mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-27 03:51:15 +08:00
dda9cf662b
Fix the following common misspellings: ... addres -> address, adders behavour -> behavior, behaviour intented -> intended, indented ther -> there, their, the throught -> thought, through, throughout ... Tested on x86_64-linux.
1434 lines
43 KiB
C
1434 lines
43 KiB
C
/* Native support code for PPC AIX, for GDB the GNU debugger.
|
|
|
|
Copyright (C) 2006-2024 Free Software Foundation, Inc.
|
|
|
|
Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "extract-store-integer.h"
|
|
#include "osabi.h"
|
|
#include "regcache.h"
|
|
#include "regset.h"
|
|
#include "gdbtypes.h"
|
|
#include "gdbcore.h"
|
|
#include "target.h"
|
|
#include "value.h"
|
|
#include "infcall.h"
|
|
#include "objfiles.h"
|
|
#include "breakpoint.h"
|
|
#include "ppc-tdep.h"
|
|
#include "rs6000-aix-tdep.h"
|
|
#include "xcoffread.h"
|
|
#include "solib.h"
|
|
#include "solib-aix.h"
|
|
#include "target-float.h"
|
|
#include "gdbsupport/xml-utils.h"
|
|
#include "trad-frame.h"
|
|
#include "frame-unwind.h"
|
|
|
|
/* If the kernel has to deliver a signal, it pushes a sigcontext
|
|
structure on the stack and then calls the signal handler, passing
|
|
the address of the sigcontext in an argument register. Usually
|
|
the signal handler doesn't save this register, so we have to
|
|
access the sigcontext structure via an offset from the signal handler
|
|
frame.
|
|
The following constants were determined by experimentation on AIX 3.2.
|
|
|
|
sigcontext structure have the mstsave saved under the
|
|
sc_jmpbuf.jmp_context. STKMIN(minimum stack size) is 56 for 32-bit
|
|
processes, and iar offset under sc_jmpbuf.jmp_context is 40.
|
|
ie offsetof(struct sigcontext, sc_jmpbuf.jmp_context.iar).
|
|
so PC offset in this case is STKMIN+iar offset, which is 96. */
|
|
|
|
#define SIG_FRAME_PC_OFFSET 96
|
|
#define SIG_FRAME_LR_OFFSET 108
|
|
/* STKMIN+grp1 offset, which is 56+228=284 */
|
|
#define SIG_FRAME_FP_OFFSET 284
|
|
|
|
/* 64 bit process.
|
|
STKMIN64 is 112 and iar offset is 312. So 112+312=424 */
|
|
#define SIG_FRAME_LR_OFFSET64 424
|
|
/* STKMIN64+grp1 offset. 112+56=168 */
|
|
#define SIG_FRAME_FP_OFFSET64 168
|
|
|
|
/* Minimum possible text address in AIX. */
|
|
#define AIX_TEXT_SEGMENT_BASE 0x10000000
|
|
|
|
struct rs6000_aix_reg_vrreg_offset
|
|
{
|
|
int vr0_offset;
|
|
int vscr_offset;
|
|
int vrsave_offset;
|
|
};
|
|
|
|
static struct rs6000_aix_reg_vrreg_offset rs6000_aix_vrreg_offset =
|
|
{
|
|
/* AltiVec registers. */
|
|
32, /* vr0_offset */
|
|
544, /* vscr_offset. */
|
|
560 /* vrsave_offset */
|
|
};
|
|
|
|
static int
|
|
rs6000_aix_get_vrreg_offset (ppc_gdbarch_tdep *tdep,
|
|
const struct rs6000_aix_reg_vrreg_offset *offsets,
|
|
int regnum)
|
|
{
|
|
if (regnum >= tdep->ppc_vr0_regnum &&
|
|
regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
|
|
return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
|
|
|
|
if (regnum == tdep->ppc_vrsave_regnum - 1)
|
|
return offsets->vscr_offset;
|
|
|
|
if (regnum == tdep->ppc_vrsave_regnum)
|
|
return offsets->vrsave_offset;
|
|
|
|
return -1;
|
|
}
|
|
|
|
static void
|
|
rs6000_aix_supply_vrregset (const struct regset *regset, struct regcache *regcache,
|
|
int regnum, const void *vrregs, size_t len)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
const struct rs6000_aix_reg_vrreg_offset *offsets;
|
|
size_t offset;
|
|
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
|
if (!(tdep->ppc_vr0_regnum >= 0 && tdep->ppc_vrsave_regnum >= 0))
|
|
return;
|
|
|
|
offsets = (const struct rs6000_aix_reg_vrreg_offset *) regset->regmap;
|
|
if (regnum == -1)
|
|
{
|
|
int i;
|
|
|
|
for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
|
|
i < tdep->ppc_vr0_regnum + ppc_num_vrs;
|
|
i++, offset += 16)
|
|
ppc_supply_reg (regcache, i, (const gdb_byte *) vrregs, offset, 16);
|
|
|
|
ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
|
|
(const gdb_byte *) vrregs, offsets->vscr_offset, 4);
|
|
|
|
ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
|
|
(const gdb_byte *) vrregs, offsets->vrsave_offset, 4);
|
|
|
|
return;
|
|
}
|
|
offset = rs6000_aix_get_vrreg_offset (tdep, offsets, regnum);
|
|
if (regnum != tdep->ppc_vrsave_regnum &&
|
|
regnum != tdep->ppc_vrsave_regnum - 1)
|
|
ppc_supply_reg (regcache, regnum, (const gdb_byte *) vrregs, offset, 16);
|
|
else
|
|
ppc_supply_reg (regcache, regnum,
|
|
(const gdb_byte *) vrregs, offset, 4);
|
|
|
|
}
|
|
|
|
static void
|
|
rs6000_aix_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
|
|
int regnum, const void *vsxregs, size_t len)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
|
if (!(tdep->ppc_vsr0_regnum >= 0))
|
|
return;
|
|
|
|
if (regnum == -1)
|
|
{
|
|
int i, offset = 0;
|
|
|
|
for (i = tdep->ppc_vsr0_upper_regnum; i < tdep->ppc_vsr0_upper_regnum
|
|
+ 32; i++, offset += 8)
|
|
ppc_supply_reg (regcache, i, (const gdb_byte *) vsxregs, offset, 8);
|
|
|
|
return;
|
|
}
|
|
else
|
|
ppc_supply_reg (regcache, regnum, (const gdb_byte *) vsxregs, 0, 8);
|
|
}
|
|
|
|
static void
|
|
rs6000_aix_collect_vsxregset (const struct regset *regset,
|
|
const struct regcache *regcache,
|
|
int regnum, void *vsxregs, size_t len)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
|
if (!(tdep->ppc_vsr0_regnum >= 0))
|
|
return;
|
|
|
|
if (regnum == -1)
|
|
{
|
|
int i;
|
|
int offset = 0;
|
|
for (i = tdep->ppc_vsr0_upper_regnum; i < tdep->ppc_vsr0_upper_regnum
|
|
+ 32; i++, offset += 8)
|
|
