mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-06 12:09:26 +08:00
3988 lines
102 KiB
C
3988 lines
102 KiB
C
/* Renesas RX specific support for 32-bit ELF.
|
||
Copyright (C) 2008-2014 Free Software Foundation, Inc.
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||
|
||
#include "sysdep.h"
|
||
#include "bfd.h"
|
||
#include "bfd_stdint.h"
|
||
#include "libbfd.h"
|
||
#include "elf-bfd.h"
|
||
#include "elf/rx.h"
|
||
#include "libiberty.h"
|
||
#include "elf32-rx.h"
|
||
|
||
#define RX_OPCODE_BIG_ENDIAN 0
|
||
|
||
/* This is a meta-target that's used only with objcopy, to avoid the
|
||
endian-swap we would otherwise get. We check for this in
|
||
rx_elf_object_p(). */
|
||
const bfd_target rx_elf32_be_ns_vec;
|
||
const bfd_target rx_elf32_be_vec;
|
||
|
||
#ifdef DEBUG
|
||
char * rx_get_reloc (long);
|
||
void rx_dump_symtab (bfd *, void *, void *);
|
||
#endif
|
||
|
||
#define RXREL(n,sz,bit,shift,complain,pcrel) \
|
||
HOWTO (R_RX_##n, shift, sz, bit, pcrel, 0, complain_overflow_ ## complain, \
|
||
bfd_elf_generic_reloc, "R_RX_" #n, FALSE, 0, ~0, FALSE)
|
||
|
||
/* Note that the relocations around 0x7f are internal to this file;
|
||
feel free to move them as needed to avoid conflicts with published
|
||
relocation numbers. */
|
||
|
||
static reloc_howto_type rx_elf_howto_table [] =
|
||
{
|
||
RXREL (NONE, 0, 0, 0, dont, FALSE),
|
||
RXREL (DIR32, 2, 32, 0, signed, FALSE),
|
||
RXREL (DIR24S, 2, 24, 0, signed, FALSE),
|
||
RXREL (DIR16, 1, 16, 0, dont, FALSE),
|
||
RXREL (DIR16U, 1, 16, 0, unsigned, FALSE),
|
||
RXREL (DIR16S, 1, 16, 0, signed, FALSE),
|
||
RXREL (DIR8, 0, 8, 0, dont, FALSE),
|
||
RXREL (DIR8U, 0, 8, 0, unsigned, FALSE),
|
||
RXREL (DIR8S, 0, 8, 0, signed, FALSE),
|
||
RXREL (DIR24S_PCREL, 2, 24, 0, signed, TRUE),
|
||
RXREL (DIR16S_PCREL, 1, 16, 0, signed, TRUE),
|
||
RXREL (DIR8S_PCREL, 0, 8, 0, signed, TRUE),
|
||
RXREL (DIR16UL, 1, 16, 2, unsigned, FALSE),
|
||
RXREL (DIR16UW, 1, 16, 1, unsigned, FALSE),
|
||
RXREL (DIR8UL, 0, 8, 2, unsigned, FALSE),
|
||
RXREL (DIR8UW, 0, 8, 1, unsigned, FALSE),
|
||
RXREL (DIR32_REV, 1, 16, 0, dont, FALSE),
|
||
RXREL (DIR16_REV, 1, 16, 0, dont, FALSE),
|
||
RXREL (DIR3U_PCREL, 0, 3, 0, dont, TRUE),
|
||
|
||
EMPTY_HOWTO (0x13),
|
||
EMPTY_HOWTO (0x14),
|
||
EMPTY_HOWTO (0x15),
|
||
EMPTY_HOWTO (0x16),
|
||
EMPTY_HOWTO (0x17),
|
||
EMPTY_HOWTO (0x18),
|
||
EMPTY_HOWTO (0x19),
|
||
EMPTY_HOWTO (0x1a),
|
||
EMPTY_HOWTO (0x1b),
|
||
EMPTY_HOWTO (0x1c),
|
||
EMPTY_HOWTO (0x1d),
|
||
EMPTY_HOWTO (0x1e),
|
||
EMPTY_HOWTO (0x1f),
|
||
|
||
RXREL (RH_3_PCREL, 0, 3, 0, signed, TRUE),
|
||
RXREL (RH_16_OP, 1, 16, 0, signed, FALSE),
|
||
RXREL (RH_24_OP, 2, 24, 0, signed, FALSE),
|
||
RXREL (RH_32_OP, 2, 32, 0, signed, FALSE),
|
||
RXREL (RH_24_UNS, 2, 24, 0, unsigned, FALSE),
|
||
RXREL (RH_8_NEG, 0, 8, 0, signed, FALSE),
|
||
RXREL (RH_16_NEG, 1, 16, 0, signed, FALSE),
|
||
RXREL (RH_24_NEG, 2, 24, 0, signed, FALSE),
|
||
RXREL (RH_32_NEG, 2, 32, 0, signed, FALSE),
|
||
RXREL (RH_DIFF, 2, 32, 0, signed, FALSE),
|
||
RXREL (RH_GPRELB, 1, 16, 0, unsigned, FALSE),
|
||
RXREL (RH_GPRELW, 1, 16, 0, unsigned, FALSE),
|
||
RXREL (RH_GPRELL, 1, 16, 0, unsigned, FALSE),
|
||
RXREL (RH_RELAX, 0, 0, 0, dont, FALSE),
|
||
|
||
EMPTY_HOWTO (0x2e),
|
||
EMPTY_HOWTO (0x2f),
|
||
EMPTY_HOWTO (0x30),
|
||
EMPTY_HOWTO (0x31),
|
||
EMPTY_HOWTO (0x32),
|
||
EMPTY_HOWTO (0x33),
|
||
EMPTY_HOWTO (0x34),
|
||
EMPTY_HOWTO (0x35),
|
||
EMPTY_HOWTO (0x36),
|
||
EMPTY_HOWTO (0x37),
|
||
EMPTY_HOWTO (0x38),
|
||
EMPTY_HOWTO (0x39),
|
||
EMPTY_HOWTO (0x3a),
|
||
EMPTY_HOWTO (0x3b),
|
||
EMPTY_HOWTO (0x3c),
|
||
EMPTY_HOWTO (0x3d),
|
||
EMPTY_HOWTO (0x3e),
|
||
EMPTY_HOWTO (0x3f),
|
||
EMPTY_HOWTO (0x40),
|
||
|
||
RXREL (ABS32, 2, 32, 0, dont, FALSE),
|
||
RXREL (ABS24S, 2, 24, 0, signed, FALSE),
|
||
RXREL (ABS16, 1, 16, 0, dont, FALSE),
|
||
RXREL (ABS16U, 1, 16, 0, unsigned, FALSE),
|
||
RXREL (ABS16S, 1, 16, 0, signed, FALSE),
|
||
RXREL (ABS8, 0, 8, 0, dont, FALSE),
|
||
RXREL (ABS8U, 0, 8, 0, unsigned, FALSE),
|
||
RXREL (ABS8S, 0, 8, 0, signed, FALSE),
|
||
RXREL (ABS24S_PCREL, 2, 24, 0, signed, TRUE),
|
||
RXREL (ABS16S_PCREL, 1, 16, 0, signed, TRUE),
|
||
RXREL (ABS8S_PCREL, 0, 8, 0, signed, TRUE),
|
||
RXREL (ABS16UL, 1, 16, 0, unsigned, FALSE),
|
||
RXREL (ABS16UW, 1, 16, 0, unsigned, FALSE),
|
||
RXREL (ABS8UL, 0, 8, 0, unsigned, FALSE),
|
||
RXREL (ABS8UW, 0, 8, 0, unsigned, FALSE),
|
||
RXREL (ABS32_REV, 2, 32, 0, dont, FALSE),
|
||
RXREL (ABS16_REV, 1, 16, 0, dont, FALSE),
|
||
|
||
#define STACK_REL_P(x) ((x) <= R_RX_ABS16_REV && (x) >= R_RX_ABS32)
|
||
|
||
EMPTY_HOWTO (0x52),
|
||
EMPTY_HOWTO (0x53),
|
||
EMPTY_HOWTO (0x54),
|
||
EMPTY_HOWTO (0x55),
|
||
EMPTY_HOWTO (0x56),
|
||
EMPTY_HOWTO (0x57),
|
||
EMPTY_HOWTO (0x58),
|
||
EMPTY_HOWTO (0x59),
|
||
EMPTY_HOWTO (0x5a),
|
||
EMPTY_HOWTO (0x5b),
|
