sec_size != 0)
|
||
goto err;
|
||
|
||
/* Get the relocations. */
|
||
internal_relocs = retrieve_internal_relocs (abfd, sec,
|
||
link_info->keep_memory);
|
||
|
||
/* Get the entry table. */
|
||
ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
|
||
XTENSA_PROP_SEC_NAME, FALSE);
|
||
if (ptblsize < 0)
|
||
goto err;
|
||
|
||
/* Fill in the new section cache. */
|
||
free_section_cache (sec_cache);
|
||
init_section_cache (sec_cache);
|
||
|
||
sec_cache->sec = sec;
|
||
sec_cache->contents = contents;
|
||
sec_cache->content_length = sec_size;
|
||
sec_cache->relocs = internal_relocs;
|
||
sec_cache->reloc_count = sec->reloc_count;
|
||
sec_cache->pte_count = ptblsize;
|
||
sec_cache->ptbl = prop_table;
|
||
|
||
return TRUE;
|
||
|
||
err:
|
||
release_contents (sec, contents);
|
||
release_internal_relocs (sec, internal_relocs);
|
||
if (prop_table)
|
||
free (prop_table);
|
||
return FALSE;
|
||
}
|
||
|
||
|
||
/* Extended basic blocks. */
|
||
|
||
/* An ebb_struct represents an Extended Basic Block. Within this
|
||
range, we guarantee that all instructions are decodable, the
|
||
property table entries are contiguous, and no property table
|
||
specifies a segment that cannot have instructions moved. This
|
||
structure contains caches of the contents, property table and
|
||
relocations for the specified section for easy use. The range is
|
||
specified by ranges of indices for the byte offset, property table
|
||
offsets and relocation offsets. These must be consistent. */
|
||
|
||
typedef struct ebb_struct ebb_t;
|
||
|
||
struct ebb_struct
|
||
{
|
||
asection *sec;
|
||
|
||
bfd_byte *contents; /* Cache of the section contents. */
|
||
bfd_size_type content_length;
|
||
|
||
property_table_entry *ptbl; /* Cache of the section property table. */
|
||
unsigned pte_count;
|
||
|
||
Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
|
||
unsigned reloc_count;
|
||
|
||
bfd_vma start_offset; /* Offset in section. */
|
||
unsigned start_ptbl_idx; /* Offset in the property table. */
|
||
unsigned start_reloc_idx; /* Offset in the relocations. */
|
||
|
||
bfd_vma end_offset;
|
||
unsigned end_ptbl_idx;
|
||
unsigned end_reloc_idx;
|
||
|
||
bfd_boolean ends_section; /* Is this the last ebb in a section? */
|
||
|
||
/* The unreachable property table at the end of this set of blocks;
|
||
NULL if the end is not an unreachable block. */
|
||
property_table_entry *ends_unreachable;
|
||
};
|
||
|
||
|
||
enum ebb_target_enum
|
||
{
|
||
EBB_NO_ALIGN = 0,
|
||
EBB_DESIRE_TGT_ALIGN,
|
||
EBB_REQUIRE_TGT_ALIGN,
|
||
EBB_REQUIRE_LOOP_ALIGN,
|
||
EBB_REQUIRE_ALIGN
|
||
};
|
||
|
||
|
||
/* proposed_action_struct is similar to the text_action_struct except
|
||
that is represents a potential transformation, not one that will
|
||
occur. We build a list of these for an extended basic block
|
||
and use them to compute the actual actions desired. We must be
|
||
careful that the entire set of actual actions we perform do not
|
||
break any relocations that would fit if the actions were not
|
||
performed. */
|
||
|
||
typedef struct proposed_action_struct proposed_action;
|
||
|
||
struct proposed_action_struct
|
||
{
|
||
enum ebb_target_enum align_type; /* for the target alignment */
|
||
bfd_vma alignment_pow;
|
||
text_action_t action;
|
||
bfd_vma offset;
|
||
int removed_bytes;
|
||
bfd_boolean do_action; /* If false, then we will not perform the action. */
|
||
};
|
||
|
||
|
||
/* The ebb_constraint_struct keeps a set of proposed actions for an
|
||
extended basic block. */
|
||
|
||
typedef struct ebb_constraint_struct ebb_constraint;
|
||
|
||
struct ebb_constraint_struct
|
||
{
|
||
ebb_t ebb;
|
||
bfd_boolean start_movable;
|
||
|
||
/* Bytes of extra space at the beginning if movable. */
|
||
int start_extra_space;
|
||
|
||
enum ebb_target_enum start_align;
|
||
|
||
bfd_boolean end_movable;
|
||
|
||
/* Bytes of extra space at the end if movable. */
|
||
int end_extra_space;
|
||
|
||
unsigned action_count;
|
||
unsigned action_allocated;
|
||
|
||
/* Array of proposed actions. */
|
||
proposed_action *actions;
|
||
|
||
/* Action alignments -- one for each proposed action. */
|
||
enum ebb_target_enum *action_aligns;
|
||
};
|
||
|
||
|
||
static void
|
||
init_ebb_constraint (ebb_constraint *c)
|
||
{
|
||
memset (c, 0, sizeof (ebb_constraint));
|
||
}
|
||
|
||
|
||
static void
|
||
free_ebb_constraint (ebb_constraint *c)
|
||
{
|
||
if (c->actions)
|
||
free (c->actions);
|
||
}
|
||
|
||
|
||
static void
|
||
init_ebb (ebb_t *ebb,
|
||
asection *sec,
|
||
bfd_byte *contents,
|
||
bfd_size_type content_length,
|
||
property_table_entry *prop_table,
|
||
unsigned ptblsize,
|
||
Elf_Internal_Rela *internal_relocs,
|
||
unsigned reloc_count)
|
||
{
|
||
memset (ebb, 0, sizeof (ebb_t));
|
||
ebb->sec = sec;
|
||
ebb->contents = contents;
|
||
ebb->content_length = content_length;
|
||
ebb->ptbl = prop_table;
|
||
ebb->pte_count = ptblsize;
|
||
ebb->relocs = internal_relocs;
|
||
ebb->reloc_count = reloc_count;
|
||
ebb->start_offset = 0;
|
||
ebb->end_offset = ebb->content_length - 1;
|
||
ebb->start_ptbl_idx = 0;
|
||
ebb->end_ptbl_idx = ptblsize;
|
||
ebb->start_reloc_idx = 0;
|
||
ebb->end_reloc_idx = reloc_count;
|
||
}
|
||
|
||
|
||
/* Extend the ebb to all decodable contiguous sections. The algorithm
|
||
for building a basic block around an instruction is to push it
|
||
forward until we hit the end of a section, an unreachable block or
|
||
a block that cannot be transformed. Then we push it backwards
|
||
searching for similar conditions. */
|
||
|
||
static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
|
||
static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
|
||
static bfd_size_type insn_block_decodable_len
|
||
(bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
|
||
|
||
static bfd_boolean
|
||
extend_ebb_bounds (ebb_t *ebb)
|
||
{
|
||
if (!extend_ebb_bounds_forward (ebb))
|
||
return FALSE;
|
||
if (!extend_ebb_bounds_backward (ebb))
|
||
return FALSE;
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
extend_ebb_bounds_forward (ebb_t *ebb)
|
||
{
|
||
property_table_entry *the_entry, *new_entry;
|
||
|
||
the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
|
||
|
||
/* Stop when (1) we cannot decode an instruction, (2) we are at
|
||
the end of the property tables, (3) we hit a non-contiguous property
|
||
table entry, (4) we hit a NO_TRANSFORM region. */
|
||
|
||
while (1)
|
||
{
|
||
bfd_vma entry_end;
|
||
bfd_size_type insn_block_len;
|
||
|
||
entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
|
||
insn_block_len =
|
||
insn_block_decodable_len (ebb->contents, ebb->content_length,
|
||
ebb->end_offset,
|
||
entry_end - ebb->end_offset);
|
||
if (insn_block_len != (entry_end - ebb->end_offset))
|
||
{
|
||
_bfd_error_handler
|
||
/* xgettext:c-format */
|
||
(_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
|
||
"possible configuration mismatch"),
|
||
ebb->sec->owner, ebb->sec,
|
||
(uint64_t) (ebb->end_offset + insn_block_len));
|
||
return FALSE;
|
||
}
|
||
ebb->end_offset += insn_block_len;
|
||
|
||
if (ebb->end_offset == ebb->sec->size)
|
||
ebb->ends_section = TRUE;
|
||
|
||
/* Update the reloc counter. */
|
||
while (ebb->end_reloc_idx + 1 < ebb->reloc_count
|
||
&& (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
|
||
< ebb->end_offset))
|
||
{
|
||
ebb->end_reloc_idx++;
|
||
}
|
||
|
||
if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
|
||
return TRUE;
|
||
|
||
new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
|
||
if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
|
||
|| ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
|
||
|| ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
|
||
break;
|
||
|
||
if (the_entry->address + the_entry->size != new_entry->address)
|
||
break;
|
||
|
||
the_entry = new_entry;
|
||
ebb->end_ptbl_idx++;
|
||
}
|
||
|
||
/* Quick check for an unreachable or end of file just at the end. */
|
||
if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
|
||
{
|
||
if (ebb->end_offset == ebb->content_length)
|
||
ebb->ends_section = TRUE;
|
||
}
|
||
else
|
||
{
|
||
new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
|
||
if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
|
||
&& the_entry->address + the_entry->size == new_entry->address)
|
||
ebb->ends_unreachable = new_entry;
|
||
}
|
||
|
||
/* Any other ending requires exact alignment. */
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
extend_ebb_bounds_backward (ebb_t *ebb)
|
||
{
|
||
property_table_entry *the_entry, *new_entry;
|
||
|
||
the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
|
||
|
||
/* Stop when (1) we cannot decode the instructions in the current entry.
|
||
(2) we are at the beginning of the property tables, (3) we hit a
|
||
non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
|
||
|
||
while (1)
|
||
{
|
||
bfd_vma block_begin;
|
||
bfd_size_type insn_block_len;
|
||
|
||
block_begin = the_entry->address - ebb->sec->vma;
|
||
insn_block_len =
|
||
insn_block_decodable_len (ebb->contents, ebb->content_length,
|
||
block_begin,
|
||
ebb->start_offset - block_begin);
|
||
if (insn_block_len != ebb->start_offset - block_begin)
|
||
{
|
||
_bfd_error_handler
|
||
/* xgettext:c-format */
|
||
(_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
|
||
"possible configuration mismatch"),
|
||
ebb->sec->owner, ebb->sec,
|
||
(uint64_t) (ebb->end_offset + insn_block_len));
|
||
return FALSE;
|
||
}
|
||
ebb->start_offset -= insn_block_len;
|
||
|
||
/* Update the reloc counter. */
|
||
while (ebb->start_reloc_idx > 0
|
||
&& (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
|
||
>= ebb->start_offset))
|
||
{
|
||
ebb->start_reloc_idx--;
|
||
}
|
||
|
||
if (ebb->start_ptbl_idx == 0)
|
||
return TRUE;
|
||
|
||
new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
|
||
if ((new_entry->flags & XTENSA_PROP_INSN) == 0
|
||
|| ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
|
||
|| ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
|
||
return TRUE;
|
||
if (new_entry->address + new_entry->size != the_entry->address)
|
||
return TRUE;
|
||
|
||
the_entry = new_entry;
|
||
ebb->start_ptbl_idx--;
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
static bfd_size_type
|
||
insn_block_decodable_len (bfd_byte *contents,
|
||
bfd_size_type content_len,
|
||
bfd_vma block_offset,
|
||
bfd_size_type block_len)
|
||
{
|
||
bfd_vma offset = block_offset;
|
||
|
||
while (offset < block_offset + block_len)
|
||
{
|
||
bfd_size_type insn_len = 0;
|
||
|
||
insn_len = insn_decode_len (contents, content_len, offset);
|
||
if (insn_len == 0)
|
||
return (offset - block_offset);
|
||
offset += insn_len;
|
||
}
|
||
return (offset - block_offset);
|
||
}
|
||
|
||
|
||
static void
|
||
ebb_propose_action (ebb_constraint *c,
|
||
enum ebb_target_enum align_type,
|
||
bfd_vma alignment_pow,
|
||
text_action_t action,
|
||
bfd_vma offset,
|
||
int removed_bytes,
|
||
bfd_boolean do_action)
|
||
{
|
||
proposed_action *act;
|
||
|
||
if (c->action_allocated <= c->action_count)
|
||
{
|
||
unsigned new_allocated, i;
|
||
proposed_action *new_actions;
|
||
|
||
new_allocated = (c->action_count + 2) * 2;
|
||
new_actions = (proposed_action *)
|
||
bfd_zmalloc (sizeof (proposed_action) * new_allocated);
|
||
|
||
for (i = 0; i < c->action_count; i++)
|
||
new_actions[i] = c->actions[i];
|
||
if (c->actions)
|
||
free (c->actions);
|
||
c->actions = new_actions;
|
||
c->action_allocated = new_allocated;
|
||
}
|
||
|
||
act = &c->actions[c->action_count];
|
||
act->align_type = align_type;
|
||
act->alignment_pow = alignment_pow;
|
||
act->action = action;
|
||
act->offset = offset;
|
||
act->removed_bytes = removed_bytes;
|
||
act->do_action = do_action;
|
||
|
||
c->action_count++;
|
||
}
|
||
|
||
|
||
/* Access to internal relocations, section contents and symbols. */
|
||
|
||
/* During relaxation, we need to modify relocations, section contents,
|
||
and symbol definitions, and we need to keep the original values from
|
||
being reloaded from the input files, i.e., we need to "pin" the
|
||
modified values in memory. We also want to continue to observe the
|
||
setting of the "keep-memory" flag. The following functions wrap the
|
||
standard BFD functions to take care of this for us. */
|
||
|
||
static Elf_Internal_Rela *
|
||
retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
|
||
{
|
||
Elf_Internal_Rela *internal_relocs;
|
||
|
||
if ((sec->flags & SEC_LINKER_CREATED) != 0)
|
||
return NULL;
|
||
|
||
internal_relocs = elf_section_data (sec)->relocs;
|
||
if (internal_relocs == NULL)
|
||
internal_relocs = (_bfd_elf_link_read_relocs
|
||
(abfd, sec, NULL, NULL, keep_memory));
|
||
return internal_relocs;
|
||
}
|
||
|
||
|
||
static void
|
||
pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
|
||
{
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
}
|
||
|
||
|
||
static void
|
||
release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
|
||
{
|
||
if (internal_relocs
|
||
&& elf_section_data (sec)->relocs != internal_relocs)
|
||
free (internal_relocs);
|
||
}
|
||
|
||
|
||
static bfd_byte *
|
||
retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
|
||
{
|
||
bfd_byte *contents;
|
||
bfd_size_type sec_size;
|
||
|
||
sec_size = bfd_get_section_limit (abfd, sec);
|
||
contents = elf_section_data (sec)->this_hdr.contents;
|
||
|
||
if (contents == NULL && sec_size != 0)
|
||
{
|
||
if (!bfd_malloc_and_get_section (abfd, sec, &contents))
|
||
{
|
||
if (contents)
|
||
free (contents);
|
||
return NULL;
|
||
}
|
||
if (keep_memory)
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
}
|
||
return contents;
|
||
}
|
||
|
||
|
||
static void
|
||
pin_contents (asection *sec, bfd_byte *contents)
|
||
{
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
}
|
||
|
||
|
||
static void
|
||
release_contents (asection *sec, bfd_byte *contents)
|
||
{
|
||
if (contents && elf_section_data (sec)->this_hdr.contents != contents)
|
||
free (contents);
|
||
}
|
||
|
||
|
||
static Elf_Internal_Sym *
|
||
retrieve_local_syms (bfd *input_bfd)
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
Elf_Internal_Sym *isymbuf;
|
||
size_t locsymcount;
|
||
|
||
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
||
locsymcount = symtab_hdr->sh_info;
|
||
|
||
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
|
||
if (isymbuf == NULL && locsymcount != 0)
|
||
isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
|
||
NULL, NULL, NULL);
|
||
|
||
/* Save the symbols for this input file so they won't be read again. */
|
||
if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
|
||
symtab_hdr->contents = (unsigned char *) isymbuf;
|
||
|
||
return isymbuf;
|
||
}
|
||
|
||
|
||
/* Code for link-time relaxation. */
|
||
|
||
/* Initialization for relaxation: */
|
||
static bfd_boolean analyze_relocations (struct bfd_link_info *);
|
||
static bfd_boolean find_relaxable_sections
|
||
(bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
|
||
static bfd_boolean collect_source_relocs
|
||
(bfd *, asection *, struct bfd_link_info *);
|
||
static bfd_boolean is_resolvable_asm_expansion
|
||
(bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
|
||
bfd_boolean *);
|
||
static Elf_Internal_Rela *find_associated_l32r_irel
|
||
(bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
|
||
static bfd_boolean compute_text_actions
|
||
(bfd *, asection *, struct bfd_link_info *);
|
||
static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
|
||
static bfd_boolean compute_ebb_actions (ebb_constraint *);
|
||
typedef struct reloc_range_list_struct reloc_range_list;
|
||
static bfd_boolean check_section_ebb_pcrels_fit
|
||
(bfd *, asection *, bfd_byte *, Elf_Internal_Rela *,
|
||
reloc_range_list *, const ebb_constraint *,
|
||
const xtensa_opcode *);
|
||
static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
|
||
static void text_action_add_proposed
|
||
(text_action_list *, const ebb_constraint *, asection *);
|
||
|
||
/* First pass: */
|
||
static bfd_boolean compute_removed_literals
|
||
(bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
|
||
static Elf_Internal_Rela *get_irel_at_offset
|
||
(asection *, Elf_Internal_Rela *, bfd_vma);
|
||
static bfd_boolean is_removable_literal
|
||
(const source_reloc *, int, const source_reloc *, int, asection *,
|
||
property_table_entry *, int);
|
||
static bfd_boolean remove_dead_literal
|
||
(bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
|
||
Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
|
||
static bfd_boolean identify_literal_placement
|
||
(bfd *, asection *, bfd_byte *, struct bfd_link_info *,
|
||
value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
|
||
source_reloc *, property_table_entry *, int, section_cache_t *,
|
||
bfd_boolean);
|
||
static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
|
||
static bfd_boolean coalesce_shared_literal
|
||
(asection *, source_reloc *, property_table_entry *, int, value_map *);
|
||
static bfd_boolean move_shared_literal
|
||
(asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
|
||
int, const r_reloc *, const literal_value *, section_cache_t *);
|
||
|
||
/* Second pass: */
|
||
static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
|
||
static bfd_boolean translate_section_fixes (asection *);
|
||
static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
|
||
static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
|
||
static void shrink_dynamic_reloc_sections
|
||
(struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
|
||
static bfd_boolean move_literal
|
||
(bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
|
||
xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
|
||
static bfd_boolean relax_property_section
|
||
(bfd *, asection *, struct bfd_link_info *);
|
||
|
||
/* Third pass: */
|
||
static bfd_boolean relax_section_symbols (bfd *, asection *);
|
||
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_relax_section (bfd *abfd,
|
||
asection *sec,
|
||
struct bfd_link_info *link_info,
|
||
bfd_boolean *again)
|
||
{
|
||
static value_map_hash_table *values = NULL;
|
||
static bfd_boolean relocations_analyzed = FALSE;
|
||
xtensa_relax_info *relax_info;
|
||
|
||
if (!relocations_analyzed)
|
||
{
|
||
/* Do some overall initialization for relaxation. */
|
||
values = value_map_hash_table_init ();
|
||
if (values == NULL)
|
||
return FALSE;
|
||
relaxing_section = TRUE;
|
||
if (!analyze_relocations (link_info))
|
||
return FALSE;
|
||
relocations_analyzed = TRUE;
|
||
}
|
||
*again = FALSE;
|
||
|
||
/* Don't mess with linker-created sections. */
|
||
if ((sec->flags & SEC_LINKER_CREATED) != 0)
|
||
return TRUE;
|
||
|
||
relax_info = get_xtensa_relax_info (sec);
|
||
BFD_ASSERT (relax_info != NULL);
|
||
|
||
switch (relax_info->visited)
|
||
{
|
||
case 0:
|
||
/* Note: It would be nice to fold this pass into
|
||
analyze_relocations, but it is important for this step that the
|
||
sections be examined in link order. */
|
||
if (!compute_removed_literals (abfd, sec, link_info, values))
|
||
return FALSE;
|
||
*again = TRUE;
|
||
break;
|
||
|
||
case 1:
|
||
if (values)
|
||
value_map_hash_table_delete (values);
|
||
values = NULL;
|
||
if (!relax_section (abfd, sec, link_info))
|
||
return FALSE;
|
||
*again = TRUE;
|
||
break;
|
||
|
||
case 2:
|
||
if (!relax_section_symbols (abfd, sec))
|
||
return FALSE;
|
||
break;
|
||
}
|
||
|
||
relax_info->visited++;
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Initialization for relaxation. */
|
||
|
||
/* This function is called once at the start of relaxation. It scans
|
||
all the input sections and marks the ones that are relaxable (i.e.,
|
||
literal sections with L32R relocations against them), and then
|
||
collects source_reloc information for all the relocations against
|
||
those relaxable sections. During this process, it also detects
|
||
longcalls, i.e., calls relaxed by the assembler into indirect
|
||
calls, that can be optimized back into direct calls. Within each
|
||
extended basic block (ebb) containing an optimized longcall, it
|
||
computes a set of "text actions" that can be performed to remove
|
||
the L32R associated with the longcall while optionally preserving
|
||
branch target alignments. */
|
||
|
||
static bfd_boolean
|
||
analyze_relocations (struct bfd_link_info *link_info)
|
||
{
|
||
bfd *abfd;
|
||
asection *sec;
|
||
bfd_boolean is_relaxable = FALSE;
|
||
|
||
/* Initialize the per-section relaxation info. */
|
||
for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
|
||
for (sec = abfd->sections; sec != NULL; sec = sec->next)
|
||
{
|
||
init_xtensa_relax_info (sec);
|
||
}
|
||
|
||
/* Mark relaxable sections (and count relocations against each one). */
|
||
for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
|
||
for (sec = abfd->sections; sec != NULL; sec = sec->next)
|
||
{
|
||
if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
|
||
return FALSE;
|
||
}
|
||
|
||
/* Bail out if there are no relaxable sections. */
|
||
if (!is_relaxable)
|
||
return TRUE;
|
||
|
||
/* Allocate space for source_relocs. */
|
||
for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
|
||
for (sec = abfd->sections; sec != NULL; sec = sec->next)
|
||
{
|
||
xtensa_relax_info *relax_info;
|
||
|
||
relax_info = get_xtensa_relax_info (sec);
|
||
if (relax_info->is_relaxable_literal_section
|
||
|| relax_info->is_relaxable_asm_section)
|
||
{
|
||
relax_info->src_relocs = (source_reloc *)
|
||
bfd_malloc (relax_info->src_count * sizeof (source_reloc));
|
||
}
|
||
else
|
||
relax_info->src_count = 0;
|
||
}
|
||
|
||
/* Collect info on relocations against each relaxable section. */
|
||
for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
|
||
for (sec = abfd->sections; sec != NULL; sec = sec->next)
|
||
{
|
||
if (!collect_source_relocs (abfd, sec, link_info))
|
||
return FALSE;
|
||
}
|
||
|
||
/* Compute the text actions. */
|
||
for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
|
||
for (sec = abfd->sections; sec != NULL; sec = sec->next)
|
||
{
|
||
if (!compute_text_actions (abfd, sec, link_info))
|
||
return FALSE;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Find all the sections that might be relaxed. The motivation for
|
||
this pass is that collect_source_relocs() needs to record _all_ the
|
||
relocations that target each relaxable section. That is expensive
|
||
and unnecessary unless the target section is actually going to be
|
||
relaxed. This pass identifies all such sections by checking if
|
||
they have L32Rs pointing to them. In the process, the total number
|
||
of relocations targeting each section is also counted so that we
|
||
know how much space to allocate for source_relocs against each
|
||
relaxable literal section. */
|
||
|
||
static bfd_boolean
|
||
find_relaxable_sections (bfd *abfd,
|
||
asection *sec,
|
||
struct bfd_link_info *link_info,
|
||
bfd_boolean *is_relaxable_p)
|
||
{
|
||
Elf_Internal_Rela *internal_relocs;
|
||
bfd_byte *contents;
|
||
bfd_boolean ok = TRUE;
|
||
unsigned i;
|
||
xtensa_relax_info *source_relax_info;
|
||
bfd_boolean is_l32r_reloc;
|
||
|
||
internal_relocs = retrieve_internal_relocs (abfd, sec,
|
||
link_info->keep_memory);
|
||
if (internal_relocs == NULL)
|
||
return ok;
|
||
|
||
contents = retrieve_contents (abfd, sec, link_info->keep_memory);
|
||
if (contents == NULL && sec->size != 0)
|
||
{
|
||
ok = FALSE;
|
||
goto error_return;
|
||
}
|
||
|
||
source_relax_info = get_xtensa_relax_info (sec);
|
||
for (i = 0; i < sec->reloc_count; i++)
|
||
{
|
||
Elf_Internal_Rela *irel = &internal_relocs[i];
|
||
r_reloc r_rel;
|
||
asection *target_sec;
|
||
xtensa_relax_info *target_relax_info;
|
||
|
||
/* If this section has not already been marked as "relaxable", and
|
||
if it contains any ASM_EXPAND relocations (marking expanded
|
||
longcalls) that can be optimized into direct calls, then mark
|
||
the section as "relaxable". */
|
||
if (source_relax_info
|
||
&& !source_relax_info->is_relaxable_asm_section
|
||
&& ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
|
||
{
|
||
bfd_boolean is_reachable = FALSE;
|
||
if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
|
||
link_info, &is_reachable)
|
||
&& is_reachable)
|
||
{
|
||
source_relax_info->is_relaxable_asm_section = TRUE;
|
||
*is_relaxable_p = TRUE;
|
||
}
|
||
}
|
||
|
||
r_reloc_init (&r_rel, abfd, irel, contents,
|
||
bfd_get_section_limit (abfd, sec));
|
||
|
||
target_sec = r_reloc_get_section (&r_rel);
|
||
target_relax_info = get_xtensa_relax_info (target_sec);
|
||
if (!target_relax_info)
|
||
continue;
|
||
|
||
/* Count PC-relative operand relocations against the target section.
