mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-18 12:24:38 +08:00
c60c0f5f88
* gregset.h: New file. Typedefs for gdb_gregset_t and gdb_fpregset_t, prototypes for supply_gregset and friends. * procfs.c: Include gregset.h. Delete local prototypes for supply_gregset etc., and local typedef gdb_gregset_t etc. * sol-thread.c: Include gregset.h, delete local prototypes, add appropriate casts to gdb_gregset_t. * uw-thread.c, lin-thread.c, core-sol2.c, core-regset.c, sparc-tdep.c, ptx4-nat.c, ppc-linux-nat.c, mipsv4-nat.c, m88k-nat.c, m68klinux-nat.c, m68k-tdep.c, irix5-nat.c, irix4-nat.c, ia64-linux-nat.c, i386v4-nat.c, cxux-nat.c, arm-linux-nat.c, alpha-nat.c: Include gregset.h. * config/nm-linux.h: Define GDB_GREGSET_T, GDB_FPREGET_T. * config/sparc/tm-sun4sol2.h: Ditto.
3269 lines
100 KiB
C
3269 lines
100 KiB
C
/* Target-dependent code for the SPARC for GDB, the GNU debugger.
|
||
Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
/* ??? Support for calling functions from gdb in sparc64 is unfinished. */
|
||
|
||
#include "defs.h"
|
||
#include "arch-utils.h"
|
||
#include "frame.h"
|
||
#include "inferior.h"
|
||
#include "obstack.h"
|
||
#include "target.h"
|
||
#include "value.h"
|
||
#include "bfd.h"
|
||
#include "gdb_string.h"
|
||
|
||
#ifdef USE_PROC_FS
|
||
#include <sys/procfs.h>
|
||
#endif
|
||
|
||
#include "gdbcore.h"
|
||
|
||
#include "symfile.h" /* for 'entry_point_address' */
|
||
|
||
/* Prototypes for supply_gregset etc. */
|
||
#include "gregset.h"
|
||
|
||
/*
|
||
* Some local macros that have multi-arch and non-multi-arch versions:
|
||
*/
|
||
|
||
#if (GDB_MULTI_ARCH > 0)
|
||
|
||
/* Does the target have Floating Point registers? */
|
||
#define SPARC_HAS_FPU (gdbarch_tdep (current_gdbarch)->has_fpu)
|
||
/* Number of bytes devoted to Floating Point registers: */
|
||
#define FP_REGISTER_BYTES (gdbarch_tdep (current_gdbarch)->fp_register_bytes)
|
||
/* Highest numbered Floating Point register. */
|
||
#define FP_MAX_REGNUM (gdbarch_tdep (current_gdbarch)->fp_max_regnum)
|
||
/* Size of a general (integer) register: */
|
||
#define SPARC_INTREG_SIZE (gdbarch_tdep (current_gdbarch)->intreg_size)
|
||
/* Offset within the call dummy stack of the saved registers. */
|
||
#define DUMMY_REG_SAVE_OFFSET (gdbarch_tdep (current_gdbarch)->reg_save_offset)
|
||
|
||
#else /* non-multi-arch */
|
||
|
||
|
||
/* Does the target have Floating Point registers? */
|
||
#if defined(TARGET_SPARCLET) || defined(TARGET_SPARCLITE)
|
||
#define SPARC_HAS_FPU 0
|
||
#else
|
||
#define SPARC_HAS_FPU 1
|
||
#endif
|
||
|
||
/* Number of bytes devoted to Floating Point registers: */
|
||
#if (GDB_TARGET_IS_SPARC64)
|
||
#define FP_REGISTER_BYTES (64 * 4)
|
||
#else
|
||
#if (SPARC_HAS_FPU)
|
||
#define FP_REGISTER_BYTES (32 * 4)
|
||
#else
|
||
#define FP_REGISTER_BYTES 0
|
||
#endif
|
||
#endif
|
||
|
||
/* Highest numbered Floating Point register. */
|
||
#if (GDB_TARGET_IS_SPARC64)
|
||
#define FP_MAX_REGNUM (FP0_REGNUM + 48)
|
||
#else
|
||
#define FP_MAX_REGNUM (FP0_REGNUM + 32)
|
||
#endif
|
||
|
||
/* Size of a general (integer) register: */
|
||
#define SPARC_INTREG_SIZE (REGISTER_RAW_SIZE (G0_REGNUM))
|
||
|
||
/* Offset within the call dummy stack of the saved registers. */
|
||
#if (GDB_TARGET_IS_SPARC64)
|
||
#define DUMMY_REG_SAVE_OFFSET (128 + 16)
|
||
#else
|
||
#define DUMMY_REG_SAVE_OFFSET 0x60
|
||
#endif
|
||
|
||
#endif /* GDB_MULTI_ARCH */
|
||
|
||
struct gdbarch_tdep
|
||
{
|
||
int has_fpu;
|
||
int fp_register_bytes;
|
||
int y_regnum;
|
||
int fp_max_regnum;
|
||
int intreg_size;
|
||
int reg_save_offset;
|
||
int call_dummy_call_offset;
|
||
int print_insn_mach;
|
||
};
|
||
|
||
/* Now make GDB_TARGET_IS_SPARC64 a runtime test. */
|
||
/* FIXME MVS: or try testing bfd_arch_info.arch and bfd_arch_info.mach ...
|
||
* define GDB_TARGET_IS_SPARC64 \
|
||
* (TARGET_ARCHITECTURE->arch == bfd_arch_sparc && \
|
||
* (TARGET_ARCHITECTURE->mach == bfd_mach_sparc_v9 || \
|
||
* TARGET_ARCHITECTURE->mach == bfd_mach_sparc_v9a))
|
||
*/
|
||
|
||
/* From infrun.c */
|
||
extern int stop_after_trap;
|
||
|
||
/* We don't store all registers immediately when requested, since they
|
||
get sent over in large chunks anyway. Instead, we accumulate most
|
||
of the changes and send them over once. "deferred_stores" keeps
|
||
track of which sets of registers we have locally-changed copies of,
|
||
so we only need send the groups that have changed. */
|
||
|
||
int deferred_stores = 0; /* Accumulated stores we want to do eventually. */
|
||
|
||
|
||
/* Some machines, such as Fujitsu SPARClite 86x, have a bi-endian mode
|
||
where instructions are big-endian and data are little-endian.
|
||
This flag is set when we detect that the target is of this type. */
|
||
|
||
int bi_endian = 0;
|
||
|
||
|
||
/* Fetch a single instruction. Even on bi-endian machines
|
||
such as sparc86x, instructions are always big-endian. */
|
||
|
||
static unsigned long
|
||
fetch_instruction (pc)
|
||
CORE_ADDR pc;
|
||
{
|
||
unsigned long retval;
|
||
int i;
|
||
unsigned char buf[4];
|
||
|
||
read_memory (pc, buf, sizeof (buf));
|
||
|
||
/* Start at the most significant end of the integer, and work towards
|
||
the least significant. */
|
||
retval = 0;
|
||
for (i = 0; i < sizeof (buf); ++i)
|
||
retval = (retval << 8) | buf[i];
|
||
return retval;
|
||
}
|
||
|
||
|
||
/* Branches with prediction are treated like their non-predicting cousins. */
|
||
/* FIXME: What about floating point branches? */
|
||
|
||
/* Macros to extract fields from sparc instructions. */
|
||
#define X_OP(i) (((i) >> 30) & 0x3)
|
||
#define X_RD(i) (((i) >> 25) & 0x1f)
|
||
#define X_A(i) (((i) >> 29) & 1)
|
||
#define X_COND(i) (((i) >> 25) & 0xf)
|
||
#define X_OP2(i) (((i) >> 22) & 0x7)
|
||
#define X_IMM22(i) ((i) & 0x3fffff)
|
||
#define X_OP3(i) (((i) >> 19) & 0x3f)
|
||
#define X_RS1(i) (((i) >> 14) & 0x1f)
|
||
#define X_I(i) (((i) >> 13) & 1)
|
||
#define X_IMM13(i) ((i) & 0x1fff)
|
||
/* Sign extension macros. */
|
||
#define X_SIMM13(i) ((X_IMM13 (i) ^ 0x1000) - 0x1000)
|
||
#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
|
||
#define X_CC(i) (((i) >> 20) & 3)
|
||
#define X_P(i) (((i) >> 19) & 1)
|
||
#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
|
||
#define X_RCOND(i) (((i) >> 25) & 7)
|
||
#define X_DISP16(i) ((((((i) >> 6) && 0xc000) | ((i) & 0x3fff)) ^ 0x8000) - 0x8000)
|
||
#define X_FCN(i) (((i) >> 25) & 31)
|
||
|
||
typedef enum
|
||
{
|
||
Error, not_branch, bicc, bicca, ba, baa, ticc, ta, done_retry
|
||
} branch_type;
|
||
|
||
/* Simulate single-step ptrace call for sun4. Code written by Gary
|
||
Beihl (beihl@mcc.com). */
|
||
|
||
/* npc4 and next_pc describe the situation at the time that the
|
||
step-breakpoint was set, not necessary the current value of NPC_REGNUM. */
|
||
static CORE_ADDR next_pc, npc4, target;
|
||
static int brknpc4, brktrg;
|
||
typedef char binsn_quantum[BREAKPOINT_MAX];
|
||
static binsn_quantum break_mem[3];
|
||
|
||
static branch_type isbranch (long, CORE_ADDR, CORE_ADDR *);
|
||
|
||
/* single_step() is called just before we want to resume the inferior,
|
||
if we want to single-step it but there is no hardware or kernel single-step
|
||
support (as on all SPARCs). We find all the possible targets of the
|
||
coming instruction and breakpoint them.
|
||
|
||
single_step is also called just after the inferior stops. If we had
|
||
set up a simulated single-step, we undo our damage. */
|
||
|
||
void
|
||
sparc_software_single_step (ignore, insert_breakpoints_p)
|
||
enum target_signal ignore; /* pid, but we don't need it */
|
||
int insert_breakpoints_p;
|
||
{
|
||
branch_type br;
|
||
CORE_ADDR pc;
|
||
long pc_instruction;
|
||
|
||
if (insert_breakpoints_p)
|
||
{
|
||
/* Always set breakpoint for NPC. */
|
||
next_pc = read_register (NPC_REGNUM);
|
||
npc4 = next_pc + 4; /* branch not taken */
|
||
|
||
target_insert_breakpoint (next_pc, break_mem[0]);
|
||
/* printf_unfiltered ("set break at %x\n",next_pc); */
|
||
|
||
pc = read_register (PC_REGNUM);
|
||
pc_instruction = fetch_instruction (pc);
|
||
br = isbranch (pc_instruction, pc, &target);
|
||
brknpc4 = brktrg = 0;
|
||
|
||
if (br == bicca)
|
||
{
|
||
/* Conditional annulled branch will either end up at
|
||
npc (if taken) or at npc+4 (if not taken).
|
||
Trap npc+4. */
|
||
brknpc4 = 1;
|
||
target_insert_breakpoint (npc4, break_mem[1]);
|
||
}
|
||
else if (br == baa && target != next_pc)
|
||
{
|
||
/* Unconditional annulled branch will always end up at
|
||
the target. */
|
||
brktrg = 1;
|
||
target_insert_breakpoint (target, break_mem[2]);
|
||
}
|
||
else if (GDB_TARGET_IS_SPARC64 && br == done_retry)
|
||
{
|
||
brktrg = 1;
|
||
target_insert_breakpoint (target, break_mem[2]);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Remove breakpoints */
|
||
target_remove_breakpoint (next_pc, break_mem[0]);
|
||
|
||
if (brknpc4)
|
||
target_remove_breakpoint (npc4, break_mem[1]);
|
||
|
||
if (brktrg)
|
||
target_remove_breakpoint (target, break_mem[2]);
|
||
}
|
||
}
|
||
|
||
struct frame_extra_info
|
||
{
|
||
CORE_ADDR bottom;
|
||
int in_prologue;
|
||
int flat;
|
||
/* Following fields only relevant for flat frames. */
|
||
CORE_ADDR pc_addr;
|
||
CORE_ADDR fp_addr;
|
||
/* Add this to ->frame to get the value of the stack pointer at the
|
||
time of the register saves. */
|
||
int sp_offset;
|
||
};
|
||
|
||
/* Call this for each newly created frame. For SPARC, we need to
|
||
calculate the bottom of the frame, and do some extra work if the
|
||
prologue has been generated via the -mflat option to GCC. In
|
||
particular, we need to know where the previous fp and the pc have
|
||
been stashed, since their exact position within the frame may vary. */
|
||
|
||
void
|
||
sparc_init_extra_frame_info (fromleaf, fi)
|
||
int fromleaf;
|
||
struct frame_info *fi;
|
||
{
|
||
char *name;
|
||
CORE_ADDR prologue_start, prologue_end;
|
||
int insn;
|
||
|
||
fi->extra_info = (struct frame_extra_info *)
|
||
frame_obstack_alloc (sizeof (struct frame_extra_info));
|
||
frame_saved_regs_zalloc (fi);
|
||
|
||
fi->extra_info->bottom =
|
||
(fi->next ?
|
||
(fi->frame == fi->next->frame ? fi->next->extra_info->bottom :
|
||
fi->next->frame) : read_sp ());
|
||
|
||
/* If fi->next is NULL, then we already set ->frame by passing read_fp()
|
||
to create_new_frame. */
|
||
if (fi->next)
|
||
{
|
||
char *buf;
|
||
|
||
buf = alloca (MAX_REGISTER_RAW_SIZE);
|
||
|
||
/* Compute ->frame as if not flat. If it is flat, we'll change
|
||
it later. */
|
||
if (fi->next->next != NULL
|
||
&& (fi->next->next->signal_handler_caller
|
||
|| frame_in_dummy (fi->next->next))
|
||
&& frameless_look_for_prologue (fi->next))
|
||
{
|
||
/* A frameless function interrupted by a signal did not change
|
||
the frame pointer, fix up frame pointer accordingly. */
|
||
fi->frame = FRAME_FP (fi->next);
|
||
fi->extra_info->bottom = fi->next->extra_info->bottom;
|
||
}
|
||
else
|
||
{
|
||
/* Should we adjust for stack bias here? */
|
||
get_saved_register (buf, 0, 0, fi, FP_REGNUM, 0);
|
||
fi->frame = extract_address (buf, REGISTER_RAW_SIZE (FP_REGNUM));
|
||
|
||
if (GDB_TARGET_IS_SPARC64 && (fi->frame & 1))
|
||
fi->frame += 2047;
|
||
}
|
||
}
|
||
|
||
/* Decide whether this is a function with a ``flat register window''
|
||
frame. For such functions, the frame pointer is actually in %i7. */
|
||
fi->extra_info->flat = 0;
|
||
fi->extra_info->in_prologue = 0;
|
||
if (find_pc_partial_function (fi->pc, &name, &prologue_start, &prologue_end))
|
||
{
|
||
/* See if the function starts with an add (which will be of a
|
||
negative number if a flat frame) to the sp. FIXME: Does not
|
||
handle large frames which will need more than one instruction
|
||
to adjust the sp. */
|
||
insn = fetch_instruction (prologue_start, 4);
|
||
if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0
|
||
&& X_I (insn) && X_SIMM13 (insn) < 0)
|
||
{
|
||
int offset = X_SIMM13 (insn);
|
||
|
||
/* Then look for a save of %i7 into the frame. */
|
||
insn = fetch_instruction (prologue_start + 4);
|
||
if (X_OP (insn) == 3
|
||
&& X_RD (insn) == 31
|
||
&& X_OP3 (insn) == 4
|
||
&& X_RS1 (insn) == 14)
|
||
{
|
||
char *buf;
|
||
|
||
buf = alloca (MAX_REGISTER_RAW_SIZE);
|
||
|
||
/* We definitely have a flat frame now. */
|
||
fi->extra_info->flat = 1;
|
||
|
||
fi->extra_info->sp_offset = offset;
|
||
|
||
/* Overwrite the frame's address with the value in %i7. */
|
||
get_saved_register (buf, 0, 0, fi, I7_REGNUM, 0);
|
||
fi->frame = extract_address (buf, REGISTER_RAW_SIZE (I7_REGNUM));
|
||
|
||
if (GDB_TARGET_IS_SPARC64 && (fi->frame & 1))
|
||
fi->frame += 2047;
|
||
|
||
/* Record where the fp got saved. */
|
||
fi->extra_info->fp_addr =
|
||
fi->frame + fi->extra_info->sp_offset + X_SIMM13 (insn);
|
||
|
||
/* Also try to collect where the pc got saved to. */
|
||
fi->extra_info->pc_addr = 0;
|
||
insn = fetch_instruction (prologue_start + 12);
|
||
if (X_OP (insn) == 3
|
||
&& X_RD (insn) == 15
|
||
&& X_OP3 (insn) == 4
|
||
&& X_RS1 (insn) == 14)
|
||
fi->extra_info->pc_addr =
|
||
fi->frame + fi->extra_info->sp_offset + X_SIMM13 (insn);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Check if the PC is in the function prologue before a SAVE
|
||
instruction has been executed yet. If so, set the frame
|
||
to the current value of the stack pointer and set
|
||
the in_prologue flag. */
|
||
CORE_ADDR addr;
|
||
struct symtab_and_line sal;
|
||
|
||
sal = find_pc_line (prologue_start, 0);
|
||
if (sal.line == 0) /* no line info, use PC */
|
||
prologue_end = fi->pc;
|
||
else if (sal.end < prologue_end)
|
||
prologue_end = sal.end;
|
||
if (fi->pc < prologue_end)
|
||
{
|
||
for (addr = prologue_start; addr < fi->pc; addr += 4)
|
||
{
|
||
insn = read_memory_integer (addr, 4);
|
||
if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
|
||
break; /* SAVE seen, stop searching */
|
||
}
|
||
if (addr >= fi->pc)
|
||
{
|
||
fi->extra_info->in_prologue = 1;
|
||
fi->frame = read_register (SP_REGNUM);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if (fi->next && fi->frame == 0)
|
||
{
|
||
/* Kludge to cause init_prev_frame_info to destroy the new frame. */
|
||
fi->frame = fi->next->frame;
|
||
fi->pc = fi->next->pc;
|
||
}
|
||
}
|
||
|
||
CORE_ADDR
|
||
sparc_frame_chain (frame)
|
||
struct frame_info *frame;
|
||
{
|
||
/* Value that will cause FRAME_CHAIN_VALID to not worry about the chain
|
||
value. If it realy is zero, we detect it later in
|
||
sparc_init_prev_frame. */
|
||
return (CORE_ADDR) 1;
|
||
}
|
||
|
||
CORE_ADDR
|
||
sparc_extract_struct_value_address (regbuf)
|
||
char *regbuf;
|
||
{
|
||
return extract_address (regbuf + REGISTER_BYTE (O0_REGNUM),
|
||
REGISTER_RAW_SIZE (O0_REGNUM));
|
||
}
|
||
|
||
/* Find the pc saved in frame FRAME. */
|
||
|
||
CORE_ADDR
|
||
sparc_frame_saved_pc (frame)
|
||
struct frame_info *frame;
|
||
{
|
||
char *buf;
|
||
CORE_ADDR addr;
|
||
|
||
buf = alloca (MAX_REGISTER_RAW_SIZE);
|
||
if (frame->signal_handler_caller)
|
||
{
|
||
/* This is the signal trampoline frame.
