binutils-gdb/libctf/ctf-lookup.c
Jose E. Marchesi a0486bac41 libctf: fix a number of build problems found on Solaris and NetBSD
- Use of nonportable <endian.h>
- Use of qsort_r
- Use of zlib without appropriate magic to pull in the binutils zlib
- Use of off64_t without checking (fixed by dropping the unused fields
  that need off64_t entirely)
- signedness problems due to long being too short a type on 32-bit
  platforms: ctf_id_t is now 'unsigned long', and CTF_ERR must be
  used only for functions that return ctf_id_t
- One lingering use of bzero() and of <sys/errno.h>

All fixed, using code from gnulib where possible.

Relatedly, set cts_size in a couple of places it was missed
(string table and symbol table loading upon ctf_bfdopen()).

binutils/
	* objdump.c (make_ctfsect): Drop cts_type, cts_flags, and
	cts_offset.
	* readelf.c (shdr_to_ctf_sect): Likewise.
include/
	* ctf-api.h (ctf_sect_t): Drop cts_type, cts_flags, and cts_offset.
	(ctf_id_t): This is now an unsigned type.
	(CTF_ERR): Cast it to ctf_id_t.  Note that it should only be used
	for ctf_id_t-returning functions.
libctf/
	* Makefile.am (ZLIB): New.
	(ZLIBINC): Likewise.
	(AM_CFLAGS): Use them.
	(libctf_a_LIBADD): New, for LIBOBJS.
	* configure.ac: Check for zlib, endian.h, and qsort_r.
	* ctf-endian.h: New, providing htole64 and le64toh.
	* swap.h: Code style fixes.
	(bswap_identity_64): New.
	* qsort_r.c: New, from gnulib (with one added #include).
	* ctf-decls.h: New, providing a conditional qsort_r declaration,
	and unconditional definitions of MIN and MAX.
	* ctf-impl.h: Use it.  Do not use <sys/errno.h>.
	(ctf_set_errno): Now returns unsigned long.
	* ctf-util.c (ctf_set_errno): Adjust here too.
	* ctf-archive.c: Use ctf-endian.h.
	(ctf_arc_open_by_offset): Use memset, not bzero.  Drop cts_type,
	cts_flags and cts_offset.
	(ctf_arc_write): Drop debugging dependent on the size of off_t.
	* ctf-create.c: Provide a definition of roundup if not defined.
	(ctf_create): Drop cts_type, cts_flags and cts_offset.
	(ctf_add_reftype): Do not check if type IDs are below zero.
	(ctf_add_slice): Likewise.
	(ctf_add_typedef): Likewise.
	(ctf_add_member_offset): Cast error-returning ssize_t's to size_t
	when known error-free.  Drop CTF_ERR usage for functions returning
	int.
	(ctf_add_member_encoded): Drop CTF_ERR usage for functions returning
	int.
	(ctf_add_variable): Likewise.
	(enumcmp): Likewise.
	(enumadd): Likewise.
	(membcmp): Likewise.
	(ctf_add_type): Likewise.  Cast error-returning ssize_t's to size_t
	when known error-free.
	* ctf-dump.c (ctf_is_slice): Drop CTF_ERR usage for functions
	returning int: use CTF_ERR for functions returning ctf_type_id.
	(ctf_dump_label): Likewise.
	(ctf_dump_objts): Likewise.
	* ctf-labels.c (ctf_label_topmost): Likewise.
	(ctf_label_iter): Likewise.
	(ctf_label_info): Likewise.
	* ctf-lookup.c (ctf_func_args): Likewise.
	* ctf-open.c (upgrade_types): Cast to size_t where appropriate.
	(ctf_bufopen): Likewise.  Use zlib types as needed.
	* ctf-types.c (ctf_member_iter): Drop CTF_ERR usage for functions
	returning int.
	(ctf_enum_iter): Likewise.
	(ctf_type_size): Likewise.
	(ctf_type_align): Likewise.  Cast to size_t where appropriate.
	(ctf_type_kind_unsliced): Likewise.
	(ctf_type_kind): Likewise.
	(ctf_type_encoding): Likewise.
	(ctf_member_info): Likewise.
	(ctf_array_info): Likewise.
	(ctf_enum_value): Likewise.
	(ctf_type_rvisit): Likewise.
	* ctf-open-bfd.c (ctf_bfdopen): Drop cts_type, cts_flags and
	cts_offset.
	(ctf_simple_open): Likewise.
	(ctf_bfdopen_ctfsect): Likewise.  Set cts_size properly.
	* Makefile.in: Regenerate.
	* aclocal.m4: Likewise.
	* config.h: Likewise.
	* configure: Likewise.