|
||
Note: The conditions tested here must match the conditions under
|
||
which init_source_reloc is called in collect_source_relocs(). */
|
||
is_l32r_reloc = FALSE;
|
||
if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
|
||
{
|
||
xtensa_opcode opcode =
|
||
get_relocation_opcode (abfd, sec, contents, irel);
|
||
if (opcode != XTENSA_UNDEFINED)
|
||
{
|
||
is_l32r_reloc = (opcode == get_l32r_opcode ());
|
||
if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
|
||
|| is_l32r_reloc)
|
||
target_relax_info->src_count++;
|
||
}
|
||
}
|
||
|
||
if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
|
||
{
|
||
/* Mark the target section as relaxable. */
|
||
target_relax_info->is_relaxable_literal_section = TRUE;
|
||
*is_relaxable_p = TRUE;
|
||
}
|
||
}
|
||
|
||
error_return:
|
||
release_contents (sec, contents);
|
||
release_internal_relocs (sec, internal_relocs);
|
||
return ok;
|
||
}
|
||
|
||
|
||
/* Record _all_ the relocations that point to relaxable sections, and
|
||
get rid of ASM_EXPAND relocs by either converting them to
|
||
ASM_SIMPLIFY or by removing them. */
|
||
|
||
static bfd_boolean
|
||
collect_source_relocs (bfd *abfd,
|
||
asection *sec,
|
||
struct bfd_link_info *link_info)
|
||
{
|
||
Elf_Internal_Rela *internal_relocs;
|
||
bfd_byte *contents;
|
||
bfd_boolean ok = TRUE;
|
||
unsigned i;
|
||
bfd_size_type sec_size;
|
||
|
||
internal_relocs = retrieve_internal_relocs (abfd, sec,
|
||
link_info->keep_memory);
|
||
if (internal_relocs == NULL)
|
||
return ok;
|
||
|
||
sec_size = bfd_get_section_limit (abfd, sec);
|
||
contents = retrieve_contents (abfd, sec, link_info->keep_memory);
|
||
if (contents == NULL && sec_size != 0)
|
||
{
|
||
ok = FALSE;
|
||
goto error_return;
|
||
}
|
||
|
||
/* Record relocations against relaxable literal sections. */
|
||
for (i = 0; i < sec->reloc_count; i++)
|
||
{
|
||
Elf_Internal_Rela *irel = &internal_relocs[i];
|
||
r_reloc r_rel;
|
||
asection *target_sec;
|
||
xtensa_relax_info *target_relax_info;
|
||
|
||
r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
|
||
|
||
target_sec = r_reloc_get_section (&r_rel);
|
||
target_relax_info = get_xtensa_relax_info (target_sec);
|
||
|
||
if (target_relax_info
|
||
&& (target_relax_info->is_relaxable_literal_section
|
||
|| target_relax_info->is_relaxable_asm_section))
|
||
{
|
||
xtensa_opcode opcode = XTENSA_UNDEFINED;
|
||
int opnd = -1;
|
||
bfd_boolean is_abs_literal = FALSE;
|
||
|
||
if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
|
||
{
|
||
/* None of the current alternate relocs are PC-relative,
|
||
and only PC-relative relocs matter here. However, we
|
||
still need to record the opcode for literal
|
||
coalescing. */
|
||
opcode = get_relocation_opcode (abfd, sec, contents, irel);
|
||
if (opcode == get_l32r_opcode ())
|
||
{
|
||
is_abs_literal = TRUE;
|
||
opnd = 1;
|
||
}
|
||
else
|
||
opcode = XTENSA_UNDEFINED;
|
||
}
|
||
else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
|
||
{
|
||
opcode = get_relocation_opcode (abfd, sec, contents, irel);
|
||
opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
|
||
}
|
||
|
||
if (opcode != XTENSA_UNDEFINED)
|
||
{
|
||
int src_next = target_relax_info->src_next++;
|
||
source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
|
||
|
||
init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
|
||
is_abs_literal);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Now get rid of ASM_EXPAND relocations. At this point, the
|
||
src_relocs array for the target literal section may still be
|
||
incomplete, but it must at least contain the entries for the L32R
|
||
relocations associated with ASM_EXPANDs because they were just
|
||
added in the preceding loop over the relocations. */
|
||
|
||
for (i = 0; i < sec->reloc_count; i++)
|
||
{
|
||
Elf_Internal_Rela *irel = &internal_relocs[i];
|
||
bfd_boolean is_reachable;
|
||
|
||
if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
|
||
&is_reachable))
|
||
continue;
|
||
|
||
if (is_reachable)
|
||
{
|
||
Elf_Internal_Rela *l32r_irel;
|
||
r_reloc r_rel;
|
||
asection *target_sec;
|
||
xtensa_relax_info *target_relax_info;
|
||
|
||
/* Mark the source_reloc for the L32R so that it will be
|
||
removed in compute_removed_literals(), along with the
|
||
associated literal. */
|
||
l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
|
||
irel, internal_relocs);
|
||
if (l32r_irel == NULL)
|
||
continue;
|
||
|
||
r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
|
||
|
||
target_sec = r_reloc_get_section (&r_rel);
|
||
target_relax_info = get_xtensa_relax_info (target_sec);
|
||
|
||
if (target_relax_info
|
||
&& (target_relax_info->is_relaxable_literal_section
|
||
|| target_relax_info->is_relaxable_asm_section))
|
||
{
|
||
source_reloc *s_reloc;
|
||
|
||
/* Search the source_relocs for the entry corresponding to
|
||
the l32r_irel. Note: The src_relocs array is not yet
|
||
sorted, but it wouldn't matter anyway because we're
|
||
searching by source offset instead of target offset. */
|
||
s_reloc = find_source_reloc (target_relax_info->src_relocs,
|
||
target_relax_info->src_next,
|
||
sec, l32r_irel);
|
||
BFD_ASSERT (s_reloc);
|
||
s_reloc->is_null = TRUE;
|
||
}
|
||
|
||
/* Convert this reloc to ASM_SIMPLIFY. */
|
||
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
||
R_XTENSA_ASM_SIMPLIFY);
|
||
l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
|
||
|
||
pin_internal_relocs (sec, internal_relocs);
|
||
}
|
||
else
|
||
{
|
||
/* It is resolvable but doesn't reach. We resolve now
|
||
by eliminating the relocation -- the call will remain
|
||
expanded into L32R/CALLX. */
|
||
irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
|
||
pin_internal_relocs (sec, internal_relocs);
|
||
}
|
||
}
|
||
|
||
error_return:
|
||
release_contents (sec, contents);
|
||
release_internal_relocs (sec, internal_relocs);
|
||
return ok;
|
||
}
|
||
|
||
|
||
/* Return TRUE if the asm expansion can be resolved. Generally it can
|
||
be resolved on a final link or when a partial link locates it in the
|
||
same section as the target. Set "is_reachable" flag if the target of
|
||
the call is within the range of a direct call, given the current VMA
|
||
for this section and the target section. */
|
||
|
||
bfd_boolean
|
||
is_resolvable_asm_expansion (bfd *abfd,
|
||
asection *sec,
|
||
bfd_byte *contents,
|
||
Elf_Internal_Rela *irel,
|
||
struct bfd_link_info *link_info,
|
||
bfd_boolean *is_reachable_p)
|
||
{
|
||
asection *target_sec;
|
||
bfd_vma target_offset;
|
||
r_reloc r_rel;
|
||
xtensa_opcode opcode, direct_call_opcode;
|
||
bfd_vma self_address;
|
||
bfd_vma dest_address;
|
||
bfd_boolean uses_l32r;
|
||
bfd_size_type sec_size;
|
||
|
||
*is_reachable_p = FALSE;
|
||
|
||
if (contents == NULL)
|
||
return FALSE;
|
||
|
||
if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
|
||
return FALSE;
|
||
|
||
sec_size = bfd_get_section_limit (abfd, sec);
|
||
opcode = get_expanded_call_opcode (contents + irel->r_offset,
|
||
sec_size - irel->r_offset, &uses_l32r);
|
||
/* Optimization of longcalls that use CONST16 is not yet implemented. */
|
||
if (!uses_l32r)
|
||
return FALSE;
|
||
|
||
direct_call_opcode = swap_callx_for_call_opcode (opcode);
|
||
if (direct_call_opcode == XTENSA_UNDEFINED)
|
||
return FALSE;
|
||
|
||
/* Check and see that the target resolves. */
|
||
r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
|
||
if (!r_reloc_is_defined (&r_rel))
|
||
return FALSE;
|
||
|
||
target_sec = r_reloc_get_section (&r_rel);
|
||
target_offset = r_rel.target_offset;
|
||
|
||
/* If the target is in a shared library, then it doesn't reach. This
|
||
isn't supposed to come up because the compiler should never generate
|
||
non-PIC calls on systems that use shared libraries, but the linker
|
||
shouldn't crash regardless. */
|
||
if (!target_sec->output_section)
|
||
return FALSE;
|
||
|
||
/* For relocatable sections, we can only simplify when the output
|
||
section of the target is the same as the output section of the
|
||
source. */
|
||
if (bfd_link_relocatable (link_info)
|
||
&& (target_sec->output_section != sec->output_section
|
||
|| is_reloc_sym_weak (abfd, irel)))
|
||
return FALSE;
|
||
|
||
if (target_sec->output_section != sec->output_section)
|
||
{
|
||
/* If the two sections are sufficiently far away that relaxation
|
||
might take the call out of range, we can't simplify. For
|
||
example, a positive displacement call into another memory
|
||
could get moved to a lower address due to literal removal,
|
||
but the destination won't move, and so the displacment might
|
||
get larger.
|
||
|
||
If the displacement is negative, assume the destination could
|
||
move as far back as the start of the output section. The
|
||
self_address will be at least as far into the output section
|
||
as it is prior to relaxation.
|
||
|
||
If the displacement is postive, assume the destination will be in
|
||
it's pre-relaxed location (because relaxation only makes sections
|
||
smaller). The self_address could go all the way to the beginning
|
||
of the output section. */
|
||
|
||
dest_address = target_sec->output_section->vma;
|
||
self_address = sec->output_section->vma;
|
||
|
||
if (sec->output_section->vma > target_sec->output_section->vma)
|
||
self_address += sec->output_offset + irel->r_offset + 3;
|
||
else
|
||
dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
|
||
/* Call targets should be four-byte aligned. */
|
||
dest_address = (dest_address + 3) & ~3;
|
||
}
|
||
else
|
||
{
|
||
|
||
self_address = (sec->output_section->vma
|
||
+ sec->output_offset + irel->r_offset + 3);
|
||
dest_address = (target_sec->output_section->vma
|
||
+ target_sec->output_offset + target_offset);
|
||
}
|
||
|
||
*is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
|
||
self_address, dest_address);
|
||
|
||
if ((self_address >> CALL_SEGMENT_BITS) !=
|
||
(dest_address >> CALL_SEGMENT_BITS))
|
||
return FALSE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
static Elf_Internal_Rela *
|
||
find_associated_l32r_irel (bfd *abfd,
|
||
asection *sec,
|
||
bfd_byte *contents,
|
||
Elf_Internal_Rela *other_irel,
|
||
Elf_Internal_Rela *internal_relocs)
|
||
{
|
||
unsigned i;
|
||
|
||
for (i = 0; i < sec->reloc_count; i++)
|
||
{
|
||
Elf_Internal_Rela *irel = &internal_relocs[i];
|
||
|
||
if (irel == other_irel)
|
||
continue;
|
||
if (irel->r_offset != other_irel->r_offset)
|
||
continue;
|
||
if (is_l32r_relocation (abfd, sec, contents, irel))
|
||
return irel;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
|
||
static xtensa_opcode *
|
||
build_reloc_opcodes (bfd *abfd,
|
||
asection *sec,
|
||
bfd_byte *contents,
|
||
Elf_Internal_Rela *internal_relocs)
|
||
{
|
||
unsigned i;
|
||
xtensa_opcode *reloc_opcodes =
|
||
(xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
|
||
for (i = 0; i < sec->reloc_count; i++)
|
||
{
|
||
Elf_Internal_Rela *irel = &internal_relocs[i];
|
||
reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
|
||
}
|
||
return reloc_opcodes;
|
||
}
|
||
|
||
struct reloc_range_struct
|
||
{
|
||
bfd_vma addr;
|
||
bfd_boolean add; /* TRUE if start of a range, FALSE otherwise. */
|
||
/* Original irel index in the array of relocations for a section. */
|
||
unsigned irel_index;
|
||
};
|
||
typedef struct reloc_range_struct reloc_range;
|
||
|
||
typedef struct reloc_range_list_entry_struct reloc_range_list_entry;
|
||
struct reloc_range_list_entry_struct
|
||
{
|
||
reloc_range_list_entry *next;
|
||
reloc_range_list_entry *prev;
|
||
Elf_Internal_Rela *irel;
|
||
xtensa_opcode opcode;
|
||
int opnum;
|
||
};
|
||
|
||
struct reloc_range_list_struct
|
||
{
|
||
/* The rest of the structure is only meaningful when ok is TRUE. */
|
||
bfd_boolean ok;
|
||
|
||
unsigned n_range; /* Number of range markers. */
|
||
reloc_range *range; /* Sorted range markers. */
|
||
|
||
unsigned first; /* Index of a first range element in the list. */
|
||
unsigned last; /* One past index of a last range element in the list. */
|
||
|
||
unsigned n_list; /* Number of list elements. */
|
||
reloc_range_list_entry *reloc; /* */
|
||
reloc_range_list_entry list_root;
|
||
};
|
||
|
||
static int
|
||
reloc_range_compare (const void *a, const void *b)
|
||
{
|
||
const reloc_range *ra = a;
|
||
const reloc_range *rb = b;
|
||
|
||
if (ra->addr != rb->addr)
|
||
return ra->addr < rb->addr ? -1 : 1;
|
||
if (ra->add != rb->add)
|
||
return ra->add ? -1 : 1;
|
||
return 0;
|
||
}
|
||
|
||
static void
|
||
build_reloc_ranges (bfd *abfd, asection *sec,
|
||
bfd_byte *contents,
|
||
Elf_Internal_Rela *internal_relocs,
|
||
xtensa_opcode *reloc_opcodes,
|
||
reloc_range_list *list)
|
||
{
|
||
unsigned i;
|
||
size_t n = 0;
|
||
size_t max_n = 0;
|
||
reloc_range *ranges = NULL;
|
||
reloc_range_list_entry *reloc =
|
||
bfd_malloc (sec->reloc_count * sizeof (*reloc));
|
||
|
||
memset (list, 0, sizeof (*list));
|
||
list->ok = TRUE;
|
||
|
||
for (i = 0; i < sec->reloc_count; i++)
|
||
{
|
||
Elf_Internal_Rela *irel = &internal_relocs[i];
|
||
int r_type = ELF32_R_TYPE (irel->r_info);
|
||
reloc_howto_type *howto = &elf_howto_table[r_type];
|
||
r_reloc r_rel;
|
||
|
||
if (r_type == R_XTENSA_ASM_SIMPLIFY
|
||
|| r_type == R_XTENSA_32_PCREL
|
||
|| !howto->pc_relative)
|
||
continue;
|
||
|
||
r_reloc_init (&r_rel, abfd, irel, contents,
|
||
bfd_get_section_limit (abfd, sec));
|
||
|
||
if (r_reloc_get_section (&r_rel) != sec)
|
||
continue;
|
||
|
||
if (n + 2 > max_n)
|
||
{
|
||
max_n = (max_n + 2) * 2;
|
||
ranges = bfd_realloc (ranges, max_n * sizeof (*ranges));
|
||
}
|
||
|
||
ranges[n].addr = irel->r_offset;
|
||
ranges[n + 1].addr = r_rel.target_offset;
|
||
|
||
ranges[n].add = ranges[n].addr < ranges[n + 1].addr;
|
||
ranges[n + 1].add = !ranges[n].add;
|
||
|
||
ranges[n].irel_index = i;
|
||
ranges[n + 1].irel_index = i;
|
||
|
||
n += 2;
|
||
|
||
reloc[i].irel = irel;
|
||
|
||
/* Every relocation won't possibly be checked in the optimized version of
|
||
check_section_ebb_pcrels_fit, so this needs to be done here. */
|
||
if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
|
||
{
|
||
/* None of the current alternate relocs are PC-relative,
|
||
and only PC-relative relocs matter here. */
|
||
}
|
||
else
|
||
{
|
||
xtensa_opcode opcode;
|
||
int opnum;
|
||
|
||
if (reloc_opcodes)
|
||
opcode = reloc_opcodes[i];
|
||
else
|
||
opcode = get_relocation_opcode (abfd, sec, contents, irel);
|
||
|
||
if (opcode == XTENSA_UNDEFINED)
|
||
{
|
||
list->ok = FALSE;
|
||
break;
|
||
}
|
||
|
||
opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
|
||
if (opnum == XTENSA_UNDEFINED)
|
||
{
|
||
list->ok = FALSE;
|
||
break;
|
||
}
|
||
|
||
/* Record relocation opcode and opnum as we've calculated them
|
||
anyway and they won't change. */
|
||
reloc[i].opcode = opcode;
|
||
reloc[i].opnum = opnum;
|
||
}
|
||
}
|
||
|
||
if (list->ok)
|
||
{
|
||
ranges = bfd_realloc (ranges, n * sizeof (*ranges));
|
||
qsort (ranges, n, sizeof (*ranges), reloc_range_compare);
|
||
|
||
list->n_range = n;
|
||
list->range = ranges;
|
||
list->reloc = reloc;
|
||
list->list_root.prev = &list->list_root;
|
||
list->list_root.next = &list->list_root;
|
||
}
|
||
else
|
||
{
|
||
free (ranges);
|
||
free (reloc);
|
||
}
|
||
}
|
||
|
||
static void reloc_range_list_append (reloc_range_list *list,
|
||
unsigned irel_index)
|
||
{
|
||
reloc_range_list_entry *entry = list->reloc + irel_index;
|
||
|
||
entry->prev = list->list_root.prev;
|
||
entry->next = &list->list_root;
|
||
entry->prev->next = entry;
|
||
entry->next->prev = entry;
|
||
++list->n_list;
|
||
}
|
||
|
||
static void reloc_range_list_remove (reloc_range_list *list,
|
||
unsigned irel_index)
|
||
{
|
||
reloc_range_list_entry *entry = list->reloc + irel_index;
|
||
|
||
entry->next->prev = entry->prev;
|
||
entry->prev->next = entry->next;
|
||
--list->n_list;
|
||
}
|
||
|
||
/* Update relocation list object so that it lists all relocations that cross
|
||
[first; last] range. Range bounds should not decrease with successive
|
||
invocations. */
|
||
static void reloc_range_list_update_range (reloc_range_list *list,
|
||
bfd_vma first, bfd_vma last)
|
||
{
|
||
/* This should not happen: EBBs are iterated from lower addresses to higher.
