mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-15 04:31:49 +08:00
b00fdb7832
* p-typeprint.c (pascal_type_print_base): Use TYPE_ERROR_NAME. * m2-valprint.c (m2_val_print): Use TYPE_ERROR_NAME. * gdbtypes.h (TYPE_ERROR_NAME): New macro. * f-valprint.c (f_val_print): Use TYPE_ERROR_NAME. * f-typeprint.c (f_type_print_base): Use TYPE_ERROR_NAME. * dwarf2read.c (tag_type_to_type): Create a new error type on failure. * c-valprint.c (c_val_print): Use TYPE_ERROR_NAME. * c-typeprint.c (c_type_print_base): Use TYPE_ERROR_NAME.
661 lines
20 KiB
C
661 lines
20 KiB
C
/* Support for printing Fortran values for GDB, the GNU debugger.
|
||
|
||
Copyright (C) 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2003, 2005, 2006,
|
||
2007, 2008, 2009, 2010 Free Software Foundation, Inc.
|
||
|
||
Contributed by Motorola. Adapted from the C definitions by Farooq Butt
|
||
(fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "gdb_string.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "expression.h"
|
||
#include "value.h"
|
||
#include "valprint.h"
|
||
#include "language.h"
|
||
#include "f-lang.h"
|
||
#include "frame.h"
|
||
#include "gdbcore.h"
|
||
#include "command.h"
|
||
#include "block.h"
|
||
|
||
#if 0
|
||
static int there_is_a_visible_common_named (char *);
|
||
#endif
|
||
|
||
extern void _initialize_f_valprint (void);
|
||
static void info_common_command (char *, int);
|
||
static void list_all_visible_commons (char *);
|
||
static void f77_create_arrayprint_offset_tbl (struct type *,
|
||
struct ui_file *);
|
||
static void f77_get_dynamic_length_of_aggregate (struct type *);
|
||
|
||
int f77_array_offset_tbl[MAX_FORTRAN_DIMS + 1][2];
|
||
|
||
/* Array which holds offsets to be applied to get a row's elements
|
||
for a given array. Array also holds the size of each subarray. */
|
||
|
||
/* The following macro gives us the size of the nth dimension, Where
|
||
n is 1 based. */
|
||
|
||
#define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1])
|
||
|
||
/* The following gives us the offset for row n where n is 1-based. */
|
||
|
||
#define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0])
|
||
|
||
int
|
||
f77_get_lowerbound (struct type *type)
|
||
{
|
||
if (TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
|
||
error (_("Lower bound may not be '*' in F77"));
|
||
|
||
return TYPE_ARRAY_LOWER_BOUND_VALUE (type);
|
||
}
|
||
|
||
int
|
||
f77_get_upperbound (struct type *type)
|
||
{
|
||
if (TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
|
||
{
|
||
/* We have an assumed size array on our hands. Assume that
|
||
upper_bound == lower_bound so that we show at least 1 element.
|
||
If the user wants to see more elements, let him manually ask for 'em
|
||
and we'll subscript the array and show him. */
|
||
|
||
return f77_get_lowerbound (type);
|
||
}
|
||
|
||
return TYPE_ARRAY_UPPER_BOUND_VALUE (type);
|
||
}
|
||
|
||
/* Obtain F77 adjustable array dimensions */
|
||
|
||
static void
|
||
f77_get_dynamic_length_of_aggregate (struct type *type)
|
||
{
|
||
int upper_bound = -1;
|
||
int lower_bound = 1;
|
||
|
||
/* Recursively go all the way down into a possibly multi-dimensional
|
||
F77 array and get the bounds. For simple arrays, this is pretty
|
||
easy but when the bounds are dynamic, we must be very careful
|
||
to add up all the lengths correctly. Not doing this right
|
||
will lead to horrendous-looking arrays in parameter lists.
