mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-12 12:16:04 +08:00
3666a04883
This commits the result of running gdb/copyright.py as per our Start of New Year procedure... gdb/ChangeLog Update copyright year range in copyright header of all GDB files.
393 lines
12 KiB
C
393 lines
12 KiB
C
/* Common target dependent for AArch64 systems.
|
|
|
|
Copyright (C) 2018-2021 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include <sys/utsname.h>
|
|
#include <sys/uio.h>
|
|
#include "gdbsupport/common-defs.h"
|
|
#include "elf/external.h"
|
|
#include "elf/common.h"
|
|
#include "aarch64-sve-linux-ptrace.h"
|
|
#include "arch/aarch64.h"
|
|
#include "gdbsupport/common-regcache.h"
|
|
#include "gdbsupport/byte-vector.h"
|
|
#include <endian.h>
|
|
|
|
/* See nat/aarch64-sve-linux-ptrace.h. */
|
|
|
|
uint64_t
|
|
aarch64_sve_get_vq (int tid)
|
|
{
|
|
struct iovec iovec;
|
|
struct user_sve_header header;
|
|
|
|
iovec.iov_len = sizeof (header);
|
|
iovec.iov_base = &header;
|
|
|
|
/* Ptrace gives the vector length in bytes. Convert it to VQ, the number of
|
|
128bit chunks in a Z register. We use VQ because 128bits is the minimum
|
|
a Z register can increase in size. */
|
|
|
|
if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_SVE, &iovec) < 0)
|
|
{
|
|
/* SVE is not supported. */
|
|
return 0;
|
|
}
|
|
|
|
uint64_t vq = sve_vq_from_vl (header.vl);
|
|
|
|
if (!sve_vl_valid (header.vl))
|
|
{
|
|
warning (_("Invalid SVE state from kernel; SVE disabled."));
|
|
return 0;
|
|
}
|
|
|
|
return vq;
|
|
}
|
|
|
|
/* See nat/aarch64-sve-linux-ptrace.h. */
|
|
|
|
bool
|
|
aarch64_sve_set_vq (int tid, uint64_t vq)
|
|
{
|
|
struct iovec iovec;
|
|
struct user_sve_header header;
|
|
|
|
iovec.iov_len = sizeof (header);
|
|
iovec.iov_base = &header;
|
|
|
|
if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_SVE, &iovec) < 0)
|
|
{
|
|
/* SVE is not supported. */
|
|
return false;
|
|
}
|
|
|
|
header.vl = sve_vl_from_vq (vq);
|
|
|
|
if (ptrace (PTRACE_SETREGSET, tid, NT_ARM_SVE, &iovec) < 0)
|
|
{
|
|
/* Vector length change failed. */
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* See nat/aarch64-sve-linux-ptrace.h. */
|
|
|
|
bool
|
|
aarch64_sve_set_vq (int tid, struct reg_buffer_common *reg_buf)
|
|
{
|
|
uint64_t reg_vg = 0;
|
|
|
|
/* The VG register may not be valid if we've not collected any value yet.
|
|
This can happen, for example, if we're restoring the regcache after an
|
|
inferior function call, and the VG register comes after the Z
|
|
registers. */
|
|
if (reg_buf->get_register_status (AARCH64_SVE_VG_REGNUM) != REG_VALID)
|
|
{
|
|
/* If vg is not available yet, fetch it from ptrace. The VG value from
|
|
ptrace is likely the correct one. */
|
|
uint64_t vq = aarch64_sve_get_vq (tid);
|
|
|
|
/* If something went wrong, just bail out. */
|
|
if (vq == 0)
|
|
return false;
|
|
|
|
reg_vg = sve_vg_from_vq (vq);
|
|
}
|
|
else
|
|
reg_buf->raw_collect (AARCH64_SVE_VG_REGNUM, ®_vg);
|
|
|
|
return aarch64_sve_set_vq (tid, sve_vq_from_vg (reg_vg));
|
|
}
|
|
|
|
/* See nat/aarch64-sve-linux-ptrace.h. */