|
||
But even if that happens there's no need to break: just flush current list
|
||
and start from scratch. */
|
||
if ((list->last > 0 && list->range[list->last - 1].addr > last) ||
|
||
(list->first > 0 && list->range[list->first - 1].addr >= first))
|
||
{
|
||
list->first = 0;
|
||
list->last = 0;
|
||
list->n_list = 0;
|
||
list->list_root.next = &list->list_root;
|
||
list->list_root.prev = &list->list_root;
|
||
fprintf (stderr, "%s: move backwards requested\n", __func__);
|
||
}
|
||
|
||
for (; list->last < list->n_range &&
|
||
list->range[list->last].addr <= last; ++list->last)
|
||
if (list->range[list->last].add)
|
||
reloc_range_list_append (list, list->range[list->last].irel_index);
|
||
|
||
for (; list->first < list->n_range &&
|
||
list->range[list->first].addr < first; ++list->first)
|
||
if (!list->range[list->first].add)
|
||
reloc_range_list_remove (list, list->range[list->first].irel_index);
|
||
}
|
||
|
||
static void free_reloc_range_list (reloc_range_list *list)
|
||
{
|
||
free (list->range);
|
||
free (list->reloc);
|
||
}
|
||
|
||
/* The compute_text_actions function will build a list of potential
|
||
transformation actions for code in the extended basic block of each
|
||
longcall that is optimized to a direct call. From this list we
|
||
generate a set of actions to actually perform that optimizes for
|
||
space and, if not using size_opt, maintains branch target
|
||
alignments.
|
||
|
||
These actions to be performed are placed on a per-section list.
|
||
The actual changes are performed by relax_section() in the second
|
||
pass. */
|
||
|
||
bfd_boolean
|
||
compute_text_actions (bfd *abfd,
|
||
asection *sec,
|
||
struct bfd_link_info *link_info)
|
||
{
|
||
xtensa_opcode *reloc_opcodes = NULL;
|
||
xtensa_relax_info *relax_info;
|
||
bfd_byte *contents;
|
||
Elf_Internal_Rela *internal_relocs;
|
||
bfd_boolean ok = TRUE;
|
||
unsigned i;
|
||
property_table_entry *prop_table = 0;
|
||
int ptblsize = 0;
|
||
bfd_size_type sec_size;
|
||
reloc_range_list relevant_relocs;
|
||
|
||
relax_info = get_xtensa_relax_info (sec);
|
||
BFD_ASSERT (relax_info);
|
||
BFD_ASSERT (relax_info->src_next == relax_info->src_count);
|
||
|
||
/* Do nothing if the section contains no optimized longcalls. */
|
||
if (!relax_info->is_relaxable_asm_section)
|
||
return ok;
|
||
|
||
internal_relocs = retrieve_internal_relocs (abfd, sec,
|
||
link_info->keep_memory);
|
||
|
||
if (internal_relocs)
|
||
qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
|
||
internal_reloc_compare);
|
||
|
||
sec_size = bfd_get_section_limit (abfd, sec);
|
||
contents = retrieve_contents (abfd, sec, link_info->keep_memory);
|
||
if (contents == NULL && sec_size != 0)
|
||
{
|
||
ok = FALSE;
|
||
goto error_return;
|
||
}
|
||
|
||
ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
|
||
XTENSA_PROP_SEC_NAME, FALSE);
|
||
if (ptblsize < 0)
|
||
{
|
||
ok = FALSE;
|
||
goto error_return;
|
||
}
|
||
|
||
/* Precompute the opcode for each relocation. */
|
||
reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs);
|
||
|
||
build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes,
|
||
&relevant_relocs);
|
||
|
||
for (i = 0; i < sec->reloc_count; i++)
|
||
{
|
||
Elf_Internal_Rela *irel = &internal_relocs[i];
|
||
bfd_vma r_offset;
|
||
property_table_entry *the_entry;
|
||
int ptbl_idx;
|
||
ebb_t *ebb;
|
||
ebb_constraint ebb_table;
|
||
bfd_size_type simplify_size;
|
||
|
||
if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
|
||
continue;
|
||
r_offset = irel->r_offset;
|
||
|
||
simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
|
||
if (simplify_size == 0)
|
||
{
|
||
_bfd_error_handler
|
||
/* xgettext:c-format */
|
||
(_("%pB(%pA+%#" PRIx64 "): could not decode instruction for "
|
||
"XTENSA_ASM_SIMPLIFY relocation; "
|
||
"possible configuration mismatch"),
|
||
sec->owner, sec, (uint64_t) r_offset);
|
||
continue;
|
||
}
|
||
|
||
/* If the instruction table is not around, then don't do this
|
||
relaxation. */
|
||
the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
|
||
sec->vma + irel->r_offset);
|
||
if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
|
||
{
|
||
text_action_add (&relax_info->action_list,
|
||
ta_convert_longcall, sec, r_offset,
|
||
0);
|
||
continue;
|
||
}
|
||
|
||
/* If the next longcall happens to be at the same address as an
|
||
unreachable section of size 0, then skip forward. */
|
||
ptbl_idx = the_entry - prop_table;
|
||
while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
|
||
&& the_entry->size == 0
|
||
&& ptbl_idx + 1 < ptblsize
|
||
&& (prop_table[ptbl_idx + 1].address
|
||
== prop_table[ptbl_idx].address))
|
||
{
|
||
ptbl_idx++;
|
||
the_entry++;
|
||
}
|
||
|
||
if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
|
||
/* NO_REORDER is OK */
|
||
continue;
|
||
|
||
init_ebb_constraint (&ebb_table);
|
||
ebb = &ebb_table.ebb;
|
||
init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
|
||
internal_relocs, sec->reloc_count);
|
||
ebb->start_offset = r_offset + simplify_size;
|
||
ebb->end_offset = r_offset + simplify_size;
|
||
ebb->start_ptbl_idx = ptbl_idx;
|
||
ebb->end_ptbl_idx = ptbl_idx;
|
||
ebb->start_reloc_idx = i;
|
||
ebb->end_reloc_idx = i;
|
||
|
||
if (!extend_ebb_bounds (ebb)
|
||
|| !compute_ebb_proposed_actions (&ebb_table)
|
||
|| !compute_ebb_actions (&ebb_table)
|
||
|| !check_section_ebb_pcrels_fit (abfd, sec, contents,
|
||
internal_relocs,
|
||
&relevant_relocs,
|
||
&ebb_table, reloc_opcodes)
|
||
|| !check_section_ebb_reduces (&ebb_table))
|
||
{
|
||
/* If anything goes wrong or we get unlucky and something does
|
||
not fit, with our plan because of expansion between
|
||
critical branches, just convert to a NOP. */
|
||
|
||
text_action_add (&relax_info->action_list,
|
||
ta_convert_longcall, sec, r_offset, 0);
|
||
i = ebb_table.ebb.end_reloc_idx;
|
||
free_ebb_constraint (&ebb_table);
|
||
continue;
|
||
}
|
||
|
||
text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
|
||
|
||
/* Update the index so we do not go looking at the relocations
|
||
we have already processed. */
|
||
i = ebb_table.ebb.end_reloc_idx;
|
||
free_ebb_constraint (&ebb_table);
|
||
}
|
||
|
||
free_reloc_range_list (&relevant_relocs);
|
||
|
||
#if DEBUG
|
||
if (action_list_count (&relax_info->action_list))
|
||
print_action_list (stderr, &relax_info->action_list);
|
||
#endif
|
||
|
||
error_return:
|
||
release_contents (sec, contents);
|
||
release_internal_relocs (sec, internal_relocs);
|
||
if (prop_table)
|
||
free (prop_table);
|
||
if (reloc_opcodes)
|
||
free (reloc_opcodes);
|
||
|
||
return ok;
|
||
}
|
||
|
||
|
||
/* Do not widen an instruction if it is preceeded by a
|
||
loop opcode. It might cause misalignment. */
|
||
|
||
static bfd_boolean
|
||
prev_instr_is_a_loop (bfd_byte *contents,
|
||
bfd_size_type content_length,
|
||
bfd_size_type offset)
|
||
{
|
||
xtensa_opcode prev_opcode;
|
||
|
||
if (offset < 3)
|
||
return FALSE;
|
||
prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
|
||
return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
|
||
}
|
||
|
||
|
||
/* Find all of the possible actions for an extended basic block. */
|
||
|
||
bfd_boolean
|
||
compute_ebb_proposed_actions (ebb_constraint *ebb_table)
|
||
{
|
||
const ebb_t *ebb = &ebb_table->ebb;
|
||
unsigned rel_idx = ebb->start_reloc_idx;
|
||
property_table_entry *entry, *start_entry, *end_entry;
|
||
bfd_vma offset = 0;
|
||
xtensa_isa isa = xtensa_default_isa;
|
||
xtensa_format fmt;
|
||
static xtensa_insnbuf insnbuf = NULL;
|
||
static xtensa_insnbuf slotbuf = NULL;
|
||
|
||
if (insnbuf == NULL)
|
||
{
|
||
insnbuf = xtensa_insnbuf_alloc (isa);
|
||
slotbuf = xtensa_insnbuf_alloc (isa);
|
||
}
|
||
|
||
start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
|
||
end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
|
||
|
||
for (entry = start_entry; entry <= end_entry; entry++)
|
||
{
|
||
bfd_vma start_offset, end_offset;
|
||
bfd_size_type insn_len;
|
||
|
||
start_offset = entry->address - ebb->sec->vma;
|
||
end_offset = entry->address + entry->size - ebb->sec->vma;
|
||
|
||
if (entry == start_entry)
|
||
start_offset = ebb->start_offset;
|
||
if (entry == end_entry)
|
||
end_offset = ebb->end_offset;
|
||
offset = start_offset;
|
||
|
||
if (offset == entry->address - ebb->sec->vma
|
||
&& (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
|
||
{
|
||
enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
|
||
BFD_ASSERT (offset != end_offset);
|
||
if (offset == end_offset)
|
||
return FALSE;
|
||
|
||
insn_len = insn_decode_len (ebb->contents, ebb->content_length,
|
||
offset);
|
||
if (insn_len == 0)
|
||
goto decode_error;
|
||
|
||
if (check_branch_target_aligned_address (offset, insn_len))
|
||
align_type = EBB_REQUIRE_TGT_ALIGN;
|
||
|
||
ebb_propose_action (ebb_table, align_type, 0,
|
||
ta_none, offset, 0, TRUE);
|
||
}
|
||
|
||
while (offset != end_offset)
|
||
{
|
||
Elf_Internal_Rela *irel;
|
||
xtensa_opcode opcode;
|
||
|
||
while (rel_idx < ebb->end_reloc_idx
|
||
&& (ebb->relocs[rel_idx].r_offset < offset
|
||
|| (ebb->relocs[rel_idx].r_offset == offset
|
||
&& (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
|
||
!= R_XTENSA_ASM_SIMPLIFY))))
|
||
rel_idx++;
|
||
|
||
/* Check for longcall. */
|
||
irel = &ebb->relocs[rel_idx];
|
||
if (irel->r_offset == offset
|
||
&& ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
|
||
{
|
||
bfd_size_type simplify_size;
|
||
|
||
simplify_size = get_asm_simplify_size (ebb->contents,
|
||
ebb->content_length,
|
||
irel->r_offset);
|
||
if (simplify_size == 0)
|
||
goto decode_error;
|
||
|
||
ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
|
||
ta_convert_longcall, offset, 0, TRUE);
|
||
|
||
offset += simplify_size;
|
||
continue;
|
||
}
|
||
|
||
if (offset + MIN_INSN_LENGTH > ebb->content_length)
|
||
goto decode_error;
|
||
xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
|
||
ebb->content_length - offset);
|
||
fmt = xtensa_format_decode (isa, insnbuf);
|
||
if (fmt == XTENSA_UNDEFINED)
|
||
goto decode_error;
|
||
insn_len = xtensa_format_length (isa, fmt);
|
||
if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
|
||
goto decode_error;
|
||
|
||
if (xtensa_format_num_slots (isa, fmt) != 1)
|
||
{
|
||
offset += insn_len;
|
||
continue;
|
||
}
|
||
|
||
xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
|
||
opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
|
||
if (opcode == XTENSA_UNDEFINED)
|
||
goto decode_error;
|
||
|
||
if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
|
||
&& (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
|
||
&& can_narrow_instruction (slotbuf, fmt, opcode) != 0)
|
||
{
|
||
/* Add an instruction narrow action. */
|
||
ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
|
||
ta_narrow_insn, offset, 0, FALSE);
|
||
}
|
||
else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
|
||
&& can_widen_instruction (slotbuf, fmt, opcode) != 0
|
||
&& ! prev_instr_is_a_loop (ebb->contents,
|
||
ebb->content_length, offset))
|
||
{
|
||
/* Add an instruction widen action. */
|
||
ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
|
||
ta_widen_insn, offset, 0, FALSE);
|
||
}
|
||
else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
|
||
{
|
||
/* Check for branch targets. */
|
||
ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
|
||
ta_none, offset, 0, TRUE);
|
||
}
|
||
|
||
offset += insn_len;
|
||
}
|
||
}
|
||
|
||
if (ebb->ends_unreachable)
|
||
{
|
||
ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
|
||
ta_fill, ebb->end_offset, 0, TRUE);
|
||
}
|
||
|
||
return TRUE;
|
||
|
||
decode_error:
|
||
_bfd_error_handler
|
||
/* xgettext:c-format */
|
||
(_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
|
||
"possible configuration mismatch"),
|
||
ebb->sec->owner, ebb->sec, (uint64_t) offset);
|
||
return FALSE;
|
||
}
|
||
|
||
|
||
/* After all of the information has collected about the
|
||
transformations possible in an EBB, compute the appropriate actions
|
||
here in compute_ebb_actions. We still must check later to make
|
||
sure that the actions do not break any relocations. The algorithm
|
||
used here is pretty greedy. Basically, it removes as many no-ops
|
||
as possible so that the end of the EBB has the same alignment
|
||
characteristics as the original. First, it uses narrowing, then
|
||
fill space at the end of the EBB, and finally widenings. If that
|
||
does not work, it tries again with one fewer no-op removed. The
|
||
optimization will only be performed if all of the branch targets
|
||
that were aligned before transformation are also aligned after the
|
||
transformation.
|
||
|
||
When the size_opt flag is set, ignore the branch target alignments,
|
||
narrow all wide instructions, and remove all no-ops unless the end
|
||
of the EBB prevents it. */
|
||
|
||
bfd_boolean
|
||
compute_ebb_actions (ebb_constraint *ebb_table)
|
||
{
|
||
unsigned i = 0;
|
||
unsigned j;
|
||
int removed_bytes = 0;
|
||
ebb_t *ebb = &ebb_table->ebb;
|
||
unsigned seg_idx_start = 0;
|
||
unsigned seg_idx_end = 0;
|
||
|
||
/* We perform this like the assembler relaxation algorithm: Start by
|
||
assuming all instructions are narrow and all no-ops removed; then
|
||
walk through.... */
|
||
|
||
/* For each segment of this that has a solid constraint, check to
|
||
see if there are any combinations that will keep the constraint.