|
||
|
||
This function also works for strings which behave very
|
||
similarly to arrays. */
|
||
|
||
if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY
|
||
|| TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING)
|
||
f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type));
|
||
|
||
/* Recursion ends here, start setting up lengths. */
|
||
lower_bound = f77_get_lowerbound (type);
|
||
upper_bound = f77_get_upperbound (type);
|
||
|
||
/* Patch in a valid length value. */
|
||
|
||
TYPE_LENGTH (type) =
|
||
(upper_bound - lower_bound + 1) * TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type)));
|
||
}
|
||
|
||
/* Function that sets up the array offset,size table for the array
|
||
type "type". */
|
||
|
||
static void
|
||
f77_create_arrayprint_offset_tbl (struct type *type, struct ui_file *stream)
|
||
{
|
||
struct type *tmp_type;
|
||
int eltlen;
|
||
int ndimen = 1;
|
||
int upper, lower;
|
||
|
||
tmp_type = type;
|
||
|
||
while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY))
|
||
{
|
||
upper = f77_get_upperbound (tmp_type);
|
||
lower = f77_get_lowerbound (tmp_type);
|
||
|
||
F77_DIM_SIZE (ndimen) = upper - lower + 1;
|
||
|
||
tmp_type = TYPE_TARGET_TYPE (tmp_type);
|
||
ndimen++;
|
||
}
|
||
|
||
/* Now we multiply eltlen by all the offsets, so that later we
|
||
can print out array elements correctly. Up till now we
|
||
know an offset to apply to get the item but we also
|
||
have to know how much to add to get to the next item */
|
||
|
||
ndimen--;
|
||
eltlen = TYPE_LENGTH (tmp_type);
|
||
F77_DIM_OFFSET (ndimen) = eltlen;
|
||
while (--ndimen > 0)
|
||
{
|
||
eltlen *= F77_DIM_SIZE (ndimen + 1);
|
||
F77_DIM_OFFSET (ndimen) = eltlen;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Actual function which prints out F77 arrays, Valaddr == address in
|
||
the superior. Address == the address in the inferior. */
|
||
|
||
static void
|
||
f77_print_array_1 (int nss, int ndimensions, struct type *type,
|
||
const gdb_byte *valaddr, CORE_ADDR address,
|
||
struct ui_file *stream, int recurse,
|
||
const struct value *val,
|
||
const struct value_print_options *options,
|
||
int *elts)
|
||
{
|
||
int i;
|
||
|
||
if (nss != ndimensions)
|
||
{
|
||
for (i = 0; (i < F77_DIM_SIZE (nss) && (*elts) < options->print_max); i++)
|
||
{
|
||
fprintf_filtered (stream, "( ");
|
||
f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type),
|
||
valaddr + i * F77_DIM_OFFSET (nss),
|
||
address + i * F77_DIM_OFFSET (nss),
|
||
stream, recurse, val, options, elts);
|
||
fprintf_filtered (stream, ") ");
|
||
}
|
||
if (*elts >= options->print_max && i < F77_DIM_SIZE (nss))
|
||
fprintf_filtered (stream, "...");
|
||
}
|
||
else
|
||
{
|
||
for (i = 0; i < F77_DIM_SIZE (nss) && (*elts) < options->print_max;
|
||
i++, (*elts)++)
|
||
{
|
||
val_print (TYPE_TARGET_TYPE (type),
|
||
valaddr + i * F77_DIM_OFFSET (ndimensions),
|
||
0,
|
||
address + i * F77_DIM_OFFSET (ndimensions),
|
||
stream, recurse, val, options, current_language);
|
||
|
||
if (i != (F77_DIM_SIZE (nss) - 1))
|
||
fprintf_filtered (stream, ", ");
|
||
|
||
if ((*elts == options->print_max - 1)
|
||
&& (i != (F77_DIM_SIZE (nss) - 1)))
|
||
fprintf_filtered (stream, "...");
|
||
}
|
||
}
|
||
}
|
||
|
||
/* This function gets called to print an F77 array, we set up some
|
||
stuff and then immediately call f77_print_array_1() */
|
||
|
||
static void
|
||
f77_print_array (struct type *type, const gdb_byte *valaddr,
|
||
CORE_ADDR address, struct ui_file *stream,
|
||
int recurse,
|
||
const struct value *val,
|
||
const struct value_print_options *options)
|
||
{
|
||
int ndimensions;
|
||
int elts = 0;
|
||
|
||
ndimensions = calc_f77_array_dims (type);
|
||
|
||
if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0)
|
||
error (_("Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)"),
|
||
ndimensions, MAX_FORTRAN_DIMS);
|
||
|
||
/* Since F77 arrays are stored column-major, we set up an
|
||
offset table to get at the various row's elements. The
|
||
offset table contains entries for both offset and subarray size. */
|
||
|
||
f77_create_arrayprint_offset_tbl (type, stream);
|
||
|
||
f77_print_array_1 (1, ndimensions, type, valaddr, address, stream,
|
||
recurse, val, options, &elts);
|
||
}
|
||
|
||
|
||
/* Print data of type TYPE located at VALADDR (within GDB), which came from
|
||
the inferior at address ADDRESS, onto stdio stream STREAM according to
|
||
OPTIONS. The data at VALADDR is in target byte order.