|
||
Get the saved PC from the sigcontext structure. */
|
||
|
||
#ifndef SIGCONTEXT_PC_OFFSET
|
||
#define SIGCONTEXT_PC_OFFSET 12
|
||
#endif
|
||
|
||
CORE_ADDR sigcontext_addr;
|
||
char *scbuf;
|
||
int saved_pc_offset = SIGCONTEXT_PC_OFFSET;
|
||
char *name = NULL;
|
||
|
||
scbuf = alloca (TARGET_PTR_BIT / HOST_CHAR_BIT);
|
||
|
||
/* Solaris2 ucbsigvechandler passes a pointer to a sigcontext
|
||
as the third parameter. The offset to the saved pc is 12. */
|
||
find_pc_partial_function (frame->pc, &name,
|
||
(CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
|
||
if (name && STREQ (name, "ucbsigvechandler"))
|
||
saved_pc_offset = 12;
|
||
|
||
/* The sigcontext address is contained in register O2. */
|
||
get_saved_register (buf, (int *) NULL, (CORE_ADDR *) NULL,
|
||
frame, O0_REGNUM + 2, (enum lval_type *) NULL);
|
||
sigcontext_addr = extract_address (buf, REGISTER_RAW_SIZE (O0_REGNUM + 2));
|
||
|
||
/* Don't cause a memory_error when accessing sigcontext in case the
|
||
stack layout has changed or the stack is corrupt. */
|
||
target_read_memory (sigcontext_addr + saved_pc_offset,
|
||
scbuf, sizeof (scbuf));
|
||
return extract_address (scbuf, sizeof (scbuf));
|
||
}
|
||
else if (frame->extra_info->in_prologue ||
|
||
(frame->next != NULL &&
|
||
(frame->next->signal_handler_caller ||
|
||
frame_in_dummy (frame->next)) &&
|
||
frameless_look_for_prologue (frame)))
|
||
{
|
||
/* A frameless function interrupted by a signal did not save
|
||
the PC, it is still in %o7. */
|
||
get_saved_register (buf, (int *) NULL, (CORE_ADDR *) NULL,
|
||
frame, O7_REGNUM, (enum lval_type *) NULL);
|
||
return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE));
|
||
}
|
||
if (frame->extra_info->flat)
|
||
addr = frame->extra_info->pc_addr;
|
||
else
|
||
addr = frame->extra_info->bottom + FRAME_SAVED_I0 +
|
||
SPARC_INTREG_SIZE * (I7_REGNUM - I0_REGNUM);
|
||
|
||
if (addr == 0)
|
||
/* A flat frame leaf function might not save the PC anywhere,
|
||
just leave it in %o7. */
|
||
return PC_ADJUST (read_register (O7_REGNUM));
|
||
|
||
read_memory (addr, buf, SPARC_INTREG_SIZE);
|
||
return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE));
|
||
}
|
||
|
||
/* Since an individual frame in the frame cache is defined by two
|
||
arguments (a frame pointer and a stack pointer), we need two
|
||
arguments to get info for an arbitrary stack frame. This routine
|
||
takes two arguments and makes the cached frames look as if these
|
||
two arguments defined a frame on the cache. This allows the rest
|
||
of info frame to extract the important arguments without
|
||
difficulty. */
|
||
|
||
struct frame_info *
|
||
setup_arbitrary_frame (argc, argv)
|
||
int argc;
|
||
CORE_ADDR *argv;
|
||
{
|
||
struct frame_info *frame;
|
||
|
||
if (argc != 2)
|
||
error ("Sparc frame specifications require two arguments: fp and sp");
|
||
|
||
frame = create_new_frame (argv[0], 0);
|
||
|
||
if (!frame)
|
||
internal_error ("create_new_frame returned invalid frame");
|
||
|
||
frame->extra_info->bottom = argv[1];
|
||
frame->pc = FRAME_SAVED_PC (frame);
|
||
return frame;
|
||
}
|
||
|
||
/* Given a pc value, skip it forward past the function prologue by
|
||
disassembling instructions that appear to be a prologue.
|
||
|
||
If FRAMELESS_P is set, we are only testing to see if the function
|
||
is frameless. This allows a quicker answer.
|
||
|
||
This routine should be more specific in its actions; making sure
|
||
that it uses the same register in the initial prologue section. */
|
||
|
||
static CORE_ADDR examine_prologue (CORE_ADDR, int, struct frame_info *,
|
||
CORE_ADDR *);
|
||
|
||
static CORE_ADDR
|
||
examine_prologue (start_pc, frameless_p, fi, saved_regs)
|
||
CORE_ADDR start_pc;
|
||
int frameless_p;
|
||
struct frame_info *fi;
|
||
CORE_ADDR *saved_regs;
|
||
{
|
||
int insn;
|
||
int dest = -1;
|
||
CORE_ADDR pc = start_pc;
|
||
int is_flat = 0;
|
||
|
||
insn = fetch_instruction (pc);
|
||
|
||
/* Recognize the `sethi' insn and record its destination. */
|
||
if (X_OP (insn) == 0 && X_OP2 (insn) == 4)
|
||
{
|
||
dest = X_RD (insn);
|
||
pc += 4;
|
||
insn = fetch_instruction (pc);
|
||
}
|
||
|
||
/* Recognize an add immediate value to register to either %g1 or
|
||
the destination register recorded above. Actually, this might
|
||
well recognize several different arithmetic operations.
|
||
It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1"
|
||
followed by "save %sp, %g1, %sp" is a valid prologue (Not that
|
||
I imagine any compiler really does that, however). */
|
||
if (X_OP (insn) == 2
|
||
&& X_I (insn)
|
||
&& (X_RD (insn) == 1 || X_RD (insn) == dest))
|
||
{
|
||
pc += 4;
|
||
insn = fetch_instruction (pc);
|
||
}
|
||
|
||
/* Recognize any SAVE insn. */
|
||
if (X_OP (insn) == 2 && X_OP3 (insn) == 60)
|
||
{
|
||
pc += 4;
|
||
if (frameless_p) /* If the save is all we care about, */
|
||
return pc; /* return before doing more work */
|
||
insn = fetch_instruction (pc);
|
||
}
|
||
/* Recognize add to %sp. */
|
||
else if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0)
|
||
{
|
||
pc += 4;
|
||
if (frameless_p) /* If the add is all we care about, */
|
||
return pc; /* return before doing more work */
|
||
is_flat = 1;
|
||
insn = fetch_instruction (pc);
|
||
/* Recognize store of frame pointer (i7). */
|
||
if (X_OP (insn) == 3
|
||
&& X_RD (insn) == 31
|
||
&& X_OP3 (insn) == 4
|
||
&& X_RS1 (insn) == 14)
|
||
{
|
||
pc += 4;
|
||
insn = fetch_instruction (pc);
|
||
|
||
/* Recognize sub %sp, <anything>, %i7. */
|
||
if (X_OP (insn) == 2
|
||
&& X_OP3 (insn) == 4
|
||
&& X_RS1 (insn) == 14
|
||
&& X_RD (insn) == 31)
|
||
{
|
||
pc += 4;
|
||
insn = fetch_instruction (pc);
|
||
}
|
||
else
|
||
return pc;
|
||
}
|
||
else
|
||
return pc;
|
||
}
|
||
else
|
||
/* Without a save or add instruction, it's not a prologue. */
|
||
return start_pc;
|
||
|
||
while (1)
|
||
{
|
||
/* Recognize stores into the frame from the input registers.
|
||
This recognizes all non alternate stores of an input register,
|
||
into a location offset from the frame pointer between
|
||
+68 and +92. */
|
||
|
||
/* The above will fail for arguments that are promoted
|
||
(eg. shorts to ints or floats to doubles), because the compiler
|
||
will pass them in positive-offset frame space, but the prologue
|
||
will save them (after conversion) in negative frame space at an
|
||
unpredictable offset. Therefore I am going to remove the
|
||
restriction on the target-address of the save, on the theory
|
||
that any unbroken sequence of saves from input registers must
|
||
be part of the prologue. In un-optimized code (at least), I'm
|
||
fairly sure that the compiler would emit SOME other instruction
|
||
(eg. a move or add) before emitting another save that is actually
|
||
a part of the function body.
|
||
|
||
Besides, the reserved stack space is different for SPARC64 anyway.
|
||
|
||
MVS 4/23/2000 */
|
||
|
||
if (X_OP (insn) == 3
|
||
&& (X_OP3 (insn) & 0x3c) == 4 /* Store, non-alternate. */
|
||
&& (X_RD (insn) & 0x18) == 0x18 /* Input register. */
|
||
&& X_I (insn) /* Immediate mode. */
|
||
&& X_RS1 (insn) == 30) /* Off of frame pointer. */
|
||
; /* empty statement -- fall thru to end of loop */
|
||
else if (GDB_TARGET_IS_SPARC64
|
||
&& X_OP (insn) == 3
|
||
&& (X_OP3 (insn) & 0x3c) == 12 /* store, extended (64-bit) */
|
||
&& (X_RD (insn) & 0x18) == 0x18 /* input register */
|
||
&& X_I (insn) /* immediate mode */
|
||
&& X_RS1 (insn) == 30) /* off of frame pointer */
|
||
; /* empty statement -- fall thru to end of loop */
|
||
else if (X_OP (insn) == 3
|
||
&& (X_OP3 (insn) & 0x3c) == 36 /* store, floating-point */
|
||
&& X_I (insn) /* immediate mode */
|
||
&& X_RS1 (insn) == 30) /* off of frame pointer */
|
||
; /* empty statement -- fall thru to end of loop */
|
||
else if (is_flat
|
||
&& X_OP (insn) == 3
|
||
&& X_OP3 (insn) == 4 /* store? */
|
||
&& X_RS1 (insn) == 14) /* off of frame pointer */
|
||
{
|
||
if (saved_regs && X_I (insn))
|
||
saved_regs[X_RD (insn)] =
|
||
fi->frame + fi->extra_info->sp_offset + X_SIMM13 (insn);
|
||
}
|
||
else
|
||
break;
|
||
pc += 4;
|
||
insn = fetch_instruction (pc);
|
||
}
|
||
|
||
return pc;
|
||
}
|
||
|
||
CORE_ADDR
|
||
sparc_skip_prologue (start_pc, frameless_p)
|
||
CORE_ADDR start_pc;
|
||
int frameless_p;
|
||
{
|
||
return examine_prologue (start_pc, frameless_p, NULL, NULL);
|
||
}
|
||
|
||
/* Check instruction at ADDR to see if it is a branch.
|
||
All non-annulled instructions will go to NPC or will trap.
|
||
Set *TARGET if we find a candidate branch; set to zero if not.
|
||
|
||
This isn't static as it's used by remote-sa.sparc.c. */
|
||
|
||
static branch_type
|
||
isbranch (instruction, addr, target)
|
||
long instruction;
|
||
CORE_ADDR addr, *target;
|
||
{
|
||
branch_type val = not_branch;
|
||
long int offset = 0; /* Must be signed for sign-extend. */
|
||
|
||
*target = 0;
|
||
|
||
if (X_OP (instruction) == 0
|
||
&& (X_OP2 (instruction) == 2
|
||
|| X_OP2 (instruction) == 6
|
||
|| X_OP2 (instruction) == 1
|
||
|| X_OP2 (instruction) == 3
|
||
|| X_OP2 (instruction) == 5
|
||
|| (GDB_TARGET_IS_SPARC64 && X_OP2 (instruction) == 7)))
|
||
{
|
||
if (X_COND (instruction) == 8)
|
||
val = X_A (instruction) ? baa : ba;
|
||
else
|
||
val = X_A (instruction) ? bicca : bicc;
|
||
switch (X_OP2 (instruction))
|
||
{
|
||
case 7:
|
||
if (!GDB_TARGET_IS_SPARC64)
|
||
break;
|
||
/* else fall thru */
|
||
case 2:
|
||
case 6:
|
||
offset = 4 * X_DISP22 (instruction);
|
||
break;
|
||
case 1:
|
||
case 5:
|
||
offset = 4 * X_DISP19 (instruction);
|
||
break;
|
||
case 3:
|
||
offset = 4 * X_DISP16 (instruction);
|
||
break;
|
||
}
|
||
*target = addr + offset;
|
||
}
|
||
else if (GDB_TARGET_IS_SPARC64
|
||
&& X_OP (instruction) == 2
|
||
&& X_OP3 (instruction) == 62)
|
||
{
|
||
if (X_FCN (instruction) == 0)
|
||
{
|
||
/* done */
|
||
*target = read_register (TNPC_REGNUM);
|
||
val = done_retry;
|
||
}
|
||
else if (X_FCN (instruction) == 1)
|
||
{
|
||
/* retry */
|
||
*target = read_register (TPC_REGNUM);
|
||
val = done_retry;
|
||
}
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Find register number REGNUM relative to FRAME and put its
|
||
(raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
|
||
was optimized out (and thus can't be fetched). If the variable
|
||
was fetched from memory, set *ADDRP to where it was fetched from,
|
||
otherwise it was fetched from a register.
|
||
|
||
The argument RAW_BUFFER must point to aligned memory. */
|
||
|
||
void
|
||
sparc_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
|
||
char *raw_buffer;
|
||
int *optimized;
|
||
CORE_ADDR *addrp;
|
||
struct frame_info *frame;
|
||
int regnum;
|
||
enum lval_type *lval;
|
||
{
|
||
struct frame_info *frame1;
|
||
CORE_ADDR addr;
|
||
|
||
if (!target_has_registers)
|
||
error ("No registers.");
|
||
|
||
if (optimized)
|
||
*optimized = 0;
|
||
|
||
addr = 0;
|
||
|
||
/* FIXME This code extracted from infcmd.c; should put elsewhere! */
|
||
if (frame == NULL)
|
||
{
|
||
/* error ("No selected frame."); */
|
||
if (!target_has_registers)
|
||
error ("The program has no registers now.");
|
||
if (selected_frame == NULL)
|
||
error ("No selected frame.");
|
||
/* Try to use selected frame */
|
||
frame = get_prev_frame (selected_frame);
|
||
if (frame == 0)
|
||
error ("Cmd not meaningful in the outermost frame.");
|
||
}
|
||
|
||
|
||
frame1 = frame->next;
|
||
|
||
/* Get saved PC from the frame info if not in innermost frame. */
|
||
if (regnum == PC_REGNUM && frame1 != NULL)
|
||
{
|
||
if (lval != NULL)
|
||
*lval = not_lval;
|
||
if (raw_buffer != NULL)
|
||
{
|
||
/* Put it back in target format. */
|
||
store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc);
|
||
}
|
||
if (addrp != NULL)
|
||
*addrp = 0;
|
||
return;
|
||
}
|
||
|
||
while (frame1 != NULL)
|
||
{
|
||
/* FIXME MVS: wrong test for dummy frame at entry. */
|
||
|
||
if (frame1->pc >= (frame1->extra_info->bottom ?