||
EMPTY_HOWTO (0x5c),
|
||
EMPTY_HOWTO (0x5d),
|
||
EMPTY_HOWTO (0x5e),
|
||
EMPTY_HOWTO (0x5f),
|
||
EMPTY_HOWTO (0x60),
|
||
EMPTY_HOWTO (0x61),
|
||
EMPTY_HOWTO (0x62),
|
||
EMPTY_HOWTO (0x63),
|
||
EMPTY_HOWTO (0x64),
|
||
EMPTY_HOWTO (0x65),
|
||
EMPTY_HOWTO (0x66),
|
||
EMPTY_HOWTO (0x67),
|
||
EMPTY_HOWTO (0x68),
|
||
EMPTY_HOWTO (0x69),
|
||
EMPTY_HOWTO (0x6a),
|
||
EMPTY_HOWTO (0x6b),
|
||
EMPTY_HOWTO (0x6c),
|
||
EMPTY_HOWTO (0x6d),
|
||
EMPTY_HOWTO (0x6e),
|
||
EMPTY_HOWTO (0x6f),
|
||
EMPTY_HOWTO (0x70),
|
||
EMPTY_HOWTO (0x71),
|
||
EMPTY_HOWTO (0x72),
|
||
EMPTY_HOWTO (0x73),
|
||
EMPTY_HOWTO (0x74),
|
||
EMPTY_HOWTO (0x75),
|
||
EMPTY_HOWTO (0x76),
|
||
EMPTY_HOWTO (0x77),
|
||
|
||
/* These are internal. */
|
||
/* A 5-bit unsigned displacement to a B/W/L address, at bit position 8/12. */
|
||
/* ---- ---- 4--- 3210. */
|
||
#define R_RX_RH_ABS5p8B 0x78
|
||
RXREL (RH_ABS5p8B, 0, 0, 0, dont, FALSE),
|
||
#define R_RX_RH_ABS5p8W 0x79
|
||
RXREL (RH_ABS5p8W, 0, 0, 0, dont, FALSE),
|
||
#define R_RX_RH_ABS5p8L 0x7a
|
||
RXREL (RH_ABS5p8L, 0, 0, 0, dont, FALSE),
|
||
/* A 5-bit unsigned displacement to a B/W/L address, at bit position 5/12. */
|
||
/* ---- -432 1--- 0---. */
|
||
#define R_RX_RH_ABS5p5B 0x7b
|
||
RXREL (RH_ABS5p5B, 0, 0, 0, dont, FALSE),
|
||
#define R_RX_RH_ABS5p5W 0x7c
|
||
RXREL (RH_ABS5p5W, 0, 0, 0, dont, FALSE),
|
||
#define R_RX_RH_ABS5p5L 0x7d
|
||
RXREL (RH_ABS5p5L, 0, 0, 0, dont, FALSE),
|
||
/* A 4-bit unsigned immediate at bit position 8. */
|
||
#define R_RX_RH_UIMM4p8 0x7e
|
||
RXREL (RH_UIMM4p8, 0, 0, 0, dont, FALSE),
|
||
/* A 4-bit negative unsigned immediate at bit position 8. */
|
||
#define R_RX_RH_UNEG4p8 0x7f
|
||
RXREL (RH_UNEG4p8, 0, 0, 0, dont, FALSE),
|
||
/* End of internal relocs. */
|
||
|
||
RXREL (SYM, 2, 32, 0, dont, FALSE),
|
||
RXREL (OPneg, 2, 32, 0, dont, FALSE),
|
||
RXREL (OPadd, 2, 32, 0, dont, FALSE),
|
||
RXREL (OPsub, 2, 32, 0, dont, FALSE),
|
||
RXREL (OPmul, 2, 32, 0, dont, FALSE),
|
||
RXREL (OPdiv, 2, 32, 0, dont, FALSE),
|
||
RXREL (OPshla, 2, 32, 0, dont, FALSE),
|
||
RXREL (OPshra, 2, 32, 0, dont, FALSE),
|
||
RXREL (OPsctsize, 2, 32, 0, dont, FALSE),
|
||
RXREL (OPscttop, 2, 32, 0, dont, FALSE),
|
||
RXREL (OPand, 2, 32, 0, dont, FALSE),
|
||
RXREL (OPor, 2, 32, 0, dont, FALSE),
|
||
RXREL (OPxor, 2, 32, 0, dont, FALSE),
|
||
RXREL (OPnot, 2, 32, 0, dont, FALSE),
|
||
RXREL (OPmod, 2, 32, 0, dont, FALSE),
|
||
RXREL (OPromtop, 2, 32, 0, dont, FALSE),
|
||
RXREL (OPramtop, 2, 32, 0, dont, FALSE)
|
||
};
|
||
|
||
/* Map BFD reloc types to RX ELF reloc types. */
|
||
|
||
struct rx_reloc_map
|
||
{
|
||
bfd_reloc_code_real_type bfd_reloc_val;
|
||
unsigned int rx_reloc_val;
|
||
};
|
||
|
||
static const struct rx_reloc_map rx_reloc_map [] =
|
||
{
|
||
{ BFD_RELOC_NONE, R_RX_NONE },
|
||
{ BFD_RELOC_8, R_RX_DIR8S },
|
||
{ BFD_RELOC_16, R_RX_DIR16S },
|
||
{ BFD_RELOC_24, R_RX_DIR24S },
|
||
{ BFD_RELOC_32, R_RX_DIR32 },
|
||
{ BFD_RELOC_RX_16_OP, R_RX_DIR16 },
|
||
{ BFD_RELOC_RX_DIR3U_PCREL, R_RX_DIR3U_PCREL },
|
||
{ BFD_RELOC_8_PCREL, R_RX_DIR8S_PCREL },
|
||
{ BFD_RELOC_16_PCREL, R_RX_DIR16S_PCREL },
|
||
{ BFD_RELOC_24_PCREL, R_RX_DIR24S_PCREL },
|
||
{ BFD_RELOC_RX_8U, R_RX_DIR8U },
|
||
{ BFD_RELOC_RX_16U, R_RX_DIR16U },
|
||
{ BFD_RELOC_RX_24U, R_RX_RH_24_UNS },
|
||
{ BFD_RELOC_RX_NEG8, R_RX_RH_8_NEG },
|
||
{ BFD_RELOC_RX_NEG16, R_RX_RH_16_NEG },
|
||
{ BFD_RELOC_RX_NEG24, R_RX_RH_24_NEG },
|
||
{ BFD_RELOC_RX_NEG32, R_RX_RH_32_NEG },
|
||
{ BFD_RELOC_RX_DIFF, R_RX_RH_DIFF },
|
||
{ BFD_RELOC_RX_GPRELB, R_RX_RH_GPRELB },
|
||
{ BFD_RELOC_RX_GPRELW, R_RX_RH_GPRELW },
|
||
{ BFD_RELOC_RX_GPRELL, R_RX_RH_GPRELL },
|
||
{ BFD_RELOC_RX_RELAX, R_RX_RH_RELAX },
|
||
{ BFD_RELOC_RX_SYM, R_RX_SYM },
|
||
{ BFD_RELOC_RX_OP_SUBTRACT, R_RX_OPsub },
|
||
{ BFD_RELOC_RX_OP_NEG, R_RX_OPneg },
|
||
{ BFD_RELOC_RX_ABS8, R_RX_ABS8 },
|
||
{ BFD_RELOC_RX_ABS16, R_RX_ABS16 },
|
||
{ BFD_RELOC_RX_ABS16_REV, R_RX_ABS16_REV },
|
||
{ BFD_RELOC_RX_ABS32, R_RX_ABS32 },
|
||
{ BFD_RELOC_RX_ABS32_REV, R_RX_ABS32_REV },
|
||
{ BFD_RELOC_RX_ABS16UL, R_RX_ABS16UL },
|
||
{ BFD_RELOC_RX_ABS16UW, R_RX_ABS16UW },
|
||
{ BFD_RELOC_RX_ABS16U, R_RX_ABS16U }
|
||
};
|
||
|
||
#define BIGE(abfd) ((abfd)->xvec->byteorder == BFD_ENDIAN_BIG)
|
||
|
||
static reloc_howto_type *
|
||
rx_reloc_type_lookup (bfd * abfd ATTRIBUTE_UNUSED,
|
||
bfd_reloc_code_real_type code)
|
||
{
|
||
unsigned int i;
|
||
|
||
if (code == BFD_RELOC_RX_32_OP)
|
||
return rx_elf_howto_table + R_RX_DIR32;
|
||
|
||
for (i = ARRAY_SIZE (rx_reloc_map); --i;)
|
||
if (rx_reloc_map [i].bfd_reloc_val == code)
|
||
return rx_elf_howto_table + rx_reloc_map[i].rx_reloc_val;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static reloc_howto_type *
|
||
rx_reloc_name_lookup (bfd * abfd ATTRIBUTE_UNUSED, const char * r_name)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < ARRAY_SIZE (rx_elf_howto_table); i++)