|
||
If so, use it. */
|
||
for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
|
||
{
|
||
bfd_boolean requires_text_end_align = FALSE;
|
||
unsigned longcall_count = 0;
|
||
unsigned longcall_convert_count = 0;
|
||
unsigned narrowable_count = 0;
|
||
unsigned narrowable_convert_count = 0;
|
||
unsigned widenable_count = 0;
|
||
unsigned widenable_convert_count = 0;
|
||
|
||
proposed_action *action = NULL;
|
||
int align = (1 << ebb_table->ebb.sec->alignment_power);
|
||
|
||
seg_idx_start = seg_idx_end;
|
||
|
||
for (i = seg_idx_start; i < ebb_table->action_count; i++)
|
||
{
|
||
action = &ebb_table->actions[i];
|
||
if (action->action == ta_convert_longcall)
|
||
longcall_count++;
|
||
if (action->action == ta_narrow_insn)
|
||
narrowable_count++;
|
||
if (action->action == ta_widen_insn)
|
||
widenable_count++;
|
||
if (action->action == ta_fill)
|
||
break;
|
||
if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
|
||
break;
|
||
if (action->align_type == EBB_REQUIRE_TGT_ALIGN
|
||
&& !elf32xtensa_size_opt)
|
||
break;
|
||
}
|
||
seg_idx_end = i;
|
||
|
||
if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
|
||
requires_text_end_align = TRUE;
|
||
|
||
if (elf32xtensa_size_opt && !requires_text_end_align
|
||
&& action->align_type != EBB_REQUIRE_LOOP_ALIGN
|
||
&& action->align_type != EBB_REQUIRE_TGT_ALIGN)
|
||
{
|
||
longcall_convert_count = longcall_count;
|
||
narrowable_convert_count = narrowable_count;
|
||
widenable_convert_count = 0;
|
||
}
|
||
else
|
||
{
|
||
/* There is a constraint. Convert the max number of longcalls. */
|
||
narrowable_convert_count = 0;
|
||
longcall_convert_count = 0;
|
||
widenable_convert_count = 0;
|
||
|
||
for (j = 0; j < longcall_count; j++)
|
||
{
|
||
int removed = (longcall_count - j) * 3 & (align - 1);
|
||
unsigned desire_narrow = (align - removed) & (align - 1);
|
||
unsigned desire_widen = removed;
|
||
if (desire_narrow <= narrowable_count)
|
||
{
|
||
narrowable_convert_count = desire_narrow;
|
||
narrowable_convert_count +=
|
||
(align * ((narrowable_count - narrowable_convert_count)
|
||
/ align));
|
||
longcall_convert_count = (longcall_count - j);
|
||
widenable_convert_count = 0;
|
||
break;
|
||
}
|
||
if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
|
||
{
|
||
narrowable_convert_count = 0;
|
||
longcall_convert_count = longcall_count - j;
|
||
widenable_convert_count = desire_widen;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Now the number of conversions are saved. Do them. */
|
||
for (i = seg_idx_start; i < seg_idx_end; i++)
|
||
{
|
||
action = &ebb_table->actions[i];
|
||
switch (action->action)
|
||
{
|
||
case ta_convert_longcall:
|
||
if (longcall_convert_count != 0)
|
||
{
|
||
action->action = ta_remove_longcall;
|
||
action->do_action = TRUE;
|
||
action->removed_bytes += 3;
|
||
longcall_convert_count--;
|
||
}
|
||
break;
|
||
case ta_narrow_insn:
|
||
if (narrowable_convert_count != 0)
|
||
{
|
||
action->do_action = TRUE;
|
||
action->removed_bytes += 1;
|
||
narrowable_convert_count--;
|
||
}
|
||
break;
|
||
case ta_widen_insn:
|
||
if (widenable_convert_count != 0)
|
||
{
|
||
action->do_action = TRUE;
|
||
action->removed_bytes -= 1;
|
||
widenable_convert_count--;
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Now we move on to some local opts. Try to remove each of the
|
||
remaining longcalls. */
|
||
|
||
if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
|
||
{
|
||
removed_bytes = 0;
|
||
for (i = 0; i < ebb_table->action_count; i++)
|
||
{
|
||
int old_removed_bytes = removed_bytes;
|
||
proposed_action *action = &ebb_table->actions[i];
|
||
|
||
if (action->do_action && action->action == ta_convert_longcall)
|
||
{
|
||
bfd_boolean bad_alignment = FALSE;
|
||
removed_bytes += 3;
|
||
for (j = i + 1; j < ebb_table->action_count; j++)
|
||
{
|
||
proposed_action *new_action = &ebb_table->actions[j];
|
||
bfd_vma offset = new_action->offset;
|
||
if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
|
||
{
|
||
if (!check_branch_target_aligned
|
||
(ebb_table->ebb.contents,
|
||
ebb_table->ebb.content_length,
|
||
offset, offset - removed_bytes))
|
||
{
|
||
bad_alignment = TRUE;
|
||
break;
|
||
}
|
||
}
|
||
if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
|
||
{
|
||
if (!check_loop_aligned (ebb_table->ebb.contents,
|
||
ebb_table->ebb.content_length,
|
||
offset,
|
||
offset - removed_bytes))
|
||
{
|
||
bad_alignment = TRUE;
|
||
break;
|
||
}
|
||
}
|
||
if (new_action->action == ta_narrow_insn
|
||
&& !new_action->do_action
|
||
&& ebb_table->ebb.sec->alignment_power == 2)
|
||
{
|
||
/* Narrow an instruction and we are done. */
|
||
new_action->do_action = TRUE;
|
||
new_action->removed_bytes += 1;
|
||
bad_alignment = FALSE;
|
||
break;
|
||
}
|
||
if (new_action->action == ta_widen_insn
|
||
&& new_action->do_action
|
||
&& ebb_table->ebb.sec->alignment_power == 2)
|
||
{
|
||
/* Narrow an instruction and we are done. */
|
||
new_action->do_action = FALSE;
|
||
new_action->removed_bytes += 1;
|
||
bad_alignment = FALSE;
|
||
break;
|
||
}
|
||
if (new_action->do_action)
|
||
removed_bytes += new_action->removed_bytes;
|
||
}
|
||
if (!bad_alignment)
|
||
{
|
||
action->removed_bytes += 3;
|
||
action->action = ta_remove_longcall;
|
||
action->do_action = TRUE;
|
||
}
|
||
}
|
||
removed_bytes = old_removed_bytes;
|
||
if (action->do_action)
|
||
removed_bytes += action->removed_bytes;
|
||
}
|
||
}
|
||
|
||
removed_bytes = 0;
|
||
for (i = 0; i < ebb_table->action_count; ++i)
|
||
{
|
||
proposed_action *action = &ebb_table->actions[i];
|
||
if (action->do_action)
|
||
removed_bytes += action->removed_bytes;
|
||
}
|
||
|
||
if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
|
||
&& ebb->ends_unreachable)
|
||
{
|
||
proposed_action *action;
|
||
int br;
|
||
int extra_space;
|
||
|
||
BFD_ASSERT (ebb_table->action_count != 0);
|
||
action = &ebb_table->actions[ebb_table->action_count - 1];
|
||
BFD_ASSERT (action->action == ta_fill);
|
||
BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
|
||
|
||
extra_space = xtensa_compute_fill_extra_space (ebb->ends_unreachable);
|
||
br = action->removed_bytes + removed_bytes + extra_space;
|
||
br = br & ((1 << ebb->sec->alignment_power ) - 1);
|
||
|
||
action->removed_bytes = extra_space - br;
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* The xlate_map is a sorted array of address mappings designed to
|
||
answer the offset_with_removed_text() query with a binary search instead
|
||
of a linear search through the section's action_list. */
|
||
|
||
typedef struct xlate_map_entry xlate_map_entry_t;
|
||
typedef struct xlate_map xlate_map_t;
|
||
|
||
struct xlate_map_entry
|
||
{
|
||
bfd_vma orig_address;
|
||
bfd_vma new_address;
|
||
unsigned size;
|
||
};
|
||
|
||
struct xlate_map
|
||
{
|
||
unsigned entry_count;
|
||
xlate_map_entry_t *entry;
|
||
};
|
||
|
||
|
||
static int
|
||
xlate_compare (const void *a_v, const void *b_v)
|
||
{
|
||
const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
|
||
const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
|
||
if (a->orig_address < b->orig_address)
|
||
return -1;
|
||
if (a->orig_address > (b->orig_address + b->size - 1))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
|
||
static bfd_vma
|
||
xlate_offset_with_removed_text (const xlate_map_t *map,
|
||
text_action_list *action_list,
|
||
bfd_vma offset)
|
||
{
|
||
void *r;
|
||
xlate_map_entry_t *e;
|
||
struct xlate_map_entry se;
|
||
|
||
if (map == NULL)
|
||
return offset_with_removed_text (action_list, offset);
|
||
|
||
if (map->entry_count == 0)
|
||
return offset;
|
||
|
||
se.orig_address = offset;
|
||
r = bsearch (&se, map->entry, map->entry_count,
|
||
sizeof (xlate_map_entry_t), &xlate_compare);
|
||
e = (xlate_map_entry_t *) r;
|
||
|
||
/* There could be a jump past the end of the section,
|
||
allow it using the last xlate map entry to translate its address. */
|
||
if (e == NULL)
|
||
{
|
||
e = map->entry + map->entry_count - 1;
|
||
if (xlate_compare (&se, e) <= 0)
|
||
e = NULL;
|
||
}
|
||
BFD_ASSERT (e != NULL);
|
||
if (e == NULL)
|
||
return offset;
|
||
return e->new_address - e->orig_address + offset;
|
||
}
|
||
|
||
typedef struct xlate_map_context_struct xlate_map_context;
|
||
struct xlate_map_context_struct
|
||
{
|
||
xlate_map_t *map;
|
||
xlate_map_entry_t *current_entry;
|
||
int removed;
|
||
};
|
||
|
||
static int
|
||
xlate_map_fn (splay_tree_node node, void *p)
|
||
{
|
||
text_action *r = (text_action *)node->value;
|
||
xlate_map_context *ctx = p;
|
||
unsigned orig_size = 0;
|
||
|
||
switch (r->action)
|
||
{
|
||
case ta_none:
|
||
case ta_remove_insn:
|
||
case ta_convert_longcall:
|
||
case ta_remove_literal:
|
||
case ta_add_literal:
|
||
break;
|
||
case ta_remove_longcall:
|
||
orig_size = 6;
|
||
break;
|
||
case ta_narrow_insn:
|
||
orig_size = 3;
|
||
break;
|
||
case ta_widen_insn:
|
||
orig_size = 2;
|
||
break;
|
||
case ta_fill:
|
||
break;
|
||
}
|
||
ctx->current_entry->size =
|
||
r->offset + orig_size - ctx->current_entry->orig_address;
|
||
if (ctx->current_entry->size != 0)
|
||
{
|
||
ctx->current_entry++;
|
||
ctx->map->entry_count++;
|
||
}
|
||
ctx->current_entry->orig_address = r->offset + orig_size;
|
||
ctx->removed += r->removed_bytes;
|
||
ctx->current_entry->new_address = r->offset + orig_size - ctx->removed;
|
||
ctx->current_entry->size = 0;
|
||
return 0;
|
||
}
|
||
|
||
/* Build a binary searchable offset translation map from a section's
|
||
action list. */
|
||
|
||
static xlate_map_t *
|
||
build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
|
||
{
|
||
text_action_list *action_list = &relax_info->action_list;
|
||
unsigned num_actions = 0;
|
||
xlate_map_context ctx;
|
||
|
||
ctx.map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
|
||
|
||
if (ctx.map == NULL)
|
||
return NULL;
|
||
|
||
num_actions = action_list_count (action_list);
|
||
ctx.map->entry = (xlate_map_entry_t *)
|
||
bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
|
||
if (ctx.map->entry == NULL)
|
||
{
|
||
free (ctx.map);
|
||
return NULL;
|
||
}
|
||
ctx.map->entry_count = 0;
|
||
|
||
ctx.removed = 0;
|
||
ctx.current_entry = &ctx.map->entry[0];
|
||
|
||
ctx.current_entry->orig_address = 0;
|
||
ctx.current_entry->new_address = 0;
|
||
ctx.current_entry->size = 0;
|
||
|
||
splay_tree_foreach (action_list->tree, xlate_map_fn, &ctx);
|
||
|
||
ctx.current_entry->size = (bfd_get_section_limit (sec->owner, sec)
|
||
- ctx.current_entry->orig_address);
|
||
if (ctx.current_entry->size != 0)
|
||
ctx.map->entry_count++;
|
||
|
||
return ctx.map;
|
||
}
|
||
|
||
|
||
/* Free an offset translation map. */
|
||
|
||
static void
|
||
free_xlate_map (xlate_map_t *map)
|
||
{
|
||
if (map && map->entry)
|
||
free (map->entry);
|
||
if (map)
|
||
free (map);
|
||
}
|
||
|
||
|
||
/* Use check_section_ebb_pcrels_fit to make sure that all of the
|
||
relocations in a section will fit if a proposed set of actions
|
||
are performed. */
|
||
|
||
static bfd_boolean
|
||
check_section_ebb_pcrels_fit (bfd *abfd,
|
||
asection *sec,
|
||
bfd_byte *contents,
|
||
Elf_Internal_Rela *internal_relocs,
|
||
reloc_range_list *relevant_relocs,
|
||
const ebb_constraint *constraint,
|
||
const xtensa_opcode *reloc_opcodes)
|
||
{
|
||
unsigned i, j;
|
||
unsigned n = sec->reloc_count;
|
||
Elf_Internal_Rela *irel;
|
||
xlate_map_t *xmap = NULL;
|
||
bfd_boolean ok = TRUE;
|
||
xtensa_relax_info *relax_info;
|
||
reloc_range_list_entry *entry = NULL;
|
||
|
||
relax_info = get_xtensa_relax_info (sec);
|
||
|
||
if (relax_info && sec->reloc_count > 100)
|
||
{
|
||
xmap = build_xlate_map (sec, relax_info);
|
||
/* NULL indicates out of memory, but the slow version
|
||
can still be used. */
|
||
}
|
||
|
||
if (relevant_relocs && constraint->action_count)
|
||
{
|
||
if (!relevant_relocs->ok)
|
||
{
|
||
ok = FALSE;
|
||
n = 0;
|
||
}
|
||
else
|
||
{
|
||
bfd_vma min_offset, max_offset;
|
||
min_offset = max_offset = constraint->actions[0].offset;
|
||
|
||
for (i = 1; i < constraint->action_count; ++i)
|
||
{
|
||
proposed_action *action = &constraint->actions[i];
|
||
bfd_vma offset = action->offset;
|
||
|
||
if (offset < min_offset)
|
||
min_offset = offset;
|
||
if (offset > max_offset)
|
||
max_offset = offset;
|
||
}
|
||
reloc_range_list_update_range (relevant_relocs, min_offset,
|
||
max_offset);
|
||
n = relevant_relocs->n_list;
|
||
entry = &relevant_relocs->list_root;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
relevant_relocs = NULL;
|
||
}
|
||
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
r_reloc r_rel;
|
||
bfd_vma orig_self_offset, orig_target_offset;
|
||
bfd_vma self_offset, target_offset;
|
||
int r_type;
|
||
reloc_howto_type *howto;
|
||
int self_removed_bytes, target_removed_bytes;
|
||
|
||
if (relevant_relocs)
|
||
{
|
||
entry = entry->next;
|
||
irel = entry->irel;
|
||
}
|
||
else
|
||
{
|
||
irel = internal_relocs + i;
|
||
}
|
||
r_type = ELF32_R_TYPE (irel->r_info);
|
||
|
||
howto = &elf_howto_table[r_type];
|
||
/* We maintain the required invariant: PC-relative relocations
|
||
that fit before linking must fit after linking. Thus we only
|
||
need to deal with relocations to the same section that are
|
||
PC-relative. */
|
||
if (r_type == R_XTENSA_ASM_SIMPLIFY
|
||
|| r_type == R_XTENSA_32_PCREL
|
||
|| !howto->pc_relative)
|
||
continue;
|
||
|
||
r_reloc_init (&r_rel, abfd, irel, contents,
|
||
bfd_get_section_limit (abfd, sec));
|
||
|
||
if (r_reloc_get_section (&r_rel) != sec)
|
||
continue;
|
||
|
||
orig_self_offset = irel->r_offset;
|
||
orig_target_offset = r_rel.target_offset;
|
||
|
||
self_offset = orig_self_offset;
|
||
target_offset = orig_target_offset;
|
||
|
||
if (relax_info)
|
||
{
|
||
self_offset =
|
||
xlate_offset_with_removed_text (xmap, &relax_info->action_list,
|
||
orig_self_offset);
|
||
target_offset =
|
||
xlate_offset_with_removed_text (xmap, &relax_info->action_list,
|
||
orig_target_offset);
|
||
}
|
||
|
||
self_removed_bytes = 0;
|
||
target_removed_bytes = 0;
|
||
|
||
for (j = 0; j < constraint->action_count; ++j)
|
||
{
|
||
proposed_action *action = &constraint->actions[j];
|
||
bfd_vma offset = action->offset;
|
||
int removed_bytes = action->removed_bytes;
|
||
if (offset < orig_self_offset
|
||
|| (offset == orig_self_offset && action->action == ta_fill
|
||
&& action->removed_bytes < 0))
|
||
self_removed_bytes += removed_bytes;
|
||
if (offset < orig_target_offset
|
||
|| (offset == orig_target_offset && action->action == ta_fill
|
||
&& action->removed_bytes < 0))
|
||
target_removed_bytes += removed_bytes;
|
||
}
|
||
self_offset -= self_removed_bytes;
|
||
target_offset -= target_removed_bytes;
|
||
|
||
/* Try to encode it. Get the operand and check. */
|
||
if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
|
||
{
|
||
/* None of the current alternate relocs are PC-relative,
|
||
and only PC-relative relocs matter here. */
|
||
}
|
||
else
|
||
{
|
||
xtensa_opcode opcode;
|
||
int opnum;
|
||
|
||
if (relevant_relocs)
|
||
{
|
||
opcode = entry->opcode;
|
||
opnum = entry->opnum;
|
||
}
|
||
else
|
||
{
|
||
if (reloc_opcodes)
|
||
opcode = reloc_opcodes[relevant_relocs ?
|
||
(unsigned)(entry - relevant_relocs->reloc) : i];
|
||
else
|
||
opcode = get_relocation_opcode (abfd, sec, contents, irel);
|
||
if (opcode == XTENSA_UNDEFINED)
|
||
{
|
||
ok = FALSE;
|
||
break;
|
||
}
|
||
|
||
opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
|
||
if (opnum == XTENSA_UNDEFINED)
|
||
{
|
||
ok = FALSE;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
|
||
{
|
||
ok = FALSE;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (xmap)
|
||
free_xlate_map (xmap);
|
||
|
||
return ok;
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
check_section_ebb_reduces (const ebb_constraint *constraint)
|
||
{
|
||
int removed = 0;
|
||
unsigned i;
|
||
|
||
for (i = 0; i < constraint->action_count; i++)
|
||
{
|
||
const proposed_action *action = &constraint->actions[i];
|
||
if (action->do_action)
|
||
removed += action->removed_bytes;
|
||
}
|
||
if (removed < 0)
|
||
return FALSE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
void
|
||
text_action_add_proposed (text_action_list *l,
|
||
const ebb_constraint *ebb_table,
|
||
asection *sec)
|
||
{
|
||
unsigned i;
|
||
|
||
for (i = 0; i < ebb_table->action_count; i++)
|
||
{
|
||
proposed_action *action = &ebb_table->actions[i];
|
||
|
||
if (!action->do_action)
|
||
continue;
|
||
switch (action->action)
|
||
{
|
||
case ta_remove_insn:
|
||
case ta_remove_longcall:
|
||
case ta_convert_longcall:
|
||
case ta_narrow_insn:
|
||
case ta_widen_insn:
|
||
case ta_fill:
|
||
case ta_remove_literal:
|
||
text_action_add (l, action->action, sec, action->offset,
|
||
action->removed_bytes);
|
||
break;
|
||
case ta_none:
|
||
break;
|
||
default:
|
||
BFD_ASSERT (0);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
int
|
||
xtensa_compute_fill_extra_space (property_table_entry *entry)
|
||
{
|
||
int fill_extra_space;
|
||
|
||
if (!entry)
|
||
return 0;
|
||
|
||
if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
|
||
return 0;
|
||
|
||
fill_extra_space = entry->size;
|
||
if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
|
||
{
|
||
/* Fill bytes for alignment:
|
||
(2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
|
||
int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
|
||
int nsm = (1 << pow) - 1;
|
||
bfd_vma addr = entry->address + entry->size;
|
||
bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
|
||
fill_extra_space += align_fill;
|
||
}
|
||
return fill_extra_space;
|
||
}
|
||
|
||
|
||
/* First relaxation pass. */
|
||
|
||
/* If the section contains relaxable literals, check each literal to
|
||
see if it has the same value as another literal that has already
|
||
been seen, either in the current section or a previous one. If so,
|
||
add an entry to the per-section list of removed literals. The
|
||
actual changes are deferred until the next pass. */
|
||
|
||
static bfd_boolean
|
||
compute_removed_literals (bfd *abfd,
|
||
asection *sec,
|
||
struct bfd_link_info *link_info,
|
||
value_map_hash_table *values)
|
||
{
|
||
xtensa_relax_info *relax_info;
|
||
bfd_byte *contents;
|
||
Elf_Internal_Rela *internal_relocs;
|
||
source_reloc *src_relocs, *rel;
|
||
bfd_boolean ok = TRUE;
|
||
property_table_entry *prop_table = NULL;
|
||
int ptblsize;
|
||
int i, prev_i;
|
||
bfd_boolean last_loc_is_prev = FALSE;
|
||
bfd_vma last_target_offset = 0;
|
||
section_cache_t target_sec_cache;
|
||
bfd_size_type sec_size;
|
||
|
||
init_section_cache (&target_sec_cache);
|
||
|
||
/* Do nothing if it is not a relaxable literal section. */
|
||
relax_info = get_xtensa_relax_info (sec);
|
||
BFD_ASSERT (relax_info);
|
||
if (!relax_info->is_relaxable_literal_section)
|
||
return ok;
|
||
|
||
internal_relocs = retrieve_internal_relocs (abfd, sec,
|
||
link_info->keep_memory);
|
||
|
||
sec_size = bfd_get_section_limit (abfd, sec);
|
||
contents = retrieve_contents (abfd, sec, link_info->keep_memory);
|
||
if (contents == NULL && sec_size != 0)
|
||
{
|
||
ok = FALSE;
|
||
goto error_return;
|
||
}
|
||
|
||
/* Sort the source_relocs by target offset. */
|
||
src_relocs = relax_info->src_relocs;
|
||
qsort (src_relocs, relax_info->src_count,
|
||
sizeof (source_reloc), source_reloc_compare);
|
||
qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
|
||
internal_reloc_compare);
|
||
|
||
ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
|
||
XTENSA_PROP_SEC_NAME, FALSE);
|
||
if (ptblsize < 0)
|
||
{
|
||
ok = FALSE;
|
||
goto error_return;
|
||
}
|
||
|
||
prev_i = -1;
|
||
for (i = 0; i < relax_info->src_count; i++)
|
||
{
|
||
Elf_Internal_Rela *irel = NULL;
|
||
|
||
rel = &src_relocs[i];
|
||
if (get_l32r_opcode () != rel->opcode)
|
||
continue;
|
||
irel = get_irel_at_offset (sec, internal_relocs,
|
||
rel->r_rel.target_offset);
|
||
|
||
/* If the relocation on this is not a simple R_XTENSA_32 or
|
||
R_XTENSA_PLT then do not consider it. This may happen when
|
||
the difference of two symbols is used in a literal. */
|
||
if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
|
||
&& ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
|
||
continue;
|
||
|
||
/* If the target_offset for this relocation is the same as the
|
||
previous relocation, then we've already considered whether the
|
||
literal can be coalesced. Skip to the next one.... */
|
||
if (i != 0 && prev_i != -1
|
||
&& src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
|
||
continue;
|
||
prev_i = i;
|
||
|
||
if (last_loc_is_prev &&
|
||
last_target_offset + 4 != rel->r_rel.target_offset)
|
||
last_loc_is_prev = FALSE;
|
||
|
||
/* Check if the relocation was from an L32R that is being removed
|
||
because a CALLX was converted to a direct CALL, and check if
|
||
there are no other relocations to the literal. */
|
||
if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
|
||
sec, prop_table, ptblsize))
|
||
{
|
||
if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
|
||
irel, rel, prop_table, ptblsize))
|
||
{
|
||
ok = FALSE;
|
||
goto error_return;
|
||
}
|
||
last_target_offset = rel->r_rel.target_offset;
|
||
continue;
|
||
}
|
||
|
||
if (!identify_literal_placement (abfd, sec, contents, link_info,
|
||
values,
|
||
&last_loc_is_prev, irel,
|
||
relax_info->src_count - i, rel,
|
||
prop_table, ptblsize,
|
||
&target_sec_cache, rel->is_abs_literal))
|
||
{
|
||
ok = FALSE;
|
||
goto error_return;
|
||
}
|
||
last_target_offset = rel->r_rel.target_offset;
|
||
}
|
||
|
||
#if DEBUG
|
||
print_removed_literals (stderr, &relax_info->removed_list);
|
||
print_action_list (stderr, &relax_info->action_list);
|
||
#endif /* DEBUG */
|
||
|
||
error_return:
|
||
if (prop_table)
|
||
free (prop_table);
|
||
free_section_cache (&target_sec_cache);
|
||
|
||
release_contents (sec, contents);
|
||
release_internal_relocs (sec, internal_relocs);
|
||
return ok;
|
||
}
|
||
|
||
|
||
static Elf_Internal_Rela *
|
||
get_irel_at_offset (asection *sec,
|
||
Elf_Internal_Rela *internal_relocs,
|
||
bfd_vma offset)
|
||
{
|
||
unsigned i;
|
||
Elf_Internal_Rela *irel;
|
||
unsigned r_type;
|
||
Elf_Internal_Rela key;
|
||
|
||
if (!internal_relocs)
|
||
return NULL;
|
||
|
||
key.r_offset = offset;
|
||
irel = bsearch (&key, internal_relocs, sec->reloc_count,
|
||
sizeof (Elf_Internal_Rela), internal_reloc_matches);
|
||
if (!irel)
|
||
return NULL;
|
||
|
||
/* bsearch does not guarantee which will be returned if there are
|
||
multiple matches. We need the first that is not an alignment. */
|
||
i = irel - internal_relocs;
|
||
while (i > 0)
|
||
{
|
||
if (internal_relocs[i-1].r_offset != offset)
|
||
break;
|
||
i--;
|
||
}
|
||
for ( ; i < sec->reloc_count; i++)
|
||
{
|
||
irel = &internal_relocs[i];
|
||
r_type = ELF32_R_TYPE (irel->r_info);
|
||
if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
|
||
return irel;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
|
||
bfd_boolean
|
||
is_removable_literal (const source_reloc *rel,
|
||
int i,
|
||
const source_reloc *src_relocs,
|
||
int src_count,
|
||
asection *sec,
|
||
property_table_entry *prop_table,
|
||
int ptblsize)
|
||
{
|
||
const source_reloc *curr_rel;
|
||
property_table_entry *entry;
|
||
|
||
if (!rel->is_null)
|
||
return FALSE;
|
||
|
||
entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
|
||
sec->vma + rel->r_rel.target_offset);
|
||
if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
|
||
return FALSE;
|
||
|
||
for (++i; i < src_count; ++i)
|
||
{
|
||
curr_rel = &src_relocs[i];
|
||
/* If all others have the same target offset.... */
|
||
if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
|
||
return TRUE;
|
||
|
||
if (!curr_rel->is_null
|
||
&& !xtensa_is_property_section (curr_rel->source_sec)
|
||
&& !(curr_rel->source_sec->flags & SEC_DEBUGGING))
|
||
return FALSE;
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
bfd_boolean
|
||
remove_dead_literal (bfd *abfd,
|
||
asection *sec,
|
||
struct bfd_link_info *link_info,
|
||
Elf_Internal_Rela *internal_relocs,
|
||
Elf_Internal_Rela *irel,
|
||
source_reloc *rel,
|
||
property_table_entry *prop_table,
|
||
int ptblsize)
|
||
{
|
||
property_table_entry *entry;
|
||
xtensa_relax_info *relax_info;
|
||
|
||
relax_info = get_xtensa_relax_info (sec);
|
||
if (!relax_info)
|
||
return FALSE;
|
||
|
||
entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
|
||
sec->vma + rel->r_rel.target_offset);
|
||
|
||
/* Mark the unused literal so that it will be removed. */
|
||
add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
|
||
|
||
text_action_add (&relax_info->action_list,
|
||
ta_remove_literal, sec, rel->r_rel.target_offset, 4);
|
||
|
||
/* If the section is 4-byte aligned, do not add fill. */
|
||
if (sec->alignment_power > 2)
|
||
{
|
||
int fill_extra_space;
|
||
bfd_vma entry_sec_offset;
|
||
text_action *fa;
|
||
property_table_entry *the_add_entry;
|
||
int removed_diff;
|
||
|
||
if (entry)
|
||
entry_sec_offset = entry->address - sec->vma + entry->size;
|
||
else
|
||
entry_sec_offset = rel->r_rel.target_offset + 4;
|
||
|
||
/* If the literal range is at the end of the section,
|
||
do not add fill. */
|
||
the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
|
||
entry_sec_offset);
|
||
fill_extra_space = xtensa_compute_fill_extra_space (the_add_entry);
|
||
|
||
fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
|
||
removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
|
||
-4, fill_extra_space);
|
||
if (fa)
|
||
adjust_fill_action (fa, removed_diff);
|
||
else
|
||
text_action_add (&relax_info->action_list,
|
||
ta_fill, sec, entry_sec_offset, removed_diff);
|
||
}
|
||
|
||
/* Zero out the relocation on this literal location. */
|
||
if (irel)
|
||
{
|
||
if (elf_hash_table (link_info)->dynamic_sections_created)
|
||
shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
|
||
|
||
irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
|
||
pin_internal_relocs (sec, internal_relocs);
|
||
}
|
||
|
||
/* Do not modify "last_loc_is_prev". */
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
bfd_boolean
|
||
identify_literal_placement (bfd *abfd,
|
||
asection *sec,
|
||
bfd_byte *contents,
|
||
struct bfd_link_info *link_info,
|
||
value_map_hash_table *values,
|
||
bfd_boolean *last_loc_is_prev_p,
|
||
Elf_Internal_Rela *irel,
|
||
int remaining_src_rels,
|
||
source_reloc *rel,
|
||
property_table_entry *prop_table,
|
||
int ptblsize,
|
||
section_cache_t *target_sec_cache,
|
||
bfd_boolean is_abs_literal)
|
||
{
|
||
literal_value val;
|
||
value_map *val_map;
|
||
xtensa_relax_info *relax_info;
|
||
bfd_boolean literal_placed = FALSE;
|
||
r_reloc r_rel;
|
||
unsigned long value;
|
||
bfd_boolean final_static_link;
|
||
bfd_size_type sec_size;
|
||
|
||
relax_info = get_xtensa_relax_info (sec);
|
||
if (!relax_info)
|
||
return FALSE;
|
||
|
||
sec_size = bfd_get_section_limit (abfd, sec);
|
||
|
||
final_static_link =
|
||
(!bfd_link_relocatable (link_info)
|
||
&& !elf_hash_table (link_info)->dynamic_sections_created);
|
||
|
||
/* The placement algorithm first checks to see if the literal is
|
||
already in the value map. If so and the value map is reachable
|
||
from all uses, then the literal is moved to that location. If
|
||
not, then we identify the last location where a fresh literal was
|
||
placed. If the literal can be safely moved there, then we do so.