2019-05-31 11:10:51 +02:00

428 lines
12 KiB
C

/* Type lookup.
Copyright (C) 2019 Free Software Foundation, Inc.
This file is part of libctf.
libctf is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not see
<http://www.gnu.org/licenses/>. */
#include <ctf-impl.h>
#include <elf.h>
#include <string.h>
/* Compare the given input string and length against a table of known C storage
qualifier keywords. We just ignore these in ctf_lookup_by_name, below. To
do this quickly, we use a pre-computed Perfect Hash Function similar to the
technique originally described in the classic paper:
R.J. Cichelli, "Minimal Perfect Hash Functions Made Simple",
Communications of the ACM, Volume 23, Issue 1, January 1980, pp. 17-19.
For an input string S of length N, we use hash H = S[N - 1] + N - 105, which
for the current set of qualifiers yields a unique H in the range [0 .. 20].
The hash can be modified when the keyword set changes as necessary. We also
store the length of each keyword and check it prior to the final strcmp().
TODO: just use gperf. */
static int
isqualifier (const char *s, size_t len)
{
static const struct qual
{
const char *q_name;
size_t q_len;
} qhash[] = {
{"static", 6}, {"", 0}, {"", 0}, {"", 0},
{"volatile", 8}, {"", 0}, {"", 0}, {"", 0}, {"", 0},
{"", 0}, {"auto", 4}, {"extern", 6}, {"", 0}, {"", 0},
{"", 0}, {"", 0}, {"const", 5}, {"register", 8},
{"", 0}, {"restrict", 8}, {"_Restrict", 9}
};
int h = s[len - 1] + (int) len - 105;
const struct qual *qp = &qhash[h];
return (h >= 0 && (size_t) h < sizeof (qhash) / sizeof (qhash[0])
&& (size_t) len == qp->q_len &&
strncmp (qp->q_name, s, qp->q_len) == 0);
}
/* Attempt to convert the given C type name into the corresponding CTF type ID.
It is not possible to do complete and proper conversion of type names
without implementing a more full-fledged parser, which is necessary to
handle things like types that are function pointers to functions that
have arguments that are function pointers, and fun stuff like that.
Instead, this function implements a very simple conversion algorithm that
finds the things that we actually care about: structs, unions, enums,
integers, floats, typedefs, and pointers to any of these named types. */
ctf_id_t
ctf_lookup_by_name (ctf_file_t *fp, const char *name)
{
static const char delimiters[] = " \t\n\r\v\f*";
const ctf_lookup_t *lp;
const char *p, *q, *end;
ctf_id_t type = 0;
ctf_id_t ntype, ptype;
if (name == NULL)
return (ctf_set_errno (fp, EINVAL));
for (p = name, end = name + strlen (name); *p != '\0'; p = q)
{
while (isspace (*p))
p++; /* Skip leading whitespace. */
if (p == end)
break;
if ((q = strpbrk (p + 1, delimiters)) == NULL)
q = end; /* Compare until end. */
if (*p == '*')
{
/* Find a pointer to type by looking in fp->ctf_ptrtab.
If we can't find a pointer to the given type, see if
we can compute a pointer to the type resulting from
resolving the type down to its base type and use
that instead. This helps with cases where the CTF
data includes "struct foo *" but not "foo_t *" and
the user tries to access "foo_t *" in the debugger.