|
||
if (rx_elf_howto_table[i].name != NULL
|
||
&& strcasecmp (rx_elf_howto_table[i].name, r_name) == 0)
|
||
return rx_elf_howto_table + i;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Set the howto pointer for an RX ELF reloc. */
|
||
|
||
static void
|
||
rx_info_to_howto_rela (bfd * abfd ATTRIBUTE_UNUSED,
|
||
arelent * cache_ptr,
|
||
Elf_Internal_Rela * dst)
|
||
{
|
||
unsigned int r_type;
|
||
|
||
r_type = ELF32_R_TYPE (dst->r_info);
|
||
BFD_ASSERT (r_type < (unsigned int) R_RX_max);
|
||
cache_ptr->howto = rx_elf_howto_table + r_type;
|
||
}
|
||
|
||
static bfd_vma
|
||
get_symbol_value (const char * name,
|
||
bfd_reloc_status_type * status,
|
||
struct bfd_link_info * info,
|
||
bfd * input_bfd,
|
||
asection * input_section,
|
||
int offset)
|
||
{
|
||
bfd_vma value = 0;
|
||
struct bfd_link_hash_entry * h;
|
||
|
||
h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, TRUE);
|
||
|
||
if (h == NULL
|
||
|| (h->type != bfd_link_hash_defined
|
||
&& h->type != bfd_link_hash_defweak))
|
||
* status = info->callbacks->undefined_symbol
|
||
(info, name, input_bfd, input_section, offset, TRUE);
|
||
else
|
||
value = (h->u.def.value
|
||
+ h->u.def.section->output_section->vma
|
||
+ h->u.def.section->output_offset);
|
||
|
||
return value;
|
||
}
|
||
static bfd_vma
|
||
get_symbol_value_maybe (const char * name,
|
||
struct bfd_link_info * info)
|
||
{
|
||
bfd_vma value = 0;
|
||
struct bfd_link_hash_entry * h;
|
||
|
||
h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, TRUE);
|
||
|
||
if (h == NULL
|
||
|| (h->type != bfd_link_hash_defined
|
||
&& h->type != bfd_link_hash_defweak))
|
||
return 0;
|
||
else
|
||
value = (h->u.def.value
|
||
+ h->u.def.section->output_section->vma
|
||
+ h->u.def.section->output_offset);
|
||
|
||
return value;
|
||
}
|
||
|
||
static bfd_vma
|
||
get_gp (bfd_reloc_status_type * status,
|
||
struct bfd_link_info * info,
|
||
bfd * abfd,
|
||
asection * sec,
|
||
int offset)
|
||
{
|
||
static bfd_boolean cached = FALSE;
|
||
static bfd_vma cached_value = 0;
|
||
|
||
if (!cached)
|
||
{
|
||
cached_value = get_symbol_value ("__gp", status, info, abfd, sec, offset);
|
||
cached = TRUE;
|
||
}
|
||
return cached_value;
|
||
}
|
||
|
||
static bfd_vma
|
||
get_romstart (bfd_reloc_status_type * status,
|
||
struct bfd_link_info * info,
|
||
bfd * abfd,
|
||
asection * sec,
|
||
int offset)
|
||
{
|
||
static bfd_boolean cached = FALSE;
|
||
static bfd_vma cached_value = 0;
|
||
|
||
if (!cached)
|
||
{
|
||
cached_value = get_symbol_value ("_start", status, info, abfd, sec, offset);
|
||
cached = TRUE;
|
||
}
|
||
return cached_value;
|
||
}
|
||
|
||
static bfd_vma
|
||
get_ramstart (bfd_reloc_status_type * status,
|
||
struct bfd_link_info * info,
|
||
bfd * abfd,
|
||
asection * sec,
|
||
int offset)
|
||
{
|
||
static bfd_boolean cached = FALSE;
|
||
static bfd_vma cached_value = 0;
|
||
|
||
if (!cached)
|
||
{
|
||
cached_value = get_symbol_value ("__datastart", status, info, abfd, sec, offset);
|
||
cached = TRUE;
|
||
}
|
||
return cached_value;
|
||
}
|
||
|
||
#define NUM_STACK_ENTRIES 16
|
||
static int32_t rx_stack [ NUM_STACK_ENTRIES ];
|
||
static unsigned int rx_stack_top;
|
||
|
||
#define RX_STACK_PUSH(val) \
|
||
do \
|
||
{ \
|
||
if (rx_stack_top < NUM_STACK_ENTRIES) \
|
||
rx_stack [rx_stack_top ++] = (val); \
|
||
else \
|
||
r = bfd_reloc_dangerous; \
|
||
} \
|
||
while (0)
|
||
|
||
#define RX_STACK_POP(dest) \
|
||
do \
|
||
{ \
|
||
if (rx_stack_top > 0) \
|
||
(dest) = rx_stack [-- rx_stack_top]; \
|
||
else \
|
||
(dest) = 0, r = bfd_reloc_dangerous; \
|
||
} \
|
||
while (0)
|
||
|
||
/* Relocate an RX ELF section.
|
||
There is some attempt to make this function usable for many architectures,
|
||
both USE_REL and USE_RELA ['twould be nice if such a critter existed],
|
||
if only to serve as a learning tool.
|
||
|
||
The RELOCATE_SECTION function is called by the new ELF backend linker
|
||
to handle the relocations for a section.
|
||
|
||
The relocs are always passed as Rela structures; if the section
|
||
actually uses Rel structures, the r_addend field will always be
|
||
zero.
|
||
|
||
This function is responsible for adjusting the section contents as
|
||
necessary, and (if using Rela relocs and generating a relocatable
|
||
output file) adjusting the reloc addend as necessary.
|
||
|
||
This function does not have to worry about setting the reloc
|
||
address or the reloc symbol index.
|
||
|
||
LOCAL_SYMS is a pointer to the swapped in local symbols.
|
||
|
||
LOCAL_SECTIONS is an array giving the section in the input file
|
||
corresponding to the st_shndx field of each local symbol.
|
||
|
||
The global hash table entry for the global symbols can be found
|
||
via elf_sym_hashes (input_bfd).