|
||
frame1->extra_info->bottom : read_sp ())
|
||
&& frame1->pc <= FRAME_FP (frame1))
|
||
{
|
||
/* Dummy frame. All but the window regs are in there somewhere.
|
||
The window registers are saved on the stack, just like in a
|
||
normal frame. */
|
||
if (regnum >= G1_REGNUM && regnum < G1_REGNUM + 7)
|
||
addr = frame1->frame + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
|
||
- (FP_REGISTER_BYTES + 8 * SPARC_INTREG_SIZE);
|
||
else if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
|
||
addr = (frame1->prev->extra_info->bottom
|
||
+ (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
|
||
+ FRAME_SAVED_I0);
|
||
else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
|
||
addr = (frame1->prev->extra_info->bottom
|
||
+ (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
|
||
+ FRAME_SAVED_L0);
|
||
else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
|
||
addr = frame1->frame + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
|
||
- (FP_REGISTER_BYTES + 16 * SPARC_INTREG_SIZE);
|
||
else if (SPARC_HAS_FPU &&
|
||
regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32)
|
||
addr = frame1->frame + (regnum - FP0_REGNUM) * 4
|
||
- (FP_REGISTER_BYTES);
|
||
else if (GDB_TARGET_IS_SPARC64 && SPARC_HAS_FPU &&
|
||
regnum >= FP0_REGNUM + 32 && regnum < FP_MAX_REGNUM)
|
||
addr = frame1->frame + 32 * 4 + (regnum - FP0_REGNUM - 32) * 8
|
||
- (FP_REGISTER_BYTES);
|
||
else if (regnum >= Y_REGNUM && regnum < NUM_REGS)
|
||
addr = frame1->frame + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
|
||
- (FP_REGISTER_BYTES + 24 * SPARC_INTREG_SIZE);
|
||
}
|
||
else if (frame1->extra_info->flat)
|
||
{
|
||
|
||
if (regnum == RP_REGNUM)
|
||
addr = frame1->extra_info->pc_addr;
|
||
else if (regnum == I7_REGNUM)
|
||
addr = frame1->extra_info->fp_addr;
|
||
else
|
||
{
|
||
CORE_ADDR func_start;
|
||
CORE_ADDR *regs;
|
||
|
||
regs = alloca (NUM_REGS * sizeof (CORE_ADDR));
|
||
memset (regs, 0, NUM_REGS * sizeof (CORE_ADDR));
|
||
|
||
find_pc_partial_function (frame1->pc, NULL, &func_start, NULL);
|
||
examine_prologue (func_start, 0, frame1, regs);
|
||
addr = regs[regnum];
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Normal frame. Local and In registers are saved on stack. */
|
||
if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
|
||
addr = (frame1->prev->extra_info->bottom
|
||
+ (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
|
||
+ FRAME_SAVED_I0);
|
||
else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
|
||
addr = (frame1->prev->extra_info->bottom
|
||
+ (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
|
||
+ FRAME_SAVED_L0);
|
||
else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
|
||
{
|
||
/* Outs become ins. */
|
||
get_saved_register (raw_buffer, optimized, addrp, frame1,
|
||
(regnum - O0_REGNUM + I0_REGNUM), lval);
|
||
return;
|
||
}
|
||
}
|
||
if (addr != 0)
|
||
break;
|
||
frame1 = frame1->next;
|
||
}
|
||
if (addr != 0)
|
||
{
|
||
if (lval != NULL)
|
||
*lval = lval_memory;
|
||
if (regnum == SP_REGNUM)
|
||
{
|
||
if (raw_buffer != NULL)
|
||
{
|
||
/* Put it back in target format. */
|
||
store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr);
|
||
}
|
||
if (addrp != NULL)
|
||
*addrp = 0;
|
||
return;
|
||
}
|
||
if (raw_buffer != NULL)
|
||
read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
|
||
}
|
||
else
|
||
{
|
||
if (lval != NULL)
|
||
*lval = lval_register;
|
||
addr = REGISTER_BYTE (regnum);
|
||
if (raw_buffer != NULL)
|
||
read_register_gen (regnum, raw_buffer);
|
||
}
|
||
if (addrp != NULL)
|
||
*addrp = addr;
|
||
}
|
||
|
||
/* Push an empty stack frame, and record in it the current PC, regs, etc.
|
||
|
||
We save the non-windowed registers and the ins. The locals and outs
|
||
are new; they don't need to be saved. The i's and l's of
|
||
the last frame were already saved on the stack. */
|
||
|
||
/* Definitely see tm-sparc.h for more doc of the frame format here. */
|
||
|
||
/* See tm-sparc.h for how this is calculated. */
|
||
|
||
#define DUMMY_STACK_REG_BUF_SIZE \
|
||
(((8+8+8) * SPARC_INTREG_SIZE) + FP_REGISTER_BYTES)
|
||
#define DUMMY_STACK_SIZE \
|
||
(DUMMY_STACK_REG_BUF_SIZE + DUMMY_REG_SAVE_OFFSET)
|
||
|
||
void
|
||
sparc_push_dummy_frame ()
|
||
{
|
||
CORE_ADDR sp, old_sp;
|
||
char *register_temp;
|
||
|
||
register_temp = alloca (DUMMY_STACK_SIZE);
|
||
|
||
old_sp = sp = read_sp ();
|
||
|
||
if (GDB_TARGET_IS_SPARC64)
|
||
{
|
||
/* PC, NPC, CCR, FSR, FPRS, Y, ASI */
|
||
read_register_bytes (REGISTER_BYTE (PC_REGNUM), ®ister_temp[0],
|
||
REGISTER_RAW_SIZE (PC_REGNUM) * 7);
|
||
read_register_bytes (REGISTER_BYTE (PSTATE_REGNUM),
|
||
®ister_temp[7 * SPARC_INTREG_SIZE],
|
||
REGISTER_RAW_SIZE (PSTATE_REGNUM));
|
||
/* FIXME: not sure what needs to be saved here. */
|
||
}
|
||
else
|
||
{
|
||
/* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */
|
||
read_register_bytes (REGISTER_BYTE (Y_REGNUM), ®ister_temp[0],
|
||
REGISTER_RAW_SIZE (Y_REGNUM) * 8);
|
||
}
|
||
|
||
read_register_bytes (REGISTER_BYTE (O0_REGNUM),
|
||
®ister_temp[8 * SPARC_INTREG_SIZE],
|
||
SPARC_INTREG_SIZE * 8);
|
||
|
||
read_register_bytes (REGISTER_BYTE (G0_REGNUM),
|
||
®ister_temp[16 * SPARC_INTREG_SIZE],
|
||
SPARC_INTREG_SIZE * 8);
|
||
|
||
if (SPARC_HAS_FPU)
|
||
read_register_bytes (REGISTER_BYTE (FP0_REGNUM),
|
||
®ister_temp[24 * SPARC_INTREG_SIZE],
|
||
FP_REGISTER_BYTES);
|
||
|
||
sp -= DUMMY_STACK_SIZE;
|
||
|
||
write_sp (sp);
|
||
|
||
write_memory (sp + DUMMY_REG_SAVE_OFFSET, ®ister_temp[0],
|
||
DUMMY_STACK_REG_BUF_SIZE);
|
||
|
||
if (strcmp (target_shortname, "sim") != 0)
|
||
{
|
||
write_fp (old_sp);
|
||
|
||
/* Set return address register for the call dummy to the current PC. */
|
||
write_register (I7_REGNUM, read_pc () - 8);
|
||
}
|
||
else
|
||
{
|
||
/* The call dummy will write this value to FP before executing
|
||
the 'save'. This ensures that register window flushes work
|
||
correctly in the simulator. */
|
||
write_register (G0_REGNUM + 1, read_register (FP_REGNUM));
|
||
|
||
/* The call dummy will write this value to FP after executing
|
||
the 'save'. */
|
||
write_register (G0_REGNUM + 2, old_sp);
|
||
|
||
/* The call dummy will write this value to the return address (%i7) after
|
||
executing the 'save'. */
|
||
write_register (G0_REGNUM + 3, read_pc () - 8);
|
||
|
||
/* Set the FP that the call dummy will be using after the 'save'.
|
||
This makes backtraces from an inferior function call work properly. */
|
||
write_register (FP_REGNUM, old_sp);
|
||
}
|
||
}
|
||
|
||
/* sparc_frame_find_saved_regs (). This function is here only because
|
||
pop_frame uses it. Note there is an interesting corner case which
|
||
I think few ports of GDB get right--if you are popping a frame
|
||
which does not save some register that *is* saved by a more inner
|
||
frame (such a frame will never be a dummy frame because dummy
|
||
frames save all registers). Rewriting pop_frame to use
|
||
get_saved_register would solve this problem and also get rid of the
|
||
ugly duplication between sparc_frame_find_saved_regs and
|
||
get_saved_register.
|
||
|
||
Stores, into an array of CORE_ADDR,
|
||
the addresses of the saved registers of frame described by FRAME_INFO.
|
||
This includes special registers such as pc and fp saved in special
|
||
ways in the stack frame. sp is even more special:
|
||
the address we return for it IS the sp for the next frame.
|
||
|
||
Note that on register window machines, we are currently making the
|
||
assumption that window registers are being saved somewhere in the
|
||
frame in which they are being used. If they are stored in an
|
||
inferior frame, find_saved_register will break.
|
||
|
||
On the Sun 4, the only time all registers are saved is when
|
||
a dummy frame is involved. Otherwise, the only saved registers
|
||
are the LOCAL and IN registers which are saved as a result
|
||
of the "save/restore" opcodes. This condition is determined
|
||
by address rather than by value.
|
||
|
||
The "pc" is not stored in a frame on the SPARC. (What is stored
|
||
is a return address minus 8.) sparc_pop_frame knows how to
|
||
deal with that. Other routines might or might not.
|
||
|
||
See tm-sparc.h (PUSH_DUMMY_FRAME and friends) for CRITICAL information
|
||
about how this works. */
|
||
|
||
static void sparc_frame_find_saved_regs (struct frame_info *, CORE_ADDR *);
|
||
|
||
static void
|
||
sparc_frame_find_saved_regs (fi, saved_regs_addr)
|
||
struct frame_info *fi;
|
||
CORE_ADDR *saved_regs_addr;
|
||
{
|
||
register int regnum;
|
||
CORE_ADDR frame_addr = FRAME_FP (fi);
|
||
|
||
if (!fi)
|
||
internal_error ("Bad frame info struct in FRAME_FIND_SAVED_REGS");
|
||
|
||
memset (saved_regs_addr, 0, NUM_REGS * sizeof (CORE_ADDR));
|
||
|
||
if (fi->pc >= (fi->extra_info->bottom ?
|
||
fi->extra_info->bottom : read_sp ())
|
||
&& fi->pc <= FRAME_FP (fi))
|
||
{
|
||
/* Dummy frame. All but the window regs are in there somewhere. */
|
||
for (regnum = G1_REGNUM; regnum < G1_REGNUM + 7; regnum++)
|
||
saved_regs_addr[regnum] =
|
||
frame_addr + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
|
||
- DUMMY_STACK_REG_BUF_SIZE + 16 * SPARC_INTREG_SIZE;
|
||
|
||
for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++)
|
||
saved_regs_addr[regnum] =
|
||
frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
|
||
- DUMMY_STACK_REG_BUF_SIZE + 8 * SPARC_INTREG_SIZE;
|
||
|
||
if (SPARC_HAS_FPU)
|
||
for (regnum = FP0_REGNUM; regnum < FP_MAX_REGNUM; regnum++)
|
||
saved_regs_addr[regnum] = frame_addr + (regnum - FP0_REGNUM) * 4
|
||
- DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE;
|
||
|
||
if (GDB_TARGET_IS_SPARC64)
|
||
{
|
||
for (regnum = PC_REGNUM; regnum < PC_REGNUM + 7; regnum++)
|
||
{
|
||
saved_regs_addr[regnum] =
|
||
frame_addr + (regnum - PC_REGNUM) * SPARC_INTREG_SIZE
|
||
- DUMMY_STACK_REG_BUF_SIZE;
|
||
}
|
||
saved_regs_addr[PSTATE_REGNUM] =
|
||
frame_addr + 8 * SPARC_INTREG_SIZE - DUMMY_STACK_REG_BUF_SIZE;
|
||
}
|
||
else
|
||
for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++)
|
||
saved_regs_addr[regnum] =
|
||
frame_addr + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
|
||
- DUMMY_STACK_REG_BUF_SIZE;
|
||
|
||
frame_addr = fi->extra_info->bottom ?
|
||
fi->extra_info->bottom : read_sp ();
|
||
}
|
||
else if (fi->extra_info->flat)
|
||
{
|
||
CORE_ADDR func_start;
|
||
find_pc_partial_function (fi->pc, NULL, &func_start, NULL);
|
||
examine_prologue (func_start, 0, fi, saved_regs_addr);
|
||
|
||
/* Flat register window frame. */
|
||
saved_regs_addr[RP_REGNUM] = fi->extra_info->pc_addr;
|
||
saved_regs_addr[I7_REGNUM] = fi->extra_info->fp_addr;
|
||
}
|
||
else
|
||
{
|
||
/* Normal frame. Just Local and In registers */
|
||
frame_addr = fi->extra_info->bottom ?
|
||
fi->extra_info->bottom : read_sp ();
|
||
for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; regnum++)
|
||
saved_regs_addr[regnum] =
|
||
(frame_addr + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
|
||
+ FRAME_SAVED_L0);
|
||
for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++)
|
||
saved_regs_addr[regnum] =
|
||
(frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
|
||
+ FRAME_SAVED_I0);
|
||
}
|
||
if (fi->next)
|
||
{
|
||
if (fi->extra_info->flat)
|
||
{
|
||
saved_regs_addr[O7_REGNUM] = fi->extra_info->pc_addr;
|
||
}
|
||
else
|
||
{
|
||
/* Pull off either the next frame pointer or the stack pointer */
|
||
CORE_ADDR next_next_frame_addr =
|
||
(fi->next->extra_info->bottom ?
|
||
fi->next->extra_info->bottom : read_sp ());
|
||
for (regnum = O0_REGNUM; regnum < O0_REGNUM + 8; regnum++)
|
||
saved_regs_addr[regnum] =
|
||
(next_next_frame_addr
|
||
+ (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
|
||
+ FRAME_SAVED_I0);
|
||
}
|
||
}
|
||
/* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */
|
||
/* FIXME -- should this adjust for the sparc64 offset? */
|
||
saved_regs_addr[SP_REGNUM] = FRAME_FP (fi);
|
||
}
|
||
|
||
/* Discard from the stack the innermost frame, restoring all saved registers.
|
||
|
||
Note that the values stored in fsr by get_frame_saved_regs are *in
|
||
the context of the called frame*. What this means is that the i
|
||
regs of fsr must be restored into the o regs of the (calling) frame that
|
||
we pop into. We don't care about the output regs of the calling frame,
|
||
since unless it's a dummy frame, it won't have any output regs in it.