TODO need to handle parent containers too. */
ntype = fp->ctf_ptrtab[LCTF_TYPE_TO_INDEX (fp, type)];
if (ntype == 0)
{
ntype = ctf_type_resolve_unsliced (fp, type);
if (ntype == CTF_ERR
|| (ntype =
fp->ctf_ptrtab[LCTF_TYPE_TO_INDEX (fp, ntype)]) == 0)
{
(void) ctf_set_errno (fp, ECTF_NOTYPE);
goto err;
}
}
type = LCTF_INDEX_TO_TYPE (fp, ntype, (fp->ctf_flags & LCTF_CHILD));
q = p + 1;
continue;
}
if (isqualifier (p, (size_t) (q - p)))
continue; /* Skip qualifier keyword. */
for (lp = fp->ctf_lookups; lp->ctl_prefix != NULL; lp++)
{
/* TODO: This is not MT-safe. */
if ((lp->ctl_prefix[0] == '\0' ||
strncmp (p, lp->ctl_prefix, (size_t) (q - p)) == 0) &&
(size_t) (q - p) >= lp->ctl_len)
{
for (p += lp->ctl_len; isspace (*p); p++)
continue; /* Skip prefix and next whitespace. */
if ((q = strchr (p, '*')) == NULL)
q = end; /* Compare until end. */
while (isspace (q[-1]))
q--; /* Exclude trailing whitespace. */
/* Expand and/or allocate storage for a slice of the name, then
copy it in. */
if (fp->ctf_tmp_typeslicelen >= (size_t) (q - p) + 1)
{
memcpy (fp->ctf_tmp_typeslice, p, (size_t) (q - p));
fp->ctf_tmp_typeslice[(size_t) (q - p)] = '\0';
}
else
{
free (fp->ctf_tmp_typeslice);
fp->ctf_tmp_typeslice = strndup (p, (size_t) (q - p));
if (fp->ctf_tmp_typeslice == NULL)
{
(void) ctf_set_errno (fp, ENOMEM);
return CTF_ERR;
}
}
if ((type = ctf_hash_lookup_type (lp->ctl_hash, fp,
fp->ctf_tmp_typeslice)) == 0)
{
(void) ctf_set_errno (fp, ECTF_NOTYPE);
goto err;
}
break;
}
}
if (lp->ctl_prefix == NULL)
{
(void) ctf_set_errno (fp, ECTF_NOTYPE);
goto err;
}
}
if (*p != '\0' || type == 0)
return (ctf_set_errno (fp, ECTF_SYNTAX));
return type;
err:
if (fp->ctf_parent != NULL
&& (ptype = ctf_lookup_by_name (fp->ctf_parent, name)) != CTF_ERR)
return ptype;
return CTF_ERR;
}
typedef struct ctf_lookup_var_key
{
ctf_file_t *clvk_fp;
const char *clvk_name;
} ctf_lookup_var_key_t;
/* A bsearch function for variable names. */
static int
ctf_lookup_var (const void *key_, const void *memb_)
{
const ctf_lookup_var_key_t *key = key_;
const ctf_varent_t *memb = memb_;
return (strcmp (key->clvk_name, ctf_strptr (key->clvk_fp, memb->ctv_name)));
}
/* Given a variable name, return the type of the variable with that name. */
ctf_id_t
ctf_lookup_variable (ctf_file_t *fp, const char *name)
{
ctf_varent_t *ent;
ctf_lookup_var_key_t key = { fp, name };
/* This array is sorted, so we can bsearch for it. */
ent = bsearch (&key, fp->ctf_vars, fp->ctf_nvars, sizeof (ctf_varent_t),
ctf_lookup_var);
if (ent == NULL)
{
if (fp->ctf_parent != NULL)
return ctf_lookup_variable (fp->ctf_parent, name);
return (ctf_set_errno (fp, ECTF_NOTYPEDAT));
}
return ent->ctv_type;
}
/* Given a symbol table index, return the name of that symbol from the secondary
string table, or the null string (never NULL). */
const char *
ctf_lookup_symbol_name (ctf_file_t *fp, unsigned long symidx)
{
const ctf_sect_t *sp = &fp->ctf_symtab;
Elf64_Sym sym, *gsp;
if (sp->cts_data == NULL)
{
ctf_set_errno (fp, ECTF_NOSYMTAB);
return _CTF_NULLSTR;
}
if (symidx >= fp->ctf_nsyms)
{
ctf_set_errno (fp, EINVAL);
return _CTF_NULLSTR;
}
if (sp->cts_entsize == sizeof (Elf32_Sym))
{
const Elf32_Sym *symp = (Elf32_Sym *) sp->cts_data + symidx;
gsp = ctf_sym_to_elf64 (symp, &sym);
}
else
gsp = (Elf64_Sym *) sp->cts_data + symidx;
if (gsp->st_name < fp->ctf_str[CTF_STRTAB_1].cts_len)
return (const char *) fp->ctf_str[CTF_STRTAB_1].cts_strs + gsp->st_name;
return _CTF_NULLSTR;
}
/* Given a symbol table index, return the type of the data object described
by the corresponding entry in the symbol table. */
ctf_id_t
ctf_lookup_by_symbol (ctf_file_t *fp, unsigned long symidx)
{
const ctf_sect_t *sp = &fp->ctf_symtab;
ctf_id_t type;
if (sp->cts_data == NULL)
return (ctf_set_errno (fp, ECTF_NOSYMTAB));
if (symidx >= fp->ctf_nsyms)
return (ctf_set_errno (fp, EINVAL));
if (sp->cts_entsize == sizeof (Elf32_Sym))
{
const Elf32_Sym *symp = (Elf32_Sym *) sp->cts_data + symidx;
if (ELF32_ST_TYPE (symp->st_info) != STT_OBJECT)
return (ctf_set_errno (fp, ECTF_NOTDATA));
}
else
{
const Elf64_Sym *symp = (Elf64_Sym *) sp->cts_data + symidx;
if (ELF64_ST_TYPE (symp->st_info) != STT_OBJECT)
return (ctf_set_errno (fp, ECTF_NOTDATA));
}
if (fp->ctf_sxlate[symidx] == -1u)
return (ctf_set_errno (fp, ECTF_NOTYPEDAT));
type = *(uint32_t *) ((uintptr_t) fp->ctf_buf + fp->ctf_sxlate[symidx]);
if (type == 0)
return (ctf_set_errno (fp, ECTF_NOTYPEDAT));
return type;
}
/* Return the pointer to the internal CTF type data corresponding to the
given type ID. If the ID is invalid, the function returns NULL.