|
||
If not, then we assume that the literal is not to move and leave
|
||
the literal where it is, marking it as the last literal
|
||
location. */
|
||
|
||
/* Find the literal value. */
|
||
value = 0;
|
||
r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
|
||
if (!irel)
|
||
{
|
||
BFD_ASSERT (rel->r_rel.target_offset < sec_size);
|
||
value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
|
||
}
|
||
init_literal_value (&val, &r_rel, value, is_abs_literal);
|
||
|
||
/* Check if we've seen another literal with the same value that
|
||
is in the same output section. */
|
||
val_map = value_map_get_cached_value (values, &val, final_static_link);
|
||
|
||
if (val_map
|
||
&& (r_reloc_get_section (&val_map->loc)->output_section
|
||
== sec->output_section)
|
||
&& relocations_reach (rel, remaining_src_rels, &val_map->loc)
|
||
&& coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
|
||
{
|
||
/* No change to last_loc_is_prev. */
|
||
literal_placed = TRUE;
|
||
}
|
||
|
||
/* For relocatable links, do not try to move literals. To do it
|
||
correctly might increase the number of relocations in an input
|
||
section making the default relocatable linking fail. */
|
||
if (!bfd_link_relocatable (link_info) && !literal_placed
|
||
&& values->has_last_loc && !(*last_loc_is_prev_p))
|
||
{
|
||
asection *target_sec = r_reloc_get_section (&values->last_loc);
|
||
if (target_sec && target_sec->output_section == sec->output_section)
|
||
{
|
||
/* Increment the virtual offset. */
|
||
r_reloc try_loc = values->last_loc;
|
||
try_loc.virtual_offset += 4;
|
||
|
||
/* There is a last loc that was in the same output section. */
|
||
if (relocations_reach (rel, remaining_src_rels, &try_loc)
|
||
&& move_shared_literal (sec, link_info, rel,
|
||
prop_table, ptblsize,
|
||
&try_loc, &val, target_sec_cache))
|
||
{
|
||
values->last_loc.virtual_offset += 4;
|
||
literal_placed = TRUE;
|
||
if (!val_map)
|
||
val_map = add_value_map (values, &val, &try_loc,
|
||
final_static_link);
|
||
else
|
||
val_map->loc = try_loc;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!literal_placed)
|
||
{
|
||
/* Nothing worked, leave the literal alone but update the last loc. */
|
||
values->has_last_loc = TRUE;
|
||
values->last_loc = rel->r_rel;
|
||
if (!val_map)
|
||
val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
|
||
else
|
||
val_map->loc = rel->r_rel;
|
||
*last_loc_is_prev_p = TRUE;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Check if the original relocations (presumably on L32R instructions)
|
||
identified by reloc[0..N] can be changed to reference the literal
|
||
identified by r_rel. If r_rel is out of range for any of the
|
||
original relocations, then we don't want to coalesce the original
|
||
literal with the one at r_rel. We only check reloc[0..N], where the
|
||
offsets are all the same as for reloc[0] (i.e., they're all
|
||
referencing the same literal) and where N is also bounded by the
|
||
number of remaining entries in the "reloc" array. The "reloc" array
|
||
is sorted by target offset so we know all the entries for the same
|
||
literal will be contiguous. */
|
||
|
||
static bfd_boolean
|
||
relocations_reach (source_reloc *reloc,
|
||
int remaining_relocs,
|
||
const r_reloc *r_rel)
|
||
{
|
||
bfd_vma from_offset, source_address, dest_address;
|
||
asection *sec;
|
||
int i;
|
||
|
||
if (!r_reloc_is_defined (r_rel))
|
||
return FALSE;
|
||
|
||
sec = r_reloc_get_section (r_rel);
|
||
from_offset = reloc[0].r_rel.target_offset;
|
||
|
||
for (i = 0; i < remaining_relocs; i++)
|
||
{
|
||
if (reloc[i].r_rel.target_offset != from_offset)
|
||
break;
|
||
|
||
/* Ignore relocations that have been removed. */
|
||
if (reloc[i].is_null)
|
||
continue;
|
||
|
||
/* The original and new output section for these must be the same
|
||
in order to coalesce. */
|
||
if (r_reloc_get_section (&reloc[i].r_rel)->output_section
|
||
!= sec->output_section)
|
||
return FALSE;
|
||
|
||
/* Absolute literals in the same output section can always be
|
||
combined. */
|
||
if (reloc[i].is_abs_literal)
|
||
continue;
|
||
|
||
/* A literal with no PC-relative relocations can be moved anywhere. */
|
||
if (reloc[i].opnd != -1)
|
||
{
|
||
/* Otherwise, check to see that it fits. */
|
||
source_address = (reloc[i].source_sec->output_section->vma
|
||
+ reloc[i].source_sec->output_offset
|
||
+ reloc[i].r_rel.rela.r_offset);
|
||
dest_address = (sec->output_section->vma
|
||
+ sec->output_offset
|
||
+ r_rel->target_offset);
|
||
|
||
if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
|
||
source_address, dest_address))
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Move a literal to another literal location because it is
|
||
the same as the other literal value. */
|
||
|
||
static bfd_boolean
|
||
coalesce_shared_literal (asection *sec,
|
||
source_reloc *rel,
|
||
property_table_entry *prop_table,
|
||
int ptblsize,
|
||
value_map *val_map)
|
||
{
|
||
property_table_entry *entry;
|
||
text_action *fa;
|
||
property_table_entry *the_add_entry;
|
||
int removed_diff;
|
||
xtensa_relax_info *relax_info;
|
||
|
||
relax_info = get_xtensa_relax_info (sec);
|
||
if (!relax_info)
|
||
return FALSE;
|
||
|
||
entry = elf_xtensa_find_property_entry
|
||
(prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
|
||
if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
|
||
return TRUE;
|
||
|
||
/* Mark that the literal will be coalesced. */
|
||
add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
|
||
|
||
text_action_add (&relax_info->action_list,
|
||
ta_remove_literal, sec, rel->r_rel.target_offset, 4);
|
||
|
||
/* If the section is 4-byte aligned, do not add fill. */
|
||
if (sec->alignment_power > 2)
|
||
{
|
||
int fill_extra_space;
|
||
bfd_vma entry_sec_offset;
|
||
|
||
if (entry)
|
||
entry_sec_offset = entry->address - sec->vma + entry->size;
|
||
else
|
||
entry_sec_offset = rel->r_rel.target_offset + 4;
|
||
|
||
/* If the literal range is at the end of the section,
|
||
do not add fill. */
|
||
fill_extra_space = 0;
|
||
the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
|
||
entry_sec_offset);
|
||
if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
|
||
fill_extra_space = the_add_entry->size;
|
||
|
||
fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
|
||
removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
|
||
-4, fill_extra_space);
|
||
if (fa)
|
||
adjust_fill_action (fa, removed_diff);
|
||
else
|
||
text_action_add (&relax_info->action_list,
|
||
ta_fill, sec, entry_sec_offset, removed_diff);
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Move a literal to another location. This may actually increase the
|
||
total amount of space used because of alignments so we need to do
|
||
this carefully. Also, it may make a branch go out of range. */
|
||
|
||
static bfd_boolean
|
||
move_shared_literal (asection *sec,
|
||
struct bfd_link_info *link_info,
|
||
source_reloc *rel,
|
||
property_table_entry *prop_table,
|
||
int ptblsize,
|
||
const r_reloc *target_loc,
|
||
const literal_value *lit_value,
|
||
section_cache_t *target_sec_cache)
|
||
{
|
||
property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
|
||
text_action *fa, *target_fa;
|
||
int removed_diff;
|
||
xtensa_relax_info *relax_info, *target_relax_info;
|
||
asection *target_sec;
|
||
ebb_t *ebb;
|
||
ebb_constraint ebb_table;
|
||
bfd_boolean relocs_fit;
|
||
|
||
/* If this routine always returns FALSE, the literals that cannot be
|
||
coalesced will not be moved. */
|
||
if (elf32xtensa_no_literal_movement)
|
||
return FALSE;
|
||
|
||
relax_info = get_xtensa_relax_info (sec);
|
||
if (!relax_info)
|
||
return FALSE;
|
||
|
||
target_sec = r_reloc_get_section (target_loc);
|
||
target_relax_info = get_xtensa_relax_info (target_sec);
|
||
|
||
/* Literals to undefined sections may not be moved because they
|
||
must report an error. */
|
||
if (bfd_is_und_section (target_sec))
|
||
return FALSE;
|
||
|
||
src_entry = elf_xtensa_find_property_entry
|
||
(prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
|
||
|
||
if (!section_cache_section (target_sec_cache, target_sec, link_info))
|
||
return FALSE;
|
||
|
||
target_entry = elf_xtensa_find_property_entry
|
||
(target_sec_cache->ptbl, target_sec_cache->pte_count,
|
||
target_sec->vma + target_loc->target_offset);
|
||
|
||
if (!target_entry)
|
||
return FALSE;
|
||
|
||
/* Make sure that we have not broken any branches. */
|
||
relocs_fit = FALSE;
|
||
|
||
init_ebb_constraint (&ebb_table);
|
||
ebb = &ebb_table.ebb;
|
||
init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
|
||
target_sec_cache->content_length,
|
||
target_sec_cache->ptbl, target_sec_cache->pte_count,
|
||
target_sec_cache->relocs, target_sec_cache->reloc_count);
|
||
|
||
/* Propose to add 4 bytes + worst-case alignment size increase to
|
||
destination. */
|
||
ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
|
||
ta_fill, target_loc->target_offset,
|
||
-4 - (1 << target_sec->alignment_power), TRUE);
|
||
|
||
/* Check all of the PC-relative relocations to make sure they still fit. */
|
||
relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
|
||
target_sec_cache->contents,
|
||
target_sec_cache->relocs, NULL,
|
||
&ebb_table, NULL);
|
||
|
||
if (!relocs_fit)
|
||
return FALSE;
|
||
|
||
text_action_add_literal (&target_relax_info->action_list,
|
||
ta_add_literal, target_loc, lit_value, -4);
|
||
|
||
if (target_sec->alignment_power > 2 && target_entry != src_entry)
|
||
{
|
||
/* May need to add or remove some fill to maintain alignment. */
|
||
int fill_extra_space;
|
||
bfd_vma entry_sec_offset;
|
||
|
||
entry_sec_offset =
|
||
target_entry->address - target_sec->vma + target_entry->size;
|
||
|
||
/* If the literal range is at the end of the section,
|
||
do not add fill. */
|
||
fill_extra_space = 0;
|
||
the_add_entry =
|
||
elf_xtensa_find_property_entry (target_sec_cache->ptbl,
|
||
target_sec_cache->pte_count,
|
||
entry_sec_offset);
|
||
if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
|
||
fill_extra_space = the_add_entry->size;
|
||
|
||
target_fa = find_fill_action (&target_relax_info->action_list,
|
||
target_sec, entry_sec_offset);
|
||
removed_diff = compute_removed_action_diff (target_fa, target_sec,
|
||
entry_sec_offset, 4,
|
||
fill_extra_space);
|
||
if (target_fa)
|
||
adjust_fill_action (target_fa, removed_diff);
|
||
else
|
||
text_action_add (&target_relax_info->action_list,
|
||
ta_fill, target_sec, entry_sec_offset, removed_diff);
|
||
}
|
||
|
||
/* Mark that the literal will be moved to the new location. */
|
||
add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
|
||
|
||
/* Remove the literal. */
|
||
text_action_add (&relax_info->action_list,
|
||
ta_remove_literal, sec, rel->r_rel.target_offset, 4);
|
||
|
||
/* If the section is 4-byte aligned, do not add fill. */
|
||
if (sec->alignment_power > 2 && target_entry != src_entry)
|
||
{
|
||
int fill_extra_space;
|
||
bfd_vma entry_sec_offset;
|
||
|
||
if (src_entry)
|
||
entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
|
||
else
|
||
entry_sec_offset = rel->r_rel.target_offset+4;
|
||
|
||
/* If the literal range is at the end of the section,
|
||
do not add fill. */
|
||
fill_extra_space = 0;
|
||
the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
|
||
entry_sec_offset);
|
||
if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
|
||
fill_extra_space = the_add_entry->size;
|
||
|
||
fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
|
||
removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
|
||
-4, fill_extra_space);
|
||
if (fa)
|
||
adjust_fill_action (fa, removed_diff);
|
||
else
|
||
text_action_add (&relax_info->action_list,
|
||
ta_fill, sec, entry_sec_offset, removed_diff);
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Second relaxation pass. */
|
||
|
||
static int
|
||
action_remove_bytes_fn (splay_tree_node node, void *p)
|
||
{
|
||
bfd_size_type *final_size = p;
|
||
text_action *action = (text_action *)node->value;
|
||
|
||
*final_size -= action->removed_bytes;
|
||
return 0;
|
||
}
|
||
|
||
/* Modify all of the relocations to point to the right spot, and if this
|
||
is a relaxable section, delete the unwanted literals and fix the
|
||
section size. */
|
||
|
||
bfd_boolean
|
||
relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
|
||
{
|
||
Elf_Internal_Rela *internal_relocs;
|
||
xtensa_relax_info *relax_info;
|
||
bfd_byte *contents;
|
||
bfd_boolean ok = TRUE;
|
||
unsigned i;
|
||
bfd_boolean rv = FALSE;
|
||
bfd_boolean virtual_action;
|
||
bfd_size_type sec_size;
|
||
|
||
sec_size = bfd_get_section_limit (abfd, sec);
|
||
relax_info = get_xtensa_relax_info (sec);
|
||
BFD_ASSERT (relax_info);
|
||
|
||
/* First translate any of the fixes that have been added already. */
|
||
translate_section_fixes (sec);
|
||
|
||
/* Handle property sections (e.g., literal tables) specially. */
|
||
if (xtensa_is_property_section (sec))
|
||
{
|
||
BFD_ASSERT (!relax_info->is_relaxable_literal_section);
|
||
return relax_property_section (abfd, sec, link_info);
|
||
}
|
||
|
||
internal_relocs = retrieve_internal_relocs (abfd, sec,
|
||
link_info->keep_memory);
|
||
if (!internal_relocs && !action_list_count (&relax_info->action_list))
|
||
return TRUE;
|
||
|
||
contents = retrieve_contents (abfd, sec, link_info->keep_memory);
|
||
if (contents == NULL && sec_size != 0)
|
||
{
|
||
ok = FALSE;
|
||
goto error_return;
|
||
}
|
||
|
||
if (internal_relocs)
|
||
{
|
||
for (i = 0; i < sec->reloc_count; i++)
|
||
{
|
||
Elf_Internal_Rela *irel;
|
||
xtensa_relax_info *target_relax_info;
|
||
bfd_vma source_offset, old_source_offset;
|
||
r_reloc r_rel;
|
||
unsigned r_type;
|
||
asection *target_sec;
|
||
|
||
/* Locally change the source address.
|
||
Translate the target to the new target address.
|
||
If it points to this section and has been removed,
|
||
NULLify it.