|
||
|
||
We never have to bother with %l (local) regs, since the called routine's
|
||
locals get tossed, and the calling routine's locals are already saved
|
||
on its stack. */
|
||
|
||
/* Definitely see tm-sparc.h for more doc of the frame format here. */
|
||
|
||
void
|
||
sparc_pop_frame ()
|
||
{
|
||
register struct frame_info *frame = get_current_frame ();
|
||
register CORE_ADDR pc;
|
||
CORE_ADDR *fsr;
|
||
char *raw_buffer;
|
||
int regnum;
|
||
|
||
fsr = alloca (NUM_REGS * sizeof (CORE_ADDR));
|
||
raw_buffer = alloca (REGISTER_BYTES);
|
||
sparc_frame_find_saved_regs (frame, &fsr[0]);
|
||
if (SPARC_HAS_FPU)
|
||
{
|
||
if (fsr[FP0_REGNUM])
|
||
{
|
||
read_memory (fsr[FP0_REGNUM], raw_buffer, FP_REGISTER_BYTES);
|
||
write_register_bytes (REGISTER_BYTE (FP0_REGNUM),
|
||
raw_buffer, FP_REGISTER_BYTES);
|
||
}
|
||
if (!(GDB_TARGET_IS_SPARC64))
|
||
{
|
||
if (fsr[FPS_REGNUM])
|
||
{
|
||
read_memory (fsr[FPS_REGNUM], raw_buffer, SPARC_INTREG_SIZE);
|
||
write_register_gen (FPS_REGNUM, raw_buffer);
|
||
}
|
||
if (fsr[CPS_REGNUM])
|
||
{
|
||
read_memory (fsr[CPS_REGNUM], raw_buffer, SPARC_INTREG_SIZE);
|
||
write_register_gen (CPS_REGNUM, raw_buffer);
|
||
}
|
||
}
|
||
}
|
||
if (fsr[G1_REGNUM])
|
||
{
|
||
read_memory (fsr[G1_REGNUM], raw_buffer, 7 * SPARC_INTREG_SIZE);
|
||
write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer,
|
||
7 * SPARC_INTREG_SIZE);
|
||
}
|
||
|
||
if (frame->extra_info->flat)
|
||
{
|
||
/* Each register might or might not have been saved, need to test
|
||
individually. */
|
||
for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; ++regnum)
|
||
if (fsr[regnum])
|
||
write_register (regnum, read_memory_integer (fsr[regnum],
|
||
SPARC_INTREG_SIZE));
|
||
for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; ++regnum)
|
||
if (fsr[regnum])
|
||
write_register (regnum, read_memory_integer (fsr[regnum],
|
||
SPARC_INTREG_SIZE));
|
||
|
||
/* Handle all outs except stack pointer (o0-o5; o7). */
|
||
for (regnum = O0_REGNUM; regnum < O0_REGNUM + 6; ++regnum)
|
||
if (fsr[regnum])
|
||
write_register (regnum, read_memory_integer (fsr[regnum],
|
||
SPARC_INTREG_SIZE));
|
||
if (fsr[O0_REGNUM + 7])
|
||
write_register (O0_REGNUM + 7,
|
||
read_memory_integer (fsr[O0_REGNUM + 7],
|
||
SPARC_INTREG_SIZE));
|
||
|
||
write_sp (frame->frame);
|
||
}
|
||
else if (fsr[I0_REGNUM])
|
||
{
|
||
CORE_ADDR sp;
|
||
|
||
char *reg_temp;
|
||
|
||
reg_temp = alloca (REGISTER_BYTES);
|
||
|
||
read_memory (fsr[I0_REGNUM], raw_buffer, 8 * SPARC_INTREG_SIZE);
|
||
|
||
/* Get the ins and locals which we are about to restore. Just
|
||
moving the stack pointer is all that is really needed, except
|
||
store_inferior_registers is then going to write the ins and
|
||
locals from the registers array, so we need to muck with the
|
||
registers array. */
|
||
sp = fsr[SP_REGNUM];
|
||
|
||
if (GDB_TARGET_IS_SPARC64 && (sp & 1))
|
||
sp += 2047;
|
||
|
||
read_memory (sp, reg_temp, SPARC_INTREG_SIZE * 16);
|
||
|
||
/* Restore the out registers.
|
||
Among other things this writes the new stack pointer. */
|
||
write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer,
|
||
SPARC_INTREG_SIZE * 8);
|
||
|
||
write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp,
|
||
SPARC_INTREG_SIZE * 16);
|
||
}
|
||
|
||
if (!(GDB_TARGET_IS_SPARC64))
|
||
if (fsr[PS_REGNUM])
|
||
write_register (PS_REGNUM,
|
||
read_memory_integer (fsr[PS_REGNUM],
|
||
REGISTER_RAW_SIZE (PS_REGNUM)));
|
||
|
||
if (fsr[Y_REGNUM])
|
||
write_register (Y_REGNUM,
|
||
read_memory_integer (fsr[Y_REGNUM],
|
||
REGISTER_RAW_SIZE (Y_REGNUM)));
|
||
if (fsr[PC_REGNUM])
|
||
{
|
||
/* Explicitly specified PC (and maybe NPC) -- just restore them. */
|
||
write_register (PC_REGNUM,
|
||
read_memory_integer (fsr[PC_REGNUM],
|
||
REGISTER_RAW_SIZE (PC_REGNUM)));
|
||
if (fsr[NPC_REGNUM])
|
||
write_register (NPC_REGNUM,
|
||
read_memory_integer (fsr[NPC_REGNUM],
|
||
REGISTER_RAW_SIZE (NPC_REGNUM)));
|
||
}
|
||
else if (frame->extra_info->flat)
|
||
{
|
||
if (frame->extra_info->pc_addr)
|
||
pc = PC_ADJUST ((CORE_ADDR)
|
||
read_memory_integer (frame->extra_info->pc_addr,
|
||
REGISTER_RAW_SIZE (PC_REGNUM)));
|
||
else
|
||
{
|
||
/* I think this happens only in the innermost frame, if so then
|
||
it is a complicated way of saying
|
||
"pc = read_register (O7_REGNUM);". */
|
||
char *buf;
|
||
|
||
buf = alloca (MAX_REGISTER_RAW_SIZE);
|
||
get_saved_register (buf, 0, 0, frame, O7_REGNUM, 0);
|
||
pc = PC_ADJUST (extract_address
|
||
(buf, REGISTER_RAW_SIZE (O7_REGNUM)));
|
||
}
|
||
|
||
write_register (PC_REGNUM, pc);
|
||
write_register (NPC_REGNUM, pc + 4);
|
||
}
|
||
else if (fsr[I7_REGNUM])
|
||
{
|
||
/* Return address in %i7 -- adjust it, then restore PC and NPC from it */
|
||
pc = PC_ADJUST ((CORE_ADDR) read_memory_integer (fsr[I7_REGNUM],
|
||
SPARC_INTREG_SIZE));
|
||
write_register (PC_REGNUM, pc);
|
||
write_register (NPC_REGNUM, pc + 4);
|
||
}
|
||
flush_cached_frames ();
|
||
}
|
||
|
||
/* On the Sun 4 under SunOS, the compile will leave a fake insn which
|
||
encodes the structure size being returned. If we detect such
|
||
a fake insn, step past it. */
|
||
|
||
CORE_ADDR
|
||
sparc_pc_adjust (pc)
|
||
CORE_ADDR pc;
|
||
{
|
||
unsigned long insn;
|
||
char buf[4];
|
||
int err;
|
||
|
||
err = target_read_memory (pc + 8, buf, 4);
|
||
insn = extract_unsigned_integer (buf, 4);
|
||
if ((err == 0) && (insn & 0xffc00000) == 0)
|
||
return pc + 12;
|
||
else
|
||
return pc + 8;
|
||
}
|
||
|
||
/* If pc is in a shared library trampoline, return its target.
|
||
The SunOs 4.x linker rewrites the jump table entries for PIC
|
||
compiled modules in the main executable to bypass the dynamic linker
|
||
with jumps of the form
|
||
sethi %hi(addr),%g1
|
||
jmp %g1+%lo(addr)
|
||
and removes the corresponding jump table relocation entry in the
|
||
dynamic relocations.
|
||
find_solib_trampoline_target relies on the presence of the jump
|
||
table relocation entry, so we have to detect these jump instructions
|
||
by hand. */
|
||
|
||
CORE_ADDR
|
||
sunos4_skip_trampoline_code (pc)
|
||
CORE_ADDR pc;
|
||
{
|
||
unsigned long insn1;
|
||
char buf[4];
|
||
int err;
|
||
|
||
err = target_read_memory (pc, buf, 4);
|
||
insn1 = extract_unsigned_integer (buf, 4);
|
||
if (err == 0 && (insn1 & 0xffc00000) == 0x03000000)
|
||
{
|
||
unsigned long insn2;
|
||
|
||
err = target_read_memory (pc + 4, buf, 4);
|
||
insn2 = extract_unsigned_integer (buf, 4);
|
||
if (err == 0 && (insn2 & 0xffffe000) == 0x81c06000)
|
||
{
|
||
CORE_ADDR target_pc = (insn1 & 0x3fffff) << 10;
|
||
int delta = insn2 & 0x1fff;
|
||
|
||
/* Sign extend the displacement. */
|
||
if (delta & 0x1000)
|
||
delta |= ~0x1fff;
|
||
return target_pc + delta;
|
||
}
|
||
}
|
||
return find_solib_trampoline_target (pc);
|
||
}
|
||
|
||
#ifdef USE_PROC_FS /* Target dependent support for /proc */
|
||
/* *INDENT-OFF* */
|
||
/* The /proc interface divides the target machine's register set up into
|
||
two different sets, the general register set (gregset) and the floating
|
||
point register set (fpregset). For each set, there is an ioctl to get
|
||
the current register set and another ioctl to set the current values.
|
||
|
||
The actual structure passed through the ioctl interface is, of course,
|
||
naturally machine dependent, and is different for each set of registers.
|
||
For the sparc for example, the general register set is typically defined
|
||
by:
|
||
|
||
typedef int gregset_t[38];
|
||
|
||
#define R_G0 0
|
||
...
|
||
#define R_TBR 37
|
||
|
||
and the floating point set by:
|
||
|
||
typedef struct prfpregset {
|
||
union {
|
||
u_long pr_regs[32];
|
||
double pr_dregs[16];
|
||
} pr_fr;
|
||
void * pr_filler;
|
||
u_long pr_fsr;
|
||
u_char pr_qcnt;
|
||
u_char pr_q_entrysize;
|
||
u_char pr_en;
|
||
u_long pr_q[64];
|
||
} prfpregset_t;
|
||
|
||
These routines provide the packing and unpacking of gregset_t and
|
||
fpregset_t formatted data.
|
||
|
||
*/
|
||
/* *INDENT-ON* */
|
||
|
||
/* Given a pointer to a general register set in /proc format (gregset_t *),
|
||
unpack the register contents and supply them as gdb's idea of the current
|
||
register values. */
|
||
|
||
void
|
||
supply_gregset (gregsetp)
|
||
gdb_gregset_t *gregsetp;
|
||
{
|
||
prgreg_t *regp = (prgreg_t *) gregsetp;
|
||
int regi, offset = 0;
|
||
|
||
/* If the host is 64-bit sparc, but the target is 32-bit sparc,
|
||
then the gregset may contain 64-bit ints while supply_register
|
||
is expecting 32-bit ints. Compensate. */
|
||
if (sizeof (regp[0]) == 8 && SPARC_INTREG_SIZE == 4)
|
||
offset = 4;
|
||
|
||
/* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers. */
|
||
/* FIXME MVS: assumes the order of the first 32 elements... */
|
||
for (regi = G0_REGNUM; regi <= I7_REGNUM; regi++)
|
||
{
|
||
supply_register (regi, ((char *) (regp + regi)) + offset);
|
||
}
|
||
|
||
/* These require a bit more care. */
|
||
supply_register (PC_REGNUM, ((char *) (regp + R_PC)) + offset);
|
||
supply_register (NPC_REGNUM, ((char *) (regp + R_nPC)) + offset);
|
||
supply_register (Y_REGNUM, ((char *) (regp + R_Y)) + offset);
|
||
|
||
if (GDB_TARGET_IS_SPARC64)
|
||
{
|
||
#ifdef R_CCR
|
||
supply_register (CCR_REGNUM, ((char *) (regp + R_CCR)) + offset);
|
||
#else
|
||
supply_register (CCR_REGNUM, NULL);
|
||
#endif
|
||
#ifdef R_FPRS
|
||
supply_register (FPRS_REGNUM, ((char *) (regp + R_FPRS)) + offset);
|
||
#else
|
||
supply_register (FPRS_REGNUM, NULL);
|
||
#endif
|
||
#ifdef R_ASI
|
||
supply_register (ASI_REGNUM, ((char *) (regp + R_ASI)) + offset);
|
||
#else
|
||
supply_register (ASI_REGNUM, NULL);
|
||
#endif
|
||
}
|
||
else /* sparc32 */
|
||
{
|
||
#ifdef R_PS
|
||
supply_register (PS_REGNUM, ((char *) (regp + R_PS)) + offset);
|
||
#else
|
||
supply_register (PS_REGNUM, NULL);
|
||
#endif
|
||
|
||
/* For 64-bit hosts, R_WIM and R_TBR may not be defined.
|
||
Steal R_ASI and R_FPRS, and hope for the best! */
|
||
|
||
#if !defined (R_WIM) && defined (R_ASI)
|
||
#define R_WIM R_ASI
|
||
#endif
|
||
|
||
#if !defined (R_TBR) && defined (R_FPRS)
|
||
#define R_TBR R_FPRS
|
||
#endif
|
||
|
||
#if defined (R_WIM)
|
||
supply_register (WIM_REGNUM, ((char *) (regp + R_WIM)) + offset);
|
||
#else
|
||
supply_register (WIM_REGNUM, NULL);
|
||
#endif
|
||
|
||
#if defined (R_TBR)
|
||
supply_register (TBR_REGNUM, ((char *) (regp + R_TBR)) + offset);
|
||
#else
|
||
supply_register (TBR_REGNUM, NULL);
|
||
#endif
|
||
}
|
||
|
||
/* Fill inaccessible registers with zero. */
|
||
if (GDB_TARGET_IS_SPARC64)
|
||
{
|
||
/*
|
||
* don't know how to get value of any of the following:
|
||
*/
|
||
supply_register (VER_REGNUM, NULL);
|
||
supply_register (TICK_REGNUM, NULL);
|
||
supply_register (PIL_REGNUM, NULL);
|
||
supply_register (PSTATE_REGNUM, NULL);
|
||
supply_register (TSTATE_REGNUM, NULL);
|
||
supply_register (TBA_REGNUM, NULL);
|
||
supply_register (TL_REGNUM, NULL);
|
||
supply_register (TT_REGNUM, NULL);
|
||
supply_register (TPC_REGNUM, NULL);
|
||
supply_register (TNPC_REGNUM, NULL);
|
||
supply_register (WSTATE_REGNUM, NULL);
|
||
supply_register (CWP_REGNUM, NULL);
|
||
supply_register (CANSAVE_REGNUM, NULL);
|
||
supply_register (CANRESTORE_REGNUM, NULL);
|
||
supply_register (CLEANWIN_REGNUM, NULL);
|
||
supply_register (OTHERWIN_REGNUM, NULL);
|
||
supply_register (ASR16_REGNUM, NULL);
|
||
supply_register (ASR17_REGNUM, NULL);
|
||
supply_register (ASR18_REGNUM, NULL);
|
||
supply_register (ASR19_REGNUM, NULL);
|
||
supply_register (ASR20_REGNUM, NULL);
|
||
supply_register (ASR21_REGNUM, NULL);
|
||
supply_register (ASR22_REGNUM, NULL);
|
||
supply_register (ASR23_REGNUM, NULL);
|
||
supply_register (ASR24_REGNUM, NULL);
|
||
supply_register (ASR25_REGNUM, NULL);
|
||
supply_register (ASR26_REGNUM, NULL);
|
||
supply_register (ASR27_REGNUM, NULL);
|
||
supply_register (ASR28_REGNUM, NULL);
|
||
supply_register (ASR29_REGNUM, NULL);
|
||
supply_register (ASR30_REGNUM, NULL);
|
||
supply_register (ASR31_REGNUM, NULL);
|
||
supply_register (ICC_REGNUM, NULL);
|
||
supply_register (XCC_REGNUM, NULL);
|
||
}
|
||
else
|
||
{
|
||
supply_register (CPS_REGNUM, NULL);
|
||
}
|
||
}
|
||
|
||
void
|
||
fill_gregset (gregsetp, regno)
|
||
gdb_gregset_t *gregsetp;
|
||
int regno;
|
||
{
|
||
prgreg_t *regp = (prgreg_t *) gregsetp;
|
||
int regi, offset = 0;
|
||
|
||
/* If the host is 64-bit sparc, but the target is 32-bit sparc,
|
||
then the gregset may contain 64-bit ints while supply_register
|
||
is expecting 32-bit ints. Compensate. */
|
||
if (sizeof (regp[0]) == 8 && SPARC_INTREG_SIZE == 4)
|
||
offset = 4;
|
||
|
||
for (regi = 0; regi <= R_I7; regi++)
|
||
if ((regno == -1) || (regno == regi))
|
||
read_register_gen (regi, (char *) (regp + regi) + offset);
|
||
|
||
if ((regno == -1) || (regno == PC_REGNUM))
|
||
read_register_gen (PC_REGNUM, (char *) (regp + R_PC) + offset);
|
||
|
||
if ((regno == -1) || (regno == NPC_REGNUM))
|
||
read_register_gen (NPC_REGNUM, (char *) (regp + R_nPC) + offset);
|
||
|
||
if ((regno == -1) || (regno == Y_REGNUM))
|
||
read_register_gen (Y_REGNUM, (char *) (regp + R_Y) + offset);
|
||
|
||
if (GDB_TARGET_IS_SPARC64)
|
||
{
|
||
#ifdef R_CCR
|
||
if (regno == -1 || regno == CCR_REGNUM)
|
||
read_register_gen (CCR_REGNUM, ((char *) (regp + R_CCR)) + offset);
|
||
#endif
|
||
#ifdef R_FPRS
|
||
if (regno == -1 || regno == FPRS_REGNUM)
|
||
read_register_gen (FPRS_REGNUM, ((char *) (regp + R_FPRS)) + offset);
|
||
#endif
|
||
#ifdef R_ASI
|
||
if (regno == -1 || regno == ASI_REGNUM)
|
||
read_register_gen (ASI_REGNUM, ((char *) (regp + R_ASI)) + offset);
|
||
#endif
|
||
}
|
||
else /* sparc32 */
|
||
{
|
||
#ifdef R_PS
|
||
if (regno == -1 || regno == PS_REGNUM)
|
||
read_register_gen (PS_REGNUM, ((char *) (regp + R_PS)) + offset);
|
||
#endif
|
||
|
||
/* For 64-bit hosts, R_WIM and R_TBR may not be defined.