|
|
|
|
std::unique_ptr<gdb_byte[]>
|
|
aarch64_sve_get_sveregs (int tid)
|
|
{
|
|
struct iovec iovec;
|
|
uint64_t vq = aarch64_sve_get_vq (tid);
|
|
|
|
if (vq == 0)
|
|
perror_with_name (_("Unable to fetch SVE register header"));
|
|
|
|
/* A ptrace call with NT_ARM_SVE will return a header followed by either a
|
|
dump of all the SVE and FP registers, or an fpsimd structure (identical to
|
|
the one returned by NT_FPREGSET) if the kernel has not yet executed any
|
|
SVE code. Make sure we allocate enough space for a full SVE dump. */
|
|
|
|
iovec.iov_len = SVE_PT_SIZE (vq, SVE_PT_REGS_SVE);
|
|
std::unique_ptr<gdb_byte[]> buf (new gdb_byte[iovec.iov_len]);
|
|
iovec.iov_base = buf.get ();
|
|
|
|
if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_SVE, &iovec) < 0)
|
|
perror_with_name (_("Unable to fetch SVE registers"));
|
|
|
|
return buf;
|
|
}
|
|
|
|
/* If we are running in BE mode, byteswap the contents
|
|
of SRC to DST for SIZE bytes. Other, just copy the contents
|
|
from SRC to DST. */
|
|
|
|
static void
|
|
aarch64_maybe_swab128 (gdb_byte *dst, const gdb_byte *src, size_t size)
|
|
{
|
|
gdb_assert (src != nullptr && dst != nullptr);
|
|
gdb_assert (size > 1);
|
|
|
|
#if (__BYTE_ORDER == __BIG_ENDIAN)
|
|
for (int i = 0; i < size - 1; i++)
|
|
dst[i] = src[size - i];
|
|
#else
|
|
memcpy (dst, src, size);
|
|
#endif
|
|
}
|
|
|
|
/* See nat/aarch64-sve-linux-ptrace.h. */
|
|
|
|
void
|
|
aarch64_sve_regs_copy_to_reg_buf (struct reg_buffer_common *reg_buf,
|
|
const void *buf)
|
|
{
|
|
char *base = (char *) buf;
|
|
struct user_sve_header *header = (struct user_sve_header *) buf;
|
|
|
|
uint64_t vq = sve_vq_from_vl (header->vl);
|
|
uint64_t vg = sve_vg_from_vl (header->vl);
|
|
|
|
/* Sanity check the data in the header. */
|
|
if (!sve_vl_valid (header->vl)
|
|
|| SVE_PT_SIZE (vq, header->flags) != header->size)
|
|
error (_("Invalid SVE header from kernel."));
|
|
|
|
/* Update VG. Note, the registers in the regcache will already be of the
|
|
correct length. */
|
|
reg_buf->raw_supply (AARCH64_SVE_VG_REGNUM, &vg);
|
|
|
|
if (HAS_SVE_STATE (*header))
|
|
{
|
|
/* The register dump contains a set of SVE registers. */
|
|
|
|
for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
|
|
reg_buf->raw_supply (AARCH64_SVE_Z0_REGNUM + i,
|
|
base + SVE_PT_SVE_ZREG_OFFSET (vq, i));
|
|
|
|
for (int i = 0; i < AARCH64_SVE_P_REGS_NUM; i++)
|
|
reg_buf->raw_supply (AARCH64_SVE_P0_REGNUM + i,
|
|
base + SVE_PT_SVE_PREG_OFFSET (vq, i));
|
|
|
|
reg_buf->raw_supply (AARCH64_SVE_FFR_REGNUM,
|
|
base + SVE_PT_SVE_FFR_OFFSET (vq));
|
|
reg_buf->raw_supply (AARCH64_FPSR_REGNUM,
|
|
base + SVE_PT_SVE_FPSR_OFFSET (vq));
|
|
reg_buf->raw_supply (AARCH64_FPCR_REGNUM,
|
|
base + SVE_PT_SVE_FPCR_OFFSET (vq));
|
|
}
|
|
else
|
|
{
|
|
/* WARNING: SIMD state is laid out in memory in target-endian format,
|
|
while SVE state is laid out in an endianness-independent format (LE).
|
|
|
|
So we have a couple cases to consider:
|
|
|
|
1 - If the target is big endian, then SIMD state is big endian,
|
|
requiring a byteswap.