|
||
|
||
If the data are a string pointer, returns the number of string characters
|
||
printed. */
|
||
|
||
int
|
||
f_val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
|
||
CORE_ADDR address, struct ui_file *stream, int recurse,
|
||
const struct value *original_value,
|
||
const struct value_print_options *options)
|
||
{
|
||
struct gdbarch *gdbarch = get_type_arch (type);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
unsigned int i = 0; /* Number of characters printed */
|
||
struct type *elttype;
|
||
LONGEST val;
|
||
CORE_ADDR addr;
|
||
int index;
|
||
|
||
CHECK_TYPEDEF (type);
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_STRING:
|
||
f77_get_dynamic_length_of_aggregate (type);
|
||
LA_PRINT_STRING (stream, builtin_type (gdbarch)->builtin_char,
|
||
valaddr, TYPE_LENGTH (type), NULL, 0, options);
|
||
break;
|
||
|
||
case TYPE_CODE_ARRAY:
|
||
fprintf_filtered (stream, "(");
|
||
f77_print_array (type, valaddr, address, stream, recurse, original_value, options);
|
||
fprintf_filtered (stream, ")");
|
||
break;
|
||
|
||
case TYPE_CODE_PTR:
|
||
if (options->format && options->format != 's')
|
||
{
|
||
print_scalar_formatted (valaddr, type, options, 0, stream);
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
addr = unpack_pointer (type, valaddr);
|
||
elttype = check_typedef (TYPE_TARGET_TYPE (type));
|
||
|
||
if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
|
||
{
|
||
/* Try to print what function it points to. */
|
||
print_address_demangle (gdbarch, addr, stream, demangle);
|
||
/* Return value is irrelevant except for string pointers. */
|
||
return 0;
|
||
}
|
||
|
||
if (options->addressprint && options->format != 's')
|
||
fputs_filtered (paddress (gdbarch, addr), stream);
|
||
|
||
/* For a pointer to char or unsigned char, also print the string
|
||
pointed to, unless pointer is null. */
|
||
if (TYPE_LENGTH (elttype) == 1
|
||
&& TYPE_CODE (elttype) == TYPE_CODE_INT
|
||
&& (options->format == 0 || options->format == 's')
|
||
&& addr != 0)
|
||
i = val_print_string (TYPE_TARGET_TYPE (type), addr, -1, stream,
|
||
options);
|
||
|
||
/* Return number of characters printed, including the terminating
|
||
'\0' if we reached the end. val_print_string takes care including
|
||
the terminating '\0' if necessary. */
|
||
return i;
|
||
}
|
||
break;
|
||
|
||
case TYPE_CODE_REF:
|
||
elttype = check_typedef (TYPE_TARGET_TYPE (type));
|
||
if (options->addressprint)
|
||
{
|
||
CORE_ADDR addr
|
||
= extract_typed_address (valaddr + embedded_offset, type);
|
||
|
||
fprintf_filtered (stream, "@");
|
||
fputs_filtered (paddress (gdbarch, addr), stream);
|
||
if (options->deref_ref)
|
||
fputs_filtered (": ", stream);
|
||
}
|
||
/* De-reference the reference. */
|
||
if (options->deref_ref)
|
||
{
|
||
if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
|
||
{
|
||
struct value *deref_val =
|
||
value_at
|
||
(TYPE_TARGET_TYPE (type),
|
||
unpack_pointer (type, valaddr + embedded_offset));
|
||
|
||
common_val_print (deref_val, stream, recurse,
|
||
options, current_language);
|
||
}
|
||
else
|
||
fputs_filtered ("???", stream);
|
||
}
|