|
||
|
||
When generating relocatable output, this function must handle
|
||
STB_LOCAL/STT_SECTION symbols specially. The output symbol is
|
||
going to be the section symbol corresponding to the output
|
||
section, which means that the addend must be adjusted
|
||
accordingly. */
|
||
|
||
static bfd_boolean
|
||
rx_elf_relocate_section
|
||
(bfd * output_bfd,
|
||
struct bfd_link_info * info,
|
||
bfd * input_bfd,
|
||
asection * input_section,
|
||
bfd_byte * contents,
|
||
Elf_Internal_Rela * relocs,
|
||
Elf_Internal_Sym * local_syms,
|
||
asection ** local_sections)
|
||
{
|
||
Elf_Internal_Shdr * symtab_hdr;
|
||
struct elf_link_hash_entry ** sym_hashes;
|
||
Elf_Internal_Rela * rel;
|
||
Elf_Internal_Rela * relend;
|
||
bfd_boolean pid_mode;
|
||
bfd_boolean saw_subtract = FALSE;
|
||
const char * table_default_cache = NULL;
|
||
bfd_vma table_start_cache = 0;
|
||
bfd_vma table_end_cache = 0;
|
||
|
||
if (elf_elfheader (output_bfd)->e_flags & E_FLAG_RX_PID)
|
||
pid_mode = TRUE;
|
||
else
|
||
pid_mode = FALSE;
|
||
|
||
symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
|
||
sym_hashes = elf_sym_hashes (input_bfd);
|
||
relend = relocs + input_section->reloc_count;
|
||
for (rel = relocs; rel < relend; rel ++)
|
||
{
|
||
reloc_howto_type * howto;
|
||
unsigned long r_symndx;
|
||
Elf_Internal_Sym * sym;
|
||
asection * sec;
|
||
struct elf_link_hash_entry * h;
|
||
bfd_vma relocation;
|
||
bfd_reloc_status_type r;
|
||
const char * name = NULL;
|
||
bfd_boolean unresolved_reloc = TRUE;
|
||
int r_type;
|
||
|
||
r_type = ELF32_R_TYPE (rel->r_info);
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
|
||
howto = rx_elf_howto_table + ELF32_R_TYPE (rel->r_info);
|
||
h = NULL;
|
||
sym = NULL;
|
||
sec = NULL;
|
||
relocation = 0;
|
||
|
||
if (rx_stack_top == 0)
|
||
saw_subtract = FALSE;
|
||
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
{
|
||
sym = local_syms + r_symndx;
|
||
sec = local_sections [r_symndx];
|
||
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, & sec, rel);
|
||
|
||
name = bfd_elf_string_from_elf_section
|
||
(input_bfd, symtab_hdr->sh_link, sym->st_name);
|
||
name = (sym->st_name == 0) ? bfd_section_name (input_bfd, sec) : name;
|
||
}
|
||
else
|
||
{
|
||
bfd_boolean warned, ignored;
|
||
|
||
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
|
||
r_symndx, symtab_hdr, sym_hashes, h,
|
||
sec, relocation, unresolved_reloc,
|
||
warned, ignored);
|
||
|
||
name = h->root.root.string;
|
||
}
|
||
|
||
if (strncmp (name, "$tableentry$default$", 20) == 0)
|
||
{
|
||
bfd_vma entry_vma;
|
||
int idx;
|
||
char *buf;
|
||
bfd_reloc_status_type tstat = 0;
|
||
|
||
if (table_default_cache != name)
|
||
{
|
||
|
||
/* All relocs for a given table should be to the same
|
||
(weak) default symbol) so we can use it to detect a
|
||
cache miss. We use the offset into the table to find
|
||
the "real" symbol. Calculate and store the table's
|
||
offset here. */
|
||
|
||
table_default_cache = name;
|
||
|
||
/* We have already done error checking in rx_table_find(). */
|
||
|
||
buf = (char *) malloc (13 + strlen (name + 20));
|
||
|
||
sprintf (buf, "$tablestart$%s", name + 20);
|
||
tstat = 0;
|
||
table_start_cache = get_symbol_value (buf,
|
||
&tstat,
|
||
info,
|
||
input_bfd,
|
||
input_section,
|
||
rel->r_offset);
|
||
|
||
sprintf (buf, "$tableend$%s", name + 20);
|
||
tstat = 0;
|
||
table_end_cache = get_symbol_value (buf,
|
||
&tstat,
|
||
info,
|
||
input_bfd,
|
||
input_section,
|
||
rel->r_offset);
|
||
|
||
free (buf);
|
||
}
|
||
|
||
entry_vma = (input_section->output_section->vma
|
||
+ input_section->output_offset
|
||
+ rel->r_offset);
|
||
|
||
if (table_end_cache <= entry_vma || entry_vma < table_start_cache)
|
||
{
|
||
_bfd_error_handler (_("%B:%A: table entry %s outside table"),
|
||
input_bfd, input_section,
|
||
name);
|
||
}
|
||
else if ((int) (entry_vma - table_start_cache) % 4)
|
||
{
|
||
_bfd_error_handler (_("%B:%A: table entry %s not word-aligned within table"),
|
||
input_bfd, input_section,
|
||
name);
|
||
}
|
||
else
|
||
{
|
||
idx = (int) (entry_vma - table_start_cache) / 4;
|
||
|
||
/* This will look like $tableentry$<N>$<name> */
|
||
buf = (char *) malloc (12 + 20 + strlen (name + 20));
|
||
sprintf (buf, "$tableentry$%d$%s", idx, name + 20);
|
||
|
||
h = (struct elf_link_hash_entry *) bfd_link_hash_lookup (info->hash, buf, FALSE, FALSE, TRUE);
|
||
|
||
if (h)
|
||
{
|
||
relocation = (h->root.u.def.value
|
||
+ h->root.u.def.section->output_section->vma
|
||
+ h->root.u.def.section->output_offset);;
|
||
}
|
||
|
||
free (buf);
|
||
}
|
||
}
|
||
|
||
if (sec != NULL && discarded_section (sec))
|
||
RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
|
||
rel, 1, relend, howto, 0, contents);
|
||
|
||
if (info->relocatable)
|
||
{
|
||
/* This is a relocatable link. We don't have to change
|
||
anything, unless the reloc is against a section symbol,
|
||
in which case we have to adjust according to where the
|
||
section symbol winds up in the output section. */
|
||
if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
|
||
rel->r_addend += sec->output_offset;
|
||
continue;
|
||
}
|
||
|
||
if (h != NULL && h->root.type == bfd_link_hash_undefweak)
|
||
/* If the symbol is undefined and weak
|
||
then the relocation resolves to zero. */
|
||
relocation = 0;
|
||
else
|
||
{
|
||
if (howto->pc_relative)
|
||
{
|
||
relocation -= (input_section->output_section->vma
|
||
+ input_section->output_offset
|
||
+ rel->r_offset);
|
||
if (r_type != R_RX_RH_3_PCREL
|
||
&& r_type != R_RX_DIR3U_PCREL)
|
||
relocation ++;
|
||
}
|
||
|
||
relocation += rel->r_addend;
|
||
}
|
||
|
||
r = bfd_reloc_ok;
|
||
|
||
#define RANGE(a,b) if (a > (long) relocation || (long) relocation > b) r = bfd_reloc_overflow
|
||
#define ALIGN(m) if (relocation & m) r = bfd_reloc_other;
|
||
#define OP(i) (contents[rel->r_offset + (i)])
|
||
#define WARN_REDHAT(type) \
|
||