|
|
|
|
2 - If the target is little endian, then SIMD state is little endian,
|
|
which matches the SVE format, so no byteswap is needed. */
|
|
|
|
/* There is no SVE state yet - the register dump contains a fpsimd
|
|
structure instead. These registers still exist in the hardware, but
|
|
the kernel has not yet initialised them, and so they will be null. */
|
|
|
|
gdb_byte *reg = (gdb_byte *) alloca (SVE_PT_SVE_ZREG_SIZE (vq));
|
|
struct user_fpsimd_state *fpsimd
|
|
= (struct user_fpsimd_state *)(base + SVE_PT_FPSIMD_OFFSET);
|
|
|
|
/* Make sure we have a zeroed register buffer. We will need the zero
|
|
padding below. */
|
|
memset (reg, 0, SVE_PT_SVE_ZREG_SIZE (vq));
|
|
|
|
/* Copy across the V registers from fpsimd structure to the Z registers,
|
|
ensuring the non overlapping state is set to null. */
|
|
|
|
for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
|
|
{
|
|
/* Handle big endian/little endian SIMD/SVE conversion. */
|
|
aarch64_maybe_swab128 (reg, (const gdb_byte *) &fpsimd->vregs[i],
|
|
V_REGISTER_SIZE);
|
|
reg_buf->raw_supply (AARCH64_SVE_Z0_REGNUM + i, reg);
|
|
}
|
|
|
|
reg_buf->raw_supply (AARCH64_FPSR_REGNUM, &fpsimd->fpsr);
|
|
reg_buf->raw_supply (AARCH64_FPCR_REGNUM, &fpsimd->fpcr);
|
|
|
|
/* Clear the SVE only registers. */
|
|
memset (reg, 0, SVE_PT_SVE_ZREG_SIZE (vq));
|
|
|
|
for (int i = 0; i < AARCH64_SVE_P_REGS_NUM; i++)
|
|
reg_buf->raw_supply (AARCH64_SVE_P0_REGNUM + i, reg);
|
|
|
|
reg_buf->raw_supply (AARCH64_SVE_FFR_REGNUM, reg);
|
|
}
|
|
}
|
|
|
|
/* See nat/aarch64-sve-linux-ptrace.h. */
|
|
|
|
void
|
|
aarch64_sve_regs_copy_from_reg_buf (const struct reg_buffer_common *reg_buf,
|
|
void *buf)
|
|
{
|
|
struct user_sve_header *header = (struct user_sve_header *) buf;
|
|
char *base = (char *) buf;
|
|
uint64_t vq = sve_vq_from_vl (header->vl);
|
|
|
|
/* Sanity check the data in the header. */
|
|
if (!sve_vl_valid (header->vl)
|
|
|| SVE_PT_SIZE (vq, header->flags) != header->size)
|
|
error (_("Invalid SVE header from kernel."));
|
|
|
|
if (!HAS_SVE_STATE (*header))
|
|
{
|
|
/* There is no SVE state yet - the register dump contains a fpsimd
|
|
structure instead. Where possible we want to write the reg_buf data
|
|
back to the kernel using the fpsimd structure. However, if we cannot
|
|
then we'll need to reformat the fpsimd into a full SVE structure,
|
|
resulting in the initialization of SVE state written back to the
|
|
kernel, which is why we try to avoid it. */
|
|
|
|
bool has_sve_state = false;
|
|
gdb_byte *reg = (gdb_byte *) alloca (SVE_PT_SVE_ZREG_SIZE (vq));
|
|
struct user_fpsimd_state *fpsimd
|
|
= (struct user_fpsimd_state *)(base + SVE_PT_FPSIMD_OFFSET);
|
|
|
|
memset (reg, 0, SVE_PT_SVE_ZREG_SIZE (vq));
|
|
|
|
/* Check in the reg_buf if any of the Z registers are set after the
|
|
first 128 bits, or if any of the other SVE registers are set. */
|
|
|
|
for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
|
|
{
|
|
has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i,
|
|
reg, sizeof (__int128_t));
|
|
if (has_sve_state)
|
|
break;
|
|
}
|
|
|
|
if (!has_sve_state)
|
|
for (int i = 0; i < AARCH64_SVE_P_REGS_NUM; i++)
|
|
{
|
|
has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_P0_REGNUM + i,
|
|
reg, 0);
|
|
if (has_sve_state)
|
|
break;
|
|
}
|
|
|
|
if (!has_sve_state)
|
|
has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_FFR_REGNUM,
|
|
reg, 0);
|
|
|
|
/* If no SVE state exists, then use the existing fpsimd structure to
|
|
write out state and return. */
|
|
if (!has_sve_state)
|
|
{
|
|
/* WARNING: SIMD state is laid out in memory in target-endian format,
|
|
while SVE state is laid out in an endianness-independent format
|
|
(LE).