|
||
Write it back. */
|
||
|
||
irel = &internal_relocs[i];
|
||
source_offset = irel->r_offset;
|
||
old_source_offset = source_offset;
|
||
|
||
r_type = ELF32_R_TYPE (irel->r_info);
|
||
r_reloc_init (&r_rel, abfd, irel, contents,
|
||
bfd_get_section_limit (abfd, sec));
|
||
|
||
/* If this section could have changed then we may need to
|
||
change the relocation's offset. */
|
||
|
||
if (relax_info->is_relaxable_literal_section
|
||
|| relax_info->is_relaxable_asm_section)
|
||
{
|
||
pin_internal_relocs (sec, internal_relocs);
|
||
|
||
if (r_type != R_XTENSA_NONE
|
||
&& find_removed_literal (&relax_info->removed_list,
|
||
irel->r_offset))
|
||
{
|
||
/* Remove this relocation. */
|
||
if (elf_hash_table (link_info)->dynamic_sections_created)
|
||
shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
|
||
irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
|
||
irel->r_offset = offset_with_removed_text_map
|
||
(&relax_info->action_list, irel->r_offset);
|
||
continue;
|
||
}
|
||
|
||
if (r_type == R_XTENSA_ASM_SIMPLIFY)
|
||
{
|
||
text_action *action =
|
||
find_insn_action (&relax_info->action_list,
|
||
irel->r_offset);
|
||
if (action && (action->action == ta_convert_longcall
|
||
|| action->action == ta_remove_longcall))
|
||
{
|
||
bfd_reloc_status_type retval;
|
||
char *error_message = NULL;
|
||
|
||
retval = contract_asm_expansion (contents, sec_size,
|
||
irel, &error_message);
|
||
if (retval != bfd_reloc_ok)
|
||
{
|
||
(*link_info->callbacks->reloc_dangerous)
|
||
(link_info, error_message, abfd, sec,
|
||
irel->r_offset);
|
||
goto error_return;
|
||
}
|
||
/* Update the action so that the code that moves
|
||
the contents will do the right thing. */
|
||
/* ta_remove_longcall and ta_remove_insn actions are
|
||
grouped together in the tree as well as
|
||
ta_convert_longcall and ta_none, so that changes below
|
||
can be done w/o removing and reinserting action into
|
||
the tree. */
|
||
|
||
if (action->action == ta_remove_longcall)
|
||
action->action = ta_remove_insn;
|
||
else
|
||
action->action = ta_none;
|
||
/* Refresh the info in the r_rel. */
|
||
r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
|
||
r_type = ELF32_R_TYPE (irel->r_info);
|
||
}
|
||
}
|
||
|
||
source_offset = offset_with_removed_text_map
|
||
(&relax_info->action_list, irel->r_offset);
|
||
irel->r_offset = source_offset;
|
||
}
|
||
|
||
/* If the target section could have changed then
|
||
we may need to change the relocation's target offset. */
|
||
|
||
target_sec = r_reloc_get_section (&r_rel);
|
||
|
||
/* For a reference to a discarded section from a DWARF section,
|
||
i.e., where action_discarded is PRETEND, the symbol will
|
||
eventually be modified to refer to the kept section (at least if
|
||
the kept and discarded sections are the same size). Anticipate
|
||
that here and adjust things accordingly. */
|
||
if (! elf_xtensa_ignore_discarded_relocs (sec)
|
||
&& elf_xtensa_action_discarded (sec) == PRETEND
|
||
&& sec->sec_info_type != SEC_INFO_TYPE_STABS
|
||
&& target_sec != NULL
|
||
&& discarded_section (target_sec))
|
||
{
|
||
/* It would be natural to call _bfd_elf_check_kept_section
|
||
here, but it's not exported from elflink.c. It's also a
|
||
fairly expensive check. Adjusting the relocations to the
|
||
discarded section is fairly harmless; it will only adjust
|
||
some addends and difference values. If it turns out that
|
||
_bfd_elf_check_kept_section fails later, it won't matter,
|
||
so just compare the section names to find the right group
|
||
member. */
|
||
asection *kept = target_sec->kept_section;
|
||
if (kept != NULL)
|
||
{
|
||
if ((kept->flags & SEC_GROUP) != 0)
|
||
{
|
||
asection *first = elf_next_in_group (kept);
|
||
asection *s = first;
|
||
|
||
kept = NULL;
|
||
while (s != NULL)
|
||
{
|
||
if (strcmp (s->name, target_sec->name) == 0)
|
||
{
|
||
kept = s;
|
||
break;
|
||
}
|
||
s = elf_next_in_group (s);
|
||
if (s == first)
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
if (kept != NULL
|
||
&& ((target_sec->rawsize != 0
|
||
? target_sec->rawsize : target_sec->size)
|
||
== (kept->rawsize != 0 ? kept->rawsize : kept->size)))
|
||
target_sec = kept;
|
||
}
|
||
|
||
target_relax_info = get_xtensa_relax_info (target_sec);
|
||
if (target_relax_info
|
||
&& (target_relax_info->is_relaxable_literal_section
|
||
|| target_relax_info->is_relaxable_asm_section))
|
||
{
|
||
r_reloc new_reloc;
|
||
target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
|
||
|
||
if (r_type == R_XTENSA_DIFF8
|
||
|| r_type == R_XTENSA_DIFF16
|
||
|| r_type == R_XTENSA_DIFF32)
|
||
{
|
||
bfd_signed_vma diff_value = 0;
|
||
bfd_vma new_end_offset, diff_mask = 0;
|
||
|
||
if (bfd_get_section_limit (abfd, sec) < old_source_offset)
|
||
{
|
||
(*link_info->callbacks->reloc_dangerous)
|
||
(link_info, _("invalid relocation address"),
|
||
abfd, sec, old_source_offset);
|
||
goto error_return;
|
||
}
|
||
|
||
switch (r_type)
|
||
{
|
||
case R_XTENSA_DIFF8:
|
||
diff_value =
|
||
bfd_get_signed_8 (abfd, &contents[old_source_offset]);
|
||
break;
|
||
case R_XTENSA_DIFF16:
|
||
diff_value =
|
||
bfd_get_signed_16 (abfd, &contents[old_source_offset]);
|
||
break;
|
||
case R_XTENSA_DIFF32:
|
||
diff_value =
|
||
bfd_get_signed_32 (abfd, &contents[old_source_offset]);
|
||
break;
|
||
}
|
||
|
||
new_end_offset = offset_with_removed_text_map
|
||
(&target_relax_info->action_list,
|
||
r_rel.target_offset + diff_value);
|
||
diff_value = new_end_offset - new_reloc.target_offset;
|
||
|
||
switch (r_type)
|
||
{
|
||
case R_XTENSA_DIFF8:
|
||
diff_mask = 0x7f;
|
||
bfd_put_signed_8 (abfd, diff_value,
|
||
&contents[old_source_offset]);
|
||
break;
|
||
case R_XTENSA_DIFF16:
|
||
diff_mask = 0x7fff;
|
||
bfd_put_signed_16 (abfd, diff_value,
|
||
&contents[old_source_offset]);
|
||
break;
|
||
case R_XTENSA_DIFF32:
|
||
diff_mask = 0x7fffffff;
|
||
bfd_put_signed_32 (abfd, diff_value,
|
||
&contents[old_source_offset]);
|
||
break;
|
||
}
|
||
|
||
/* Check for overflow. Sign bits must be all zeroes or all ones */
|
||
if ((diff_value & ~diff_mask) != 0 &&
|
||
(diff_value & ~diff_mask) != (-1 & ~diff_mask))
|
||
{
|
||
(*link_info->callbacks->reloc_dangerous)
|
||
(link_info, _("overflow after relaxation"),
|
||
abfd, sec, old_source_offset);
|
||
goto error_return;
|
||
}
|
||
|
||
pin_contents (sec, contents);
|
||
}
|
||
|
||
/* If the relocation still references a section in the same
|
||
input file, modify the relocation directly instead of
|
||
adding a "fix" record. */
|
||
if (target_sec->owner == abfd)
|
||
{
|
||
unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
|
||
irel->r_info = ELF32_R_INFO (r_symndx, r_type);
|
||
irel->r_addend = new_reloc.rela.r_addend;
|
||
pin_internal_relocs (sec, internal_relocs);
|
||
}
|
||
else
|
||
{
|
||
bfd_vma addend_displacement;
|
||
reloc_bfd_fix *fix;
|
||
|
||
addend_displacement =
|
||
new_reloc.target_offset + new_reloc.virtual_offset;
|
||
fix = reloc_bfd_fix_init (sec, source_offset, r_type,
|
||
target_sec,
|
||
addend_displacement, TRUE);
|
||
add_fix (sec, fix);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if ((relax_info->is_relaxable_literal_section
|
||
|| relax_info->is_relaxable_asm_section)
|
||
&& action_list_count (&relax_info->action_list))
|
||
{
|
||
/* Walk through the planned actions and build up a table
|
||
of move, copy and fill records. Use the move, copy and
|
||
fill records to perform the actions once. */
|
||
|
||
bfd_size_type final_size, copy_size, orig_insn_size;
|
||
bfd_byte *scratch = NULL;
|
||
bfd_byte *dup_contents = NULL;
|
||
bfd_size_type orig_size = sec->size;
|
||
bfd_vma orig_dot = 0;
|
||
bfd_vma orig_dot_copied = 0; /* Byte copied already from
|
||
orig dot in physical memory. */
|
||
bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
|
||
bfd_vma dup_dot = 0;
|
||
|
||
text_action *action;
|
||
|
||
final_size = sec->size;
|
||
|
||
splay_tree_foreach (relax_info->action_list.tree,
|
||
action_remove_bytes_fn, &final_size);
|
||
scratch = (bfd_byte *) bfd_zmalloc (final_size);
|
||
dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
|
||
|
||
/* The dot is the current fill location. */
|
||
#if DEBUG
|
||
print_action_list (stderr, &relax_info->action_list);
|
||
#endif
|
||
|
||
for (action = action_first (&relax_info->action_list); action;
|
||
action = action_next (&relax_info->action_list, action))
|
||
{
|
||
virtual_action = FALSE;
|
||
if (action->offset > orig_dot)
|
||
{
|
||
orig_dot += orig_dot_copied;
|
||
orig_dot_copied = 0;
|
||
orig_dot_vo = 0;
|
||
/* Out of the virtual world. */
|
||
}
|
||
|
||
if (action->offset > orig_dot)
|
||
{
|
||
copy_size = action->offset - orig_dot;
|
||
memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
|
||
orig_dot += copy_size;
|
||
dup_dot += copy_size;
|
||
BFD_ASSERT (action->offset == orig_dot);
|
||
}
|
||
else if (action->offset < orig_dot)
|
||
{
|
||
if (action->action == ta_fill
|
||
&& action->offset - action->removed_bytes == orig_dot)
|
||
{
|
||
/* This is OK because the fill only effects the dup_dot. */
|
||
}
|
||
else if (action->action == ta_add_literal)
|
||
{
|
||
/* TBD. Might need to handle this. */
|
||
}
|
||
}
|
||
if (action->offset == orig_dot)
|
||
{
|
||
if (action->virtual_offset > orig_dot_vo)
|
||
{
|
||
if (orig_dot_vo == 0)
|
||
{
|
||
/* Need to copy virtual_offset bytes. Probably four. */
|
||
copy_size = action->virtual_offset - orig_dot_vo;
|
||
memmove (&dup_contents[dup_dot],
|
||
&contents[orig_dot], copy_size);
|
||
orig_dot_copied = copy_size;
|
||
dup_dot += copy_size;
|
||
}
|
||
virtual_action = TRUE;
|
||
}
|
||
else
|
||
BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
|
||
}
|
||
switch (action->action)
|
||
{
|
||
case ta_remove_literal:
|
||
case ta_remove_insn:
|
||
BFD_ASSERT (action->removed_bytes >= 0);
|
||
orig_dot += action->removed_bytes;
|
||
break;
|
||
|
||
case ta_narrow_insn:
|
||
orig_insn_size = 3;
|
||
copy_size = 2;
|
||
memmove (scratch, &contents[orig_dot], orig_insn_size);
|
||
BFD_ASSERT (action->removed_bytes == 1);
|
||
rv = narrow_instruction (scratch, final_size, 0);
|
||
BFD_ASSERT (rv);
|
||
memmove (&dup_contents[dup_dot], scratch, copy_size);
|
||
orig_dot += orig_insn_size;
|
||
dup_dot += copy_size;
|
||
break;
|
||
|
||
case ta_fill:
|
||
if (action->removed_bytes >= 0)
|
||
orig_dot += action->removed_bytes;
|
||
else
|
||
{
|
||
/* Already zeroed in dup_contents. Just bump the
|
||
counters. */
|
||
dup_dot += (-action->removed_bytes);
|
||
}
|
||
break;
|
||
|
||
case ta_none:
|
||
BFD_ASSERT (action->removed_bytes == 0);
|
||
break;
|
||
|
||
case ta_convert_longcall:
|
||
case ta_remove_longcall:
|
||
/* These will be removed or converted before we get here. */
|
||
BFD_ASSERT (0);
|
||
break;
|
||
|
||
case ta_widen_insn:
|
||
orig_insn_size = 2;
|
||
copy_size = 3;
|
||
memmove (scratch, &contents[orig_dot], orig_insn_size);
|
||
BFD_ASSERT (action->removed_bytes == -1);
|
||
rv = widen_instruction (scratch, final_size, 0);
|
||
BFD_ASSERT (rv);
|
||
memmove (&dup_contents[dup_dot], scratch, copy_size);
|
||
orig_dot += orig_insn_size;
|
||
dup_dot += copy_size;
|
||
break;
|
||
|
||
case ta_add_literal:
|
||
orig_insn_size = 0;
|
||
copy_size = 4;
|
||
BFD_ASSERT (action->removed_bytes == -4);
|
||
/* TBD -- place the literal value here and insert
|
||
into the table. */
|
||
memset (&dup_contents[dup_dot], 0, 4);
|
||
pin_internal_relocs (sec, internal_relocs);
|
||
pin_contents (sec, contents);
|
||
|
||
if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
|
||
relax_info, &internal_relocs, &action->value))
|
||
goto error_return;
|
||
|
||
if (virtual_action)
|
||
orig_dot_vo += copy_size;
|
||
|
||
orig_dot += orig_insn_size;
|
||
dup_dot += copy_size;
|
||
break;
|
||
|
||
default:
|
||
/* Not implemented yet. */
|
||
BFD_ASSERT (0);
|
||
break;
|
||
}
|
||
|
||
BFD_ASSERT (dup_dot <= final_size);
|
||
BFD_ASSERT (orig_dot <= orig_size);
|
||
}
|
||
|
||
orig_dot += orig_dot_copied;
|
||
orig_dot_copied = 0;
|
||
|
||
if (orig_dot != orig_size)
|
||
{
|
||
copy_size = orig_size - orig_dot;
|
||
BFD_ASSERT (orig_size > orig_dot);
|
||
BFD_ASSERT (dup_dot + copy_size == final_size);
|
||
memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
|
||
orig_dot += copy_size;
|
||
dup_dot += copy_size;
|
||
}
|
||
BFD_ASSERT (orig_size == orig_dot);
|
||
BFD_ASSERT (final_size == dup_dot);
|
||
|
||
/* Move the dup_contents back. */
|
||
if (final_size > orig_size)
|
||
{
|
||
/* Contents need to be reallocated. Swap the dup_contents into
|
||
contents. */
|
||
sec->contents = dup_contents;
|
||
free (contents);
|
||
contents = dup_contents;
|
||
pin_contents (sec, contents);
|
||
}
|
||
else
|
||
{
|
||
BFD_ASSERT (final_size <= orig_size);
|
||
memset (contents, 0, orig_size);
|
||
memcpy (contents, dup_contents, final_size);
|
||
free (dup_contents);
|
||
}
|
||
free (scratch);
|
||
pin_contents (sec, contents);
|
||
|
||
if (sec->rawsize == 0)
|
||
sec->rawsize = sec->size;
|
||
sec->size = final_size;
|
||
}
|
||
|
||
error_return:
|
||
release_internal_relocs (sec, internal_relocs);
|
||
release_contents (sec, contents);
|
||
return ok;
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
translate_section_fixes (asection *sec)
|
||
{
|
||
xtensa_relax_info *relax_info;
|
||
reloc_bfd_fix *r;
|
||
|
||
relax_info = get_xtensa_relax_info (sec);
|
||
if (!relax_info)
|
||
return TRUE;
|
||
|
||
for (r = relax_info->fix_list; r != NULL; r = r->next)
|
||
if (!translate_reloc_bfd_fix (r))
|
||
return FALSE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Translate a fix given the mapping in the relax info for the target
|
||
section. If it has already been translated, no work is required. */
|
||
|
||
static bfd_boolean
|
||
translate_reloc_bfd_fix (reloc_bfd_fix *fix)
|
||
{
|
||
reloc_bfd_fix new_fix;
|
||
asection *sec;
|
||
xtensa_relax_info *relax_info;
|
||
removed_literal *removed;
|
||
bfd_vma new_offset, target_offset;
|
||
|
||
if (fix->translated)
|
||
return TRUE;
|
||
|
||
sec = fix->target_sec;
|
||
target_offset = fix->target_offset;
|
||
|
||
relax_info = get_xtensa_relax_info (sec);
|
||
if (!relax_info)
|
||
{
|
||
fix->translated = TRUE;
|
||
return TRUE;
|
||
}
|
||
|
||
new_fix = *fix;
|
||
|
||
/* The fix does not need to be translated if the section cannot change. */
|
||
if (!relax_info->is_relaxable_literal_section
|
||
&& !relax_info->is_relaxable_asm_section)
|
||
{
|
||
fix->translated = TRUE;
|
||
return TRUE;
|
||
}
|
||
|
||
/* If the literal has been moved and this relocation was on an
|
||
opcode, then the relocation should move to the new literal
|
||
location. Otherwise, the relocation should move within the
|
||
section. */
|
||
|
||
removed = FALSE;
|
||
if (is_operand_relocation (fix->src_type))
|
||
{
|
||
/* Check if the original relocation is against a literal being
|
||
removed. */
|
||
removed = find_removed_literal (&relax_info->removed_list,
|
||
target_offset);
|
||
}
|
||
|
||
if (removed)
|
||
{
|
||
asection *new_sec;
|
||
|
||
/* The fact that there is still a relocation to this literal indicates
|
||
that the literal is being coalesced, not simply removed. */
|
||
BFD_ASSERT (removed->to.abfd != NULL);
|
||
|
||
/* This was moved to some other address (possibly another section). */
|
||
new_sec = r_reloc_get_section (&removed->to);
|
||
if (new_sec != sec)
|
||
{
|
||
sec = new_sec;
|
||
relax_info = get_xtensa_relax_info (sec);
|
||
if (!relax_info ||
|
||
(!relax_info->is_relaxable_literal_section
|
||
&& !relax_info->is_relaxable_asm_section))
|
||
{
|
||
target_offset = removed->to.target_offset;
|
||
new_fix.target_sec = new_sec;
|
||
new_fix.target_offset = target_offset;
|
||
new_fix.translated = TRUE;
|
||
*fix = new_fix;
|
||
return TRUE;
|
||
}
|
||
}
|
||
target_offset = removed->to.target_offset;
|
||
new_fix.target_sec = new_sec;
|
||
}
|
||
|
||
/* The target address may have been moved within its section. */
|
||
new_offset = offset_with_removed_text (&relax_info->action_list,
|
||
target_offset);
|
||
|
||
new_fix.target_offset = new_offset;
|
||
new_fix.target_offset = new_offset;
|
||
new_fix.translated = TRUE;
|
||
*fix = new_fix;
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Fix up a relocation to take account of removed literals. */
|
||
|
||
static asection *
|
||
translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
|
||
{
|
||
xtensa_relax_info *relax_info;
|
||
removed_literal *removed;
|
||
bfd_vma target_offset, base_offset;
|
||
|
||
*new_rel = *orig_rel;
|
||
|
||
if (!r_reloc_is_defined (orig_rel))
|
||
return sec ;
|
||
|
||
relax_info = get_xtensa_relax_info (sec);
|
||
BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
|
||
|| relax_info->is_relaxable_asm_section));
|
||
|
||
target_offset = orig_rel->target_offset;
|
||
|
||
removed = FALSE;
|
||
if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
|
||
{
|
||
/* Check if the original relocation is against a literal being
|
||
removed. */
|
||
removed = find_removed_literal (&relax_info->removed_list,
|
||
target_offset);
|
||
}
|
||
if (removed && removed->to.abfd)
|
||
{
|
||
asection *new_sec;
|
||
|
||
/* The fact that there is still a relocation to this literal indicates
|
||
that the literal is being coalesced, not simply removed. */
|
||
BFD_ASSERT (removed->to.abfd != NULL);
|
||
|
||
/* This was moved to some other address
|
||
(possibly in another section). */
|
||
*new_rel = removed->to;
|
||
new_sec = r_reloc_get_section (new_rel);
|
||
if (new_sec != sec)
|
||
{
|
||
sec = new_sec;
|
||
relax_info = get_xtensa_relax_info (sec);
|
||
if (!relax_info
|
||
|| (!relax_info->is_relaxable_literal_section
|
||
&& !relax_info->is_relaxable_asm_section))
|
||
return sec;
|
||
}
|
||
target_offset = new_rel->target_offset;
|
||
}
|
||
|
||
/* Find the base offset of the reloc symbol, excluding any addend from the
|
||
reloc or from the section contents (for a partial_inplace reloc). Then
|
||
find the adjusted values of the offsets due to relaxation. The base
|
||
offset is needed to determine the change to the reloc's addend; the reloc
|
||
addend should not be adjusted due to relaxations located before the base
|
||
offset. */
|
||
|
||
base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
|
||
if (base_offset <= target_offset)
|
||
{
|
||
int base_removed = removed_by_actions_map (&relax_info->action_list,
|
||
base_offset, FALSE);
|
||
int addend_removed = removed_by_actions_map (&relax_info->action_list,
|
||
target_offset, FALSE) -
|
||
base_removed;
|
||
|
||
new_rel->target_offset = target_offset - base_removed - addend_removed;
|
||
new_rel->rela.r_addend -= addend_removed;
|
||
}
|
||
else
|
||
{
|
||
/* Handle a negative addend. The base offset comes first. */
|
||
int tgt_removed = removed_by_actions_map (&relax_info->action_list,
|
||
target_offset, FALSE);
|
||
int addend_removed = removed_by_actions_map (&relax_info->action_list,
|
||
base_offset, FALSE) -
|
||
tgt_removed;
|
||
|
||
new_rel->target_offset = target_offset - tgt_removed;
|
||
new_rel->rela.r_addend += addend_removed;
|
||
}
|
||
|
||
return sec;
|
||
}
|
||
|
||
|
||
/* For dynamic links, there may be a dynamic relocation for each
|
||
literal. The number of dynamic relocations must be computed in
|
||
size_dynamic_sections, which occurs before relaxation. When a
|
||
literal is removed, this function checks if there is a corresponding
|
||
dynamic relocation and shrinks the size of the appropriate dynamic
|
||
relocation section accordingly. At this point, the contents of the
|
||
dynamic relocation sections have not yet been filled in, so there's
|
||
nothing else that needs to be done. */
|
||
|
||
static void
|
||
shrink_dynamic_reloc_sections (struct bfd_link_info *info,
|
||
bfd *abfd,
|
||
asection *input_section,
|
||
Elf_Internal_Rela *rel)
|
||
{
|
||
struct elf_xtensa_link_hash_table *htab;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
unsigned long r_symndx;
|
||
int r_type;
|
||
struct elf_link_hash_entry *h;
|
||
bfd_boolean dynamic_symbol;
|
||
|
||
htab = elf_xtensa_hash_table (info);
|
||
if (htab == NULL)
|
||
return;
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
sym_hashes = elf_sym_hashes (abfd);
|
||
|
||
r_type = ELF32_R_TYPE (rel->r_info);
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
h = NULL;
|
||
else
|
||
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
||
|
||
dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
|
||
|
||
if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
|
||
&& (input_section->flags & SEC_ALLOC) != 0
|
||
&& (dynamic_symbol || bfd_link_pic (info))
|
||
&& (!h || h->root.type != bfd_link_hash_undefweak
|
||
|| (dynamic_symbol && bfd_link_dll (info))))
|
||
{
|
||
asection *srel;
|
||
bfd_boolean is_plt = FALSE;
|
||
|
||
if (dynamic_symbol && r_type == R_XTENSA_PLT)
|
||
{
|
||
srel = htab->elf.srelplt;
|
||
is_plt = TRUE;
|
||
}
|
||
else
|
||
srel = htab->elf.srelgot;
|
||
|
||
/* Reduce size of the .rela.* section by one reloc. */
|
||
BFD_ASSERT (srel != NULL);
|
||
BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
|
||
srel->size -= sizeof (Elf32_External_Rela);
|
||
|
||
if (is_plt)
|
||
{
|
||
asection *splt, *sgotplt, *srelgot;
|
||
int reloc_index, chunk;
|
||
|
||
/* Find the PLT reloc index of the entry being removed. This
|
||
is computed from the size of ".rela.plt". It is needed to
|
||
figure out which PLT chunk to resize. Usually "last index
|
||
= size - 1" since the index starts at zero, but in this
|
||
context, the size has just been decremented so there's no
|
||
need to subtract one. */
|
||
reloc_index = srel->size / sizeof (Elf32_External_Rela);
|
||
|
||
chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
|
||
splt = elf_xtensa_get_plt_section (info, chunk);
|
||
sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
|
||
BFD_ASSERT (splt != NULL && sgotplt != NULL);
|
||
|
||
/* Check if an entire PLT chunk has just been eliminated. */
|
||
if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
|
||
{
|
||
/* The two magic GOT entries for that chunk can go away. */
|
||
srelgot = htab->elf.srelgot;
|
||
BFD_ASSERT (srelgot != NULL);
|
||
srelgot->reloc_count -= 2;
|
||
srelgot->size -= 2 * sizeof (Elf32_External_Rela);
|
||
sgotplt->size -= 8;
|
||
|
||
/* There should be only one entry left (and it will be
|
||
removed below). */
|
||
BFD_ASSERT (sgotplt->size == 4);
|
||
BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
|
||
}
|
||
|
||
BFD_ASSERT (sgotplt->size >= 4);
|
||
BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
|
||
|
||
sgotplt->size -= 4;
|
||
splt->size -= PLT_ENTRY_SIZE;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Take an r_rel and move it to another section. This usually
|
||
requires extending the interal_relocation array and pinning it. If
|
||
the original r_rel is from the same BFD, we can complete this here.