|
||
Steal R_ASI and R_FPRS, and hope for the best! */
|
||
|
||
#if !defined (R_WIM) && defined (R_ASI)
|
||
#define R_WIM R_ASI
|
||
#endif
|
||
|
||
#if !defined (R_TBR) && defined (R_FPRS)
|
||
#define R_TBR R_FPRS
|
||
#endif
|
||
|
||
#if defined (R_WIM)
|
||
if (regno == -1 || regno == WIM_REGNUM)
|
||
read_register_gen (WIM_REGNUM, ((char *) (regp + R_WIM)) + offset);
|
||
#else
|
||
if (regno == -1 || regno == WIM_REGNUM)
|
||
read_register_gen (WIM_REGNUM, NULL);
|
||
#endif
|
||
|
||
#if defined (R_TBR)
|
||
if (regno == -1 || regno == TBR_REGNUM)
|
||
read_register_gen (TBR_REGNUM, ((char *) (regp + R_TBR)) + offset);
|
||
#else
|
||
if (regno == -1 || regno == TBR_REGNUM)
|
||
read_register_gen (TBR_REGNUM, NULL);
|
||
#endif
|
||
}
|
||
}
|
||
|
||
/* Given a pointer to a floating point register set in /proc format
|
||
(fpregset_t *), unpack the register contents and supply them as gdb's
|
||
idea of the current floating point register values. */
|
||
|
||
void
|
||
supply_fpregset (fpregsetp)
|
||
gdb_fpregset_t *fpregsetp;
|
||
{
|
||
register int regi;
|
||
char *from;
|
||
|
||
if (!SPARC_HAS_FPU)
|
||
return;
|
||
|
||
for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++)
|
||
{
|
||
from = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM];
|
||
supply_register (regi, from);
|
||
}
|
||
|
||
if (GDB_TARGET_IS_SPARC64)
|
||
{
|
||
/*
|
||
* don't know how to get value of the following.
|
||
*/
|
||
supply_register (FSR_REGNUM, NULL); /* zero it out for now */
|
||
supply_register (FCC0_REGNUM, NULL);
|
||
supply_register (FCC1_REGNUM, NULL); /* don't know how to get value */
|
||
supply_register (FCC2_REGNUM, NULL); /* don't know how to get value */
|
||
supply_register (FCC3_REGNUM, NULL); /* don't know how to get value */
|
||
}
|
||
else
|
||
{
|
||
supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr));
|
||
}
|
||
}
|
||
|
||
/* Given a pointer to a floating point register set in /proc format
|
||
(fpregset_t *), update the register specified by REGNO from gdb's idea
|
||
of the current floating point register set. If REGNO is -1, update
|
||
them all. */
|
||
/* This will probably need some changes for sparc64. */
|
||
|
||
void
|
||
fill_fpregset (fpregsetp, regno)
|
||
gdb_fpregset_t *fpregsetp;
|
||
int regno;
|
||
{
|
||
int regi;
|
||
char *to;
|
||
char *from;
|
||
|
||
if (!SPARC_HAS_FPU)
|
||
return;
|
||
|
||
for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++)
|
||
{
|
||
if ((regno == -1) || (regno == regi))
|
||
{
|
||
from = (char *) ®isters[REGISTER_BYTE (regi)];
|
||
to = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM];
|
||
memcpy (to, from, REGISTER_RAW_SIZE (regi));
|
||
}
|
||
}
|
||
|
||
if (!(GDB_TARGET_IS_SPARC64)) /* FIXME: does Sparc64 have this register? */
|
||
if ((regno == -1) || (regno == FPS_REGNUM))
|
||
{
|
||
from = (char *)®isters[REGISTER_BYTE (FPS_REGNUM)];
|
||
to = (char *) &fpregsetp->pr_fsr;
|
||
memcpy (to, from, REGISTER_RAW_SIZE (FPS_REGNUM));
|
||
}
|
||
}
|
||
|
||
#endif /* USE_PROC_FS */
|
||
|
||
|
||
#ifdef GET_LONGJMP_TARGET
|
||
|
||
/* Figure out where the longjmp will land. We expect that we have just entered
|
||
longjmp and haven't yet setup the stack frame, so the args are still in the
|
||
output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we
|
||
extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
|
||
This routine returns true on success */
|
||
|
||
int
|
||
get_longjmp_target (pc)
|
||
CORE_ADDR *pc;
|
||
{
|
||
CORE_ADDR jb_addr;
|
||
#define LONGJMP_TARGET_SIZE 4
|
||
char buf[LONGJMP_TARGET_SIZE];
|
||
|
||
jb_addr = read_register (O0_REGNUM);
|
||
|
||
if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
|
||
LONGJMP_TARGET_SIZE))
|
||
return 0;
|
||
|
||
*pc = extract_address (buf, LONGJMP_TARGET_SIZE);
|
||
|
||
return 1;
|
||
}
|
||
#endif /* GET_LONGJMP_TARGET */
|
||
|
||
#ifdef STATIC_TRANSFORM_NAME
|
||
/* SunPRO (3.0 at least), encodes the static variables. This is not
|
||
related to C++ mangling, it is done for C too. */
|
||
|
||
char *
|
||
sunpro_static_transform_name (name)
|
||
char *name;
|
||
{
|
||
char *p;
|
||
if (name[0] == '$')
|
||
{
|
||
/* For file-local statics there will be a dollar sign, a bunch
|
||
of junk (the contents of which match a string given in the
|
||
N_OPT), a period and the name. For function-local statics
|
||
there will be a bunch of junk (which seems to change the
|
||
second character from 'A' to 'B'), a period, the name of the
|
||
function, and the name. So just skip everything before the
|
||
last period. */
|
||
p = strrchr (name, '.');
|
||
if (p != NULL)
|
||
name = p + 1;
|
||
}
|
||
return name;
|
||
}
|
||
#endif /* STATIC_TRANSFORM_NAME */
|
||
|
||
|
||
/* Utilities for printing registers.
|
||
Page numbers refer to the SPARC Architecture Manual. */
|
||
|
||
static void dump_ccreg (char *, int);
|
||
|
||
static void
|
||
dump_ccreg (reg, val)
|
||
char *reg;
|
||
int val;
|
||
{
|
||
/* page 41 */
|
||
printf_unfiltered ("%s:%s,%s,%s,%s", reg,
|
||
val & 8 ? "N" : "NN",
|
||
val & 4 ? "Z" : "NZ",
|
||
val & 2 ? "O" : "NO",
|
||
val & 1 ? "C" : "NC");
|
||
}
|
||
|
||
static char *
|
||
decode_asi (val)
|
||
int val;
|
||
{
|
||
/* page 72 */
|
||
switch (val)
|
||
{
|
||
case 4:
|
||
return "ASI_NUCLEUS";
|
||
case 0x0c:
|
||
return "ASI_NUCLEUS_LITTLE";
|
||
case 0x10:
|
||
return "ASI_AS_IF_USER_PRIMARY";
|
||
case 0x11:
|
||
return "ASI_AS_IF_USER_SECONDARY";
|
||
case 0x18:
|
||
return "ASI_AS_IF_USER_PRIMARY_LITTLE";
|
||
case 0x19:
|
||
return "ASI_AS_IF_USER_SECONDARY_LITTLE";
|
||
case 0x80:
|
||
return "ASI_PRIMARY";
|
||
case 0x81:
|
||
return "ASI_SECONDARY";
|
||
case 0x82:
|
||
return "ASI_PRIMARY_NOFAULT";
|
||
case 0x83:
|
||
return "ASI_SECONDARY_NOFAULT";
|
||
case 0x88:
|
||
return "ASI_PRIMARY_LITTLE";
|
||
case 0x89:
|
||
return "ASI_SECONDARY_LITTLE";
|
||
case 0x8a:
|
||
return "ASI_PRIMARY_NOFAULT_LITTLE";
|
||
case 0x8b:
|
||
return "ASI_SECONDARY_NOFAULT_LITTLE";
|
||
default:
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
/* PRINT_REGISTER_HOOK routine.
|
||
Pretty print various registers. */
|
||
/* FIXME: Would be nice if this did some fancy things for 32 bit sparc. */
|
||
|
||
void
|
||
sparc_print_register_hook (regno)
|
||
int regno;
|
||
{
|
||
ULONGEST val;
|
||
|
||
/* Handle double/quad versions of lower 32 fp regs. */
|
||
if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32
|
||
&& (regno & 1) == 0)
|
||
{
|
||
char value[16];
|
||
|
||
if (!read_relative_register_raw_bytes (regno, value)
|
||
&& !read_relative_register_raw_bytes (regno + 1, value + 4))
|
||
{
|
||
printf_unfiltered ("\t");
|
||
print_floating (value, builtin_type_double, gdb_stdout);
|
||
}
|
||
#if 0 /* FIXME: gdb doesn't handle long doubles */
|
||
if ((regno & 3) == 0)
|
||
{
|
||
if (!read_relative_register_raw_bytes (regno + 2, value + 8)
|
||
&& !read_relative_register_raw_bytes (regno + 3, value + 12))
|
||
{
|
||
printf_unfiltered ("\t");
|
||
print_floating (value, builtin_type_long_double, gdb_stdout);
|
||
}
|
||
}
|
||
#endif
|
||
return;
|
||
}
|
||
|
||
#if 0 /* FIXME: gdb doesn't handle long doubles */
|
||
/* Print upper fp regs as long double if appropriate. */
|
||
if (regno >= FP0_REGNUM + 32 && regno < FP_MAX_REGNUM
|
||
/* We test for even numbered regs and not a multiple of 4 because
|
||
the upper fp regs are recorded as doubles. */
|
||
&& (regno & 1) == 0)
|
||
{
|
||
char value[16];
|
||
|
||
if (!read_relative_register_raw_bytes (regno, value)
|
||
&& !read_relative_register_raw_bytes (regno + 1, value + 8))
|
||
{
|
||
printf_unfiltered ("\t");
|
||
print_floating (value, builtin_type_long_double, gdb_stdout);
|
||
}
|
||
return;
|
||
}
|
||
#endif
|
||
|
||
/* FIXME: Some of these are priviledged registers.
|
||
Not sure how they should be handled. */
|
||
|
||
#define BITS(n, mask) ((int) (((val) >> (n)) & (mask)))
|
||
|
||
val = read_register (regno);
|
||
|
||
/* pages 40 - 60 */
|
||
if (GDB_TARGET_IS_SPARC64)
|
||
switch (regno)
|
||
{
|
||
case CCR_REGNUM:
|
||
printf_unfiltered ("\t");
|
||
dump_ccreg ("xcc", val >> 4);
|
||
printf_unfiltered (", ");
|
||
dump_ccreg ("icc", val & 15);
|
||
break;
|
||
case FPRS_REGNUM:
|
||
printf ("\tfef:%d, du:%d, dl:%d",
|
||
BITS (2, 1), BITS (1, 1), BITS (0, 1));
|
||
break;
|
||
case FSR_REGNUM:
|
||
{
|
||
static char *fcc[4] =
|
||
{"=", "<", ">", "?"};
|
||
static char *rd[4] =
|
||
{"N", "0", "+", "-"};
|
||
/* Long, but I'd rather leave it as is and use a wide screen. */
|
||
printf_filtered ("\t0:%s, 1:%s, 2:%s, 3:%s, rd:%s, tem:%d, ",
|
||
fcc[BITS (10, 3)], fcc[BITS (32, 3)],
|
||
fcc[BITS (34, 3)], fcc[BITS (36, 3)],
|
||
rd[BITS (30, 3)], BITS (23, 31));
|
||
printf_filtered ("ns:%d, ver:%d, ftt:%d, qne:%d, aexc:%d, cexc:%d",
|
||
BITS (22, 1), BITS (17, 7), BITS (14, 7),
|
||
BITS (13, 1), BITS (5, 31), BITS (0, 31));
|
||
break;
|
||
}
|
||
case ASI_REGNUM:
|
||
{
|
||
char *asi = decode_asi (val);
|
||
if (asi != NULL)
|
||
printf ("\t%s", asi);
|
||
break;
|
||
}
|
||
case VER_REGNUM:
|
||
printf ("\tmanuf:%d, impl:%d, mask:%d, maxtl:%d, maxwin:%d",
|
||
BITS (48, 0xffff), BITS (32, 0xffff),
|
||
BITS (24, 0xff), BITS (8, 0xff), BITS (0, 31));
|
||
break;
|
||
case PSTATE_REGNUM:
|
||
{
|
||
static char *mm[4] =
|
||
{"tso", "pso", "rso", "?"};
|
||
printf_filtered ("\tcle:%d, tle:%d, mm:%s, red:%d, ",
|
||
BITS (9, 1), BITS (8, 1),
|
||
mm[BITS (6, 3)], BITS (5, 1));
|
||
printf_filtered ("pef:%d, am:%d, priv:%d, ie:%d, ag:%d",
|
||
BITS (4, 1), BITS (3, 1), BITS (2, 1),
|
||
BITS (1, 1), BITS (0, 1));
|
||
break;
|
||
}
|
||
case TSTATE_REGNUM:
|
||
/* FIXME: print all 4? */
|
||
break;
|
||
case TT_REGNUM:
|
||
/* FIXME: print all 4? */
|
||
break;
|
||
case TPC_REGNUM:
|
||
/* FIXME: print all 4? */
|
||
break;
|
||
case TNPC_REGNUM:
|
||
/* FIXME: print all 4? */
|
||
break;
|
||
case WSTATE_REGNUM:
|
||
printf ("\tother:%d, normal:%d", BITS (3, 7), BITS (0, 7));
|
||
break;
|
||
case CWP_REGNUM:
|
||
printf ("\t%d", BITS (0, 31));
|
||
break;
|
||
case CANSAVE_REGNUM:
|
||
printf ("\t%-2d before spill", BITS (0, 31));
|
||
break;
|
||
case CANRESTORE_REGNUM:
|
||
printf ("\t%-2d before fill", BITS (0, 31));
|
||
break;
|
||
case CLEANWIN_REGNUM:
|
||
printf ("\t%-2d before clean", BITS (0, 31));
|
||
break;
|
||
case OTHERWIN_REGNUM:
|
||
printf ("\t%d", BITS (0, 31));
|
||
break;
|
||
}
|
||
else /* Sparc32 */
|
||
switch (regno)
|
||
{
|
||
case PS_REGNUM:
|
||
printf ("\ticc:%c%c%c%c, pil:%d, s:%d, ps:%d, et:%d, cwp:%d",
|
||
BITS (23, 1) ? 'N' : '-', BITS (22, 1) ? 'Z' : '-',
|
||
BITS (21, 1) ? 'V' : '-', BITS (20, 1) ? 'C' : '-',
|
||
BITS (8, 15), BITS (7, 1), BITS (6, 1), BITS (5, 1),
|
||
BITS (0, 31));
|
||
break;
|
||
case FPS_REGNUM:
|
||
{
|
||
static char *fcc[4] =
|
||
{"=", "<", ">", "?"};
|
||
static char *rd[4] =
|
||
{"N", "0", "+", "-"};
|
||
/* Long, but I'd rather leave it as is and use a wide screen. */
|
||
printf ("\trd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, "
|
||
"fcc:%s, aexc:%d, cexc:%d",
|
||
rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7),
|
||
BITS (14, 7), BITS (13, 1), fcc[BITS (10, 3)], BITS (5, 31),
|
||
BITS (0, 31));
|
||
break;
|
||
}
|
||
}
|
||
|
||
#undef BITS
|
||
}
|
||
|
||
int
|
||
gdb_print_insn_sparc (memaddr, info)
|
||
bfd_vma memaddr;
|
||
disassemble_info *info;
|
||
{
|
||
/* It's necessary to override mach again because print_insn messes it up. */
|
||
info->mach = TARGET_ARCHITECTURE->mach;
|
||
return print_insn_sparc (memaddr, info);
|
||
}
|
||
|
||