||
break;
|
||
|
||
case TYPE_CODE_FUNC:
|
||
if (options->format)
|
||
{
|
||
print_scalar_formatted (valaddr, type, options, 0, stream);
|
||
break;
|
||
}
|
||
/* FIXME, we should consider, at least for ANSI C language, eliminating
|
||
the distinction made between FUNCs and POINTERs to FUNCs. */
|
||
fprintf_filtered (stream, "{");
|
||
type_print (type, "", stream, -1);
|
||
fprintf_filtered (stream, "} ");
|
||
/* Try to print what function it points to, and its address. */
|
||
print_address_demangle (gdbarch, address, stream, demangle);
|
||
break;
|
||
|
||
case TYPE_CODE_INT:
|
||
if (options->format || options->output_format)
|
||
{
|
||
struct value_print_options opts = *options;
|
||
|
||
opts.format = (options->format ? options->format
|
||
: options->output_format);
|
||
print_scalar_formatted (valaddr, type, &opts, 0, stream);
|
||
}
|
||
else
|
||
{
|
||
val_print_type_code_int (type, valaddr, stream);
|
||
/* C and C++ has no single byte int type, char is used instead.
|
||
Since we don't know whether the value is really intended to
|
||
be used as an integer or a character, print the character
|
||
equivalent as well. */
|
||
if (TYPE_LENGTH (type) == 1)
|
||
{
|
||
fputs_filtered (" ", stream);
|
||
LA_PRINT_CHAR ((unsigned char) unpack_long (type, valaddr),
|
||
type, stream);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case TYPE_CODE_FLAGS:
|
||
if (options->format)
|
||
print_scalar_formatted (valaddr, type, options, 0, stream);
|
||
else
|
||
val_print_type_code_flags (type, valaddr, stream);
|
||
break;
|
||
|
||
case TYPE_CODE_FLT:
|
||
if (options->format)
|
||
print_scalar_formatted (valaddr, type, options, 0, stream);
|
||
else
|
||
print_floating (valaddr, type, stream);
|
||
break;
|
||
|
||
case TYPE_CODE_VOID:
|
||
fprintf_filtered (stream, "VOID");
|
||
break;
|
||
|
||
case TYPE_CODE_ERROR:
|
||
fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
|
||
break;
|
||
|
||
case TYPE_CODE_RANGE:
|
||
/* FIXME, we should not ever have to print one of these yet. */
|
||
fprintf_filtered (stream, "<range type>");
|
||
break;
|
||
|
||
case TYPE_CODE_BOOL:
|
||
if (options->format || options->output_format)
|
||
{
|
||
struct value_print_options opts = *options;
|
||
|
||
opts.format = (options->format ? options->format
|
||
: options->output_format);
|
||
print_scalar_formatted (valaddr, type, &opts, 0, stream);
|
||
}
|
||
else
|
||
{
|
||
val = extract_unsigned_integer (valaddr,
|
||
TYPE_LENGTH (type), byte_order);
|
||
if (val == 0)
|
||
fprintf_filtered (stream, ".FALSE.");
|
||
else if (val == 1)
|
||
fprintf_filtered (stream, ".TRUE.");
|
||
else
|
||
/* Not a legitimate logical type, print as an integer. */
|
||
{
|
||
/* Bash the type code temporarily. */
|
||
TYPE_CODE (type) = TYPE_CODE_INT;
|
||
val_print (type, valaddr, 0, address, stream, recurse,
|
||
original_value, options, current_language);
|
||
/* Restore the type code so later uses work as intended. */
|
||
TYPE_CODE (type) = TYPE_CODE_BOOL;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case TYPE_CODE_COMPLEX:
|
||
type = TYPE_TARGET_TYPE (type);
|
||
fputs_filtered ("(", stream);
|