_bfd_error_handler (_("%B:%A: Warning: deprecated Red Hat reloc " type " detected against: %s."), \
|
||
input_bfd, input_section, name)
|
||
|
||
/* Check for unsafe relocs in PID mode. These are any relocs where
|
||
an absolute address is being computed. There are special cases
|
||
for relocs against symbols that are known to be referenced in
|
||
crt0.o before the PID base address register has been initialised. */
|
||
#define UNSAFE_FOR_PID \
|
||
do \
|
||
{ \
|
||
if (pid_mode \
|
||
&& sec != NULL \
|
||
&& sec->flags & SEC_READONLY \
|
||
&& !(input_section->flags & SEC_DEBUGGING) \
|
||
&& strcmp (name, "__pid_base") != 0 \
|
||
&& strcmp (name, "__gp") != 0 \
|
||
&& strcmp (name, "__romdatastart") != 0 \
|
||
&& !saw_subtract) \
|
||
_bfd_error_handler (_("%B(%A): unsafe PID relocation %s at 0x%08lx (against %s in %s)"), \
|
||
input_bfd, input_section, howto->name, \
|
||
input_section->output_section->vma + input_section->output_offset + rel->r_offset, \
|
||
name, sec->name); \
|
||
} \
|
||
while (0)
|
||
|
||
/* Opcode relocs are always big endian. Data relocs are bi-endian. */
|
||
switch (r_type)
|
||
{
|
||
case R_RX_NONE:
|
||
break;
|
||
|
||
case R_RX_RH_RELAX:
|
||
break;
|
||
|
||
case R_RX_RH_3_PCREL:
|
||
WARN_REDHAT ("RX_RH_3_PCREL");
|
||
RANGE (3, 10);
|
||
OP (0) &= 0xf8;
|
||
OP (0) |= relocation & 0x07;
|
||
break;
|
||
|
||
case R_RX_RH_8_NEG:
|
||
WARN_REDHAT ("RX_RH_8_NEG");
|
||
relocation = - relocation;
|
||
case R_RX_DIR8S_PCREL:
|
||
UNSAFE_FOR_PID;
|
||
RANGE (-128, 127);
|
||
OP (0) = relocation;
|
||
break;
|
||
|
||
case R_RX_DIR8S:
|
||
UNSAFE_FOR_PID;
|
||
RANGE (-128, 255);
|
||
OP (0) = relocation;
|
||
break;
|
||
|
||
case R_RX_DIR8U:
|
||
UNSAFE_FOR_PID;
|
||
RANGE (0, 255);
|
||
OP (0) = relocation;
|
||
break;
|
||
|
||
case R_RX_RH_16_NEG:
|
||
WARN_REDHAT ("RX_RH_16_NEG");
|
||
relocation = - relocation;
|
||
case R_RX_DIR16S_PCREL:
|
||
UNSAFE_FOR_PID;
|
||
RANGE (-32768, 32767);
|
||
#if RX_OPCODE_BIG_ENDIAN
|
||
#else
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
#endif
|
||
break;
|
||
|
||
case R_RX_RH_16_OP:
|
||
WARN_REDHAT ("RX_RH_16_OP");
|
||
UNSAFE_FOR_PID;
|
||
RANGE (-32768, 32767);
|
||
#if RX_OPCODE_BIG_ENDIAN
|
||
OP (1) = relocation;
|
||
OP (0) = relocation >> 8;
|
||
#else
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
#endif
|
||
break;
|
||
|
||
case R_RX_DIR16S:
|
||
UNSAFE_FOR_PID;
|
||
RANGE (-32768, 65535);
|
||
if (BIGE (output_bfd) && !(input_section->flags & SEC_CODE))
|
||
{
|
||
OP (1) = relocation;
|
||
OP (0) = relocation >> 8;
|
||
}
|
||
else
|
||
{
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
}
|
||
break;
|
||
|
||
case R_RX_DIR16U:
|
||
UNSAFE_FOR_PID;
|
||
RANGE (0, 65536);
|
||
#if RX_OPCODE_BIG_ENDIAN
|
||
OP (1) = relocation;
|
||
OP (0) = relocation >> 8;
|
||
#else
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
#endif
|
||
break;
|
||
|
||
case R_RX_DIR16:
|
||
UNSAFE_FOR_PID;
|
||
RANGE (-32768, 65536);
|
||
#if RX_OPCODE_BIG_ENDIAN
|
||
OP (1) = relocation;
|
||
OP (0) = relocation >> 8;
|
||
#else
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
#endif
|
||
break;
|
||
|
||
case R_RX_DIR16_REV:
|
||
UNSAFE_FOR_PID;
|
||
RANGE (-32768, 65536);
|
||
#if RX_OPCODE_BIG_ENDIAN
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
#else
|
||
OP (1) = relocation;
|
||
OP (0) = relocation >> 8;
|
||
#endif
|
||
break;
|
||
|
||
case R_RX_DIR3U_PCREL:
|
||
RANGE (3, 10);
|
||
OP (0) &= 0xf8;
|
||
OP (0) |= relocation & 0x07;
|
||
break;
|
||
|
||
case R_RX_RH_24_NEG:
|
||
UNSAFE_FOR_PID;
|
||
WARN_REDHAT ("RX_RH_24_NEG");
|
||
relocation = - relocation;
|
||
case R_RX_DIR24S_PCREL:
|
||
RANGE (-0x800000, 0x7fffff);
|
||
#if RX_OPCODE_BIG_ENDIAN
|
||
OP (2) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
OP (0) = relocation >> 16;
|
||
#else
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
OP (2) = relocation >> 16;
|
||
#endif
|
||
break;
|
||
|
||
case R_RX_RH_24_OP:
|
||
UNSAFE_FOR_PID;
|
||
WARN_REDHAT ("RX_RH_24_OP");
|
||
RANGE (-0x800000, 0x7fffff);
|
||
#if RX_OPCODE_BIG_ENDIAN
|
||
OP (2) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
OP (0) = relocation >> 16;
|
||
#else
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
OP (2) = relocation >> 16;
|
||
#endif
|
||
break;
|
||
|
||
case R_RX_DIR24S:
|
||
UNSAFE_FOR_PID;
|
||
RANGE (-0x800000, 0x7fffff);
|
||
if (BIGE (output_bfd) && !(input_section->flags & SEC_CODE))
|
||
{
|
||
OP (2) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
OP (0) = relocation >> 16;
|
||
}
|
||
else
|
||
{
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
OP (2) = relocation >> 16;
|
||
}
|
||
break;
|
||
|
||
case R_RX_RH_24_UNS:
|
||
UNSAFE_FOR_PID;
|
||
WARN_REDHAT ("RX_RH_24_UNS");
|
||
RANGE (0, 0xffffff);
|
||
#if RX_OPCODE_BIG_ENDIAN
|
||
OP (2) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
OP (0) = relocation >> 16;
|
||
#else
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
OP (2) = relocation >> 16;
|
||
#endif
|
||
break;
|
||
|
||
case R_RX_RH_32_NEG:
|
||
UNSAFE_FOR_PID;
|
||
WARN_REDHAT ("RX_RH_32_NEG");
|
||
relocation = - relocation;
|
||
#if RX_OPCODE_BIG_ENDIAN
|
||
OP (3) = relocation;
|
||
OP (2) = relocation >> 8;
|
||
OP (1) = relocation >> 16;
|
||
OP (0) = relocation >> 24;
|
||
#else
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
OP (2) = relocation >> 16;
|
||
OP (3) = relocation >> 24;
|
||
#endif
|
||
break;
|
||
|
||
case R_RX_RH_32_OP:
|
||
UNSAFE_FOR_PID;
|
||
WARN_REDHAT ("RX_RH_32_OP");
|
||
#if RX_OPCODE_BIG_ENDIAN
|
||
OP (3) = relocation;
|
||
OP (2) = relocation >> 8;
|
||
OP (1) = relocation >> 16;
|
||
OP (0) = relocation >> 24;
|
||
#else
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
OP (2) = relocation >> 16;
|
||
OP (3) = relocation >> 24;
|
||
#endif
|
||
break;
|
||
|
||
case R_RX_DIR32:
|
||
if (BIGE (output_bfd) && !(input_section->flags & SEC_CODE))
|
||
{
|
||
OP (3) = relocation;
|
||
OP (2) = relocation >> 8;
|
||
OP (1) = relocation >> 16;
|
||
