binutils-gdb/gold/layout.cc
2006-09-21 22:13:18 +00:00

433 lines
12 KiB
C++

// layout.cc -- lay out output file sections for gold
#include "gold.h"
#include <cassert>
#include <cstring>
#include <iostream>
#include <utility>
#include "output.h"
#include "layout.h"
namespace gold
{
// Layout_task methods.
Layout_task::~Layout_task()
{
}
// This task can be run when it is unblocked.
Task::Is_runnable_type
Layout_task::is_runnable(Workqueue*)
{
if (this->this_blocker_->is_blocked())
return IS_BLOCKED;
return IS_RUNNABLE;
}
// We don't need to hold any locks for the duration of this task. In
// fact this task will be the only one running.
Task_locker*
Layout_task::locks(Workqueue*)
{
return NULL;
}
// Lay out the sections. This is called after all the input objects
// have been read.
void
Layout_task::run(Workqueue*)
{
Layout layout(this->options_);
for (Object_list::const_iterator p = this->input_objects_->begin();
p != this->input_objects_->end();
++p)
(*p)->layout(&layout);
}
// Layout methods.
// Hash a key we use to look up an output section mapping.
size_t
Layout::Hash_key::operator()(const Layout::Key& k) const
{
return reinterpret_cast<size_t>(k.first) + k.second.first + k.second.second;
}
// Whether to include this section in the link.
template<int size, bool big_endian>
bool
Layout::include_section(Object*, const char*,
const elfcpp::Shdr<size, big_endian>& shdr)
{
// Some section types are never linked. Some are only linked when
// doing a relocateable link.
switch (shdr.get_sh_type())
{
case elfcpp::SHT_NULL:
case elfcpp::SHT_SYMTAB:
case elfcpp::SHT_DYNSYM:
case elfcpp::SHT_STRTAB:
case elfcpp::SHT_HASH:
case elfcpp::SHT_DYNAMIC:
case elfcpp::SHT_SYMTAB_SHNDX:
return false;
case elfcpp::SHT_RELA:
case elfcpp::SHT_REL:
case elfcpp::SHT_GROUP:
return this->options_.is_relocatable();
default:
// FIXME: Handle stripping debug sections here.
return true;
}
}
// Return the output section to use for input section NAME, with
// header HEADER, from object OBJECT. Set *OFF to the offset of this
// input section without the output section.
template<int size, bool big_endian>
Output_section*
Layout::layout(Object* object, const char* name,
const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
{
if (!this->include_section(object, name, shdr))
return NULL;
// Unless we are doing a relocateable link, .gnu.linkonce sections
// are laid out as though they were named for the sections are
// placed into.
if (!this->options_.is_relocatable() && Layout::is_linkonce(name))
name = Layout::linkonce_output_name(name);
// FIXME: Handle SHF_OS_NONCONFORMING here.
// Canonicalize the section name.
name = this->namepool_.add(name);
// Find the output section. The output section is selected based on
// the section name, type, and flags.
// FIXME: If we want to do relaxation, we need to modify this
// algorithm. We also build a list of input sections for each
// output section. Then we relax all the input sections. Then we
// walk down the list and adjust all the offsets.
elfcpp::Elf_Word type = shdr.get_sh_type();
elfcpp::Elf_Xword flags = shdr.get_sh_flags();
const Key key(name, std::make_pair(type, flags));
const std::pair<Key, Output_section*> v(key, NULL);
std::pair<Section_name_map::iterator, bool> ins(
this->section_name_map_.insert(v));
Output_section* os;
if (!ins.second)
os = ins.first->second;
else
{
// This is the first time we've seen this name/type/flags
// combination.
os = this->make_output_section(name, type, flags);
ins.first->second = os;
}
// FIXME: Handle SHF_LINK_ORDER somewhere.
*off = os->add_input_section(object, name, shdr);
return os;
}
// Return whether SEG1 should be before SEG2 in the output file. This
// is based entirely on the segment type and flags. When this is
// called the segment addresses has normally not yet been set.
bool
Layout::segment_precedes(const Output_segment* seg1,
const Output_segment* seg2)
{
elfcpp::Elf_Word type1 = seg1->type();
elfcpp::Elf_Word type2 = seg2->type();
// The single PT_PHDR segment is required to precede any loadable
// segment. We simply make it always first.
if (type1 == elfcpp::PT_PHDR)
{
assert(type2 != elfcpp::PT_PHDR);
return true;
}
if (type2 == elfcpp::PT_PHDR)
return false;
// The single PT_INTERP segment is required to precede any loadable
// segment. We simply make it always second.
if (type1 == elfcpp::PT_INTERP)
{
assert(type2 != elfcpp::PT_INTERP);
return true;
}
if (type2 == elfcpp::PT_INTERP)
return false;
// We then put PT_LOAD segments before any other segments.
if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
return true;
if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
return false;
const elfcpp::Elf_Word flags1 = seg1->flags();
const elfcpp::Elf_Word flags2 = seg2->flags();
// The order of non-PT_LOAD segments is unimportant. We simply sort
// by the numeric segment type and flags values. There should not
// be more than one segment with the same type and flags.
if (type1 != elfcpp::PT_LOAD)
{
if (type1 != type2)
return type1 < type2;
assert(flags1 != flags2);
return flags1 < flags2;
}
// We sort PT_LOAD segments based on the flags. Readonly segments
// come before writable segments. Then executable segments come
// before non-executable segments. Then the unlikely case of a
// non-readable segment comes before the normal case of a readable
// segment. If there are multiple segments with the same type and
// flags, we require that the address be set, and we sort by
// virtual address and then physical address.