ppc_collect_reg (regcache, i, (gdb_byte *) vsxregs, offset, 8);
|
|
|
|
return;
|
|
}
|
|
else
|
|
ppc_collect_reg (regcache, regnum, (gdb_byte *) vsxregs, 0, 8);
|
|
}
|
|
|
|
static void
|
|
rs6000_aix_collect_vrregset (const struct regset *regset,
|
|
const struct regcache *regcache,
|
|
int regnum, void *vrregs, size_t len)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
const struct rs6000_aix_reg_vrreg_offset *offsets;
|
|
size_t offset;
|
|
|
|
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
|
if (!(tdep->ppc_vr0_regnum >= 0 && tdep->ppc_vrsave_regnum >= 0))
|
|
return;
|
|
|
|
offsets = (const struct rs6000_aix_reg_vrreg_offset *) regset->regmap;
|
|
if (regnum == -1)
|
|
{
|
|
int i;
|
|
|
|
for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset; i <
|
|
tdep->ppc_vr0_regnum + ppc_num_vrs; i++, offset += 16)
|
|
ppc_collect_reg (regcache, i, (gdb_byte *) vrregs, offset, 16);
|
|
|
|
ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
|
|
(gdb_byte *) vrregs, offsets->vscr_offset, 4);
|
|
|
|
ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
|
|
(gdb_byte *) vrregs, offsets->vrsave_offset, 4);
|
|
|
|
return;
|
|
}
|
|
|
|
offset = rs6000_aix_get_vrreg_offset (tdep, offsets, regnum);
|
|
if (regnum != tdep->ppc_vrsave_regnum
|
|
&& regnum != tdep->ppc_vrsave_regnum - 1)
|
|
ppc_collect_reg (regcache, regnum, (gdb_byte *) vrregs, offset, 16);
|
|
else
|
|
ppc_collect_reg (regcache, regnum,
|
|
(gdb_byte *) vrregs, offset, 4);
|
|
}
|
|
|
|
static const struct regset rs6000_aix_vrregset = {
|
|
&rs6000_aix_vrreg_offset,
|
|
rs6000_aix_supply_vrregset,
|
|
rs6000_aix_collect_vrregset
|
|
};
|
|
|
|
static const struct regset rs6000_aix_vsxregset = {
|
|
&rs6000_aix_vrreg_offset,
|
|
rs6000_aix_supply_vsxregset,
|
|
rs6000_aix_collect_vsxregset
|
|
};
|
|
|
|
static struct trad_frame_cache *
|
|
aix_sighandle_frame_cache (const frame_info_ptr &this_frame,
|
|
void **this_cache)
|
|
{
|
|
LONGEST backchain;
|
|
CORE_ADDR base, base_orig, func;
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
struct trad_frame_cache *this_trad_cache;
|
|
|
|
if ((*this_cache) != NULL)
|
|
return (struct trad_frame_cache *) (*this_cache);
|
|
|
|
this_trad_cache = trad_frame_cache_zalloc (this_frame);
|
|
(*this_cache) = this_trad_cache;
|
|
|
|
base = get_frame_register_unsigned (this_frame,
|
|
gdbarch_sp_regnum (gdbarch));
|
|
base_orig = base;
|
|
|
|
if (tdep->wordsize == 4)
|
|
{
|
|
func = read_memory_unsigned_integer (base_orig +
|
|
SIG_FRAME_PC_OFFSET + 8,
|
|
tdep->wordsize, byte_order);
|
|
safe_read_memory_integer (base_orig + SIG_FRAME_FP_OFFSET + 8,
|
|
tdep->wordsize, byte_order, &backchain);
|
|
base = (CORE_ADDR)backchain;
|
|
}
|
|
else
|
|
{
|
|
func = read_memory_unsigned_integer (base_orig +
|
|
SIG_FRAME_LR_OFFSET64,
|
|
tdep->wordsize, byte_order);
|
|
safe_read_memory_integer (base_orig + SIG_FRAME_FP_OFFSET64,
|
|
tdep->wordsize, byte_order, &backchain);
|
|
base = (CORE_ADDR)backchain;
|
|
}
|
|
|
|
trad_frame_set_reg_value (this_trad_cache, gdbarch_pc_regnum (gdbarch), func);
|
|
trad_frame_set_reg_value (this_trad_cache, gdbarch_sp_regnum (gdbarch), base);
|
|
|
|
if (tdep->wordsize == 4)
|
|
trad_frame_set_reg_addr (this_trad_cache, tdep->ppc_lr_regnum,
|
|
base_orig + 0x38 + 52 + 8);
|
|
else
|
|
trad_frame_set_reg_addr (this_trad_cache, tdep->ppc_lr_regnum,
|
|
base_orig + 0x70 + 320);
|
|
|
|
trad_frame_set_id (this_trad_cache, frame_id_build (base, func));
|
|
trad_frame_set_this_base (this_trad_cache, base);
|
|
|
|
return this_trad_cache;
|
|
}
|
|
|
|
static void
|
|
aix_sighandle_frame_this_id (const frame_info_ptr &this_frame,
|
|
void **this_prologue_cache,
|
|
struct frame_id *this_id)
|
|
{
|
|
struct trad_frame_cache *this_trad_cache
|
|
= aix_sighandle_frame_cache (this_frame, this_prologue_cache);
|
|
trad_frame_get_id (this_trad_cache, this_id);
|
|
}
|
|
|
|
static struct value *
|
|
aix_sighandle_frame_prev_register (const frame_info_ptr &this_frame,
|
|
void **this_prologue_cache, int regnum)
|
|
{
|
|
struct trad_frame_cache *this_trad_cache
|
|
= aix_sighandle_frame_cache (this_frame, this_prologue_cache);
|
|
return trad_frame_get_register (this_trad_cache, this_frame, regnum);
|
|
}
|
|
|
|
static int
|
|
aix_sighandle_frame_sniffer (const struct frame_unwind *self,
|
|
const frame_info_ptr &this_frame,
|
|
void **this_prologue_cache)
|
|
{
|
|
CORE_ADDR pc = get_frame_pc (this_frame);
|
|
if (pc && pc < AIX_TEXT_SEGMENT_BASE)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* AIX signal handler frame unwinder */
|
|
|
|
static const struct frame_unwind aix_sighandle_frame_unwind = {
|
|
"rs6000 aix sighandle",
|
|
SIGTRAMP_FRAME,
|
|
default_frame_unwind_stop_reason,
|
|
aix_sighandle_frame_this_id,
|
|
aix_sighandle_frame_prev_register,
|
|
NULL,
|
|
aix_sighandle_frame_sniffer
|
|
};
|
|
|
|
/* Core file support. */
|
|
|
|
static struct ppc_reg_offsets rs6000_aix32_reg_offsets =
|
|
{
|
|
/* General-purpose registers. */
|
|
208, /* r0_offset */
|
|
4, /* gpr_size */
|
|
4, /* xr_size */
|
|
24, /* pc_offset */
|
|
28, /* ps_offset */
|
|
32, /* cr_offset */
|
|
36, /* lr_offset */
|
|
40, /* ctr_offset */
|
|
44, /* xer_offset */
|
|
48, /* mq_offset */
|
|
|
|
/* Floating-point registers. */
|
|
336, /* f0_offset */
|
|
56, /* fpscr_offset */
|
|
4 /* fpscr_size */
|
|
};
|
|
|
|
static struct ppc_reg_offsets rs6000_aix64_reg_offsets =
|
|
{
|
|
/* General-purpose registers. */
|
|
0, /* r0_offset */
|
|
8, /* gpr_size */
|
|
4, /* xr_size */
|
|