/* The SPARC passes the arguments on the stack; arguments smaller
|
||
than an int are promoted to an int. The first 6 words worth of
|
||
args are also passed in registers o0 - o5. */
|
||
|
||
CORE_ADDR
|
||
sparc32_push_arguments (nargs, args, sp, struct_return, struct_addr)
|
||
int nargs;
|
||
value_ptr *args;
|
||
CORE_ADDR sp;
|
||
int struct_return;
|
||
CORE_ADDR struct_addr;
|
||
{
|
||
int i, j, oregnum;
|
||
int accumulate_size = 0;
|
||
struct sparc_arg
|
||
{
|
||
char *contents;
|
||
int len;
|
||
int offset;
|
||
};
|
||
struct sparc_arg *sparc_args =
|
||
(struct sparc_arg *) alloca (nargs * sizeof (struct sparc_arg));
|
||
struct sparc_arg *m_arg;
|
||
|
||
/* Promote arguments if necessary, and calculate their stack offsets
|
||
and sizes. */
|
||
for (i = 0, m_arg = sparc_args; i < nargs; i++, m_arg++)
|
||
{
|
||
value_ptr arg = args[i];
|
||
struct type *arg_type = check_typedef (VALUE_TYPE (arg));
|
||
/* Cast argument to long if necessary as the compiler does it too. */
|
||
switch (TYPE_CODE (arg_type))
|
||
{
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_BOOL:
|
||
case TYPE_CODE_CHAR:
|
||
case TYPE_CODE_RANGE:
|
||
case TYPE_CODE_ENUM:
|
||
if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
|
||
{
|
||
arg_type = builtin_type_long;
|
||
arg = value_cast (arg_type, arg);
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
m_arg->len = TYPE_LENGTH (arg_type);
|
||
m_arg->offset = accumulate_size;
|
||
accumulate_size = (accumulate_size + m_arg->len + 3) & ~3;
|
||
m_arg->contents = VALUE_CONTENTS (arg);
|
||
}
|
||
|
||
/* Make room for the arguments on the stack. */
|
||
accumulate_size += CALL_DUMMY_STACK_ADJUST;
|
||
sp = ((sp - accumulate_size) & ~7) + CALL_DUMMY_STACK_ADJUST;
|
||
|
||
/* `Push' arguments on the stack. */
|
||
for (i = 0, oregnum = 0, m_arg = sparc_args;
|
||
i < nargs;
|
||
i++, m_arg++)
|
||
{
|
||
write_memory (sp + m_arg->offset, m_arg->contents, m_arg->len);
|
||
for (j = 0;
|
||
j < m_arg->len && oregnum < 6;
|
||
j += SPARC_INTREG_SIZE, oregnum++)
|
||
write_register_gen (O0_REGNUM + oregnum, m_arg->contents + j);
|
||
}
|
||
|
||
return sp;
|
||
}
|
||
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state
|
||
a function return value of type TYPE, and copy that, in virtual format,
|
||
into VALBUF. */
|
||
|
||
void
|
||
sparc32_extract_return_value (type, regbuf, valbuf)
|
||
struct type *type;
|
||
char *regbuf;
|
||
char *valbuf;
|
||
{
|
||
int typelen = TYPE_LENGTH (type);
|
||
int regsize = REGISTER_RAW_SIZE (O0_REGNUM);
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
|
||
memcpy (valbuf, ®buf[REGISTER_BYTE (FP0_REGNUM)], typelen);
|
||
else
|
||
memcpy (valbuf,
|
||
®buf[O0_REGNUM * regsize +
|
||
(typelen >= regsize
|
||
|| TARGET_BYTE_ORDER == LITTLE_ENDIAN ? 0
|
||
: regsize - typelen)],
|
||
typelen);
|
||
}
|
||
|
||
|
||
/* Write into appropriate registers a function return value
|
||
of type TYPE, given in virtual format. On SPARCs with FPUs,
|
||
float values are returned in %f0 (and %f1). In all other cases,
|
||
values are returned in register %o0. */
|
||
|
||
void
|
||
sparc_store_return_value (type, valbuf)
|
||
struct type *type;
|
||
char *valbuf;
|
||
{
|
||
int regno;
|
||
char *buffer;
|
||
|
||
buffer = alloca(MAX_REGISTER_RAW_SIZE);
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
|
||
/* Floating-point values are returned in the register pair */
|
||
/* formed by %f0 and %f1 (doubles are, anyway). */
|
||
regno = FP0_REGNUM;
|
||
else
|
||
/* Other values are returned in register %o0. */
|
||
regno = O0_REGNUM;
|
||
|
||
/* Add leading zeros to the value. */
|
||
if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (regno))
|
||
{
|
||
memset (buffer, 0, REGISTER_RAW_SIZE (regno));
|
||
memcpy (buffer + REGISTER_RAW_SIZE (regno) - TYPE_LENGTH (type), valbuf,
|
||
TYPE_LENGTH (type));
|
||
write_register_gen (regno, buffer);
|
||
}
|
||
else
|
||
write_register_bytes (REGISTER_BYTE (regno), valbuf, TYPE_LENGTH (type));
|
||
}
|
||
|
||
extern void
|
||
sparclet_store_return_value (struct type *type, char *valbuf)
|
||
{
|
||
/* Other values are returned in register %o0. */
|
||
write_register_bytes (REGISTER_BYTE (O0_REGNUM), valbuf,
|
||
TYPE_LENGTH (type));
|
||
}
|
||
|
||
|
||
#ifndef CALL_DUMMY_CALL_OFFSET
|
||
#define CALL_DUMMY_CALL_OFFSET \
|
||
(gdbarch_tdep (current_gdbarch)->call_dummy_call_offset)
|
||
#endif /* CALL_DUMMY_CALL_OFFSET */
|
||
|
||
/* Insert the function address into a call dummy instruction sequence
|
||
stored at DUMMY.
|
||
|
||
For structs and unions, if the function was compiled with Sun cc,
|
||
it expects 'unimp' after the call. But gcc doesn't use that
|
||
(twisted) convention. So leave a nop there for gcc (FIX_CALL_DUMMY
|
||
can assume it is operating on a pristine CALL_DUMMY, not one that
|
||
has already been customized for a different function). */
|
||
|
||
void
|
||
sparc_fix_call_dummy (dummy, pc, fun, value_type, using_gcc)
|
||
char *dummy;
|
||
CORE_ADDR pc;
|
||
CORE_ADDR fun;
|
||
struct type *value_type;
|
||
int using_gcc;
|
||
{
|
||
int i;
|
||
|
||
/* Store the relative adddress of the target function into the
|
||
'call' instruction. */
|
||
store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET, 4,
|
||
(0x40000000
|
||
| (((fun - (pc + CALL_DUMMY_CALL_OFFSET)) >> 2)
|
||
& 0x3fffffff)));
|
||
|
||
/* Comply with strange Sun cc calling convention for struct-returning
|
||
functions. */
|
||
if (!using_gcc
|
||
&& (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
|
||
|| TYPE_CODE (value_type) == TYPE_CODE_UNION))
|
||
store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET + 8, 4,
|
||
TYPE_LENGTH (value_type) & 0x1fff);
|
||
|
||
if (!(GDB_TARGET_IS_SPARC64))
|
||
{
|
||
/* If this is not a simulator target, change the first four
|
||
instructions of the call dummy to NOPs. Those instructions
|
||
include a 'save' instruction and are designed to work around
|
||
problems with register window flushing in the simulator. */
|
||
|
||
if (strcmp (target_shortname, "sim") != 0)
|
||
{
|
||
for (i = 0; i < 4; i++)
|
||
store_unsigned_integer (dummy + (i * 4), 4, 0x01000000);
|
||
}
|
||
}
|
||
|
||
/* If this is a bi-endian target, GDB has written the call dummy
|
||
in little-endian order. We must byte-swap it back to big-endian. */
|
||
if (bi_endian)
|
||
{
|
||
for (i = 0; i < CALL_DUMMY_LENGTH; i += 4)
|
||
{
|
||
char tmp = dummy[i];
|
||
dummy[i] = dummy[i + 3];
|
||
dummy[i + 3] = tmp;
|
||
tmp = dummy[i + 1];
|
||
dummy[i + 1] = dummy[i + 2];
|
||
dummy[i + 2] = tmp;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Set target byte order based on machine type. */
|
||
|
||
static int
|
||
sparc_target_architecture_hook (ap)
|
||
const bfd_arch_info_type *ap;
|
||
{
|
||
int i, j;
|
||
|
||
if (ap->mach == bfd_mach_sparc_sparclite_le)
|
||
{
|
||
if (TARGET_BYTE_ORDER_SELECTABLE_P)
|
||
{
|
||
target_byte_order = LITTLE_ENDIAN;
|
||
bi_endian = 1;
|
||
}
|
||
else
|
||
{
|
||
warning ("This GDB does not support little endian sparclite.");
|
||
}
|
||
}
|
||
else
|
||
bi_endian = 0;
|
||
return 1;
|
||
}
|
||
|
||
|
||
/*
|
||
* Module "constructor" function.
|
||
*/
|
||
|
||
static struct gdbarch * sparc_gdbarch_init (struct gdbarch_info info,
|
||
struct gdbarch_list *arches);
|
||
|
||
void
|
||
_initialize_sparc_tdep ()
|
||
{
|
||
/* Hook us into the gdbarch mechanism. */
|
||
register_gdbarch_init (bfd_arch_sparc, sparc_gdbarch_init);
|
||
|
||
tm_print_insn = gdb_print_insn_sparc;
|
||
tm_print_insn_info.mach = TM_PRINT_INSN_MACH; /* Selects sparc/sparclite */
|
||
target_architecture_hook = sparc_target_architecture_hook;
|
||
}
|
||
|
||
/* Compensate for stack bias. Note that we currently don't handle
|
||
mixed 32/64 bit code. */
|
||
|
||
CORE_ADDR
|
||
sparc64_read_sp (void)
|
||
{
|
||
CORE_ADDR sp = read_register (SP_REGNUM);
|
||
|
||
if (sp & 1)
|
||
sp += 2047;
|
||
return sp;
|
||
}
|
||
|
||
CORE_ADDR
|
||
sparc64_read_fp (void)
|
||
{
|
||
CORE_ADDR fp = read_register (FP_REGNUM);
|
||
|
||
if (fp & 1)
|
||
fp += 2047;
|
||
return fp;
|
||
}
|
||
|
||
void
|
||
sparc64_write_sp (val)
|
||
CORE_ADDR val;
|
||
{
|
||
CORE_ADDR oldsp = read_register (SP_REGNUM);
|
||
if (oldsp & 1)
|
||
write_register (SP_REGNUM, val - 2047);
|
||
else
|
||
write_register (SP_REGNUM, val);
|
||
}
|
||
|
||
void
|
||
sparc64_write_fp (val)
|
||
CORE_ADDR val;
|
||
{
|
||
CORE_ADDR oldfp = read_register (FP_REGNUM);
|
||
if (oldfp & 1)
|
||
write_register (FP_REGNUM, val - 2047);
|
||
else
|
||
write_register (FP_REGNUM, val);
|
||
}
|
||
|
||
/* The SPARC 64 ABI passes floating-point arguments in FP0 to FP31,
|
||
and all other arguments in O0 to O5. They are also copied onto
|
||
the stack in the correct places. Apparently (empirically),
|
||
structs of less than 16 bytes are passed member-by-member in
|
||
separate registers, but I am unable to figure out the algorithm.
|
||
Some members go in floating point regs, but I don't know which.
|
||
|
||
FIXME: Handle small structs (less than 16 bytes containing floats).
|
||
|
||
The counting regimen for using both integer and FP registers
|
||
for argument passing is rather odd -- a single counter is used
|
||
for both; this means that if the arguments alternate between
|
||
int and float, we will waste every other register of both types. */
|
||
|
||
CORE_ADDR
|
||
sparc64_push_arguments (nargs, args, sp, struct_return, struct_retaddr)
|
||
int nargs;
|
||
value_ptr *args;
|
||
CORE_ADDR sp;
|
||
int struct_return;
|
||
CORE_ADDR struct_retaddr;
|
||
{
|
||
int i, j, register_counter = 0;
|
||
CORE_ADDR tempsp;
|
||
struct type *sparc_intreg_type =
|
||
TYPE_LENGTH (builtin_type_long) == SPARC_INTREG_SIZE ?
|
||
builtin_type_long : builtin_type_long_long;
|
||
|
||
sp = (sp & ~(((unsigned long) SPARC_INTREG_SIZE) - 1UL));
|
||
|
||
/* Figure out how much space we'll need. */
|
||
for (i = nargs - 1; i >= 0; i--)
|
||
{
|
||
int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[i])));
|
||
value_ptr copyarg = args[i];
|
||
int copylen = len;
|
||
|
||
if (copylen < SPARC_INTREG_SIZE)
|
||
{
|
||
copyarg = value_cast (sparc_intreg_type, copyarg);
|
||
copylen = SPARC_INTREG_SIZE;
|
||
}
|
||
sp -= copylen;
|
||
}
|
||
|
||
/* Round down. */
|
||
sp = sp & ~7;
|
||
tempsp = sp;
|
||
|
||
/* if STRUCT_RETURN, then first argument is the struct return location. */
|
||
if (struct_return)
|
||
write_register (O0_REGNUM + register_counter++, struct_retaddr);
|
||
|
||
/* Now write the arguments onto the stack, while writing FP
|
||
arguments into the FP registers, and other arguments into the
|
||
first six 'O' registers. */
|
||
|
||
for (i = 0; i < nargs; i++)
|
||
{
|
||
int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[i])));
|
||
value_ptr copyarg = args[i];
|
||
enum type_code typecode = TYPE_CODE (VALUE_TYPE (args[i]));
|
||
int copylen = len;
|
||
|
||
if (typecode == TYPE_CODE_INT ||
|
||
typecode == TYPE_CODE_BOOL ||
|
||
typecode == TYPE_CODE_CHAR ||
|
||
typecode == TYPE_CODE_RANGE ||
|
||
typecode == TYPE_CODE_ENUM)
|
||
if (len < SPARC_INTREG_SIZE)
|
||
{
|
||
/* Small ints will all take up the size of one intreg on
|
||
the stack. */
|
||
copyarg = value_cast (sparc_intreg_type, copyarg);
|
||
copylen = SPARC_INTREG_SIZE;
|
||
}
|
||
|
||
write_memory (tempsp, VALUE_CONTENTS (copyarg), copylen);
|
||
tempsp += copylen;
|
||
|
||
/* Corner case: Structs consisting of a single float member are floats.
|
||
* FIXME! I don't know about structs containing multiple floats!
|
||
* Structs containing mixed floats and ints are even more weird.
