mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-24 12:35:55 +08:00
433 lines
12 KiB
C++
433 lines
12 KiB
C++
// layout.cc -- lay out output file sections for gold
|
|
|
|
#include "gold.h"
|
|
|
|
#include <cassert>
|
|
#include <cstring>
|
|
#include <iostream>
|
|
#include <utility>
|
|
|
|
#include "output.h"
|
|
#include "layout.h"
|
|
|
|
namespace gold
|
|
{
|
|
|
|
// Layout_task methods.
|
|
|
|
Layout_task::~Layout_task()
|
|
{
|
|
}
|
|
|
|
// This task can be run when it is unblocked.
|
|
|
|
Task::Is_runnable_type
|
|
Layout_task::is_runnable(Workqueue*)
|
|
{
|
|
if (this->this_blocker_->is_blocked())
|
|
return IS_BLOCKED;
|
|
return IS_RUNNABLE;
|
|
}
|
|
|
|
// We don't need to hold any locks for the duration of this task. In
|
|
// fact this task will be the only one running.
|
|
|
|
Task_locker*
|
|
Layout_task::locks(Workqueue*)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
// Lay out the sections. This is called after all the input objects
|
|
// have been read.
|
|
|
|
void
|
|
Layout_task::run(Workqueue*)
|
|
{
|
|
Layout layout(this->options_);
|
|
for (Object_list::const_iterator p = this->input_objects_->begin();
|
|
p != this->input_objects_->end();
|
|
++p)
|
|
(*p)->layout(&layout);
|
|
}
|
|
|
|
// Layout methods.
|
|
|
|
// Hash a key we use to look up an output section mapping.
|
|
|
|
size_t
|
|
Layout::Hash_key::operator()(const Layout::Key& k) const
|
|
{
|
|
return reinterpret_cast<size_t>(k.first) + k.second.first + k.second.second;
|
|
}
|
|
|
|
// Whether to include this section in the link.
|
|
|
|
template<int size, bool big_endian>
|
|
bool
|
|
Layout::include_section(Object*, const char*,
|
|
const elfcpp::Shdr<size, big_endian>& shdr)
|
|
{
|
|
// Some section types are never linked. Some are only linked when
|
|
// doing a relocateable link.
|
|
switch (shdr.get_sh_type())
|
|
{
|
|
case elfcpp::SHT_NULL:
|
|
case elfcpp::SHT_SYMTAB:
|
|
case elfcpp::SHT_DYNSYM:
|
|
case elfcpp::SHT_STRTAB:
|
|
case elfcpp::SHT_HASH:
|
|
case elfcpp::SHT_DYNAMIC:
|
|
case elfcpp::SHT_SYMTAB_SHNDX:
|
|
return false;
|
|
|
|
case elfcpp::SHT_RELA:
|
|
case elfcpp::SHT_REL:
|
|
case elfcpp::SHT_GROUP:
|
|
return this->options_.is_relocatable();
|
|
|
|
default:
|
|
// FIXME: Handle stripping debug sections here.
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Return the output section to use for input section NAME, with
|
|
// header HEADER, from object OBJECT. Set *OFF to the offset of this
|
|
// input section without the output section.
|
|
|
|
template<int size, bool big_endian>
|
|
Output_section*
|
|
Layout::layout(Object* object, const char* name,
|
|
const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
|
|
{
|
|
if (!this->include_section(object, name, shdr))
|
|
return NULL;
|
|
|
|
// Unless we are doing a relocateable link, .gnu.linkonce sections
|
|
// are laid out as though they were named for the sections are
|
|
// placed into.
|
|
if (!this->options_.is_relocatable() && Layout::is_linkonce(name))
|
|
name = Layout::linkonce_output_name(name);
|
|
|
|
// FIXME: Handle SHF_OS_NONCONFORMING here.
|
|
|
|
// Canonicalize the section name.
|
|
name = this->namepool_.add(name);
|
|
|
|
// Find the output section. The output section is selected based on
|
|
// the section name, type, and flags.
|
|
|
|
// FIXME: If we want to do relaxation, we need to modify this
|
|
// algorithm. We also build a list of input sections for each
|
|
// output section. Then we relax all the input sections. Then we
|
|
// walk down the list and adjust all the offsets.
|
|
|
|
elfcpp::Elf_Word type = shdr.get_sh_type();
|
|
elfcpp::Elf_Xword flags = shdr.get_sh_flags();
|
|
const Key key(name, std::make_pair(type, flags));
|
|
const std::pair<Key, Output_section*> v(key, NULL);
|
|
std::pair<Section_name_map::iterator, bool> ins(
|
|
this->section_name_map_.insert(v));
|
|
|
|
Output_section* os;
|
|
if (!ins.second)
|
|
os = ins.first->second;
|
|
else
|
|
{
|
|
// This is the first time we've seen this name/type/flags
|
|
// combination.
|
|
os = this->make_output_section(name, type, flags);
|
|
ins.first->second = os;
|
|
}
|
|
|
|
// FIXME: Handle SHF_LINK_ORDER somewhere.