|
||
Otherwise, we add a fix record to let the final link fix the
|
||
appropriate address. Contents and internal relocations for the
|
||
section must be pinned after calling this routine. */
|
||
|
||
static bfd_boolean
|
||
move_literal (bfd *abfd,
|
||
struct bfd_link_info *link_info,
|
||
asection *sec,
|
||
bfd_vma offset,
|
||
bfd_byte *contents,
|
||
xtensa_relax_info *relax_info,
|
||
Elf_Internal_Rela **internal_relocs_p,
|
||
const literal_value *lit)
|
||
{
|
||
Elf_Internal_Rela *new_relocs = NULL;
|
||
size_t new_relocs_count = 0;
|
||
Elf_Internal_Rela this_rela;
|
||
const r_reloc *r_rel;
|
||
|
||
r_rel = &lit->r_rel;
|
||
BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
|
||
|
||
if (r_reloc_is_const (r_rel))
|
||
bfd_put_32 (abfd, lit->value, contents + offset);
|
||
else
|
||
{
|
||
int r_type;
|
||
unsigned i;
|
||
reloc_bfd_fix *fix;
|
||
unsigned insert_at;
|
||
|
||
r_type = ELF32_R_TYPE (r_rel->rela.r_info);
|
||
|
||
/* This is the difficult case. We have to create a fix up. */
|
||
this_rela.r_offset = offset;
|
||
this_rela.r_info = ELF32_R_INFO (0, r_type);
|
||
this_rela.r_addend =
|
||
r_rel->target_offset - r_reloc_get_target_offset (r_rel);
|
||
bfd_put_32 (abfd, lit->value, contents + offset);
|
||
|
||
/* Currently, we cannot move relocations during a relocatable link. */
|
||
BFD_ASSERT (!bfd_link_relocatable (link_info));
|
||
fix = reloc_bfd_fix_init (sec, offset, r_type,
|
||
r_reloc_get_section (r_rel),
|
||
r_rel->target_offset + r_rel->virtual_offset,
|
||
FALSE);
|
||
/* We also need to mark that relocations are needed here. */
|
||
sec->flags |= SEC_RELOC;
|
||
|
||
translate_reloc_bfd_fix (fix);
|
||
/* This fix has not yet been translated. */
|
||
add_fix (sec, fix);
|
||
|
||
/* Add the relocation. If we have already allocated our own
|
||
space for the relocations and we have room for more, then use
|
||
it. Otherwise, allocate new space and move the literals. */
|
||
insert_at = sec->reloc_count;
|
||
for (i = 0; i < sec->reloc_count; ++i)
|
||
{
|
||
if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
|
||
{
|
||
insert_at = i;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (*internal_relocs_p != relax_info->allocated_relocs
|
||
|| sec->reloc_count + 1 > relax_info->allocated_relocs_count)
|
||
{
|
||
BFD_ASSERT (relax_info->allocated_relocs == NULL
|
||
|| sec->reloc_count == relax_info->relocs_count);
|
||
|
||
if (relax_info->allocated_relocs_count == 0)
|
||
new_relocs_count = (sec->reloc_count + 2) * 2;
|
||
else
|
||
new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
|
||
|
||
new_relocs = (Elf_Internal_Rela *)
|
||
bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
|
||
if (!new_relocs)
|
||
return FALSE;
|
||
|
||
/* We could handle this more quickly by finding the split point. */
|
||
if (insert_at != 0)
|
||
memcpy (new_relocs, *internal_relocs_p,
|
||
insert_at * sizeof (Elf_Internal_Rela));
|
||
|
||
new_relocs[insert_at] = this_rela;
|
||
|
||
if (insert_at != sec->reloc_count)
|
||
memcpy (new_relocs + insert_at + 1,
|
||
(*internal_relocs_p) + insert_at,
|
||
(sec->reloc_count - insert_at)
|
||
* sizeof (Elf_Internal_Rela));
|
||
|
||
if (*internal_relocs_p != relax_info->allocated_relocs)
|
||
{
|
||
/* The first time we re-allocate, we can only free the
|
||
old relocs if they were allocated with bfd_malloc.
|
||
This is not true when keep_memory is in effect. */
|
||
if (!link_info->keep_memory)
|
||
free (*internal_relocs_p);
|
||
}
|
||
else
|
||
free (*internal_relocs_p);
|
||
relax_info->allocated_relocs = new_relocs;
|
||
relax_info->allocated_relocs_count = new_relocs_count;
|
||
elf_section_data (sec)->relocs = new_relocs;
|
||
sec->reloc_count++;
|
||
relax_info->relocs_count = sec->reloc_count;
|
||
*internal_relocs_p = new_relocs;
|
||
}
|
||
else
|
||
{
|
||
if (insert_at != sec->reloc_count)
|
||
{
|
||
unsigned idx;
|
||
for (idx = sec->reloc_count; idx > insert_at; idx--)
|
||
(*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
|
||
}
|
||
(*internal_relocs_p)[insert_at] = this_rela;
|
||
sec->reloc_count++;
|
||
if (relax_info->allocated_relocs)
|
||
relax_info->relocs_count = sec->reloc_count;
|
||
}
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* This is similar to relax_section except that when a target is moved,
|
||
we shift addresses up. We also need to modify the size. This
|
||
algorithm does NOT allow for relocations into the middle of the
|
||
property sections. */
|
||
|
||
static bfd_boolean
|
||
relax_property_section (bfd *abfd,
|
||
asection *sec,
|
||
struct bfd_link_info *link_info)
|
||
{
|
||
Elf_Internal_Rela *internal_relocs;
|
||
bfd_byte *contents;
|
||
unsigned i;
|
||
bfd_boolean ok = TRUE;
|
||
bfd_boolean is_full_prop_section;
|
||
size_t last_zfill_target_offset = 0;
|
||
asection *last_zfill_target_sec = NULL;
|
||
bfd_size_type sec_size;
|
||
bfd_size_type entry_size;
|
||
|
||
sec_size = bfd_get_section_limit (abfd, sec);
|
||
internal_relocs = retrieve_internal_relocs (abfd, sec,
|
||
link_info->keep_memory);
|
||
contents = retrieve_contents (abfd, sec, link_info->keep_memory);
|
||
if (contents == NULL && sec_size != 0)
|
||
{
|
||
ok = FALSE;
|
||
goto error_return;
|
||
}
|
||
|
||
is_full_prop_section = xtensa_is_proptable_section (sec);
|
||
if (is_full_prop_section)
|
||
entry_size = 12;
|
||
else
|
||
entry_size = 8;
|
||
|
||
if (internal_relocs)
|
||
{
|
||
for (i = 0; i < sec->reloc_count; i++)
|
||
{
|
||
Elf_Internal_Rela *irel;
|
||
xtensa_relax_info *target_relax_info;
|
||
unsigned r_type;
|
||
asection *target_sec;
|
||
literal_value val;
|
||
bfd_byte *size_p, *flags_p;
|
||
|
||
/* Locally change the source address.
|
||
Translate the target to the new target address.
|
||
If it points to this section and has been removed, MOVE IT.
|
||
Also, don't forget to modify the associated SIZE at
|
||
(offset + 4). */
|
||
|
||
irel = &internal_relocs[i];
|
||
r_type = ELF32_R_TYPE (irel->r_info);
|
||
if (r_type == R_XTENSA_NONE)
|
||
continue;
|
||
|
||
/* Find the literal value. */
|
||
r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
|
||
size_p = &contents[irel->r_offset + 4];
|
||
flags_p = NULL;
|
||
if (is_full_prop_section)
|
||
flags_p = &contents[irel->r_offset + 8];
|
||
BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
|
||
|
||
target_sec = r_reloc_get_section (&val.r_rel);
|
||
target_relax_info = get_xtensa_relax_info (target_sec);
|
||
|
||
if (target_relax_info
|
||
&& (target_relax_info->is_relaxable_literal_section
|
||
|| target_relax_info->is_relaxable_asm_section ))
|
||
{
|
||
/* Translate the relocation's destination. */
|
||
bfd_vma old_offset = val.r_rel.target_offset;
|
||
bfd_vma new_offset;
|
||
long old_size, new_size;
|
||
int removed_by_old_offset =
|
||
removed_by_actions_map (&target_relax_info->action_list,
|
||
old_offset, FALSE);
|
||
new_offset = old_offset - removed_by_old_offset;
|
||
|
||
/* Assert that we are not out of bounds. */
|
||
old_size = bfd_get_32 (abfd, size_p);
|
||
new_size = old_size;
|
||
|
||
if (old_size == 0)
|
||
{
|
||
/* Only the first zero-sized unreachable entry is
|
||
allowed to expand. In this case the new offset
|
||
should be the offset before the fill and the new
|
||
size is the expansion size. For other zero-sized
|
||
entries the resulting size should be zero with an
|
||
offset before or after the fill address depending
|
||
on whether the expanding unreachable entry
|
||
preceeds it. */
|
||
if (last_zfill_target_sec == 0
|
||
|| last_zfill_target_sec != target_sec
|
||
|| last_zfill_target_offset != old_offset)
|
||
{
|
||
bfd_vma new_end_offset = new_offset;
|
||
|
||
/* Recompute the new_offset, but this time don't
|
||
include any fill inserted by relaxation. */
|
||
removed_by_old_offset =
|
||
removed_by_actions_map (&target_relax_info->action_list,
|
||
old_offset, TRUE);
|
||
new_offset = old_offset - removed_by_old_offset;
|
||
|
||
/* If it is not unreachable and we have not yet
|
||
seen an unreachable at this address, place it
|
||
before the fill address. */
|
||
if (flags_p && (bfd_get_32 (abfd, flags_p)
|
||
& XTENSA_PROP_UNREACHABLE) != 0)
|
||
{
|
||
new_size = new_end_offset - new_offset;
|
||
|
||
last_zfill_target_sec = target_sec;
|
||
last_zfill_target_offset = old_offset;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
int removed_by_old_offset_size =
|
||
removed_by_actions_map (&target_relax_info->action_list,
|
||
old_offset + old_size, TRUE);
|
||
new_size -= removed_by_old_offset_size - removed_by_old_offset;
|
||
}
|
||
|
||
if (new_size != old_size)
|
||
{
|
||
bfd_put_32 (abfd, new_size, size_p);
|
||
pin_contents (sec, contents);
|
||
}
|
||
|
||
if (new_offset != old_offset)
|
||
{
|
||
bfd_vma diff = new_offset - old_offset;
|
||
irel->r_addend += diff;
|
||
pin_internal_relocs (sec, internal_relocs);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Combine adjacent property table entries. This is also done in
|
||
finish_dynamic_sections() but at that point it's too late to
|
||
reclaim the space in the output section, so we do this twice. */
|
||
|
||
if (internal_relocs && (!bfd_link_relocatable (link_info)
|
||
|| xtensa_is_littable_section (sec)))
|
||
{
|
||
Elf_Internal_Rela *last_irel = NULL;
|
||
Elf_Internal_Rela *irel, *next_rel, *rel_end;
|
||
int removed_bytes = 0;
|
||
bfd_vma offset;
|
||
flagword predef_flags;
|
||
|
||
predef_flags = xtensa_get_property_predef_flags (sec);
|
||
|
||
/* Walk over memory and relocations at the same time.
|
||
This REQUIRES that the internal_relocs be sorted by offset. */
|
||
qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
|
||
internal_reloc_compare);
|
||
|
||
pin_internal_relocs (sec, internal_relocs);
|
||
pin_contents (sec, contents);
|
||
|
||
next_rel = internal_relocs;
|
||
rel_end = internal_relocs + sec->reloc_count;
|
||
|
||
BFD_ASSERT (sec->size % entry_size == 0);
|
||
|
||
for (offset = 0; offset < sec->size; offset += entry_size)
|
||
{
|
||
Elf_Internal_Rela *offset_rel, *extra_rel;
|
||
bfd_vma bytes_to_remove, size, actual_offset;
|
||
bfd_boolean remove_this_rel;
|
||
flagword flags;
|
||
|
||
/* Find the first relocation for the entry at the current offset.
|
||
Adjust the offsets of any extra relocations for the previous
|
||
entry. */
|
||
offset_rel = NULL;
|
||
if (next_rel)
|
||
{
|
||
for (irel = next_rel; irel < rel_end; irel++)
|
||
{
|
||
if ((irel->r_offset == offset
|
||
&& ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
|
||
|| irel->r_offset > offset)
|
||
{
|
||
offset_rel = irel;
|
||
break;
|
||
}
|
||
irel->r_offset -= removed_bytes;
|
||
}
|
||
}
|
||
|
||
/* Find the next relocation (if there are any left). */
|
||
extra_rel = NULL;
|
||
if (offset_rel)
|
||
{
|
||
for (irel = offset_rel + 1; irel < rel_end; irel++)
|
||
{
|
||
if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
|
||
{
|
||
extra_rel = irel;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Check if there are relocations on the current entry. There
|
||
should usually be a relocation on the offset field. If there
|
||
are relocations on the size or flags, then we can't optimize
|
||
this entry. Also, find the next relocation to examine on the
|
||
next iteration. */
|
||
if (offset_rel)
|
||
{
|
||
if (offset_rel->r_offset >= offset + entry_size)
|
||
{
|
||
next_rel = offset_rel;
|
||
/* There are no relocations on the current entry, but we
|
||
might still be able to remove it if the size is zero. */
|
||
offset_rel = NULL;
|
||
}
|
||
else if (offset_rel->r_offset > offset
|
||
|| (extra_rel
|
||
&& extra_rel->r_offset < offset + entry_size))
|
||
{
|
||
/* There is a relocation on the size or flags, so we can't
|
||
do anything with this entry. Continue with the next. */
|
||
next_rel = offset_rel;
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
BFD_ASSERT (offset_rel->r_offset == offset);
|
||
offset_rel->r_offset -= removed_bytes;
|
||
next_rel = offset_rel + 1;
|
||
}
|
||
}
|
||
else
|
||
next_rel = NULL;
|
||
|
||
remove_this_rel = FALSE;
|
||
bytes_to_remove = 0;
|
||
actual_offset = offset - removed_bytes;
|
||
size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
|
||
|
||
if (is_full_prop_section)
|
||
flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
|
||
else
|
||
flags = predef_flags;
|
||
|
||
if (size == 0
|
||
&& (flags & XTENSA_PROP_ALIGN) == 0
|
||
&& (flags & XTENSA_PROP_UNREACHABLE) == 0)
|
||
{
|
||
/* Always remove entries with zero size and no alignment. */
|
||
bytes_to_remove = entry_size;
|
||
if (offset_rel)
|
||
remove_this_rel = TRUE;
|
||
}
|
||
else if (offset_rel
|
||
&& ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
|
||
{
|
||
if (last_irel)
|
||
{
|
||
flagword old_flags;
|
||
bfd_vma old_size =
|
||
bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
|
||
bfd_vma old_address =
|
||
(last_irel->r_addend
|
||
+ bfd_get_32 (abfd, &contents[last_irel->r_offset]));
|
||
bfd_vma new_address =
|
||
(offset_rel->r_addend
|
||
+ bfd_get_32 (abfd, &contents[actual_offset]));
|
||
if (is_full_prop_section)
|
||
old_flags = bfd_get_32
|
||
(abfd, &contents[last_irel->r_offset + 8]);
|
||
else
|
||
old_flags = predef_flags;
|
||
|
||
if ((ELF32_R_SYM (offset_rel->r_info)
|
||
== ELF32_R_SYM (last_irel->r_info))
|
||
&& old_address + old_size == new_address
|
||
&& old_flags == flags
|
||
&& (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
|
||
&& (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
|
||
{
|
||
/* Fix the old size. */
|
||
bfd_put_32 (abfd, old_size + size,
|
||
&contents[last_irel->r_offset + 4]);
|
||
bytes_to_remove = entry_size;
|
||
remove_this_rel = TRUE;
|
||
}
|
||
else
|
||
last_irel = offset_rel;
|
||
}
|
||
else
|
||
last_irel = offset_rel;
|
||
}
|
||
|
||
if (remove_this_rel)
|
||
{
|
||
offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
|
||
offset_rel->r_offset = 0;
|
||
}
|
||
|
||
if (bytes_to_remove != 0)
|
||
{
|
||
removed_bytes += bytes_to_remove;
|
||
if (offset + bytes_to_remove < sec->size)
|
||
memmove (&contents[actual_offset],
|
||
&contents[actual_offset + bytes_to_remove],
|
||
sec->size - offset - bytes_to_remove);
|
||
}
|
||
}
|
||
|
||
if (removed_bytes)
|
||
{
|
||
/* Fix up any extra relocations on the last entry. */
|
||
for (irel = next_rel; irel < rel_end; irel++)
|
||
irel->r_offset -= removed_bytes;
|
||
|
||
/* Clear the removed bytes. */
|
||
memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
|
||
|
||
if (sec->rawsize == 0)
|
||
sec->rawsize = sec->size;
|
||
sec->size -= removed_bytes;
|
||
|
||
if (xtensa_is_littable_section (sec))
|
||
{
|
||
asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
|
||
if (sgotloc)
|
||
sgotloc->size -= removed_bytes;
|
||
}
|
||
}
|
||
}
|
||
|
||
error_return:
|
||
release_internal_relocs (sec, internal_relocs);
|
||
release_contents (sec, contents);
|
||
return ok;
|
||
}
|
||
|
||
|
||
/* Third relaxation pass. */
|
||
|
||
/* Change symbol values to account for removed literals. */
|
||
|
||
bfd_boolean
|
||
relax_section_symbols (bfd *abfd, asection *sec)
|
||
{
|
||
xtensa_relax_info *relax_info;
|
||
unsigned int sec_shndx;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
Elf_Internal_Sym *isymbuf;
|
||
unsigned i, num_syms, num_locals;
|
||
|
||
relax_info = get_xtensa_relax_info (sec);
|
||
BFD_ASSERT (relax_info);
|
||
|
||
if (!relax_info->is_relaxable_literal_section
|
||
&& !relax_info->is_relaxable_asm_section)
|
||
return TRUE;
|
||
|
||
sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
isymbuf = retrieve_local_syms (abfd);
|
||
|
||
num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
|
||
num_locals = symtab_hdr->sh_info;
|
||
|
||
/* Adjust the local symbols defined in this section. */
|
||
for (i = 0; i < num_locals; i++)
|
||
{
|
||
Elf_Internal_Sym *isym = &isymbuf[i];
|
||
|
||
if (isym->st_shndx == sec_shndx)
|
||
{
|
||
bfd_vma orig_addr = isym->st_value;
|
||
int removed = removed_by_actions_map (&relax_info->action_list,
|
||
orig_addr, FALSE);
|
||
|
||
isym->st_value -= removed;
|
||
if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
|
||
isym->st_size -=
|
||
removed_by_actions_map (&relax_info->action_list,
|
||
orig_addr + isym->st_size, FALSE) -
|
||
removed;
|
||
}
|
||
}
|
||
|
||
/* Now adjust the global symbols defined in this section. */
|
||
for (i = 0; i < (num_syms - num_locals); i++)
|
||
{
|
||
struct elf_link_hash_entry *sym_hash;
|
||
|
||
sym_hash = elf_sym_hashes (abfd)[i];
|
||
|
||
if (sym_hash->root.type == bfd_link_hash_warning)
|
||
sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
|
||
|
||
if ((sym_hash->root.type == bfd_link_hash_defined
|
||
|| sym_hash->root.type == bfd_link_hash_defweak)
|
||
&& sym_hash->root.u.def.section == sec)
|
||
{
|
||
bfd_vma orig_addr = sym_hash->root.u.def.value;
|
||
int removed = removed_by_actions_map (&relax_info->action_list,
|
||
orig_addr, FALSE);
|
||
|
||
sym_hash->root.u.def.value -= removed;
|
||
|
||
if (sym_hash->type == STT_FUNC)
|
||
sym_hash->size -=
|
||
removed_by_actions_map (&relax_info->action_list,
|
||
orig_addr + sym_hash->size, FALSE) -
|
||
removed;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* "Fix" handling functions, called while performing relocations. */
|
||
|
||
static bfd_boolean
|
||
do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
|
||
bfd *input_bfd,
|
||
asection *input_section,
|
||
bfd_byte *contents)
|
||
{
|
||
r_reloc r_rel;
|
||
asection *sec, *old_sec;
|
||
bfd_vma old_offset;
|
||
int r_type = ELF32_R_TYPE (rel->r_info);
|
||
reloc_bfd_fix *fix;
|
||
|
||
if (r_type == R_XTENSA_NONE)
|
||
return TRUE;
|
||
|
||
fix = get_bfd_fix (input_section, rel->r_offset, r_type);
|
||
if (!fix)
|
||
return TRUE;
|
||
|
||
r_reloc_init (&r_rel, input_bfd, rel, contents,
|
||
bfd_get_section_limit (input_bfd, input_section));
|
||
old_sec = r_reloc_get_section (&r_rel);
|
||
old_offset = r_rel.target_offset;
|
||
|
||
if (!old_sec || !r_reloc_is_defined (&r_rel))
|
||
{
|
||
if (r_type != R_XTENSA_ASM_EXPAND)
|
||
{
|
||
_bfd_error_handler
|
||
/* xgettext:c-format */
|
||
(_("%pB(%pA+%#" PRIx64 "): unexpected fix for %s relocation"),
|
||
input_bfd, input_section, (uint64_t) rel->r_offset,
|
||
elf_howto_table[r_type].name);
|
||
return FALSE;
|
||
}
|
||
/* Leave it be. Resolution will happen in a later stage. */
|
||
}
|
||
else
|
||
{
|
||
sec = fix->target_sec;
|
||
rel->r_addend += ((sec->output_offset + fix->target_offset)
|
||
- (old_sec->output_offset + old_offset));
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
static void
|
||
do_fix_for_final_link (Elf_Internal_Rela *rel,
|
||
bfd *input_bfd,
|
||
asection *input_section,
|
||
bfd_byte *contents,
|
||
bfd_vma *relocationp)
|
||
{
|
||
asection *sec;
|
||
int r_type = ELF32_R_TYPE (rel->r_info);
|
||
reloc_bfd_fix *fix;
|
||
bfd_vma fixup_diff;
|
||
|
||
if (r_type == R_XTENSA_NONE)
|
||
return;
|
||
|
||
fix = get_bfd_fix (input_section, rel->r_offset, r_type);
|
||
if (!fix)
|
||
return;
|
||
|
||
sec = fix->target_sec;
|
||
|
||
fixup_diff = rel->r_addend;
|
||
if (elf_howto_table[fix->src_type].partial_inplace)
|
||
{
|
||
bfd_vma inplace_val;
|
||
BFD_ASSERT (fix->src_offset
|
||
< bfd_get_section_limit (input_bfd, input_section));
|
||
inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
|
||
fixup_diff += inplace_val;
|
||
}
|
||
|
||
*relocationp = (sec->output_section->vma
|
||
+ sec->output_offset
|
||
+ fix->target_offset - fixup_diff);
|
||
}
|
||
|
||
|
||
/* Miscellaneous utility functions.... */
|
||
|
||
static asection *
|
||
elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
|
||
{
|
||
bfd *dynobj;
|
||
char plt_name[17];
|
||
|
||
if (chunk == 0)
|
||
return elf_hash_table (info)->splt;
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
sprintf (plt_name, ".plt.%u", chunk);
|
||
return bfd_get_linker_section (dynobj, plt_name);
|
||
}
|
||
|
||
|
||
static asection *
|
||
elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
|
||
{
|
||
bfd *dynobj;
|
||
char got_name[21];
|
||
|
||
if (chunk == 0)
|
||
return elf_hash_table (info)->sgotplt;
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
sprintf (got_name, ".got.plt.%u", chunk);
|
||
return bfd_get_linker_section (dynobj, got_name);
|
||
}
|
||
|
||
|
||
/* Get the input section for a given symbol index.