264, /* pc_offset */
|
|
256, /* ps_offset */
|
|
288, /* cr_offset */
|
|
272, /* lr_offset */
|
|
280, /* ctr_offset */
|
|
292, /* xer_offset */
|
|
-1, /* mq_offset */
|
|
|
|
/* Floating-point registers. */
|
|
312, /* f0_offset */
|
|
296, /* fpscr_offset */
|
|
4 /* fpscr_size */
|
|
};
|
|
|
|
|
|
/* Supply register REGNUM in the general-purpose register set REGSET
|
|
from the buffer specified by GREGS and LEN to register cache
|
|
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
|
|
|
|
static void
|
|
rs6000_aix_supply_regset (const struct regset *regset,
|
|
struct regcache *regcache, int regnum,
|
|
const void *gregs, size_t len)
|
|
{
|
|
ppc_supply_gregset (regset, regcache, regnum, gregs, len);
|
|
ppc_supply_fpregset (regset, regcache, regnum, gregs, len);
|
|
}
|
|
|
|
/* Collect register REGNUM in the general-purpose register set
|
|
REGSET, from register cache REGCACHE into the buffer specified by
|
|
GREGS and LEN. If REGNUM is -1, do this for all registers in
|
|
REGSET. */
|
|
|
|
static void
|
|
rs6000_aix_collect_regset (const struct regset *regset,
|
|
const struct regcache *regcache, int regnum,
|
|
void *gregs, size_t len)
|
|
{
|
|
ppc_collect_gregset (regset, regcache, regnum, gregs, len);
|
|
ppc_collect_fpregset (regset, regcache, regnum, gregs, len);
|
|
}
|
|
|
|
/* AIX register set. */
|
|
|
|
static const struct regset rs6000_aix32_regset =
|
|
{
|
|
&rs6000_aix32_reg_offsets,
|
|
rs6000_aix_supply_regset,
|
|
rs6000_aix_collect_regset,
|
|
};
|
|
|
|
static const struct regset rs6000_aix64_regset =
|
|
{
|
|
&rs6000_aix64_reg_offsets,
|
|
rs6000_aix_supply_regset,
|
|
rs6000_aix_collect_regset,
|
|
};
|
|
|
|
/* Iterate over core file register note sections. */
|
|
|
|
static void
|
|
rs6000_aix_iterate_over_regset_sections (struct gdbarch *gdbarch,
|
|
iterate_over_regset_sections_cb *cb,
|
|
void *cb_data,
|
|
const struct regcache *regcache)
|
|
{
|
|
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
|
int have_altivec = tdep->ppc_vr0_regnum != -1;
|
|
int have_vsx = tdep->ppc_vsr0_upper_regnum != -1;
|
|
|
|
if (tdep->wordsize == 4)
|
|
cb (".reg", 592, 592, &rs6000_aix32_regset, NULL, cb_data);
|
|
else
|
|
cb (".reg", 576, 576, &rs6000_aix64_regset, NULL, cb_data);
|
|
|
|
if (have_altivec)
|
|
cb (".aix-vmx", 560, 560, &rs6000_aix_vrregset, "AIX altivec", cb_data);
|
|
|
|
if (have_vsx)
|
|
cb (".aix-vsx", 256, 256, &rs6000_aix_vsxregset, "AIX vsx", cb_data);
|
|
|
|
}
|
|
|
|
/* Read core file description for AIX. */
|
|
|
|
static const struct target_desc *
|
|
ppc_aix_core_read_description (struct gdbarch *gdbarch,
|
|
struct target_ops *target,
|
|
bfd *abfd)
|
|
{
|
|
asection *altivec = bfd_get_section_by_name (abfd, ".aix-vmx");
|
|
asection *vsx = bfd_get_section_by_name (abfd, ".aix-vsx");
|
|
asection *section = bfd_get_section_by_name (abfd, ".reg");
|
|
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
|
|
|
if (!section)
|
|
return NULL;
|
|
|
|
int arch64 = 0;
|
|
if (tdep->wordsize == 8)
|
|
arch64 = 1;
|
|
|
|
if (vsx && arch64)
|
|
return tdesc_powerpc_vsx64;
|
|
else if (vsx && !arch64)
|
|
return tdesc_powerpc_vsx32;
|
|
else if (altivec && arch64)
|
|
return tdesc_powerpc_altivec64;
|
|
else if (altivec && !arch64)
|
|
return tdesc_powerpc_altivec32;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Pass the arguments in either registers, or in the stack. In RS/6000,
|
|
the first eight words of the argument list (that might be less than
|
|
eight parameters if some parameters occupy more than one word) are
|
|
passed in r3..r10 registers. Float and double parameters are
|
|
passed in fpr's, in addition to that. Rest of the parameters if any
|
|
are passed in user stack. There might be cases in which half of the
|
|
parameter is copied into registers, the other half is pushed into
|
|
stack.
|
|
|
|
Stack must be aligned on 64-bit boundaries when synthesizing
|
|
function calls.
|
|
|
|
If the function is returning a structure, then the return address is passed
|
|
in r3, then the first 7 words of the parameters can be passed in registers,
|
|
starting from r4. */
|
|
|
|
static CORE_ADDR
|
|
rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
|
function_call_return_method return_method,
|
|
CORE_ADDR struct_addr)
|
|
{
|
|
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int ii;
|
|
int len = 0;
|
|
int argno; /* current argument number */
|
|
int argbytes; /* current argument byte */
|
|
gdb_byte tmp_buffer[50];
|
|
int f_argno = 0; /* current floating point argno */
|
|
int wordsize = tdep->wordsize;
|
|
CORE_ADDR func_addr = find_function_addr (function, NULL);
|
|
|
|
struct value *arg = 0;
|
|
struct type *type;
|
|
|
|
ULONGEST saved_sp;
|
|
|
|
/* The calling convention this function implements assumes the
|
|
processor has floating-point registers. We shouldn't be using it
|
|
on PPC variants that lack them. */
|
|
gdb_assert (ppc_floating_point_unit_p (gdbarch));
|
|
|
|
/* The first eight words of the arguments are passed in registers.
|
|
Copy them appropriately. */
|
|
ii = 0;
|
|
|
|
/* If the function is returning a `struct', then the first word
|
|
(which will be passed in r3) is used for struct return address.
|
|
In that case we should advance one word and start from r4
|
|
register to copy parameters. */
|
|
if (return_method == return_method_struct)
|
|
{
|
|
regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
|
|
struct_addr);
|
|
ii++;
|
|
}
|
|
|
|
/* effectively indirect call... gcc does...