OP (0) = relocation >> 24;
|
||
}
|
||
else
|
||
{
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
OP (2) = relocation >> 16;
|
||
OP (3) = relocation >> 24;
|
||
}
|
||
break;
|
||
|
||
case R_RX_DIR32_REV:
|
||
if (BIGE (output_bfd))
|
||
{
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
OP (2) = relocation >> 16;
|
||
OP (3) = relocation >> 24;
|
||
}
|
||
else
|
||
{
|
||
OP (3) = relocation;
|
||
OP (2) = relocation >> 8;
|
||
OP (1) = relocation >> 16;
|
||
OP (0) = relocation >> 24;
|
||
}
|
||
break;
|
||
|
||
case R_RX_RH_DIFF:
|
||
{
|
||
bfd_vma val;
|
||
WARN_REDHAT ("RX_RH_DIFF");
|
||
val = bfd_get_32 (output_bfd, & OP (0));
|
||
val -= relocation;
|
||
bfd_put_32 (output_bfd, val, & OP (0));
|
||
}
|
||
break;
|
||
|
||
case R_RX_RH_GPRELB:
|
||
WARN_REDHAT ("RX_RH_GPRELB");
|
||
relocation -= get_gp (&r, info, input_bfd, input_section, rel->r_offset);
|
||
RANGE (0, 65535);
|
||
#if RX_OPCODE_BIG_ENDIAN
|
||
OP (1) = relocation;
|
||
OP (0) = relocation >> 8;
|
||
#else
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
#endif
|
||
break;
|
||
|
||
case R_RX_RH_GPRELW:
|
||
WARN_REDHAT ("RX_RH_GPRELW");
|
||
relocation -= get_gp (&r, info, input_bfd, input_section, rel->r_offset);
|
||
ALIGN (1);
|
||
relocation >>= 1;
|
||
RANGE (0, 65535);
|
||
#if RX_OPCODE_BIG_ENDIAN
|
||
OP (1) = relocation;
|
||
OP (0) = relocation >> 8;
|
||
#else
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
#endif
|
||
break;
|
||
|
||
case R_RX_RH_GPRELL:
|
||
WARN_REDHAT ("RX_RH_GPRELL");
|
||
relocation -= get_gp (&r, info, input_bfd, input_section, rel->r_offset);
|
||
ALIGN (3);
|
||
relocation >>= 2;
|
||
RANGE (0, 65535);
|
||
#if RX_OPCODE_BIG_ENDIAN
|
||
OP (1) = relocation;
|
||
OP (0) = relocation >> 8;
|
||
#else
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
#endif
|
||
break;
|
||
|
||
/* Internal relocations just for relaxation: */
|
||
case R_RX_RH_ABS5p5B:
|
||
RX_STACK_POP (relocation);
|
||
RANGE (0, 31);
|
||
OP (0) &= 0xf8;
|
||
OP (0) |= relocation >> 2;
|
||
OP (1) &= 0x77;
|
||
OP (1) |= (relocation << 6) & 0x80;
|
||
OP (1) |= (relocation << 3) & 0x08;
|
||
break;
|
||
|
||
case R_RX_RH_ABS5p5W:
|
||
RX_STACK_POP (relocation);
|
||
RANGE (0, 62);
|
||
ALIGN (1);
|
||
relocation >>= 1;
|
||
OP (0) &= 0xf8;
|
||
OP (0) |= relocation >> 2;
|
||
OP (1) &= 0x77;
|
||
OP (1) |= (relocation << 6) & 0x80;
|
||
OP (1) |= (relocation << 3) & 0x08;
|
||
break;
|
||
|
||
case R_RX_RH_ABS5p5L:
|
||
RX_STACK_POP (relocation);
|
||
RANGE (0, 124);
|
||
ALIGN (3);
|
||
relocation >>= 2;
|
||
OP (0) &= 0xf8;
|
||
OP (0) |= relocation >> 2;
|
||
OP (1) &= 0x77;
|
||
OP (1) |= (relocation << 6) & 0x80;
|
||
OP (1) |= (relocation << 3) & 0x08;
|
||
break;
|
||
|
||
case R_RX_RH_ABS5p8B:
|
||
RX_STACK_POP (relocation);
|
||
RANGE (0, 31);
|
||
OP (0) &= 0x70;
|
||
OP (0) |= (relocation << 3) & 0x80;
|
||
OP (0) |= relocation & 0x0f;
|
||
break;
|
||
|
||
case R_RX_RH_ABS5p8W:
|
||
RX_STACK_POP (relocation);
|
||
RANGE (0, 62);
|
||
ALIGN (1);
|
||
relocation >>= 1;
|
||
OP (0) &= 0x70;
|
||
OP (0) |= (relocation << 3) & 0x80;
|
||
OP (0) |= relocation & 0x0f;
|
||
break;
|
||
|
||
case R_RX_RH_ABS5p8L:
|
||
RX_STACK_POP (relocation);
|
||
RANGE (0, 124);
|
||
ALIGN (3);
|
||
relocation >>= 2;
|
||
OP (0) &= 0x70;
|
||
OP (0) |= (relocation << 3) & 0x80;
|
||
OP (0) |= relocation & 0x0f;
|
||
break;
|
||
|
||
case R_RX_RH_UIMM4p8:
|
||
RANGE (0, 15);
|
||
OP (0) &= 0x0f;
|
||
OP (0) |= relocation << 4;
|
||
break;
|
||
|
||
case R_RX_RH_UNEG4p8:
|
||
RANGE (-15, 0);
|
||
OP (0) &= 0x0f;
|
||
OP (0) |= (-relocation) << 4;
|
||
break;
|
||
|
||
/* Complex reloc handling: */
|
||
|
||
case R_RX_ABS32:
|
||
UNSAFE_FOR_PID;
|
||
RX_STACK_POP (relocation);
|
||
#if RX_OPCODE_BIG_ENDIAN
|
||
OP (3) = relocation;
|
||
OP (2) = relocation >> 8;
|
||
OP (1) = relocation >> 16;
|
||
OP (0) = relocation >> 24;
|
||
#else
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
OP (2) = relocation >> 16;
|
||
OP (3) = relocation >> 24;
|
||
#endif
|
||
break;
|
||
|
||
case R_RX_ABS32_REV:
|
||
UNSAFE_FOR_PID;
|
||
RX_STACK_POP (relocation);
|
||
#if RX_OPCODE_BIG_ENDIAN
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
OP (2) = relocation >> 16;
|
||
OP (3) = relocation >> 24;
|
||
#else
|
||
OP (3) = relocation;
|
||
OP (2) = relocation >> 8;
|
||
OP (1) = relocation >> 16;
|
||
OP (0) = relocation >> 24;
|
||
#endif
|
||
break;
|
||
|
||
case R_RX_ABS24S_PCREL:
|
||
case R_RX_ABS24S:
|
||
UNSAFE_FOR_PID;
|
||
RX_STACK_POP (relocation);
|
||
RANGE (-0x800000, 0x7fffff);
|
||
if (BIGE (output_bfd) && !(input_section->flags & SEC_CODE))
|
||
{
|
||
OP (2) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
OP (0) = relocation >> 16;
|
||
}
|
||
else
|
||
{
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
OP (2) = relocation >> 16;
|
||
}
|
||
break;
|
||
|
||
case R_RX_ABS16:
|
||
UNSAFE_FOR_PID;
|
||
RX_STACK_POP (relocation);
|
||
RANGE (-32768, 65535);
|
||
#if RX_OPCODE_BIG_ENDIAN
|
||
OP (1) = relocation;
|
||
OP (0) = relocation >> 8;
|
||
#else
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
#endif
|
||
break;
|
||
|
||
case R_RX_ABS16_REV:
|
||
UNSAFE_FOR_PID;
|
||
RX_STACK_POP (relocation);
|
||
RANGE (-32768, 65535);
|
||
#if RX_OPCODE_BIG_ENDIAN
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
#else
|
||
OP (1) = relocation;
|
||
OP (0) = relocation >> 8;
|
||
#endif
|
||
break;
|
||
|
||
case R_RX_ABS16S_PCREL:
|
||
case R_RX_ABS16S:
|
||
RX_STACK_POP (relocation);
|
||
RANGE (-32768, 32767);
|
||
if (BIGE (output_bfd) && !(input_section->flags & SEC_CODE))
|
||
{
|
||
OP (1) = relocation;
|
||
OP (0) = relocation >> 8;
|
||
}
|
||
else
|
||
{
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
}
|
||
break;
|
||
|
||
case R_RX_ABS16U:
|
||
UNSAFE_FOR_PID;
|
||
RX_STACK_POP (relocation);
|
||
RANGE (0, 65536);
|
||
#if RX_OPCODE_BIG_ENDIAN
|
||
OP (1) = relocation;
|
||
OP (0) = relocation >> 8;
|
||
#else
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