||
print_floating (valaddr, type, stream);
|
||
fputs_filtered (",", stream);
|
||
print_floating (valaddr + TYPE_LENGTH (type), type, stream);
|
||
fputs_filtered (")", stream);
|
||
break;
|
||
|
||
case TYPE_CODE_UNDEF:
|
||
/* This happens (without TYPE_FLAG_STUB set) on systems which don't use
|
||
dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
|
||
and no complete type for struct foo in that file. */
|
||
fprintf_filtered (stream, "<incomplete type>");
|
||
break;
|
||
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
/* Starting from the Fortran 90 standard, Fortran supports derived
|
||
types. */
|
||
fprintf_filtered (stream, "( ");
|
||
for (index = 0; index < TYPE_NFIELDS (type); index++)
|
||
{
|
||
int offset = TYPE_FIELD_BITPOS (type, index) / 8;
|
||
|
||
val_print (TYPE_FIELD_TYPE (type, index), valaddr + offset,
|
||
embedded_offset, address, stream, recurse + 1,
|
||
original_value, options, current_language);
|
||
if (index != TYPE_NFIELDS (type) - 1)
|
||
fputs_filtered (", ", stream);
|
||
}
|
||
fprintf_filtered (stream, " )");
|
||
break;
|
||
|
||
default:
|
||
error (_("Invalid F77 type code %d in symbol table."), TYPE_CODE (type));
|
||
}
|
||
gdb_flush (stream);
|
||
return 0;
|
||
}
|
||
|
||
static void
|
||
list_all_visible_commons (char *funname)
|
||
{
|
||
SAVED_F77_COMMON_PTR tmp;
|
||
|
||
tmp = head_common_list;
|
||
|
||
printf_filtered (_("All COMMON blocks visible at this level:\n\n"));
|
||
|
||
while (tmp != NULL)
|
||
{
|
||
if (strcmp (tmp->owning_function, funname) == 0)
|
||
printf_filtered ("%s\n", tmp->name);
|
||
|
||
tmp = tmp->next;
|
||
}
|
||
}
|
||
|
||
/* This function is used to print out the values in a given COMMON
|
||
block. It will always use the most local common block of the
|
||
given name */
|
||
|
||
static void
|
||
info_common_command (char *comname, int from_tty)
|
||
{
|
||
SAVED_F77_COMMON_PTR the_common;
|
||
COMMON_ENTRY_PTR entry;
|
||
struct frame_info *fi;
|
||
char *funname = 0;
|
||
struct symbol *func;
|
||
|
||
/* We have been told to display the contents of F77 COMMON
|
||
block supposedly visible in this function. Let us
|
||
first make sure that it is visible and if so, let
|
||
us display its contents */
|
||
|
||
fi = get_selected_frame (_("No frame selected"));
|
||
|
||
/* The following is generally ripped off from stack.c's routine
|
||
print_frame_info() */
|
||
|
||
func = find_pc_function (get_frame_pc (fi));
|
||
if (func)
|
||
{
|
||
/* In certain pathological cases, the symtabs give the wrong
|
||
function (when we are in the first function in a file which
|
||
is compiled without debugging symbols, the previous function
|
||
is compiled with debugging symbols, and the "foo.o" symbol
|
||
that is supposed to tell us where the file with debugging symbols
|
||
ends has been truncated by ar because it is longer than 15
|
||
characters).
|
||
|
||
So look in the minimal symbol tables as well, and if it comes
|
||
up with a larger address for the function use that instead.
|
||
I don't think this can ever cause any problems; there shouldn't
|
||
be any minimal symbols in the middle of a function.