|
|
|
|
*off = os->add_input_section(object, name, shdr);
|
|
|
|
return os;
|
|
}
|
|
|
|
// Return whether SEG1 should be before SEG2 in the output file. This
|
|
// is based entirely on the segment type and flags. When this is
|
|
// called the segment addresses has normally not yet been set.
|
|
|
|
bool
|
|
Layout::segment_precedes(const Output_segment* seg1,
|
|
const Output_segment* seg2)
|
|
{
|
|
elfcpp::Elf_Word type1 = seg1->type();
|
|
elfcpp::Elf_Word type2 = seg2->type();
|
|
|
|
// The single PT_PHDR segment is required to precede any loadable
|
|
// segment. We simply make it always first.
|
|
if (type1 == elfcpp::PT_PHDR)
|
|
{
|
|
assert(type2 != elfcpp::PT_PHDR);
|
|
return true;
|
|
}
|
|
if (type2 == elfcpp::PT_PHDR)
|
|
return false;
|
|
|
|
// The single PT_INTERP segment is required to precede any loadable
|
|
// segment. We simply make it always second.
|
|
if (type1 == elfcpp::PT_INTERP)
|
|
{
|
|
assert(type2 != elfcpp::PT_INTERP);
|
|
return true;
|
|
}
|
|
if (type2 == elfcpp::PT_INTERP)
|
|
return false;
|
|
|
|
// We then put PT_LOAD segments before any other segments.
|
|
if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
|
|
return true;
|
|
if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
|
|
return false;
|
|
|
|
const elfcpp::Elf_Word flags1 = seg1->flags();
|
|
const elfcpp::Elf_Word flags2 = seg2->flags();
|
|
|
|
// The order of non-PT_LOAD segments is unimportant. We simply sort
|
|
// by the numeric segment type and flags values. There should not
|
|
// be more than one segment with the same type and flags.
|
|
if (type1 != elfcpp::PT_LOAD)
|
|
{
|
|
if (type1 != type2)
|
|
return type1 < type2;
|
|
assert(flags1 != flags2);
|
|
return flags1 < flags2;
|
|
}
|
|
|
|
// We sort PT_LOAD segments based on the flags. Readonly segments
|
|
// come before writable segments. Then executable segments come
|
|
// before non-executable segments. Then the unlikely case of a
|
|
// non-readable segment comes before the normal case of a readable
|
|
// segment. If there are multiple segments with the same type and
|
|
// flags, we require that the address be set, and we sort by
|
|
// virtual address and then physical address.
|
|
if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
|
|
return (flags1 & elfcpp::PF_W) == 0;
|
|
if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
|
|
return (flags1 & elfcpp::PF_X) != 0;
|
|
if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
|
|
return (flags1 & elfcpp::PF_R) == 0;
|
|
|
|
uint64_t vaddr1 = seg1->vaddr();
|
|
uint64_t vaddr2 = seg2->vaddr();
|
|
if (vaddr1 != vaddr2)
|
|
return vaddr1 < vaddr2;
|
|
|
|
uint64_t paddr1 = seg1->paddr();
|
|
uint64_t paddr2 = seg2->paddr();
|
|
assert(paddr1 != paddr2);
|
|
return paddr1 < paddr2;
|
|
}
|
|
|
|
// Map section flags to segment flags.
|
|
|
|
elfcpp::Elf_Word
|
|
Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
|
|
{
|
|
elfcpp::Elf_Word ret = elfcpp::PF_R;
|
|
if ((flags & elfcpp::SHF_WRITE) != 0)
|
|
ret |= elfcpp::PF_W;
|
|
if ((flags & elfcpp::SHF_EXECINSTR) != 0)
|
|
ret |= elfcpp::PF_X;
|
|
return ret;
|
|
}
|
|
|
|
// Make a new Output_section, and attach it to segments as
|
|
// appropriate.
|
|
|
|
Output_section*
|
|
Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
|
|
elfcpp::Elf_Xword flags)
|
|
{
|
|
Output_section* os = new Output_section(name, type, flags);
|
|
|
|
if ((flags & elfcpp::SHF_ALLOC) == 0)
|
|
this->section_list_.push_back(os);
|
|
else
|
|
{
|
|
// This output section goes into a PT_LOAD segment.
|
|
|
|
elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
|
|
|
|
// The only thing we really care about for PT_LOAD segments is
|
|
// whether or not they are writable, so that is how we search
|
|
// for them. People who need segments sorted on some other
|
|
// basis will have to wait until we implement a mechanism for
|
|
// them to describe the segments they want.
|
|
|
|
Segment_list::const_iterator p;
|
|
for (p = this->segment_list_.begin();
|
|
p != this->segment_list_.end();
|
|
++p)
|
|
{
|
|
if ((*p)->type() == elfcpp::PT_LOAD
|
|
&& ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
|
|
{
|
|
(*p)->add_output_section(os);
|
|
if ((*p)->flags() != seg_flags)
|
|
(*p)->update_flags(seg_flags);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (p == this->segment_list_.end())
|
|
{
|
|
Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
|
|
seg_flags);
|
|
this->segment_list_.push_back(oseg);
|
|
oseg->add_output_section(os);
|
|
}
|
|
|
|
// If we see a loadable SHT_NOTE section, we create a PT_NOTE
|
|
// segment.