#endif
|
||
break;
|
||
|
||
case R_RX_ABS16UL:
|
||
UNSAFE_FOR_PID;
|
||
RX_STACK_POP (relocation);
|
||
relocation >>= 2;
|
||
RANGE (0, 65536);
|
||
#if RX_OPCODE_BIG_ENDIAN
|
||
OP (1) = relocation;
|
||
OP (0) = relocation >> 8;
|
||
#else
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
#endif
|
||
break;
|
||
|
||
case R_RX_ABS16UW:
|
||
UNSAFE_FOR_PID;
|
||
RX_STACK_POP (relocation);
|
||
relocation >>= 1;
|
||
RANGE (0, 65536);
|
||
#if RX_OPCODE_BIG_ENDIAN
|
||
OP (1) = relocation;
|
||
OP (0) = relocation >> 8;
|
||
#else
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
#endif
|
||
break;
|
||
|
||
case R_RX_ABS8:
|
||
UNSAFE_FOR_PID;
|
||
RX_STACK_POP (relocation);
|
||
RANGE (-128, 255);
|
||
OP (0) = relocation;
|
||
break;
|
||
|
||
case R_RX_ABS8U:
|
||
UNSAFE_FOR_PID;
|
||
RX_STACK_POP (relocation);
|
||
RANGE (0, 255);
|
||
OP (0) = relocation;
|
||
break;
|
||
|
||
case R_RX_ABS8UL:
|
||
UNSAFE_FOR_PID;
|
||
RX_STACK_POP (relocation);
|
||
relocation >>= 2;
|
||
RANGE (0, 255);
|
||
OP (0) = relocation;
|
||
break;
|
||
|
||
case R_RX_ABS8UW:
|
||
UNSAFE_FOR_PID;
|
||
RX_STACK_POP (relocation);
|
||
relocation >>= 1;
|
||
RANGE (0, 255);
|
||
OP (0) = relocation;
|
||
break;
|
||
|
||
case R_RX_ABS8S:
|
||
UNSAFE_FOR_PID;
|
||
case R_RX_ABS8S_PCREL:
|
||
RX_STACK_POP (relocation);
|
||
RANGE (-128, 127);
|
||
OP (0) = relocation;
|
||
break;
|
||
|
||
case R_RX_SYM:
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
RX_STACK_PUSH (sec->output_section->vma
|
||
+ sec->output_offset
|
||
+ sym->st_value
|
||
+ rel->r_addend);
|
||
else
|
||
{
|
||
if (h != NULL
|
||
&& (h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak))
|
||
RX_STACK_PUSH (h->root.u.def.value
|
||
+ sec->output_section->vma
|
||
+ sec->output_offset
|
||
+ rel->r_addend);
|
||
else
|
||
_bfd_error_handler (_("Warning: RX_SYM reloc with an unknown symbol"));
|
||
}
|
||
break;
|
||
|
||
case R_RX_OPneg:
|
||
{
|
||
int32_t tmp;
|
||
|
||
saw_subtract = TRUE;
|
||
RX_STACK_POP (tmp);
|
||
tmp = - tmp;
|
||
RX_STACK_PUSH (tmp);
|
||
}
|
||
break;
|
||
|
||
case R_RX_OPadd:
|
||
{
|
||
int32_t tmp1, tmp2;
|
||
|
||
RX_STACK_POP (tmp1);
|
||
RX_STACK_POP (tmp2);
|
||
tmp1 += tmp2;
|
||
RX_STACK_PUSH (tmp1);
|
||
}
|
||
break;
|
||
|
||
case R_RX_OPsub:
|
||
{
|
||
int32_t tmp1, tmp2;
|
||
|
||
saw_subtract = TRUE;
|
||
RX_STACK_POP (tmp1);
|
||
RX_STACK_POP (tmp2);
|
||
tmp2 -= tmp1;
|
||
RX_STACK_PUSH (tmp2);
|
||
}
|
||
break;
|
||
|
||
case R_RX_OPmul:
|
||
{
|
||
int32_t tmp1, tmp2;
|
||
|
||
RX_STACK_POP (tmp1);
|
||
RX_STACK_POP (tmp2);
|
||
tmp1 *= tmp2;
|
||
RX_STACK_PUSH (tmp1);
|
||
}
|
||
break;
|
||
|
||
case R_RX_OPdiv:
|
||
{
|
||
int32_t tmp1, tmp2;
|
||
|
||
RX_STACK_POP (tmp1);
|
||
RX_STACK_POP (tmp2);
|
||
tmp1 /= tmp2;
|
||
RX_STACK_PUSH (tmp1);
|
||
}
|
||
break;
|
||
|
||
case R_RX_OPshla:
|
||
{
|
||
int32_t tmp1, tmp2;
|
||
|
||
RX_STACK_POP (tmp1);
|
||
RX_STACK_POP (tmp2);
|
||
tmp1 <<= tmp2;
|
||
RX_STACK_PUSH (tmp1);
|
||
}
|
||
break;
|
||
|
||
case R_RX_OPshra:
|
||
{
|
||
int32_t tmp1, tmp2;
|
||
|
||
RX_STACK_POP (tmp1);
|
||
RX_STACK_POP (tmp2);
|
||
tmp1 >>= tmp2;
|
||
RX_STACK_PUSH (tmp1);
|
||
}
|
||
break;
|
||
|
||
case R_RX_OPsctsize:
|
||
RX_STACK_PUSH (input_section->size);
|
||
break;
|
||
|
||
case R_RX_OPscttop:
|
||
RX_STACK_PUSH (input_section->output_section->vma);
|
||
break;
|
||
|
||
case R_RX_OPand:
|
||
{
|
||
int32_t tmp1, tmp2;
|
||
|
||
RX_STACK_POP (tmp1);
|
||
RX_STACK_POP (tmp2);
|
||
tmp1 &= tmp2;
|
||
RX_STACK_PUSH (tmp1);
|
||
}
|
||
break;
|
||
|
||
case R_RX_OPor:
|
||
{
|
||
int32_t tmp1, tmp2;
|
||
|
||
RX_STACK_POP (tmp1);
|
||
RX_STACK_POP (tmp2);
|
||
tmp1 |= tmp2;
|
||
RX_STACK_PUSH (tmp1);
|
||
}
|
||
break;
|
||
|
||
case R_RX_OPxor:
|
||
{
|
||
int32_t tmp1, tmp2;
|
||
|
||
RX_STACK_POP (tmp1);
|
||
RX_STACK_POP (tmp2);
|
||
tmp1 ^= tmp2;
|
||
RX_STACK_PUSH (tmp1);
|
||
}
|
||
break;
|
||
|
||
case R_RX_OPnot:
|
||
{
|
||
int32_t tmp;
|
||
|
||
RX_STACK_POP (tmp);
|
||
tmp = ~ tmp;
|
||
RX_STACK_PUSH (tmp);
|
||
}
|
||
break;
|
||
|
||
case R_RX_OPmod:
|
||
{
|
||
int32_t tmp1, tmp2;
|
||
|
||
RX_STACK_POP (tmp1);
|
||
RX_STACK_POP (tmp2);
|
||
tmp1 %= tmp2;
|
||
RX_STACK_PUSH (tmp1);
|
||
}
|
||
break;
|
||
|
||
case R_RX_OPromtop:
|
||
RX_STACK_PUSH (get_romstart (&r, info, input_bfd, input_section, rel->r_offset));
|
||
break;
|
||
|
||
case R_RX_OPramtop:
|
||
RX_STACK_PUSH (get_ramstart (&r, info, input_bfd, input_section, rel->r_offset));
|
||
break;
|
||
|
||
default:
|
||
r = bfd_reloc_notsupported;
|
||
break;
|
||
}
|
||
|
||
if (r != bfd_reloc_ok)
|
||
{
|
||
const char * msg = NULL;
|
||
|
||
switch (r)
|
||
{
|
||
case bfd_reloc_overflow:
|
||
/* Catch the case of a missing function declaration
|
||
and emit a more helpful error message. */
|
||
if (r_type == R_RX_DIR24S_PCREL)
|
||
msg = _("%B(%A): error: call to undefined function '%s'");
|
||
else
|
||
r = info->callbacks->reloc_overflow
|
||
(info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
|
||
input_bfd, input_section, rel->r_offset);
|
||
break;
|
||
|
||
case bfd_reloc_undefined:
|
||
r = info->callbacks->undefined_symbol
|
||
(info, name, input_bfd, input_section, rel->r_offset,
|
||
TRUE);
|
||
break;
|
||
|
||
case bfd_reloc_other:
|
||
msg = _("%B(%A): warning: unaligned access to symbol '%s' in the small data area");
|
||
break;
|
||
|
||
case bfd_reloc_outofrange:
|
||
msg = _("%B(%A): internal error: out of range error");
|
||
break;
|
||
|
||
case bfd_reloc_notsupported:
|
||
msg = _("%B(%A): internal error: unsupported relocation error");
|
||
break;
|
||
|
||
case bfd_reloc_dangerous:
|
||
msg = _("%B(%A): internal error: dangerous relocation");
|
||
break;
|
||
|
||
default:
|
||
msg = _("%B(%A): internal error: unknown error");
|
||
break;
|
||
}
|
||
|
||
if (msg)
|
||
_bfd_error_handler (msg, input_bfd, input_section, name);
|
||
|
||
if (! r)
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Relaxation Support. */