|
||
If the symbol is:
|
||
. a section symbol, return the section;
|
||
. a common symbol, return the common section;
|
||
. an undefined symbol, return the undefined section;
|
||
. an indirect symbol, follow the links;
|
||
. an absolute value, return the absolute section. */
|
||
|
||
static asection *
|
||
get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
asection *target_sec = NULL;
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
{
|
||
Elf_Internal_Sym *isymbuf;
|
||
unsigned int section_index;
|
||
|
||
isymbuf = retrieve_local_syms (abfd);
|
||
section_index = isymbuf[r_symndx].st_shndx;
|
||
|
||
if (section_index == SHN_UNDEF)
|
||
target_sec = bfd_und_section_ptr;
|
||
else if (section_index == SHN_ABS)
|
||
target_sec = bfd_abs_section_ptr;
|
||
else if (section_index == SHN_COMMON)
|
||
target_sec = bfd_com_section_ptr;
|
||
else
|
||
target_sec = bfd_section_from_elf_index (abfd, section_index);
|
||
}
|
||
else
|
||
{
|
||
unsigned long indx = r_symndx - symtab_hdr->sh_info;
|
||
struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
|
||
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
|
||
switch (h->root.type)
|
||
{
|
||
case bfd_link_hash_defined:
|
||
case bfd_link_hash_defweak:
|
||
target_sec = h->root.u.def.section;
|
||
break;
|
||
case bfd_link_hash_common:
|
||
target_sec = bfd_com_section_ptr;
|
||
break;
|
||
case bfd_link_hash_undefined:
|
||
case bfd_link_hash_undefweak:
|
||
target_sec = bfd_und_section_ptr;
|
||
break;
|
||
default: /* New indirect warning. */
|
||
target_sec = bfd_und_section_ptr;
|
||
break;
|
||
}
|
||
}
|
||
return target_sec;
|
||
}
|
||
|
||
|
||
static struct elf_link_hash_entry *
|
||
get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
|
||
{
|
||
unsigned long indx;
|
||
struct elf_link_hash_entry *h;
|
||
Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
return NULL;
|
||
|
||
indx = r_symndx - symtab_hdr->sh_info;
|
||
h = elf_sym_hashes (abfd)[indx];
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
return h;
|
||
}
|
||
|
||
|
||
/* Get the section-relative offset for a symbol number. */
|
||
|
||
static bfd_vma
|
||
get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
bfd_vma offset = 0;
|
||
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
{
|
||
Elf_Internal_Sym *isymbuf;
|
||
isymbuf = retrieve_local_syms (abfd);
|
||
offset = isymbuf[r_symndx].st_value;
|
||
}
|
||
else
|
||
{
|
||
unsigned long indx = r_symndx - symtab_hdr->sh_info;
|
||
struct elf_link_hash_entry *h =
|
||
elf_sym_hashes (abfd)[indx];
|
||
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
if (h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak)
|
||
offset = h->root.u.def.value;
|
||
}
|
||
return offset;
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
|
||
{
|
||
unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
|
||
struct elf_link_hash_entry *h;
|
||
|
||
h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
|
||
if (h && h->root.type == bfd_link_hash_defweak)
|
||
return TRUE;
|
||
return FALSE;
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
pcrel_reloc_fits (xtensa_opcode opc,
|
||
int opnd,
|
||
bfd_vma self_address,
|
||
bfd_vma dest_address)
|
||
{
|
||
xtensa_isa isa = xtensa_default_isa;
|
||
uint32 valp = dest_address;
|
||
if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
|
||
|| xtensa_operand_encode (isa, opc, opnd, &valp))
|
||
return FALSE;
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
xtensa_is_property_section (asection *sec)
|
||
{
|
||
if (xtensa_is_insntable_section (sec)
|
||
|| xtensa_is_littable_section (sec)
|
||
|| xtensa_is_proptable_section (sec))
|
||
return TRUE;
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
xtensa_is_insntable_section (asection *sec)
|
||
{
|
||
if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
|
||
|| CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
|
||
return TRUE;
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
xtensa_is_littable_section (asection *sec)
|
||
{
|
||
if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
|
||
|| CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
|
||
return TRUE;
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
xtensa_is_proptable_section (asection *sec)
|
||
{
|
||
if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
|
||
|| CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
|
||
return TRUE;
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
|
||
static int
|
||
internal_reloc_compare (const void *ap, const void *bp)
|
||
{
|
||
const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
|
||
const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
|
||
|
||
if (a->r_offset != b->r_offset)
|
||
return (a->r_offset - b->r_offset);
|
||
|
||
/* We don't need to sort on these criteria for correctness,
|
||
but enforcing a more strict ordering prevents unstable qsort
|
||
from behaving differently with different implementations.
|
||
Without the code below we get correct but different results
|
||
on Solaris 2.7 and 2.8. We would like to always produce the
|
||
same results no matter the host. */
|
||
|
||
if (a->r_info != b->r_info)
|
||
return (a->r_info - b->r_info);
|
||
|
||
return (a->r_addend - b->r_addend);
|
||
}
|
||
|
||
|
||
static int
|
||
internal_reloc_matches (const void *ap, const void *bp)
|
||
{
|
||
const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
|
||
const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
|
||
|
||
/* Check if one entry overlaps with the other; this shouldn't happen
|
||
except when searching for a match. */
|
||
return (a->r_offset - b->r_offset);
|
||
}
|
||
|
||
|
||
/* Predicate function used to look up a section in a particular group. */
|
||
|
||
static bfd_boolean
|
||
match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
|
||
{
|
||
const char *gname = inf;
|
||
const char *group_name = elf_group_name (sec);
|
||
|
||
return (group_name == gname
|
||
|| (group_name != NULL
|
||
&& gname != NULL
|
||
&& strcmp (group_name, gname) == 0));
|
||
}
|
||
|
||
|
||
static char *
|
||
xtensa_add_names (const char *base, const char *suffix)
|
||
{
|
||
if (suffix)
|
||
{
|
||
size_t base_len = strlen (base);
|
||
size_t suffix_len = strlen (suffix);
|
||
char *str = bfd_malloc (base_len + suffix_len + 1);
|
||
|
||
memcpy (str, base, base_len);
|
||
memcpy (str + base_len, suffix, suffix_len + 1);
|
||
return str;
|
||
}
|
||
else
|
||
{
|
||
return strdup (base);
|
||
}
|
||
}
|
||
|
||
static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
|
||
|
||
static char *
|
||
xtensa_property_section_name (asection *sec, const char *base_name,
|
||
bfd_boolean separate_sections)
|
||
{
|
||
const char *suffix, *group_name;
|
||
char *prop_sec_name;
|
||
|
||
group_name = elf_group_name (sec);
|
||
if (group_name)
|
||
{
|
||
suffix = strrchr (sec->name, '.');
|
||
if (suffix == sec->name)
|
||
suffix = 0;
|
||
prop_sec_name = xtensa_add_names (base_name, suffix);
|
||
}
|
||
else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
|
||
{
|
||
char *linkonce_kind = 0;
|
||
|
||
if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
|
||
linkonce_kind = "x.";
|
||
else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
|
||
linkonce_kind = "p.";
|
||
else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
|
||
linkonce_kind = "prop.";
|
||
else
|
||
abort ();
|
||
|
||
prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
|
||
+ strlen (linkonce_kind) + 1);
|
||
memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
|
||
strcpy (prop_sec_name + linkonce_len, linkonce_kind);
|
||
|
||
suffix = sec->name + linkonce_len;
|
||
/* For backward compatibility, replace "t." instead of inserting
|
||
the new linkonce_kind (but not for "prop" sections). */
|
||
if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
|
||
suffix += 2;
|
||
strcat (prop_sec_name + linkonce_len, suffix);
|
||
}
|
||
else
|
||
{
|
||
prop_sec_name = xtensa_add_names (base_name,
|
||
separate_sections ? sec->name : NULL);
|
||
}
|
||
|
||
return prop_sec_name;
|
||
}
|
||
|
||
|
||
static asection *
|
||
xtensa_get_separate_property_section (asection *sec, const char *base_name,
|
||
bfd_boolean separate_section)
|
||
{
|
||
char *prop_sec_name;
|
||
asection *prop_sec;
|
||
|
||
prop_sec_name = xtensa_property_section_name (sec, base_name,
|
||
separate_section);
|
||
prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
|
||
match_section_group,
|
||
(void *) elf_group_name (sec));
|
||
free (prop_sec_name);
|
||
return prop_sec;
|
||
}
|
||
|
||
static asection *
|
||
xtensa_get_property_section (asection *sec, const char *base_name)
|
||
{
|
||
asection *prop_sec;
|
||
|
||
/* Try individual property section first. */
|
||
prop_sec = xtensa_get_separate_property_section (sec, base_name, TRUE);
|
||
|
||
/* Refer to a common property section if individual is not present. */
|
||
if (!prop_sec)
|
||
prop_sec = xtensa_get_separate_property_section (sec, base_name, FALSE);
|
||
|
||
return prop_sec;
|
||
}
|
||
|
||
|
||
asection *
|
||
xtensa_make_property_section (asection *sec, const char *base_name)
|
||
{
|
||
char *prop_sec_name;
|
||
asection *prop_sec;
|
||
|
||
/* Check if the section already exists. */
|
||
prop_sec_name = xtensa_property_section_name (sec, base_name,
|
||
elf32xtensa_separate_props);
|
||
prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
|
||
match_section_group,
|
||
(void *) elf_group_name (sec));
|
||
/* If not, create it. */
|
||
if (! prop_sec)
|
||
{
|
||
flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
|
||
flags |= (bfd_get_section_flags (sec->owner, sec)
|
||
& (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
|
||
|
||
prop_sec = bfd_make_section_anyway_with_flags
|
||
(sec->owner, strdup (prop_sec_name), flags);
|
||
if (! prop_sec)
|
||
return 0;
|
||
|
||
elf_group_name (prop_sec) = elf_group_name (sec);
|
||
}
|
||
|
||
free (prop_sec_name);
|
||
return prop_sec;
|
||
}
|
||
|
||
|
||
flagword
|
||
xtensa_get_property_predef_flags (asection *sec)
|
||
{
|
||
if (xtensa_is_insntable_section (sec))
|
||
return (XTENSA_PROP_INSN
|
||
| XTENSA_PROP_NO_TRANSFORM
|
||
| XTENSA_PROP_INSN_NO_REORDER);
|
||
|
||
if (xtensa_is_littable_section (sec))
|
||
return (XTENSA_PROP_LITERAL
|
||
| XTENSA_PROP_NO_TRANSFORM
|
||
| XTENSA_PROP_INSN_NO_REORDER);
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Other functions called directly by the linker. */
|
||
|
||
bfd_boolean
|
||
xtensa_callback_required_dependence (bfd *abfd,
|
||
asection *sec,
|
||
struct bfd_link_info *link_info,
|
||
deps_callback_t callback,
|
||
void *closure)
|
||
{
|
||
Elf_Internal_Rela *internal_relocs;
|
||
bfd_byte *contents;
|
||
unsigned i;
|
||
bfd_boolean ok = TRUE;
|
||
bfd_size_type sec_size;
|
||
|
||
sec_size = bfd_get_section_limit (abfd, sec);
|
||
|
||
/* ".plt*" sections have no explicit relocations but they contain L32R
|
||
instructions that reference the corresponding ".got.plt*" sections. */
|
||
if ((sec->flags & SEC_LINKER_CREATED) != 0
|
||
&& CONST_STRNEQ (sec->name, ".plt"))
|
||
{
|
||
asection *sgotplt;
|
||
|
||
/* Find the corresponding ".got.plt*" section. */
|
||
if (sec->name[4] == '\0')
|
||
sgotplt = elf_hash_table (link_info)->sgotplt;
|
||
else
|
||
{
|
||
char got_name[14];
|
||
int chunk = 0;
|
||
|
||
BFD_ASSERT (sec->name[4] == '.');
|
||
chunk = strtol (&sec->name[5], NULL, 10);
|
||
|
||
sprintf (got_name, ".got.plt.%u", chunk);
|
||
sgotplt = bfd_get_linker_section (sec->owner, got_name);
|
||
}
|
||
BFD_ASSERT (sgotplt);
|
||
|
||
/* Assume worst-case offsets: L32R at the very end of the ".plt"
|
||
section referencing a literal at the very beginning of
|
||
".got.plt". This is very close to the real dependence, anyway. */
|
||
(*callback) (sec, sec_size, sgotplt, 0, closure);
|
||
}
|
||
|
||
/* Only ELF files are supported for Xtensa. Check here to avoid a segfault
|
||
when building uclibc, which runs "ld -b binary /dev/null". */
|
||
if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
|
||
return ok;
|
||
|
||
internal_relocs = retrieve_internal_relocs (abfd, sec,
|
||
link_info->keep_memory);
|
||
if (internal_relocs == NULL
|
||
|| sec->reloc_count == 0)
|
||
return ok;
|
||
|
||
/* Cache the contents for the duration of this scan. */
|
||
contents = retrieve_contents (abfd, sec, link_info->keep_memory);
|
||
if (contents == NULL && sec_size != 0)
|
||
{
|
||
ok = FALSE;
|
||
goto error_return;
|
||
}
|
||
|
||
if (!xtensa_default_isa)
|
||
xtensa_default_isa = xtensa_isa_init (0, 0);
|
||
|
||
for (i = 0; i < sec->reloc_count; i++)
|
||
{
|
||
Elf_Internal_Rela *irel = &internal_relocs[i];
|
||
if (is_l32r_relocation (abfd, sec, contents, irel))
|
||
{
|
||
r_reloc l32r_rel;
|
||
asection *target_sec;
|
||
bfd_vma target_offset;
|
||
|
||
r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
|
||
target_sec = NULL;
|
||
target_offset = 0;
|
||
/* L32Rs must be local to the input file. */
|
||
if (r_reloc_is_defined (&l32r_rel))
|
||
{
|
||
target_sec = r_reloc_get_section (&l32r_rel);
|
||
target_offset = l32r_rel.target_offset;
|
||
}
|
||
(*callback) (sec, irel->r_offset, target_sec, target_offset,
|
||
closure);
|
||
}
|
||
}
|
||
|
||
error_return:
|
||
release_internal_relocs (sec, internal_relocs);
|
||
release_contents (sec, contents);
|
||
return ok;
|
||
}
|
||
|
||
/* The default literal sections should always be marked as "code" (i.e.,
|
||
SHF_EXECINSTR). This is particularly important for the Linux kernel
|
||
module loader so that the literals are not placed after the text. */
|
||
static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
|
||
{
|
||
{ STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
|
||
{ STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
|
||
{ STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
|
||
{ STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
|
||
{ NULL, 0, 0, 0, 0 }
|
||
};
|
||
|
||
#define ELF_TARGET_ID XTENSA_ELF_DATA
|
||
#ifndef ELF_ARCH
|
||
#define TARGET_LITTLE_SYM xtensa_elf32_le_vec
|
||
#define TARGET_LITTLE_NAME "elf32-xtensa-le"
|
||
#define TARGET_BIG_SYM xtensa_elf32_be_vec
|
||
#define TARGET_BIG_NAME "elf32-xtensa-be"
|
||
#define ELF_ARCH bfd_arch_xtensa
|
||
|
||
#define ELF_MACHINE_CODE EM_XTENSA
|
||
#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
|
||
|
||
#define ELF_MAXPAGESIZE 0x1000
|
||
#endif /* ELF_ARCH */
|
||
|
||
#define elf_backend_can_gc_sections 1
|
||
#define elf_backend_can_refcount 1
|
||
#define elf_backend_plt_readonly 1
|
||
#define elf_backend_got_header_size 4
|
||
#define elf_backend_want_dynbss 0
|
||
#define elf_backend_want_got_plt 1
|
||
#define elf_backend_dtrel_excludes_plt 1
|
||
|
||
#define elf_info_to_howto elf_xtensa_info_to_howto_rela
|
||
|
||
#define bfd_elf32_mkobject elf_xtensa_mkobject
|
||
|
||
#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
|
||
#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
|
||
#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
|
||
#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
|
||
#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
|
||
#define bfd_elf32_bfd_reloc_name_lookup \
|
||
elf_xtensa_reloc_name_lookup
|
||
#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
|
||
#define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
|
||
|
||
#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
|
||
#define elf_backend_check_relocs elf_xtensa_check_relocs
|
||
#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
|
||
#define elf_backend_discard_info elf_xtensa_discard_info
|
||
#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
|
||
#define elf_backend_final_write_processing elf_xtensa_final_write_processing
|
||
#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
|
||
#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
|
||
#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
|
||
#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
|
||
#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
|
||
#define elf_backend_hide_symbol elf_xtensa_hide_symbol
|
||
#define elf_backend_object_p elf_xtensa_object_p
|
||
#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
|
||
#define elf_backend_relocate_section elf_xtensa_relocate_section
|
||
#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
|
||
#define elf_backend_always_size_sections elf_xtensa_always_size_sections
|
||
#define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
|
||
#define elf_backend_special_sections elf_xtensa_special_sections
|
||
#define elf_backend_action_discarded elf_xtensa_action_discarded
|
||
#define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
|
||
|
||
#include "elf32-target.h"
|