|
|
if (type == elfcpp::SHT_NOTE)
|
|
{
|
|
// See if we already have an equivalent PT_NOTE segment.
|
|
for (p = this->segment_list_.begin();
|
|
p != segment_list_.end();
|
|
++p)
|
|
{
|
|
if ((*p)->type() == elfcpp::PT_NOTE
|
|
&& (((*p)->flags() & elfcpp::PF_W)
|
|
== (seg_flags & elfcpp::PF_W)))
|
|
{
|
|
(*p)->add_output_section(os);
|
|
if ((*p)->flags() != seg_flags)
|
|
(*p)->update_flags(seg_flags);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (p == this->segment_list_.end())
|
|
{
|
|
Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
|
|
seg_flags);
|
|
this->segment_list_.push_back(oseg);
|
|
oseg->add_output_section(os);
|
|
}
|
|
}
|
|
}
|
|
|
|
return os;
|
|
}
|
|
|
|
// The mapping of .gnu.linkonce section names to real section names.
|
|
|
|
#define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t }
|
|
const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
|
|
{
|
|
MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
|
|
MAPPING_INIT("t", ".text"),
|
|
MAPPING_INIT("r", ".rodata"),
|
|
MAPPING_INIT("d", ".data"),
|
|
MAPPING_INIT("b", ".bss"),
|
|
MAPPING_INIT("s", ".sdata"),
|
|
MAPPING_INIT("sb", ".sbss"),
|
|
MAPPING_INIT("s2", ".sdata2"),
|
|
MAPPING_INIT("sb2", ".sbss2"),
|
|
MAPPING_INIT("wi", ".debug_info"),
|
|
MAPPING_INIT("td", ".tdata"),
|
|
MAPPING_INIT("tb", ".tbss"),
|
|
MAPPING_INIT("lr", ".lrodata"),
|
|
MAPPING_INIT("l", ".ldata"),
|
|
MAPPING_INIT("lb", ".lbss"),
|
|
};
|
|
#undef MAPPING_INIT
|
|
|
|
const int Layout::linkonce_mapping_count =
|
|
sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
|
|
|
|
// Return the name of the output section to use for a .gnu.linkonce
|
|
// section. This is based on the default ELF linker script of the old
|
|
// GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
|
|
// to ".text".
|
|
|
|
const char*
|
|
Layout::linkonce_output_name(const char* name)
|
|
{
|
|
const char* s = name + sizeof(".gnu.linkonce") - 1;
|
|
if (*s != '.')
|
|
return name;
|
|
++s;
|
|
const Linkonce_mapping* plm = linkonce_mapping;
|
|
for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
|
|
{
|
|
if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
|
|
return plm->to;
|
|
}
|
|
return name;
|
|
}
|
|
|
|
// Record the signature of a comdat section, and return whether to
|
|
// include it in the link. If GROUP is true, this is a regular
|
|
// section group. If GROUP is false, this is a group signature
|
|
// derived from the name of a linkonce section. We want linkonce
|
|
// signatures and group signatures to block each other, but we don't
|
|
// want a linkonce signature to block another linkonce signature.
|
|
|
|
bool
|
|
Layout::add_comdat(const char* signature, bool group)
|
|
{
|
|
std::string sig(signature);
|
|
std::pair<Signatures::iterator, bool> ins(
|
|
this->signatures_.insert(std::make_pair(signature, group)));
|
|
|
|
if (ins.second)
|
|
{
|
|
// This is the first time we've seen this signature.
|
|
return true;
|
|
}
|
|
|
|
if (ins.first->second)
|
|
{
|
|
// We've already seen a real section group with this signature.
|
|
return false;
|
|
}
|
|
else if (group)
|
|
{
|
|
// This is a real section group, and we've already seen a
|
|
// linkonce section with tihs signature. Record that we've seen
|
|
// a section group, and don't include this section group.
|
|
ins.first->second = true;
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
// We've already seen a linkonce section and this is a linkonce
|
|
// section. These don't block each other--this may be the same
|
|
// symbol name with different section types.
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Instantiate the templates we need. We could use the configure
|
|
// script to restrict this to only the ones for implemented targets.
|
|
|
|
template
|
|
Output_section*
|
|
Layout::layout<32, false>(Object* object, const char* name,
|
|
const elfcpp::Shdr<32, false>& shdr, off_t*);
|
|
|
|
template
|
|
Output_section*
|
|
Layout::layout<32, true>(Object* object, const char* name,
|
|
const elfcpp::Shdr<32, true>& shdr, off_t*);
|
|
|
|
template
|
|
Output_section*
|
|
Layout::layout<64, false>(Object* object, const char* name,
|
|
const elfcpp::Shdr<64, false>& shdr, off_t*);
|
|
|
|
template
|
|
Output_section*
|
|
Layout::layout<64, true>(Object* object, const char* name,
|
|
const elfcpp::Shdr<64, true>& shdr, off_t*);
|
|
|
|
|
|
} // End namespace gold.
|