if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
return (flags1 & elfcpp::PF_W) == 0;
if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
return (flags1 & elfcpp::PF_X) != 0;
if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
return (flags1 & elfcpp::PF_R) == 0;
uint64_t vaddr1 = seg1->vaddr();
uint64_t vaddr2 = seg2->vaddr();
if (vaddr1 != vaddr2)
return vaddr1 < vaddr2;
uint64_t paddr1 = seg1->paddr();
uint64_t paddr2 = seg2->paddr();
assert(paddr1 != paddr2);
return paddr1 < paddr2;
}
// Map section flags to segment flags.
elfcpp::Elf_Word
Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
{
elfcpp::Elf_Word ret = elfcpp::PF_R;
if ((flags & elfcpp::SHF_WRITE) != 0)
ret |= elfcpp::PF_W;
if ((flags & elfcpp::SHF_EXECINSTR) != 0)
ret |= elfcpp::PF_X;
return ret;
}
// Make a new Output_section, and attach it to segments as
// appropriate.
Output_section*
Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
elfcpp::Elf_Xword flags)
{
Output_section* os = new Output_section(name, type, flags);
if ((flags & elfcpp::SHF_ALLOC) == 0)
this->section_list_.push_back(os);
else
{
// This output section goes into a PT_LOAD segment.
elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
// The only thing we really care about for PT_LOAD segments is
// whether or not they are writable, so that is how we search
// for them. People who need segments sorted on some other
// basis will have to wait until we implement a mechanism for
// them to describe the segments they want.
Segment_list::const_iterator p;
for (p = this->segment_list_.begin();
p != this->segment_list_.end();
++p)
{
if ((*p)->type() == elfcpp::PT_LOAD
&& ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
{
(*p)->add_output_section(os);
if ((*p)->flags() != seg_flags)
(*p)->update_flags(seg_flags);
break;
}
}
if (p == this->segment_list_.end())
{
Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
seg_flags);
this->segment_list_.push_back(oseg);
oseg->add_output_section(os);
}
// If we see a loadable SHT_NOTE section, we create a PT_NOTE
// segment.
if (type == elfcpp::SHT_NOTE)
{
// See if we already have an equivalent PT_NOTE segment.
for (p = this->segment_list_.begin();
p != segment_list_.end();
++p)
{
if ((*p)->type() == elfcpp::PT_NOTE
&& (((*p)->flags() & elfcpp::PF_W)
== (seg_flags & elfcpp::PF_W)))
{
(*p)->add_output_section(os);
if ((*p)->flags() != seg_flags)
(*p)->update_flags(seg_flags);
break;
}
}
if (p == this->segment_list_.end())
{
Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
seg_flags);
this->segment_list_.push_back(oseg);
oseg->add_output_section(os);
}
}
}
return os;
}
// The mapping of .gnu.linkonce section names to real section names.
#define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t }
const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
{
MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
MAPPING_INIT("t", ".text"),
MAPPING_INIT("r", ".rodata"),
MAPPING_INIT("d", ".data"),
MAPPING_INIT("b", ".bss"),
MAPPING_INIT("s", ".sdata"),
MAPPING_INIT("sb", ".sbss"),
MAPPING_INIT("s2", ".sdata2"),
MAPPING_INIT("sb2", ".sbss2"),
MAPPING_INIT("wi", ".debug_info"),
MAPPING_INIT("td", ".tdata"),
MAPPING_INIT("tb", ".tbss"),
MAPPING_INIT("lr", ".lrodata"),
MAPPING_INIT("l", ".ldata"),
MAPPING_INIT("lb", ".lbss"),
};
#undef MAPPING_INIT
const int Layout::linkonce_mapping_count =
sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
// Return the name of the output section to use for a .gnu.linkonce
// section. This is based on the default ELF linker script of the old
// GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
// to ".text".
const char*
Layout::linkonce_output_name(const char* name)
{
const char* s = name + sizeof(".gnu.linkonce") - 1;
if (*s != '.')
return name;
++s;
const Linkonce_mapping* plm = linkonce_mapping;
for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
{
if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
return plm->to;
}
return name;
}
// Record the signature of a comdat section, and return whether to
// include it in the link. If GROUP is true, this is a regular
// section group. If GROUP is false, this is a group signature
// derived from the name of a linkonce section. We want linkonce
// signatures and group signatures to block each other, but we don't
// want a linkonce signature to block another linkonce signature.
bool
Layout::add_comdat(const char* signature, bool group)
{
std::string sig(signature);
std::pair<Signatures::iterator, bool> ins(
this->signatures_.insert(std::make_pair(signature, group)));
if (ins.second)
{
// This is the first time we've seen this signature.
return true;
}
if (ins.first->second)
{
// We've already seen a real section group with this signature.
return false;
}
else if (group)
{
// This is a real section group, and we've already seen a
// linkonce section with tihs signature. Record that we've seen
// a section group, and don't include this section group.
ins.first->second = true;
return false;
}
else
{
// We've already seen a linkonce section and this is a linkonce
// section. These don't block each other--this may be the same
// symbol name with different section types.
return true;
}
}
// Instantiate the templates we need. We could use the configure
// script to restrict this to only the ones for implemented targets.
template
Output_section*
Layout::layout<32, false>(Object* object, const char* name,
const elfcpp::Shdr<32, false>& shdr, off_t*);
template
Output_section*
Layout::layout<32, true>(Object* object, const char* name,
const elfcpp::Shdr<32, true>& shdr, off_t*);
template
Output_section*
Layout::layout<64, false>(Object* object, const char* name,
const elfcpp::Shdr<64, false>& shdr, off_t*);
template
Output_section*
Layout::layout<64, true>(Object* object, const char* name,
const elfcpp::Shdr<64, true>& shdr, off_t*);
} // End namespace gold.