|
||
FIXME: (Not necessarily true. What about text labels) */
|
||
|
||
struct minimal_symbol *msymbol =
|
||
lookup_minimal_symbol_by_pc (get_frame_pc (fi));
|
||
|
||
if (msymbol != NULL
|
||
&& (SYMBOL_VALUE_ADDRESS (msymbol)
|
||
> BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
|
||
funname = SYMBOL_LINKAGE_NAME (msymbol);
|
||
else
|
||
funname = SYMBOL_LINKAGE_NAME (func);
|
||
}
|
||
else
|
||
{
|
||
struct minimal_symbol *msymbol =
|
||
lookup_minimal_symbol_by_pc (get_frame_pc (fi));
|
||
|
||
if (msymbol != NULL)
|
||
funname = SYMBOL_LINKAGE_NAME (msymbol);
|
||
else /* Got no 'funname', code below will fail. */
|
||
error (_("No function found for frame."));
|
||
}
|
||
|
||
/* If comname is NULL, we assume the user wishes to see the
|
||
which COMMON blocks are visible here and then return */
|
||
|
||
if (comname == 0)
|
||
{
|
||
list_all_visible_commons (funname);
|
||
return;
|
||
}
|
||
|
||
the_common = find_common_for_function (comname, funname);
|
||
|
||
if (the_common)
|
||
{
|
||
if (strcmp (comname, BLANK_COMMON_NAME_LOCAL) == 0)
|
||
printf_filtered (_("Contents of blank COMMON block:\n"));
|
||
else
|
||
printf_filtered (_("Contents of F77 COMMON block '%s':\n"), comname);
|
||
|
||
printf_filtered ("\n");
|
||
entry = the_common->entries;
|
||
|
||
while (entry != NULL)
|
||
{
|
||
print_variable_and_value (NULL, entry->symbol, fi, gdb_stdout, 0);
|
||
entry = entry->next;
|
||
}
|
||
}
|
||
else
|
||
printf_filtered (_("Cannot locate the common block %s in function '%s'\n"),
|
||
comname, funname);
|
||
}
|
||
|
||
/* This function is used to determine whether there is a
|
||
F77 common block visible at the current scope called 'comname'. */
|
||
|
||
#if 0
|
||
static int
|
||
there_is_a_visible_common_named (char *comname)
|
||
{
|
||
SAVED_F77_COMMON_PTR the_common;
|
||
struct frame_info *fi;
|
||
char *funname = 0;
|
||
struct symbol *func;
|
||
|
||
if (comname == NULL)
|
||
error (_("Cannot deal with NULL common name!"));
|
||
|
||
fi = get_selected_frame (_("No frame selected"));
|
||
|
||
/* The following is generally ripped off from stack.c's routine
|
||
print_frame_info() */
|
||
|
||
func = find_pc_function (fi->pc);
|
||
if (func)
|
||
{
|
||
/* In certain pathological cases, the symtabs give the wrong
|
||
function (when we are in the first function in a file which
|
||
is compiled without debugging symbols, the previous function
|
||
is compiled with debugging symbols, and the "foo.o" symbol
|
||
that is supposed to tell us where the file with debugging symbols
|
||
ends has been truncated by ar because it is longer than 15
|
||
characters).
|
||
|
||
So look in the minimal symbol tables as well, and if it comes
|
||
up with a larger address for the function use that instead.
|
||
I don't think this can ever cause any problems; there shouldn't
|
||
be any minimal symbols in the middle of a function.
|
||
FIXME: (Not necessarily true. What about text labels) */
|
||
|
||
struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
|
||
|
||
if (msymbol != NULL
|
||
&& (SYMBOL_VALUE_ADDRESS (msymbol)
|
||
> BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
|
||
funname = SYMBOL_LINKAGE_NAME (msymbol);
|
||
else
|
||
funname = SYMBOL_LINKAGE_NAME (func);
|
||
}
|
||
else
|
||
{
|
||
struct minimal_symbol *msymbol =
|
||
lookup_minimal_symbol_by_pc (fi->pc);
|
||
|
||
if (msymbol != NULL)
|
||
funname = SYMBOL_LINKAGE_NAME (msymbol);
|
||
}
|
||
|
||
the_common = find_common_for_function (comname, funname);
|
||
|
||
return (the_common ? 1 : 0);
|
||
}
|
||
#endif
|
||
|
||
void
|
||
_initialize_f_valprint (void)
|
||
{
|
||
add_info ("common", info_common_command,
|
||
_("Print out the values contained in a Fortran COMMON block."));
|
||
if (xdb_commands)
|
||
add_com ("lc", class_info, info_common_command,
|
||
_("Print out the values contained in a Fortran COMMON block."));
|
||
}
|