|
|
|
|
return_val example( float, int);
|
|
|
|
eabi:
|
|
float in fp0, int in r3
|
|
offset of stack on overflow 8/16
|
|
for varargs, must go by type.
|
|
power open:
|
|
float in r3&r4, int in r5
|
|
offset of stack on overflow different
|
|
both:
|
|
return in r3 or f0. If no float, must study how gcc emulates floats;
|
|
pay attention to arg promotion.
|
|
User may have to cast\args to handle promotion correctly
|
|
since gdb won't know if prototype supplied or not. */
|
|
|
|
for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
|
|
{
|
|
int reg_size = register_size (gdbarch, ii + 3);
|
|
|
|
arg = args[argno];
|
|
type = check_typedef (arg->type ());
|
|
len = type->length ();
|
|
|
|
if (type->code () == TYPE_CODE_FLT)
|
|
{
|
|
/* Floating point arguments are passed in fpr's, as well as gpr's.
|
|
There are 13 fpr's reserved for passing parameters. At this point
|
|
there is no way we would run out of them.
|
|
|
|
Always store the floating point value using the register's
|
|
floating-point format. */
|
|
const int fp_regnum = tdep->ppc_fp0_regnum + 1 + f_argno;
|
|
gdb_byte reg_val[PPC_MAX_REGISTER_SIZE];
|
|
struct type *reg_type = register_type (gdbarch, fp_regnum);
|
|
|
|
gdb_assert (len <= 8);
|
|
|
|
target_float_convert (arg->contents ().data (), type, reg_val,
|
|
reg_type);
|
|
regcache->cooked_write (fp_regnum, reg_val);
|
|
++f_argno;
|
|
}
|
|
|
|
if (len > reg_size)
|
|
{
|
|
|
|
/* Argument takes more than one register. */
|
|
while (argbytes < len)
|
|
{
|
|
gdb_byte word[PPC_MAX_REGISTER_SIZE];
|
|
memset (word, 0, reg_size);
|
|
memcpy (word,
|
|
((char *) arg->contents ().data ()) + argbytes,
|
|
(len - argbytes) > reg_size
|
|
? reg_size : len - argbytes);
|
|
regcache->cooked_write (tdep->ppc_gp0_regnum + 3 + ii, word);
|
|
++ii, argbytes += reg_size;
|
|
|
|
if (ii >= 8)
|
|
goto ran_out_of_registers_for_arguments;
|
|
}
|
|
argbytes = 0;
|
|
--ii;
|
|
}
|
|
else
|
|
{
|
|
/* Argument can fit in one register. No problem. */
|
|
gdb_byte word[PPC_MAX_REGISTER_SIZE];
|
|
|
|
memset (word, 0, reg_size);
|
|
if (type->code () == TYPE_CODE_INT
|
|
|| type->code () == TYPE_CODE_ENUM
|
|
|| type->code () == TYPE_CODE_BOOL
|
|
|| type->code () == TYPE_CODE_CHAR)
|
|
/* Sign or zero extend the "int" into a "word". */
|
|
store_unsigned_integer (word, reg_size, byte_order,
|
|
unpack_long (type, arg->contents ().data ()));
|
|
else
|
|
memcpy (word, arg->contents ().data (), len);
|
|
regcache->cooked_write (tdep->ppc_gp0_regnum + 3 +ii, word);
|
|
}
|
|
++argno;
|
|
}
|
|
|
|
ran_out_of_registers_for_arguments:
|
|
|
|
regcache_cooked_read_unsigned (regcache,
|
|
gdbarch_sp_regnum (gdbarch),
|
|
&saved_sp);
|
|
|
|
/* Location for 8 parameters are always reserved. */
|
|
sp -= wordsize * 8;
|
|
|
|
/* Another six words for back chain, TOC register, link register, etc. */
|
|
sp -= wordsize * 6;
|
|
|
|
/* Stack pointer must be quadword aligned. */
|
|
sp &= -16;
|
|
|
|
/* If there are more arguments, allocate space for them in
|
|
the stack, then push them starting from the ninth one. */
|
|
|
|
if ((argno < nargs) || argbytes)
|
|
{
|
|
int space = 0, jj;
|
|
|
|
if (argbytes)
|
|
{
|
|
space += ((len - argbytes + wordsize -1) & -wordsize);
|
|
jj = argno + 1;
|
|
}
|
|
else
|
|
jj = argno;
|
|
|
|
for (; jj < nargs; ++jj)
|
|
{
|
|
struct value *val = args[jj];
|
|
space += ((val->type ()->length () + wordsize -1) & -wordsize);
|
|
}
|
|
|
|
/* Add location required for the rest of the parameters. */
|
|
space = (space + 15) & -16;
|
|
sp -= space;
|
|
|
|
/* This is another instance we need to be concerned about
|
|
securing our stack space. If we write anything underneath %sp
|
|
(r1), we might conflict with the kernel who thinks he is free
|
|
to use this area. So, update %sp first before doing anything
|
|
else. */
|
|
|
|
regcache_raw_write_signed (regcache,
|
|
gdbarch_sp_regnum (gdbarch), sp);
|
|
|
|
/* If the last argument copied into the registers didn't fit there
|
|
completely, push the rest of it into stack. */
|
|
|
|
if (argbytes)
|
|
{
|
|
write_memory (sp + 6 * wordsize + (ii * wordsize),
|
|
arg->contents ().data () + argbytes,
|
|
len - argbytes);
|
|
++argno;
|
|
ii += ((len - argbytes + wordsize - 1) & -wordsize) / wordsize;
|
|
}
|
|
|
|
/* Push the rest of the arguments into stack. */
|
|
for (; argno < nargs; ++argno)
|
|
{
|
|
|
|
arg = args[argno];
|
|
type = check_typedef (arg->type ());
|
|
len = type->length ();
|
|
|
|
|
|
/* Float types should be passed in fpr's, as well as in the
|
|
stack. */
|
|
if (type->code () == TYPE_CODE_FLT && f_argno < 13)
|
|
{
|
|
|
|
gdb_assert (len <= 8);
|
|
|
|
regcache->cooked_write (tdep->ppc_fp0_regnum + 1 + f_argno,
|
|
arg->contents ().data ());
|
|
++f_argno;
|
|
}
|
|
|
|
if (type->code () == TYPE_CODE_INT
|
|
|| type->code () == TYPE_CODE_ENUM
|
|
|| type->code () == TYPE_CODE_BOOL
|
|
|| type->code () == TYPE_CODE_CHAR )
|
|
{
|
|
gdb_byte word[PPC_MAX_REGISTER_SIZE];
|
|
memset (word, 0, PPC_MAX_REGISTER_SIZE);
|
|
store_unsigned_integer (word, tdep->wordsize, byte_order,
|
|
unpack_long (type, arg->contents ().data ()));
|
|
write_memory (sp + 6 * wordsize + (ii * wordsize), word, PPC_MAX_REGISTER_SIZE);
|
|
}
|
|
else
|
|
write_memory (sp + 6 * wordsize + (ii * wordsize), arg->contents ().data (), len);
|
|
ii += ((len + wordsize -1) & -wordsize) / wordsize;
|
|
}
|
|
}
|
|
|
|
/* Set the stack pointer. According to the ABI, the SP is meant to
|
|
be set _before_ the corresponding stack space is used. On AIX,
|
|
this even applies when the target has been completely stopped!