|
||
*/
|
||
|
||
|
||
|
||
/* Separate float args from all other args. */
|
||
if (typecode == TYPE_CODE_FLT && SPARC_HAS_FPU)
|
||
{
|
||
if (register_counter < 16)
|
||
{
|
||
/* This arg gets copied into a FP register. */
|
||
int fpreg;
|
||
|
||
switch (len) {
|
||
case 4: /* Single-precision (float) */
|
||
fpreg = FP0_REGNUM + 2 * register_counter + 1;
|
||
register_counter += 1;
|
||
break;
|
||
case 8: /* Double-precision (double) */
|
||
fpreg = FP0_REGNUM + 2 * register_counter;
|
||
register_counter += 1;
|
||
break;
|
||
case 16: /* Quad-precision (long double) */
|
||
fpreg = FP0_REGNUM + 2 * register_counter;
|
||
register_counter += 2;
|
||
break;
|
||
}
|
||
write_register_bytes (REGISTER_BYTE (fpreg),
|
||
VALUE_CONTENTS (args[i]),
|
||
len);
|
||
}
|
||
}
|
||
else /* all other args go into the first six 'o' registers */
|
||
{
|
||
for (j = 0;
|
||
j < len && register_counter < 6;
|
||
j += SPARC_INTREG_SIZE)
|
||
{
|
||
int oreg = O0_REGNUM + register_counter;
|
||
|
||
write_register_gen (oreg, VALUE_CONTENTS (copyarg) + j);
|
||
register_counter += 1;
|
||
}
|
||
}
|
||
}
|
||
return sp;
|
||
}
|
||
|
||
/* Values <= 32 bytes are returned in o0-o3 (floating-point values are
|
||
returned in f0-f3). */
|
||
|
||
void
|
||
sp64_extract_return_value (type, regbuf, valbuf, bitoffset)
|
||
struct type *type;
|
||
char *regbuf;
|
||
char *valbuf;
|
||
int bitoffset;
|
||
{
|
||
int typelen = TYPE_LENGTH (type);
|
||
int regsize = REGISTER_RAW_SIZE (O0_REGNUM);
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
|
||
{
|
||
memcpy (valbuf, ®buf[REGISTER_BYTE (FP0_REGNUM)], typelen);
|
||
return;
|
||
}
|
||
|
||
if (TYPE_CODE (type) != TYPE_CODE_STRUCT
|
||
|| (TYPE_LENGTH (type) > 32))
|
||
{
|
||
memcpy (valbuf,
|
||
®buf[O0_REGNUM * regsize +
|
||
(typelen >= regsize ? 0 : regsize - typelen)],
|
||
typelen);
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
char *o0 = ®buf[O0_REGNUM * regsize];
|
||
char *f0 = ®buf[FP0_REGNUM * regsize];
|
||
int x;
|
||
|
||
for (x = 0; x < TYPE_NFIELDS (type); x++)
|
||
{
|
||
struct field *f = &TYPE_FIELDS (type)[x];
|
||
/* FIXME: We may need to handle static fields here. */
|
||
int whichreg = (f->loc.bitpos + bitoffset) / 32;
|
||
int remainder = ((f->loc.bitpos + bitoffset) % 32) / 8;
|
||
int where = (f->loc.bitpos + bitoffset) / 8;
|
||
int size = TYPE_LENGTH (f->type);
|
||
int typecode = TYPE_CODE (f->type);
|
||
|
||
if (typecode == TYPE_CODE_STRUCT)
|
||
{
|
||
sp64_extract_return_value (f->type,
|
||
regbuf,
|
||
valbuf,
|
||
bitoffset + f->loc.bitpos);
|
||
}
|
||
else if (typecode == TYPE_CODE_FLT && SPARC_HAS_FPU)
|
||
{
|
||
memcpy (valbuf + where, &f0[whichreg * 4] + remainder, size);
|
||
}
|
||
else
|
||
{
|
||
memcpy (valbuf + where, &o0[whichreg * 4] + remainder, size);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
extern void
|
||
sparc64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
|
||
{
|
||
sp64_extract_return_value (type, regbuf, valbuf, 0);
|
||
}
|
||
|
||
extern void
|
||
sparclet_extract_return_value (struct type *type,
|
||
char *regbuf,
|
||
char *valbuf)
|
||
{
|
||
regbuf += REGISTER_RAW_SIZE (O0_REGNUM) * 8;
|
||
if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (O0_REGNUM))
|
||
regbuf += REGISTER_RAW_SIZE (O0_REGNUM) - TYPE_LENGTH (type);
|
||
|
||
memcpy ((void *) valbuf, regbuf, TYPE_LENGTH (type));
|
||
}
|
||
|
||
|
||
extern CORE_ADDR
|
||
sparc32_stack_align (CORE_ADDR addr)
|
||
{
|
||
return ((addr + 7) & -8);
|
||
}
|
||
|
||
extern CORE_ADDR
|
||
sparc64_stack_align (CORE_ADDR addr)
|
||
{
|
||
return ((addr + 15) & -16);
|
||
}
|
||
|
||
extern void
|
||
sparc_print_extra_frame_info (struct frame_info *fi)
|
||
{
|
||
if (fi && fi->extra_info && fi->extra_info->flat)
|
||
printf_filtered (" flat, pc saved at 0x%s, fp saved at 0x%s\n",
|
||
paddr_nz (fi->extra_info->pc_addr),
|
||
paddr_nz (fi->extra_info->fp_addr));
|
||
}
|
||
|
||
/* MULTI_ARCH support */
|
||
|
||
static char *
|
||
sparc32_register_name (int regno)
|
||
{
|
||
static char *register_names[] =
|
||
{ "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
|
||
"o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
|
||
"l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
|
||
"i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
|
||
|
||
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
|
||
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
|
||
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
|
||
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
|
||
|
||
"y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr"
|
||
};
|
||
|
||
if (regno < 0 ||
|
||
regno >= (sizeof (register_names) / sizeof (register_names[0])))
|
||
return NULL;
|
||
else
|
||
return register_names[regno];
|
||
}
|
||
|
||
static char *
|
||
sparc64_register_name (int regno)
|
||
{
|
||
static char *register_names[] =
|
||
{ "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
|
||
"o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
|
||
"l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
|
||
"i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
|
||
|
||
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
|
||
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
|
||
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
|
||
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
|
||
"f32", "f34", "f36", "f38", "f40", "f42", "f44", "f46",
|
||
"f48", "f50", "f52", "f54", "f56", "f58", "f60", "f62",
|
||
|
||
"pc", "npc", "ccr", "fsr", "fprs", "y", "asi", "ver",
|
||
"tick", "pil", "pstate", "tstate", "tba", "tl", "tt", "tpc",
|
||
"tnpc", "wstate", "cwp", "cansave", "canrestore", "cleanwin", "otherwin",
|
||
"asr16", "asr17", "asr18", "asr19", "asr20", "asr21", "asr22", "asr23",
|
||
"asr24", "asr25", "asr26", "asr27", "asr28", "asr29", "asr30", "asr31",
|
||
/* These are here at the end to simplify removing them if we have to. */
|
||
"icc", "xcc", "fcc0", "fcc1", "fcc2", "fcc3"
|
||
};
|
||
|
||
if (regno < 0 ||
|
||
regno >= (sizeof (register_names) / sizeof (register_names[0])))
|
||
return NULL;
|
||
else
|
||
return register_names[regno];
|
||
}
|
||
|
||
static char *
|
||
sparclite_register_name (int regno)
|
||
{
|
||
static char *register_names[] =
|
||
{ "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
|
||
"o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
|
||
"l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
|
||
"i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
|
||
|
||
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
|
||
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
|
||
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
|
||
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
|
||
|
||
"y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr",
|
||
"dia1", "dia2", "dda1", "dda2", "ddv1", "ddv2", "dcr", "dsr"
|
||
};
|
||
|
||
if (regno < 0 ||
|
||
regno >= (sizeof (register_names) / sizeof (register_names[0])))
|
||
return NULL;
|
||
else
|
||
return register_names[regno];
|
||
}
|
||
|
||
static char *
|
||
sparclet_register_name (int regno)
|
||
{
|
||
static char *register_names[] =
|
||
{ "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
|
||
"o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
|
||
"l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
|
||
"i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
|
||
|
||
"", "", "", "", "", "", "", "", /* no floating point registers */
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
|
||
"y", "psr", "wim", "tbr", "pc", "npc", "", "", /* no FPSR or CPSR */
|
||
"ccsr", "ccpr", "cccrcr", "ccor", "ccobr", "ccibr", "ccir", "",
|
||
|
||
/* ASR15 ASR19 (don't display them) */
|
||
"asr1", "", "asr17", "asr18", "", "asr20", "asr21", "asr22"
|
||
/* None of the rest get displayed */
|
||
#if 0
|
||
"awr0", "awr1", "awr2", "awr3", "awr4", "awr5", "awr6", "awr7",
|
||
"awr8", "awr9", "awr10", "awr11", "awr12", "awr13", "awr14", "awr15",
|
||
"awr16", "awr17", "awr18", "awr19", "awr20", "awr21", "awr22", "awr23",
|
||
"awr24", "awr25", "awr26", "awr27", "awr28", "awr29", "awr30", "awr31",
|
||
"apsr"
|
||
#endif /* 0 */
|
||
};
|
||
|
||
if (regno < 0 ||
|
||
regno >= (sizeof (register_names) / sizeof (register_names[0])))
|
||
return NULL;
|
||
else
|
||
return register_names[regno];
|
||
}
|
||
|
||
CORE_ADDR
|
||
sparc_push_return_address (CORE_ADDR pc_unused, CORE_ADDR sp)
|
||
{
|
||
if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
|
||
{
|
||
/* The return PC of the dummy_frame is the former 'current' PC
|
||
(where we were before we made the target function call).
|
||
This is saved in %i7 by push_dummy_frame.
|
||
|
||
We will save the 'call dummy location' (ie. the address
|
||
to which the target function will return) in %o7.
|
||
This address will actually be the program's entry point.
|
||
There will be a special call_dummy breakpoint there. */
|
||
|
||
write_register (O7_REGNUM,
|
||
CALL_DUMMY_ADDRESS () - 8);
|
||
}
|
||
|
||
return sp;
|
||
}
|
||
|
||
/* Should call_function allocate stack space for a struct return? */
|
||
|
||
static int
|
||
sparc64_use_struct_convention (int gcc_p, struct type *type)
|
||
{
|
||
return (TYPE_LENGTH (type) > 32);
|
||
}
|
||
|
||
/* Store the address of the place in which to copy the structure the
|
||
subroutine will return. This is called from call_function_by_hand.
|
||
The ultimate mystery is, tho, what is the value "16"?
|
||
|
||
MVS: That's the offset from where the sp is now, to where the
|
||
subroutine is gonna expect to find the struct return address. */
|
||
|
||
static void
|
||
sparc32_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
|
||
{
|
||
char *val;
|
||
CORE_ADDR o7;
|
||
|
||
val = alloca (SPARC_INTREG_SIZE);
|
||
store_unsigned_integer (val, SPARC_INTREG_SIZE, addr);
|
||
write_memory (sp + (16 * SPARC_INTREG_SIZE), val, SPARC_INTREG_SIZE);
|
||
|
||
if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
|
||
{
|
||
/* Now adjust the value of the link register, which was previously
|
||
stored by push_return_address. Functions that return structs are
|
||
peculiar in that they return to link register + 12, rather than
|
||
link register + 8. */
|
||
|
||
o7 = read_register (O7_REGNUM);
|
||
write_register (O7_REGNUM, o7 - 4);
|
||
}
|
||
}
|
||
|
||
static void
|
||
sparc64_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
|
||
{
|
||
/* FIXME: V9 uses %o0 for this. */
|
||
/* FIXME MVS: Only for small enough structs!!! */
|
||
|
||
target_write_memory (sp + (16 * SPARC_INTREG_SIZE),
|
||
(char *) &addr, SPARC_INTREG_SIZE);
|
||
#if 0
|
||
if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
|
||
{
|
||
/* Now adjust the value of the link register, which was previously
|
||
stored by push_return_address. Functions that return structs are
|
||
peculiar in that they return to link register + 12, rather than
|
||
link register + 8. */
|
||
|
||
write_register (O7_REGNUM, read_register (O7_REGNUM) - 4);
|
||
}
|
||
#endif
|
||
}
|
||
|
||
/* Default target data type for register REGNO. */
|
||
|
||
static struct type *
|
||
sparc32_register_virtual_type (int regno)
|
||
{
|
||
if (regno == PC_REGNUM ||
|
||
regno == FP_REGNUM ||
|
||
regno == SP_REGNUM)
|
||
return builtin_type_unsigned_int;
|
||
if (regno < 32)
|
||
return builtin_type_int;
|
||
if (regno < 64)
|
||
return builtin_type_float;
|
||
return builtin_type_int;
|
||
}
|
||
|
||
static struct type *
|
||
sparc64_register_virtual_type (int regno)
|
||
{
|
||
if (regno == PC_REGNUM ||
|
||
regno == FP_REGNUM ||
|
||
regno == SP_REGNUM)
|
||
return builtin_type_unsigned_long_long;
|
||
if (regno < 32)
|
||
return builtin_type_long_long;
|
||
if (regno < 64)
|
||
return builtin_type_float;
|
||
if (regno < 80)
|
||
return builtin_type_double;
|
||
return builtin_type_long_long;
|
||
}
|
||
|
||
/* Number of bytes of storage in the actual machine representation for
|
||
register REGNO. */
|
||
|
||
static int
|
||
sparc32_register_size (int regno)
|
||
{
|
||
return 4;
|
||
}
|
||
|
||
static int
|
||
sparc64_register_size (int regno)
|
||
{
|
||
return (regno < 32 ? 8 : regno < 64 ? 4 : 8);
|
||
}
|
||
|
||
/* Index within the `registers' buffer of the first byte of the space
|
||
for register REGNO. */
|
||
|
||
static int
|
||
sparc32_register_byte (int regno)
|
||
{
|
||
return (regno * 4);
|
||
}
|
||
|
||
static int
|
||
sparc64_register_byte (int regno)
|
||
{
|
||
if (regno < 32)
|
||
return regno * 8;
|
||
else if (regno < 64)
|
||
return 32 * 8 + (regno - 32) * 4;
|
||
else if (regno < 80)
|
||
return 32 * 8 + 32 * 4 + (regno - 64) * 8;
|
||
else
|
||
return 64 * 8 + (regno - 80) * 8;
|
||
}
|
||
|
||
/* Advance PC across any function entry prologue instructions to reach
|
||
some "real" code. SKIP_PROLOGUE_FRAMELESS_P advances the PC past
|
||
some of the prologue, but stops as soon as it knows that the
|
||
function has a frame. Its result is equal to its input PC if the
|
||
function is frameless, unequal otherwise. */
|
||
|
||
static CORE_ADDR
|
||
sparc_gdbarch_skip_prologue (CORE_ADDR ip)
|
||
{
|
||
return examine_prologue (ip, 0, NULL, NULL);
|
||
}
|
||
|
||
/* Immediately after a function call, return the saved pc.
|
||
Can't go through the frames for this because on some machines
|
||
the new frame is not set up until the new function executes
|
||
some instructions. */
|
||
|
||
static CORE_ADDR
|
||
sparc_saved_pc_after_call (struct frame_info *fi)
|
||
{
|
||
return sparc_pc_adjust (read_register (RP_REGNUM));
|
||
}
|
||
|
||
/* Convert registers between 'raw' and 'virtual' formats.
|
||
They are the same on sparc, so there's nothing to do. */
|
||
|
||
static void
|
||
sparc_convert_to_virtual (int regnum, struct type *type, char *from, char *to)
|
||
{ /* do nothing (should never be called) */
|
||
}
|
||
|
||
static void
|
||
sparc_convert_to_raw (struct type *type, int regnum, char *from, char *to)
|
||
{ /* do nothing (should never be called) */
|
||
}
|
||
|
||
/* Init saved regs: nothing to do, just a place-holder function. */
|
||
|
||
static void
|
||
sparc_frame_init_saved_regs (struct frame_info *fi_ignored)
|
||
{ /* no-op */
|
||
}
|
||
|
||
/* The frame address: stored in the 'frame' field of the frame_info. */
|
||
|
||
static CORE_ADDR
|
||
sparc_frame_address (struct frame_info *fi)
|
||
{
|
||
return fi->frame;
|
||
}
|
||
|
||
/* gdbarch fix call dummy:
|
||
All this function does is rearrange the arguments before calling
|
||
sparc_fix_call_dummy (which does the real work). */
|
||
|
||
static void
|
||
sparc_gdbarch_fix_call_dummy (char *dummy,
|
||
CORE_ADDR pc,
|
||
CORE_ADDR fun,
|
||
int nargs,
|
||
struct value **args,
|
||
struct type *type,
|
||
int gcc_p)
|
||
{
|
||
if (CALL_DUMMY_LOCATION == ON_STACK)
|
||
sparc_fix_call_dummy (dummy, pc, fun, type, gcc_p);
|
||
}
|
||
|
||
/* Coerce float to double: a no-op. */
|
||
|
||
static int
|
||
sparc_coerce_float_to_double (struct type *formal, struct type *actual)
|
||
{
|
||
return 1;
|
||
}
|
||
|
||
/* CALL_DUMMY_ADDRESS: fetch the breakpoint address for a call dummy. */
|
||
|
||
static CORE_ADDR
|
||
sparc_call_dummy_address (void)
|
||
{
|
||
return (CALL_DUMMY_START_OFFSET) + CALL_DUMMY_BREAKPOINT_OFFSET;
|
||
}
|
||
|
||
/* Supply the Y register number to those that need it. */
|
||
|
||
int
|
||
sparc_y_regnum (void)
|
||
{
|
||
return gdbarch_tdep (current_gdbarch)->y_regnum;
|
||
}
|
||
|
||
int
|
||
sparc_reg_struct_has_addr (int gcc_p, struct type *type)
|
||
{
|
||
if (GDB_TARGET_IS_SPARC64)
|
||
return (TYPE_LENGTH (type) > 32);
|
||
else
|
||
return (gcc_p != 1);
|
||
}
|
||
|
||
int
|
||
sparc_intreg_size (void)
|
||
{
|
||
return SPARC_INTREG_SIZE;
|
||
}
|
||
|
||
static int
|
||
sparc_return_value_on_stack (struct type *type)
|
||
{
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT &&
|
||
TYPE_LENGTH (type) > 8)
|
||
return 1;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* Gdbarch "constructor" function.