This function is not exported outside of the library. */
const ctf_type_t *
ctf_lookup_by_id (ctf_file_t **fpp, ctf_id_t type)
{
ctf_file_t *fp = *fpp; /* Caller passes in starting CTF container. */
ctf_id_t idx;
if ((fp->ctf_flags & LCTF_CHILD) && LCTF_TYPE_ISPARENT (fp, type)
&& (fp = fp->ctf_parent) == NULL)
{
(void) ctf_set_errno (*fpp, ECTF_NOPARENT);
return NULL;
}
idx = LCTF_TYPE_TO_INDEX (fp, type);
if (idx > 0 && (unsigned long) idx <= fp->ctf_typemax)
{
*fpp = fp; /* Function returns ending CTF container. */
return (LCTF_INDEX_TO_TYPEPTR (fp, idx));
}
/* If this container is writable, check for a dynamic type. */
if (fp->ctf_flags & LCTF_RDWR)
{
ctf_dtdef_t *dtd;
if ((dtd = ctf_dynamic_type (fp, type)) != NULL)
{
*fpp = fp;
return &dtd->dtd_data;
}
}
(void) ctf_set_errno (*fpp, ECTF_BADID);
return NULL;
}
/* Given a symbol table index, return the info for the function described
by the corresponding entry in the symbol table. */
int
ctf_func_info (ctf_file_t *fp, unsigned long symidx, ctf_funcinfo_t *fip)
{
const ctf_sect_t *sp = &fp->ctf_symtab;
const uint32_t *dp;
uint32_t info, kind, n;
if (sp->cts_data == NULL)
return (ctf_set_errno (fp, ECTF_NOSYMTAB));
if (symidx >= fp->ctf_nsyms)
return (ctf_set_errno (fp, EINVAL));
if (sp->cts_entsize == sizeof (Elf32_Sym))
{
const Elf32_Sym *symp = (Elf32_Sym *) sp->cts_data + symidx;
if (ELF32_ST_TYPE (symp->st_info) != STT_FUNC)
return (ctf_set_errno (fp, ECTF_NOTFUNC));
}
else
{
const Elf64_Sym *symp = (Elf64_Sym *) sp->cts_data + symidx;
if (ELF64_ST_TYPE (symp->st_info) != STT_FUNC)
return (ctf_set_errno (fp, ECTF_NOTFUNC));
}
if (fp->ctf_sxlate[symidx] == -1u)
return (ctf_set_errno (fp, ECTF_NOFUNCDAT));
dp = (uint32_t *) ((uintptr_t) fp->ctf_buf + fp->ctf_sxlate[symidx]);
info = *dp++;
kind = LCTF_INFO_KIND (fp, info);
n = LCTF_INFO_VLEN (fp, info);
if (kind == CTF_K_UNKNOWN && n == 0)
return (ctf_set_errno (fp, ECTF_NOFUNCDAT));
if (kind != CTF_K_FUNCTION)
return (ctf_set_errno (fp, ECTF_CORRUPT));
fip->ctc_return = *dp++;
fip->ctc_argc = n;
fip->ctc_flags = 0;
if (n != 0 && dp[n - 1] == 0)
{
fip->ctc_flags |= CTF_FUNC_VARARG;
fip->ctc_argc--;
}
return 0;
}
/* Given a symbol table index, return the arguments for the function described
by the corresponding entry in the symbol table. */
int
ctf_func_args (ctf_file_t * fp, unsigned long symidx, uint32_t argc,
ctf_id_t * argv)
{
const uint32_t *dp;
ctf_funcinfo_t f;
if (ctf_func_info (fp, symidx, &f) < 0)
return -1; /* errno is set for us. */
/* The argument data is two uint32_t's past the translation table
offset: one for the function info, and one for the return type. */
dp = (uint32_t *) ((uintptr_t) fp->ctf_buf + fp->ctf_sxlate[symidx]) + 2;
for (argc = MIN (argc, f.ctc_argc); argc != 0; argc--)
*argv++ = *dp++;
return 0;
}