|
|
Not doing this can lead to conflicts with the kernel which thinks
|
|
that it still has control over this not-yet-allocated stack
|
|
region. */
|
|
regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
|
|
|
|
/* Set back chain properly. */
|
|
store_unsigned_integer (tmp_buffer, wordsize, byte_order, saved_sp);
|
|
write_memory (sp, tmp_buffer, wordsize);
|
|
|
|
/* Point the inferior function call's return address at the dummy's
|
|
breakpoint. */
|
|
regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
|
|
|
|
/* Set the TOC register value. */
|
|
regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum,
|
|
solib_aix_get_toc_value (func_addr));
|
|
|
|
target_store_registers (regcache, -1);
|
|
return sp;
|
|
}
|
|
|
|
static enum return_value_convention
|
|
rs6000_return_value (struct gdbarch *gdbarch, struct value *function,
|
|
struct type *valtype, struct regcache *regcache,
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
|
{
|
|
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
|
|
/* The calling convention this function implements assumes the
|
|
processor has floating-point registers. We shouldn't be using it
|
|
on PowerPC variants that lack them. */
|
|
gdb_assert (ppc_floating_point_unit_p (gdbarch));
|
|
|
|
/* AltiVec extension: Functions that declare a vector data type as a
|
|
return value place that return value in VR2. */
|
|
if (valtype->code () == TYPE_CODE_ARRAY && valtype->is_vector ()
|
|
&& valtype->length () == 16)
|
|
{
|
|
if (readbuf)
|
|
regcache->cooked_read (tdep->ppc_vr0_regnum + 2, readbuf);
|
|
if (writebuf)
|
|
regcache->cooked_write (tdep->ppc_vr0_regnum + 2, writebuf);
|
|
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
|
|
/* If the called subprogram returns an aggregate, there exists an
|
|
implicit first argument, whose value is the address of a caller-
|
|
allocated buffer into which the callee is assumed to store its
|
|
return value. All explicit parameters are appropriately
|
|
relabeled. */
|
|
if (valtype->code () == TYPE_CODE_STRUCT
|
|
|| valtype->code () == TYPE_CODE_UNION
|
|
|| valtype->code () == TYPE_CODE_ARRAY)
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
|
|
/* Scalar floating-point values are returned in FPR1 for float or
|
|
double, and in FPR1:FPR2 for quadword precision. Fortran
|
|
complex*8 and complex*16 are returned in FPR1:FPR2, and
|
|
complex*32 is returned in FPR1:FPR4. */
|
|
if (valtype->code () == TYPE_CODE_FLT
|
|
&& (valtype->length () == 4 || valtype->length () == 8))
|
|
{
|
|
struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
|
|
gdb_byte regval[8];
|
|
|
|
/* FIXME: kettenis/2007-01-01: Add support for quadword
|
|
precision and complex. */
|
|
|
|
if (readbuf)
|
|
{
|
|
regcache->cooked_read (tdep->ppc_fp0_regnum + 1, regval);
|
|
target_float_convert (regval, regtype, readbuf, valtype);
|
|
}
|
|
if (writebuf)
|
|
{
|
|
target_float_convert (writebuf, valtype, regval, regtype);
|
|
regcache->cooked_write (tdep->ppc_fp0_regnum + 1, regval);
|
|
}
|
|
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
|
|
/* Values of the types int, long, short, pointer, and char (length
|
|
is less than or equal to four bytes), as well as bit values of
|
|
lengths less than or equal to 32 bits, must be returned right
|
|
justified in GPR3 with signed values sign extended and unsigned
|
|
values zero extended, as necessary. */
|
|
if (valtype->length () <= tdep->wordsize)
|
|
{
|
|
if (readbuf)
|
|
{
|
|
ULONGEST regval;
|
|
|
|
/* For reading we don't have to worry about sign extension. */
|
|
regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
|
|
®val);
|
|
store_unsigned_integer (readbuf, valtype->length (), byte_order,
|
|
regval);
|
|
}
|
|
if (writebuf)
|
|
{
|
|
/* For writing, use unpack_long since that should handle any
|
|
required sign extension. */
|
|
regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
|
|
unpack_long (valtype, writebuf));
|
|
}
|
|
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
|
|
/* Eight-byte non-floating-point scalar values must be returned in
|
|
GPR3:GPR4. */
|
|
|
|
if (valtype->length () == 8)
|
|
{
|
|
gdb_assert (valtype->code () != TYPE_CODE_FLT);
|
|
gdb_assert (tdep->wordsize == 4);
|
|
|
|
if (readbuf)
|
|
{
|
|
gdb_byte regval[8];
|
|
|
|
regcache->cooked_read (tdep->ppc_gp0_regnum + 3, regval);
|
|
regcache->cooked_read (tdep->ppc_gp0_regnum + 4, regval + 4);
|
|
memcpy (readbuf, regval, 8);
|
|
}
|
|
if (writebuf)
|
|
{
|
|
regcache->cooked_write (tdep->ppc_gp0_regnum + 3, writebuf);
|
|
regcache->cooked_write (tdep->ppc_gp0_regnum + 4, writebuf + 4);
|
|
}
|
|
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
}
|
|
|
|
/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
|
|
|
|
Usually a function pointer's representation is simply the address
|
|
of the function. On the RS/6000 however, a function pointer is
|
|
represented by a pointer to an OPD entry. This OPD entry contains
|
|
three words, the first word is the address of the function, the
|
|
second word is the TOC pointer (r2), and the third word is the
|
|
static chain value. Throughout GDB it is currently assumed that a
|
|
function pointer contains the address of the function, which is not
|
|
easy to fix. In addition, the conversion of a function address to
|
|
a function pointer would require allocation of an OPD entry in the
|
|
inferior's memory space, with all its drawbacks. To be able to
|
|
call C++ virtual methods in the inferior (which are called via
|
|
function pointers), find_function_addr uses this function to get the
|
|
function address from a function pointer. */
|
|
|
|
/* Return real function address if ADDR (a function pointer) is in the data
|
|
space and is therefore a special function pointer. */
|
|
|
|
static CORE_ADDR
|
|
rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
|
|
CORE_ADDR addr,
|
|
struct target_ops *targ)
|
|
{
|
|
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
struct obj_section *s;
|
|
|
|
s = find_pc_section (addr);
|
|
|
|
/* Normally, functions live inside a section that is executable.