|
|
|
|
So we have a couple cases to consider:
|
|
|
|
1 - If the target is big endian, then SIMD state is big endian,
|
|
requiring a byteswap.
|
|
|
|
2 - If the target is little endian, then SIMD state is little
|
|
endian, which matches the SVE format, so no byteswap is needed. */
|
|
|
|
/* The collects of the Z registers will overflow the size of a vreg.
|
|
There is enough space in the structure to allow for this, but we
|
|
cannot overflow into the next register as we might not be
|
|
collecting every register. */
|
|
|
|
for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
|
|
{
|
|
if (REG_VALID
|
|
== reg_buf->get_register_status (AARCH64_SVE_Z0_REGNUM + i))
|
|
{
|
|
reg_buf->raw_collect (AARCH64_SVE_Z0_REGNUM + i, reg);
|
|
/* Handle big endian/little endian SIMD/SVE conversion. */
|
|
aarch64_maybe_swab128 ((gdb_byte *) &fpsimd->vregs[i], reg,
|
|
V_REGISTER_SIZE);
|
|
}
|
|
}
|
|
|
|
if (REG_VALID == reg_buf->get_register_status (AARCH64_FPSR_REGNUM))
|
|
reg_buf->raw_collect (AARCH64_FPSR_REGNUM, &fpsimd->fpsr);
|
|
if (REG_VALID == reg_buf->get_register_status (AARCH64_FPCR_REGNUM))
|
|
reg_buf->raw_collect (AARCH64_FPCR_REGNUM, &fpsimd->fpcr);
|
|
|
|
return;
|
|
}
|
|
|
|
/* Otherwise, reformat the fpsimd structure into a full SVE set, by
|
|
expanding the V registers (working backwards so we don't splat
|
|
registers before they are copied) and using null for everything else.
|
|
Note that enough space for a full SVE dump was originally allocated
|
|
for base. */
|
|
|
|
header->flags |= SVE_PT_REGS_SVE;
|
|
header->size = SVE_PT_SIZE (vq, SVE_PT_REGS_SVE);
|
|
|
|
memcpy (base + SVE_PT_SVE_FPSR_OFFSET (vq), &fpsimd->fpsr,
|
|
sizeof (uint32_t));
|
|
memcpy (base + SVE_PT_SVE_FPCR_OFFSET (vq), &fpsimd->fpcr,
|
|
sizeof (uint32_t));
|
|
|
|
for (int i = AARCH64_SVE_Z_REGS_NUM; i >= 0 ; i--)
|
|
{
|
|
memcpy (base + SVE_PT_SVE_ZREG_OFFSET (vq, i), &fpsimd->vregs[i],
|
|
sizeof (__int128_t));
|
|
}
|
|
}
|
|
|
|
/* Replace the kernel values with those from reg_buf. */
|
|
|
|
for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
|
|
if (REG_VALID == reg_buf->get_register_status (AARCH64_SVE_Z0_REGNUM + i))
|
|
reg_buf->raw_collect (AARCH64_SVE_Z0_REGNUM + i,
|
|
base + SVE_PT_SVE_ZREG_OFFSET (vq, i));
|
|
|
|
for (int i = 0; i < AARCH64_SVE_P_REGS_NUM; i++)
|
|
if (REG_VALID == reg_buf->get_register_status (AARCH64_SVE_P0_REGNUM + i))
|
|
reg_buf->raw_collect (AARCH64_SVE_P0_REGNUM + i,
|
|
base + SVE_PT_SVE_PREG_OFFSET (vq, i));
|
|
|
|
if (REG_VALID == reg_buf->get_register_status (AARCH64_SVE_FFR_REGNUM))
|
|
reg_buf->raw_collect (AARCH64_SVE_FFR_REGNUM,
|
|
base + SVE_PT_SVE_FFR_OFFSET (vq));
|
|
if (REG_VALID == reg_buf->get_register_status (AARCH64_FPSR_REGNUM))
|
|
reg_buf->raw_collect (AARCH64_FPSR_REGNUM,
|
|
base + SVE_PT_SVE_FPSR_OFFSET (vq));
|
|
if (REG_VALID == reg_buf->get_register_status (AARCH64_FPCR_REGNUM))
|
|
reg_buf->raw_collect (AARCH64_FPCR_REGNUM,
|
|
base + SVE_PT_SVE_FPCR_OFFSET (vq));
|
|
|
|
}
|