|
||
*/
|
||
|
||
#define SPARC32_CALL_DUMMY_ON_STACK
|
||
|
||
#define SPARC_SP_REGNUM 14
|
||
#define SPARC_FP_REGNUM 30
|
||
#define SPARC_FP0_REGNUM 32
|
||
#define SPARC32_NPC_REGNUM 69
|
||
#define SPARC32_PC_REGNUM 68
|
||
#define SPARC32_Y_REGNUM 64
|
||
#define SPARC64_PC_REGNUM 80
|
||
#define SPARC64_NPC_REGNUM 81
|
||
#define SPARC64_Y_REGNUM 85
|
||
|
||
static struct gdbarch *
|
||
sparc_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
||
{
|
||
struct gdbarch *gdbarch;
|
||
struct gdbarch_tdep *tdep;
|
||
|
||
static LONGEST call_dummy_32[] =
|
||
{ 0xbc100001, 0x9de38000, 0xbc100002, 0xbe100003,
|
||
0xda03a058, 0xd803a054, 0xd603a050, 0xd403a04c,
|
||
0xd203a048, 0x40000000, 0xd003a044, 0x01000000,
|
||
0x91d02001, 0x01000000
|
||
};
|
||
static LONGEST call_dummy_64[] =
|
||
{ 0x9de3bec0fd3fa7f7LL, 0xf93fa7eff53fa7e7LL,
|
||
0xf13fa7dfed3fa7d7LL, 0xe93fa7cfe53fa7c7LL,
|
||
0xe13fa7bfdd3fa7b7LL, 0xd93fa7afd53fa7a7LL,
|
||
0xd13fa79fcd3fa797LL, 0xc93fa78fc53fa787LL,
|
||
0xc13fa77fcc3fa777LL, 0xc83fa76fc43fa767LL,
|
||
0xc03fa75ffc3fa757LL, 0xf83fa74ff43fa747LL,
|
||
0xf03fa73f01000000LL, 0x0100000001000000LL,
|
||
0x0100000091580000LL, 0xd027a72b93500000LL,
|
||
0xd027a72791480000LL, 0xd027a72391400000LL,
|
||
0xd027a71fda5ba8a7LL, 0xd85ba89fd65ba897LL,
|
||
0xd45ba88fd25ba887LL, 0x9fc02000d05ba87fLL,
|
||
0x0100000091d02001LL, 0x0100000001000000LL
|
||
};
|
||
static LONGEST call_dummy_nil[] = {0};
|
||
|
||
/* First see if there is already a gdbarch that can satisfy the request. */
|
||
arches = gdbarch_list_lookup_by_info (arches, &info);
|
||
if (arches != NULL)
|
||
return arches->gdbarch;
|
||
|
||
/* None found: is the request for a sparc architecture? */
|
||
if (info.bfd_architecture != bfd_arch_sparc)
|
||
return NULL; /* No; then it's not for us. */
|
||
|
||
/* Yes: create a new gdbarch for the specified machine type. */
|
||
tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
|
||
gdbarch = gdbarch_alloc (&info, tdep);
|
||
|
||
/* First set settings that are common for all sparc architectures. */
|
||
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
|
||
set_gdbarch_breakpoint_from_pc (gdbarch, memory_breakpoint_from_pc);
|
||
set_gdbarch_coerce_float_to_double (gdbarch,
|
||
sparc_coerce_float_to_double);
|
||
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
|
||
set_gdbarch_call_dummy_p (gdbarch, 1);
|
||
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 1);
|
||
set_gdbarch_decr_pc_after_break (gdbarch, 0);
|
||
set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||
set_gdbarch_extract_struct_value_address (gdbarch,
|
||
sparc_extract_struct_value_address);
|
||
set_gdbarch_fix_call_dummy (gdbarch, sparc_gdbarch_fix_call_dummy);
|
||
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
set_gdbarch_fp_regnum (gdbarch, SPARC_FP_REGNUM);
|
||
set_gdbarch_fp0_regnum (gdbarch, SPARC_FP0_REGNUM);
|
||
set_gdbarch_frame_args_address (gdbarch, sparc_frame_address);
|
||
set_gdbarch_frame_chain (gdbarch, sparc_frame_chain);
|
||
set_gdbarch_frame_init_saved_regs (gdbarch, sparc_frame_init_saved_regs);
|
||
set_gdbarch_frame_locals_address (gdbarch, sparc_frame_address);
|
||
set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
|
||
set_gdbarch_frame_saved_pc (gdbarch, sparc_frame_saved_pc);
|
||
set_gdbarch_frameless_function_invocation (gdbarch,
|
||
frameless_look_for_prologue);
|
||
set_gdbarch_get_saved_register (gdbarch, sparc_get_saved_register);
|
||
set_gdbarch_ieee_float (gdbarch, 1);
|
||
set_gdbarch_init_extra_frame_info (gdbarch, sparc_init_extra_frame_info);
|
||
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
||
set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
|
||
set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||
set_gdbarch_max_register_raw_size (gdbarch, 8);
|
||
set_gdbarch_max_register_virtual_size (gdbarch, 8);
|
||
#ifdef DO_CALL_DUMMY_ON_STACK
|
||
set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack);
|
||
#else
|
||
set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
|
||
#endif
|
||
set_gdbarch_pop_frame (gdbarch, sparc_pop_frame);
|
||
set_gdbarch_push_return_address (gdbarch, sparc_push_return_address);
|
||
set_gdbarch_push_dummy_frame (gdbarch, sparc_push_dummy_frame);
|
||
set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
|
||
set_gdbarch_register_convert_to_raw (gdbarch, sparc_convert_to_raw);
|
||
set_gdbarch_register_convert_to_virtual (gdbarch,
|
||
sparc_convert_to_virtual);
|
||
set_gdbarch_register_convertible (gdbarch,
|
||
generic_register_convertible_not);
|
||
set_gdbarch_reg_struct_has_addr (gdbarch, sparc_reg_struct_has_addr);
|
||
set_gdbarch_return_value_on_stack (gdbarch, sparc_return_value_on_stack);
|
||
set_gdbarch_saved_pc_after_call (gdbarch, sparc_saved_pc_after_call);
|
||
set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
||
set_gdbarch_skip_prologue (gdbarch, sparc_gdbarch_skip_prologue);
|
||
set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM);
|
||
set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
|
||
set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
|
||
|
||
/*
|
||
* Settings that depend only on 32/64 bit word size
|
||
*/
|
||
|
||
switch (info.bfd_arch_info->mach)
|
||
{
|
||
case bfd_mach_sparc:
|
||
case bfd_mach_sparc_sparclet:
|
||
case bfd_mach_sparc_sparclite:
|
||
case bfd_mach_sparc_v8plus:
|
||
case bfd_mach_sparc_v8plusa:
|
||
case bfd_mach_sparc_sparclite_le:
|
||
/* 32-bit machine types: */
|
||
|
||
#ifdef SPARC32_CALL_DUMMY_ON_STACK
|
||
set_gdbarch_call_dummy_address (gdbarch, sparc_call_dummy_address);
|
||
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0x30);
|
||
set_gdbarch_call_dummy_length (gdbarch, 0x38);
|
||
set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
|
||
set_gdbarch_call_dummy_words (gdbarch, call_dummy_32);
|
||
#else
|
||
set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
|
||
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
|
||
set_gdbarch_call_dummy_length (gdbarch, 0);
|
||
set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
|
||
set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil);
|
||
#endif
|
||
set_gdbarch_call_dummy_stack_adjust (gdbarch, 68);
|
||
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
|
||
set_gdbarch_frame_args_skip (gdbarch, 68);
|
||
set_gdbarch_function_start_offset (gdbarch, 0);
|
||
set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
set_gdbarch_npc_regnum (gdbarch, SPARC32_NPC_REGNUM);
|
||
set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM);
|
||
set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
set_gdbarch_push_arguments (gdbarch, sparc32_push_arguments);
|
||
set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
|
||
set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
|
||
|
||
set_gdbarch_register_byte (gdbarch, sparc32_register_byte);
|
||
set_gdbarch_register_raw_size (gdbarch, sparc32_register_size);
|
||
set_gdbarch_register_size (gdbarch, 4);
|
||
set_gdbarch_register_virtual_size (gdbarch, sparc32_register_size);
|
||
set_gdbarch_register_virtual_type (gdbarch,
|
||
sparc32_register_virtual_type);
|
||
#ifdef SPARC32_CALL_DUMMY_ON_STACK
|
||
set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_32));
|
||
#else
|
||
set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
|
||
#endif
|
||
set_gdbarch_stack_align (gdbarch, sparc32_stack_align);
|
||
set_gdbarch_store_struct_return (gdbarch, sparc32_store_struct_return);
|
||
set_gdbarch_use_struct_convention (gdbarch,
|
||
generic_use_struct_convention);
|
||
set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
|
||
set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
|
||
tdep->y_regnum = SPARC32_Y_REGNUM;
|
||
tdep->fp_max_regnum = SPARC_FP0_REGNUM + 32;
|
||
tdep->intreg_size = 4;
|
||
tdep->reg_save_offset = 0x60;
|
||
tdep->call_dummy_call_offset = 0x24;
|
||
break;
|
||
|
||
case bfd_mach_sparc_v9:
|
||
case bfd_mach_sparc_v9a:
|
||
/* 64-bit machine types: */
|
||
default: /* Any new machine type is likely to be 64-bit. */
|
||
|
||
#ifdef SPARC64_CALL_DUMMY_ON_STACK
|
||
set_gdbarch_call_dummy_address (gdbarch, sparc_call_dummy_address);
|
||
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 8 * 4);
|
||
set_gdbarch_call_dummy_length (gdbarch, 192);
|
||
set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
|
||
set_gdbarch_call_dummy_start_offset (gdbarch, 148);
|
||
set_gdbarch_call_dummy_words (gdbarch, call_dummy_64);
|
||
#else
|
||
set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
|
||
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
|
||
set_gdbarch_call_dummy_length (gdbarch, 0);
|
||
set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
|
||
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
|
||
set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil);
|
||
#endif
|
||
set_gdbarch_call_dummy_stack_adjust (gdbarch, 128);
|
||
set_gdbarch_frame_args_skip (gdbarch, 136);
|
||
set_gdbarch_function_start_offset (gdbarch, 0);
|
||
set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||
set_gdbarch_npc_regnum (gdbarch, SPARC64_NPC_REGNUM);
|
||
set_gdbarch_pc_regnum (gdbarch, SPARC64_PC_REGNUM);
|
||
set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||
set_gdbarch_push_arguments (gdbarch, sparc64_push_arguments);
|
||
/* NOTE different for at_entry */
|
||
set_gdbarch_read_fp (gdbarch, sparc64_read_fp);
|
||
set_gdbarch_read_sp (gdbarch, sparc64_read_sp);
|
||
/* Some of the registers aren't 64 bits, but it's a lot simpler just
|
||
to assume they all are (since most of them are). */
|
||
set_gdbarch_register_byte (gdbarch, sparc64_register_byte);
|
||
set_gdbarch_register_raw_size (gdbarch, sparc64_register_size);
|
||
set_gdbarch_register_size (gdbarch, 8);
|
||
set_gdbarch_register_virtual_size (gdbarch, sparc64_register_size);
|
||
set_gdbarch_register_virtual_type (gdbarch,
|
||
sparc64_register_virtual_type);
|
||
#ifdef SPARC64_CALL_DUMMY_ON_STACK
|
||
set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_64));
|
||
#else
|
||
set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
|
||
#endif
|
||
set_gdbarch_stack_align (gdbarch, sparc64_stack_align);
|
||
set_gdbarch_store_struct_return (gdbarch, sparc64_store_struct_return);
|
||
set_gdbarch_use_struct_convention (gdbarch,
|
||
sparc64_use_struct_convention);
|
||
set_gdbarch_write_fp (gdbarch, sparc64_write_fp);
|
||
set_gdbarch_write_sp (gdbarch, sparc64_write_sp);
|
||
tdep->y_regnum = SPARC64_Y_REGNUM;
|
||
tdep->fp_max_regnum = SPARC_FP0_REGNUM + 48;
|
||
tdep->intreg_size = 8;
|
||
tdep->reg_save_offset = 0x90;
|
||
tdep->call_dummy_call_offset = 148 + 4 * 5;
|
||
break;
|
||
}
|
||
|
||
/*
|
||
* Settings that vary per-architecture:
|
||
*/
|
||
|
||
switch (info.bfd_arch_info->mach)
|
||
{
|
||
case bfd_mach_sparc:
|
||
set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value);
|
||
set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
|
||
set_gdbarch_num_regs (gdbarch, 72);
|
||
set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
|
||
set_gdbarch_register_name (gdbarch, sparc32_register_name);
|
||
set_gdbarch_store_return_value (gdbarch, sparc_store_return_value);
|
||
tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
|
||
tdep->fp_register_bytes = 32 * 4;
|
||
tdep->print_insn_mach = bfd_mach_sparc;
|
||
break;
|
||
case bfd_mach_sparc_sparclet:
|
||
set_gdbarch_extract_return_value (gdbarch,
|
||
sparclet_extract_return_value);
|
||
set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
|
||
set_gdbarch_num_regs (gdbarch, 32 + 32 + 8 + 8 + 8);
|
||
set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4 + 8*4);
|
||
set_gdbarch_register_name (gdbarch, sparclet_register_name);
|
||
set_gdbarch_store_return_value (gdbarch, sparclet_store_return_value);
|
||
tdep->has_fpu = 0; /* (all but sparclet and sparclite) */
|
||
tdep->fp_register_bytes = 0;
|
||
tdep->print_insn_mach = bfd_mach_sparc_sparclet;
|
||
break;
|
||
case bfd_mach_sparc_sparclite:
|
||
set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value);
|
||
set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
|
||
set_gdbarch_num_regs (gdbarch, 80);
|
||
set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4);
|
||
set_gdbarch_register_name (gdbarch, sparclite_register_name);
|
||
set_gdbarch_store_return_value (gdbarch, sparc_store_return_value);
|
||
tdep->has_fpu = 0; /* (all but sparclet and sparclite) */
|
||
tdep->fp_register_bytes = 0;
|
||
tdep->print_insn_mach = bfd_mach_sparc_sparclite;
|
||
break;
|
||
case bfd_mach_sparc_v8plus:
|
||
set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value);
|
||
set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
|
||
set_gdbarch_num_regs (gdbarch, 72);
|
||
set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
|
||
set_gdbarch_register_name (gdbarch, sparc32_register_name);
|
||
set_gdbarch_store_return_value (gdbarch, sparc_store_return_value);
|
||
tdep->print_insn_mach = bfd_mach_sparc;
|
||
tdep->fp_register_bytes = 32 * 4;
|
||
tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
|
||
break;
|
||
case bfd_mach_sparc_v8plusa:
|
||
set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value);
|
||
set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
|
||
set_gdbarch_num_regs (gdbarch, 72);
|
||
set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
|
||
set_gdbarch_register_name (gdbarch, sparc32_register_name);
|
||
set_gdbarch_store_return_value (gdbarch, sparc_store_return_value);
|
||
tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
|
||
tdep->fp_register_bytes = 32 * 4;
|
||
tdep->print_insn_mach = bfd_mach_sparc;
|
||
break;
|
||
case bfd_mach_sparc_sparclite_le:
|
||
set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value);
|
||
set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
|
||
set_gdbarch_num_regs (gdbarch, 80);
|
||
set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4);
|
||
set_gdbarch_register_name (gdbarch, sparclite_register_name);
|
||
set_gdbarch_store_return_value (gdbarch, sparc_store_return_value);
|
||
tdep->has_fpu = 0; /* (all but sparclet and sparclite) */
|
||
tdep->fp_register_bytes = 0;
|
||
tdep->print_insn_mach = bfd_mach_sparc_sparclite;
|
||
break;
|
||
case bfd_mach_sparc_v9:
|
||
set_gdbarch_extract_return_value (gdbarch, sparc64_extract_return_value);
|
||
set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
|
||
set_gdbarch_num_regs (gdbarch, 125);
|
||
set_gdbarch_register_bytes (gdbarch, 32*8 + 32*8 + 45*8);
|
||
set_gdbarch_register_name (gdbarch, sparc64_register_name);
|
||
set_gdbarch_store_return_value (gdbarch, sparc_store_return_value);
|
||
tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
|
||
tdep->fp_register_bytes = 64 * 4;
|
||
tdep->print_insn_mach = bfd_mach_sparc_v9a;
|
||
break;
|
||
case bfd_mach_sparc_v9a:
|
||
set_gdbarch_extract_return_value (gdbarch, sparc64_extract_return_value);
|
||
set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
|
||
set_gdbarch_num_regs (gdbarch, 125);
|
||
set_gdbarch_register_bytes (gdbarch, 32*8 + 32*8 + 45*8);
|
||
set_gdbarch_register_name (gdbarch, sparc64_register_name);
|
||
set_gdbarch_store_return_value (gdbarch, sparc_store_return_value);
|
||
tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
|
||
tdep->fp_register_bytes = 64 * 4;
|
||
tdep->print_insn_mach = bfd_mach_sparc_v9a;
|
||
break;
|
||
}
|
||
|
||
return gdbarch;
|
||
}
|
||
|