|
|
So, if ADDR points to a non-executable section, then treat it
|
|
as a function descriptor and return the target address iff
|
|
the target address itself points to a section that is executable. */
|
|
if (s && (s->the_bfd_section->flags & SEC_CODE) == 0)
|
|
{
|
|
CORE_ADDR pc = 0;
|
|
struct obj_section *pc_section;
|
|
|
|
try
|
|
{
|
|
pc = read_memory_unsigned_integer (addr, tdep->wordsize, byte_order);
|
|
}
|
|
catch (const gdb_exception_error &e)
|
|
{
|
|
/* An error occurred during reading. Probably a memory error
|
|
due to the section not being loaded yet. This address
|
|
cannot be a function descriptor. */
|
|
return addr;
|
|
}
|
|
|
|
pc_section = find_pc_section (pc);
|
|
|
|
if (pc_section && (pc_section->the_bfd_section->flags & SEC_CODE))
|
|
return pc;
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
|
|
/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
|
|
|
|
static CORE_ADDR
|
|
branch_dest (struct regcache *regcache, int opcode, int instr,
|
|
CORE_ADDR pc, CORE_ADDR safety)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
CORE_ADDR dest;
|
|
int immediate;
|
|
int absolute;
|
|
int ext_op;
|
|
|
|
absolute = (int) ((instr >> 1) & 1);
|
|
|
|
switch (opcode)
|
|
{
|
|
case 18:
|
|
immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
|
|
if (absolute)
|
|
dest = immediate;
|
|
else
|
|
dest = pc + immediate;
|
|
break;
|
|
|
|
case 16:
|
|
immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
|
|
if (absolute)
|
|
dest = immediate;
|
|
else
|
|
dest = pc + immediate;
|
|
break;
|
|
|
|
case 19:
|
|
ext_op = (instr >> 1) & 0x3ff;
|
|
|
|
if (ext_op == 16) /* br conditional register */
|
|
{
|
|
dest = regcache_raw_get_unsigned (regcache, tdep->ppc_lr_regnum) & ~3;
|
|
|
|
/* If we are about to return from a signal handler, dest is
|
|
something like 0x3c90. The current frame is a signal handler
|
|
caller frame, upon completion of the sigreturn system call
|
|
execution will return to the saved PC in the frame. */
|
|
if (dest < AIX_TEXT_SEGMENT_BASE)
|
|
{
|
|
frame_info_ptr frame = get_current_frame ();
|
|
|
|
dest = read_memory_unsigned_integer
|
|
(get_frame_base (frame) + SIG_FRAME_PC_OFFSET,
|
|
tdep->wordsize, byte_order);
|
|
}
|
|
}
|
|
|
|
else if (ext_op == 528) /* br cond to count reg */
|
|
{
|
|
dest = regcache_raw_get_unsigned (regcache,
|
|
tdep->ppc_ctr_regnum) & ~3;
|
|
|
|
/* If we are about to execute a system call, dest is something
|
|
like 0x22fc or 0x3b00. Upon completion the system call
|
|
will return to the address in the link register. */
|
|
if (dest < AIX_TEXT_SEGMENT_BASE)
|
|
dest = regcache_raw_get_unsigned (regcache,
|
|
tdep->ppc_lr_regnum) & ~3;
|
|
}
|
|
else
|
|
return -1;
|
|
break;
|
|
|
|
default:
|
|
return -1;
|
|
}
|
|
return (dest < AIX_TEXT_SEGMENT_BASE) ? safety : dest;
|
|
}
|
|
|
|
/* AIX does not support PT_STEP. Simulate it. */
|
|
|
|
static std::vector<CORE_ADDR>
|
|
rs6000_software_single_step (struct regcache *regcache)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int ii, insn;
|
|
CORE_ADDR loc;
|
|
CORE_ADDR breaks[2];
|
|
int opcode;
|
|
|
|
loc = regcache_read_pc (regcache);
|
|
|
|
insn = read_memory_integer (loc, 4, byte_order);
|
|
|
|
std::vector<CORE_ADDR> next_pcs = ppc_deal_with_atomic_sequence (regcache);
|
|
if (!next_pcs.empty ())
|
|
return next_pcs;
|
|
|
|
/* Here 0xfc000000 is the opcode mask to detect a P10 prefix instruction. */
|
|
if ((insn & 0xfc000000) == 1 << 26)
|
|
breaks[0] = loc + 2 * PPC_INSN_SIZE;
|
|
else
|
|
breaks[0] = loc + PPC_INSN_SIZE;
|
|
opcode = insn >> 26;
|
|
breaks[1] = branch_dest (regcache, opcode, insn, loc, breaks[0]);
|
|
|
|
/* Don't put two breakpoints on the same address. */
|
|
if (breaks[1] == breaks[0])
|
|
breaks[1] = -1;
|
|
|
|
for (ii = 0; ii < 2; ++ii)
|
|
{
|
|
/* ignore invalid breakpoint. */
|
|
if (breaks[ii] == -1)
|
|
continue;
|
|
|
|
next_pcs.push_back (breaks[ii]);
|
|
}
|
|
|
|
errno = 0; /* FIXME, don't ignore errors! */
|
|
/* What errors? {read,write}_memory call error(). */
|
|
return next_pcs;
|
|
}
|
|
|
|
/* Implement the "auto_wide_charset" gdbarch method for this platform. */
|
|
|
|
static const char *
|
|
rs6000_aix_auto_wide_charset (void)
|
|
{
|
|
return "UTF-16";
|
|
}
|
|
|
|
/* Implement an osabi sniffer for RS6000/AIX.
|
|
|
|
This function assumes that ABFD's flavour is XCOFF. In other words,
|
|
it should be registered as a sniffer for bfd_target_xcoff_flavour
|
|
objfiles only. A failed assertion will be raised if this condition
|
|
is not met. */
|
|
|
|
static enum gdb_osabi
|
|
rs6000_aix_osabi_sniffer (bfd *abfd)
|
|
{
|
|
gdb_assert (bfd_get_flavour (abfd) == bfd_target_xcoff_flavour);
|
|
|
|
/* The only noticeable difference between Lynx178 XCOFF files and
|
|
AIX XCOFF files comes from the fact that there are no shared
|
|
libraries on Lynx178. On AIX, we are betting that an executable
|
|
linked with no shared library will never exist. */
|
|
if (xcoff_get_n_import_files (abfd) <= 0)
|
|
return GDB_OSABI_UNKNOWN;
|
|
|
|
return GDB_OSABI_AIX;
|
|
}
|
|
|
|
/* A structure encoding the offset and size of a field within
|
|
a struct. */
|
|
|
|
struct ldinfo_field
|
|
{
|
|
int offset;
|
|
int size;
|
|
};
|
|
|
|
/* A structure describing the layout of all the fields of interest
|
|
in AIX's struct ld_info. Each field in this struct corresponds
|
|
to the field of the same name in struct ld_info. */
|
|
|
|
struct ld_info_desc
|
|
{
|
|
struct ldinfo_field ldinfo_next;
|
|
struct ldinfo_field ldinfo_fd;
|
|
struct ldinfo_field ldinfo_textorg;
|
|
struct ldinfo_field ldinfo_textsize;
|
|
struct ldinfo_field ldinfo_dataorg;
|
|
struct ldinfo_field ldinfo_datasize;
|
|
struct ldinfo_field ldinfo_filename;
|
|
};
|
|
|
|
/* The following data has been generated by compiling and running
|
|
the following program on AIX 5.3. */
|
|
|
|
#if 0
|
|
#include <stddef.h>
|
|
#include <stdio.h>
|
|
#define __LDINFO_PTRACE32__
|
|
#define __LDINFO_PTRACE64__
|
|
#include <sys/ldr.h>
|
|
|
|
#define pinfo(type,member) \
|
|
{ \
|
|
struct type ldi = {0}; \
|
|
\
|
|
printf (" {%d, %d},\t/* %s */\n", \
|
|
offsetof (struct type, member), \
|
|
sizeof (ldi.member), \
|
|
#member); \
|
|
} \
|
|
while (0)
|
|
|
|
int
|
|
main (void)
|
|
{
|
|
printf ("static const struct ld_info_desc ld_info32_desc =\n{\n");
|
|
pinfo (__ld_info32, ldinfo_next);
|
|
pinfo (__ld_info32, ldinfo_fd);
|
|
pinfo (__ld_info32, ldinfo_textorg);
|
|
pinfo (__ld_info32, ldinfo_textsize);
|
|
pinfo (__ld_info32, ldinfo_dataorg);
|
|
pinfo (__ld_info32, ldinfo_datasize);
|
|
pinfo (__ld_info32, ldinfo_filename);
|
|
printf ("};\n");
|
|
|
|
printf ("\n");
|
|
|
|
printf ("static const struct ld_info_desc ld_info64_desc =\n{\n");
|
|
pinfo (__ld_info64, ldinfo_next);
|
|
pinfo (__ld_info64, ldinfo_fd);
|
|
pinfo (__ld_info64, ldinfo_textorg);
|
|
pinfo (__ld_info64, ldinfo_textsize);
|
|
pinfo (__ld_info64, ldinfo_dataorg);
|
|
pinfo (__ld_info64, ldinfo_datasize);
|
|
pinfo (__ld_info64, ldinfo_filename);
|
|
printf ("};\n");
|
|
|
|
return 0;
|
|
}
|
|
#endif /* 0 */
|
|
|
|
/* Layout of the 32bit version of struct ld_info. */
|
|
|
|
static const struct ld_info_desc ld_info32_desc =
|
|
{
|
|
{0, 4}, /* ldinfo_next */
|
|
{4, 4}, /* ldinfo_fd */
|
|
{8, 4}, /* ldinfo_textorg */
|
|
{12, 4}, /* ldinfo_textsize */
|
|
{16, 4}, /* ldinfo_dataorg */
|
|
{20, 4}, /* ldinfo_datasize */
|
|
{24, 2}, /* ldinfo_filename */
|
|
};
|
|
|
|
/* Layout of the 64bit version of struct ld_info. */
|
|
|
|
static const struct ld_info_desc ld_info64_desc =
|
|
{
|
|
{0, 4}, /* ldinfo_next */
|
|
{8, 4}, /* ldinfo_fd */
|
|
{16, 8}, /* ldinfo_textorg */
|
|
{24, 8}, /* ldinfo_textsize */
|
|
{32, 8}, /* ldinfo_dataorg */
|
|
{40, 8}, /* ldinfo_datasize */
|
|
{48, 2}, /* ldinfo_filename */
|
|
};
|
|
|
|
/* A structured representation of one entry read from the ld_info
|
|
binary data provided by the AIX loader. */
|
|
|
|
struct ld_info
|
|
{
|
|
ULONGEST next;
|
|
int fd;
|
|
CORE_ADDR textorg;
|
|
ULONGEST textsize;
|
|
CORE_ADDR dataorg;
|
|
ULONGEST datasize;
|
|
char *filename;
|
|
char *member_name;
|
|
};
|
|
|
|
/* Return a struct ld_info object corresponding to the entry at
|
|
LDI_BUF.
|
|
|
|
Note that the filename and member_name strings still point
|
|
to the data in LDI_BUF. So LDI_BUF must not be deallocated
|
|
while the struct ld_info object returned is in use. */
|
|
|
|
static struct ld_info
|
|
rs6000_aix_extract_ld_info (struct gdbarch *gdbarch,
|
|
const gdb_byte *ldi_buf)
|
|
{
|
|
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
|
|
const struct ld_info_desc desc
|
|
= tdep->wordsize == 8 ? ld_info64_desc : ld_info32_desc;
|
|
struct ld_info info;
|
|
|
|
info.next = extract_unsigned_integer (ldi_buf + desc.ldinfo_next.offset,
|
|
desc.ldinfo_next.size,
|
|
byte_order);
|
|
info.fd = extract_signed_integer (ldi_buf + desc.ldinfo_fd.offset,
|
|
desc.ldinfo_fd.size,
|
|
byte_order);
|
|
info.textorg = extract_typed_address (ldi_buf + desc.ldinfo_textorg.offset,
|
|
ptr_type);
|
|
info.textsize
|
|
= extract_unsigned_integer (ldi_buf + desc.ldinfo_textsize.offset,
|
|
desc.ldinfo_textsize.size,
|
|
byte_order);
|
|
info.dataorg = extract_typed_address (ldi_buf + desc.ldinfo_dataorg.offset,
|
|
ptr_type);
|
|
info.datasize
|
|
= extract_unsigned_integer (ldi_buf + desc.ldinfo_datasize.offset,
|
|
desc.ldinfo_datasize.size,
|
|
byte_order);
|
|
info.filename = (char *) ldi_buf + desc.ldinfo_filename.offset;
|
|
info.member_name = info.filename + strlen (info.filename) + 1;
|
|
|
|
return info;
|
|
}
|
|
|
|
/* Append to XML an XML string description of the shared library
|
|
corresponding to LDI, following the TARGET_OBJECT_LIBRARIES_AIX
|
|
format. */
|
|
|
|
static void
|
|
rs6000_aix_shared_library_to_xml (struct ld_info *ldi, std::string &xml)
|
|
{
|
|
xml += "<library name=\"";
|
|
xml_escape_text_append (xml, ldi->filename);
|
|
xml += '"';
|
|
|
|
if (ldi->member_name[0] != '\0')
|
|
{
|
|
xml += " member=\"";
|
|
xml_escape_text_append (xml, ldi->member_name);
|
|
xml += '"';
|
|
}
|
|
|
|
xml += " text_addr=\"";
|
|
xml += core_addr_to_string (ldi->textorg);
|
|
xml += '"';
|
|
|
|
xml += " text_size=\"";
|
|
xml += pulongest (ldi->textsize);
|
|
xml += '"';
|
|
|
|
xml += " data_addr=\"";
|
|
xml += core_addr_to_string (ldi->dataorg);
|
|
xml += '"';
|
|
|
|
xml += " data_size=\"";
|
|
xml += pulongest (ldi->datasize);
|
|
xml += '"';
|
|
|
|
xml += "></library>";
|
|
}
|
|
|
|
/* Convert the ld_info binary data provided by the AIX loader into
|
|
an XML representation following the TARGET_OBJECT_LIBRARIES_AIX
|
|
format.
|
|
|
|
LDI_BUF is a buffer containing the ld_info data.
|
|
READBUF, OFFSET and LEN follow the same semantics as target_ops'
|
|
to_xfer_partial target_ops method.
|
|
|
|
If CLOSE_LDINFO_FD is nonzero, then this routine also closes
|
|
the ldinfo_fd file descriptor. This is useful when the ldinfo
|
|
data is obtained via ptrace, as ptrace opens a file descriptor
|
|
for each and every entry; but we cannot use this descriptor
|
|
as the consumer of the XML library list might live in a different
|
|
process. */
|
|
|
|
ULONGEST
|
|
rs6000_aix_ld_info_to_xml (struct gdbarch *gdbarch, const gdb_byte *ldi_buf,
|
|
gdb_byte *readbuf, ULONGEST offset, ULONGEST len,
|
|
int close_ldinfo_fd)
|
|
{
|
|
std::string xml = "<library-list-aix version=\"1.0\">\n";
|
|
|
|
while (1)
|
|
{
|
|
struct ld_info ldi = rs6000_aix_extract_ld_info (gdbarch, ldi_buf);
|
|
|
|
rs6000_aix_shared_library_to_xml (&ldi, xml);
|
|
if (close_ldinfo_fd)
|
|
close (ldi.fd);
|
|
|
|
if (!ldi.next)
|
|
break;
|
|
ldi_buf = ldi_buf + ldi.next;
|
|
}
|
|
|
|
xml += "</library-list-aix>\n";
|
|
|
|
ULONGEST len_avail = xml.length ();
|
|
if (offset >= len_avail)
|
|
len= 0;
|
|
else
|
|
{
|
|
if (len > len_avail - offset)
|
|
len = len_avail - offset;
|
|
memcpy (readbuf, xml.data () + offset, len);
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
/* Implement the core_xfer_shared_libraries_aix gdbarch method. */
|
|
|
|
static ULONGEST
|
|
rs6000_aix_core_xfer_shared_libraries_aix (struct gdbarch *gdbarch,
|
|
gdb_byte *readbuf,
|
|
ULONGEST offset,
|
|
ULONGEST len)
|
|
{
|
|
struct bfd_section *ldinfo_sec;
|
|
int ldinfo_size;
|
|
|
|
ldinfo_sec = bfd_get_section_by_name (current_program_space->core_bfd (),
|
|
".ldinfo");
|
|
if (ldinfo_sec == NULL)
|
|
error (_("cannot find .ldinfo section from core file: %s"),
|
|
bfd_errmsg (bfd_get_error ()));
|
|
ldinfo_size = bfd_section_size (ldinfo_sec);
|
|
|
|
gdb::byte_vector ldinfo_buf (ldinfo_size);
|
|
|
|
if (! bfd_get_section_contents (current_program_space->core_bfd (),
|
|
ldinfo_sec, ldinfo_buf.data (), 0,
|
|
ldinfo_size))
|
|
error (_("unable to read .ldinfo section from core file: %s"),
|
|
bfd_errmsg (bfd_get_error ()));
|
|
|
|
return rs6000_aix_ld_info_to_xml (gdbarch, ldinfo_buf.data (), readbuf,
|
|
offset, len, 0);
|
|
}
|
|
|
|
static void
|
|
rs6000_aix_init_osabi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
|
{
|
|
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
|
|
|
/* RS6000/AIX does not support PT_STEP. Has to be simulated. */
|
|
set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
|
|
|
|
/* Displaced stepping is currently not supported in combination with
|
|
software single-stepping. These override the values set by
|
|
rs6000_gdbarch_init. */
|
|
set_gdbarch_displaced_step_copy_insn (gdbarch, NULL);
|
|
set_gdbarch_displaced_step_fixup (gdbarch, NULL);
|
|
set_gdbarch_displaced_step_prepare (gdbarch, NULL);
|
|
set_gdbarch_displaced_step_finish (gdbarch, NULL);
|
|
|
|
set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
|
|
set_gdbarch_return_value (gdbarch, rs6000_return_value);
|
|
set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
|
|
|
/* Handle RS/6000 function pointers (which are really function
|
|
descriptors). */
|
|
set_gdbarch_convert_from_func_ptr_addr
|
|
(gdbarch, rs6000_convert_from_func_ptr_addr);
|
|
|
|
/* Core file support. */
|
|
set_gdbarch_iterate_over_regset_sections
|
|
(gdbarch, rs6000_aix_iterate_over_regset_sections);
|
|
set_gdbarch_core_xfer_shared_libraries_aix
|
|
(gdbarch, rs6000_aix_core_xfer_shared_libraries_aix);
|
|
set_gdbarch_core_read_description (gdbarch, ppc_aix_core_read_description);
|
|
|
|
if (tdep->wordsize == 8)
|
|
tdep->lr_frame_offset = 16;
|
|
else
|
|
tdep->lr_frame_offset = 8;
|
|
|
|
if (tdep->wordsize == 4)
|
|
/* PowerOpen / AIX 32 bit. The saved area or red zone consists of
|
|
19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
|
|
Problem is, 220 isn't frame (16 byte) aligned. Round it up to
|
|
224. */
|
|
set_gdbarch_frame_red_zone_size (gdbarch, 224);
|
|
else
|
|
/* In 64 bit mode the red zone should have 18 8 byte GPRS + 18 8 byte
|
|
FPRS making it 288 bytes. This is 16 byte aligned as well. */
|
|
set_gdbarch_frame_red_zone_size (gdbarch, 288);
|
|
|
|
if (tdep->wordsize == 8)
|
|
set_gdbarch_wchar_bit (gdbarch, 32);
|
|
else
|
|
set_gdbarch_wchar_bit (gdbarch, 16);
|
|
set_gdbarch_wchar_signed (gdbarch, 0);
|
|
set_gdbarch_auto_wide_charset (gdbarch, rs6000_aix_auto_wide_charset);
|
|
|
|
set_gdbarch_so_ops (gdbarch, &solib_aix_so_ops);
|
|
frame_unwind_append_unwinder (gdbarch, &aix_sighandle_frame_unwind);
|
|
}
|
|
|
|
void _initialize_rs6000_aix_tdep ();
|
|
void
|
|
_initialize_rs6000_aix_tdep ()
|
|
{
|
|
gdbarch_register_osabi_sniffer (bfd_arch_rs6000,
|
|
bfd_target_xcoff_flavour,
|
|
rs6000_aix_osabi_sniffer);
|
|
gdbarch_register_osabi_sniffer (bfd_arch_powerpc,
|
|
bfd_target_xcoff_flavour,
|
|
rs6000_aix_osabi_sniffer);
|
|
|
|
gdbarch_register_osabi (bfd_arch_rs6000, 0, GDB_OSABI_AIX,
|
|
rs6000_aix_init_osabi);
|
|
gdbarch_register_osabi (bfd_arch_powerpc, 0, GDB_OSABI_AIX,
|
|
rs6000_aix_init_osabi);
|
|
}
|
|
|