|
||
|
||
/* Progression of relocations from largest operand size to smallest
|
||
operand size. */
|
||
|
||
static int
|
||
next_smaller_reloc (int r)
|
||
{
|
||
switch (r)
|
||
{
|
||
case R_RX_DIR32: return R_RX_DIR24S;
|
||
case R_RX_DIR24S: return R_RX_DIR16S;
|
||
case R_RX_DIR16S: return R_RX_DIR8S;
|
||
case R_RX_DIR8S: return R_RX_NONE;
|
||
|
||
case R_RX_DIR16: return R_RX_DIR8;
|
||
case R_RX_DIR8: return R_RX_NONE;
|
||
|
||
case R_RX_DIR16U: return R_RX_DIR8U;
|
||
case R_RX_DIR8U: return R_RX_NONE;
|
||
|
||
case R_RX_DIR24S_PCREL: return R_RX_DIR16S_PCREL;
|
||
case R_RX_DIR16S_PCREL: return R_RX_DIR8S_PCREL;
|
||
case R_RX_DIR8S_PCREL: return R_RX_DIR3U_PCREL;
|
||
|
||
case R_RX_DIR16UL: return R_RX_DIR8UL;
|
||
case R_RX_DIR8UL: return R_RX_NONE;
|
||
case R_RX_DIR16UW: return R_RX_DIR8UW;
|
||
case R_RX_DIR8UW: return R_RX_NONE;
|
||
|
||
case R_RX_RH_32_OP: return R_RX_RH_24_OP;
|
||
case R_RX_RH_24_OP: return R_RX_RH_16_OP;
|
||
case R_RX_RH_16_OP: return R_RX_DIR8;
|
||
|
||
case R_RX_ABS32: return R_RX_ABS24S;
|
||
case R_RX_ABS24S: return R_RX_ABS16S;
|
||
case R_RX_ABS16: return R_RX_ABS8;
|
||
case R_RX_ABS16U: return R_RX_ABS8U;
|
||
case R_RX_ABS16S: return R_RX_ABS8S;
|
||
case R_RX_ABS8: return R_RX_NONE;
|
||
case R_RX_ABS8U: return R_RX_NONE;
|
||
case R_RX_ABS8S: return R_RX_NONE;
|
||
case R_RX_ABS24S_PCREL: return R_RX_ABS16S_PCREL;
|
||
case R_RX_ABS16S_PCREL: return R_RX_ABS8S_PCREL;
|
||
case R_RX_ABS8S_PCREL: return R_RX_NONE;
|
||
case R_RX_ABS16UL: return R_RX_ABS8UL;
|
||
case R_RX_ABS16UW: return R_RX_ABS8UW;
|
||
case R_RX_ABS8UL: return R_RX_NONE;
|
||
case R_RX_ABS8UW: return R_RX_NONE;
|
||
}
|
||
return r;
|
||
};
|
||
|
||
/* Delete some bytes from a section while relaxing. */
|
||
|
||
static bfd_boolean
|
||
elf32_rx_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, int count,
|
||
Elf_Internal_Rela *alignment_rel, int force_snip)
|
||
{
|
||
Elf_Internal_Shdr * symtab_hdr;
|
||
unsigned int sec_shndx;
|
||
bfd_byte * contents;
|
||
Elf_Internal_Rela * irel;
|
||
Elf_Internal_Rela * irelend;
|
||
Elf_Internal_Sym * isym;
|
||
Elf_Internal_Sym * isymend;
|
||
bfd_vma toaddr;
|
||
unsigned int symcount;
|
||
struct elf_link_hash_entry ** sym_hashes;
|
||
struct elf_link_hash_entry ** end_hashes;
|
||
|
||
if (!alignment_rel)
|
||
force_snip = 1;
|
||
|
||
sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
|
||
|
||
contents = elf_section_data (sec)->this_hdr.contents;
|
||
|
||
/* The deletion must stop at the next alignment boundary, if
|
||
ALIGNMENT_REL is non-NULL. */
|
||
toaddr = sec->size;
|
||
if (alignment_rel)
|
||
toaddr = alignment_rel->r_offset;
|
||
|
||
irel = elf_section_data (sec)->relocs;
|
||
irelend = irel + sec->reloc_count;
|
||
|
||
/* Actually delete the bytes. */
|
||
memmove (contents + addr, contents + addr + count,
|
||
(size_t) (toaddr - addr - count));
|
||
|
||
/* If we don't have an alignment marker to worry about, we can just
|
||
shrink the section. Otherwise, we have to fill in the newly
|
||
created gap with NOP insns (0x03). */
|
||
if (force_snip)
|
||
sec->size -= count;
|
||
else
|
||
memset (contents + toaddr - count, 0x03, count);
|
||
|
||
/* Adjust all the relocs. */
|
||
for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
|
||
{
|
||
/* Get the new reloc address. */
|
||
if (irel->r_offset > addr
|
||
&& (irel->r_offset < toaddr
|
||
|| (force_snip && irel->r_offset == toaddr)))
|
||
irel->r_offset -= count;
|
||
|
||
/* If we see an ALIGN marker at the end of the gap, we move it
|
||
to the beginning of the gap, since marking these gaps is what
|
||
they're for. */
|
||
if (irel->r_offset == toaddr
|
||
&& ELF32_R_TYPE (irel->r_info) == R_RX_RH_RELAX
|
||
&& irel->r_addend & RX_RELAXA_ALIGN)
|
||
irel->r_offset -= count;
|
||
}
|
||
|
||
/* Adjust the local symbols defined in this section. */
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
isym = (Elf_Internal_Sym *) symtab_hdr->contents;
|
||
isymend = isym + symtab_hdr->sh_info;
|
||
|
||
for (; isym < isymend; isym++)
|
||
{
|
||
/* If the symbol is in the range of memory we just moved, we
|
||
have to adjust its value. */
|
||
if (isym->st_shndx == sec_shndx
|
||
&& isym->st_value > addr
|
||
&& isym->st_value < toaddr)
|
||
isym->st_value -= count;
|
||
|
||
/* If the symbol *spans* the bytes we just deleted (i.e. it's
|
||
*end* is in the moved bytes but it's *start* isn't), then we
|
||
must adjust its size. */
|
||
if (isym->st_shndx == sec_shndx
|
||
&& isym->st_value < addr
|
||
&& isym->st_value + isym->st_size > addr
|
||
&& isym->st_value + isym->st_size < toaddr)
|
||
isym->st_size -= count;
|
||
}
|
||
|
||
/* Now adjust the global symbols defined in this section. */
|
||
symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
|
||
- symtab_hdr->sh_info);
|
||
sym_hashes = elf_sym_hashes (abfd);
|
||
end_hashes = sym_hashes + symcount;
|
||
|
||
for (; sym_hashes < end_hashes; sym_hashes++)
|
||
{
|
||
struct elf_link_hash_entry *sym_hash = *sym_hashes;
|
||
|
||
if ((sym_hash->root.type == bfd_link_hash_defined
|
||
|| sym_hash->root.type == bfd_link_hash_defweak)
|
||
&& sym_hash->root.u.def.section == sec)
|
||
{
|
||
/* As above, adjust the value if needed. */
|
||
if (sym_hash->root.u.def.value > addr
|
||
&& sym_hash->root.u.def.value < toaddr)
|
||
sym_hash->root.u.def.value -= count;
|
||
|
||
/* As above, adjust the size if needed. */
|
||
if (sym_hash->root.u.def.value < addr
|
||
&& sym_hash->root.u.def.value + sym_hash->size > addr
|
||
&& sym_hash->root.u.def.value + sym_hash->size < toaddr)
|
||
sym_hash->size -= count;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Used to sort relocs by address. If relocs have the same address,
|
||
we maintain their relative order, except that R_RX_RH_RELAX
|
||
alignment relocs must be the first reloc for any given address. */
|
||
|
||
static void
|
||
reloc_bubblesort (Elf_Internal_Rela * r, int count)
|
||
{
|
||
int i;
|
||
bfd_boolean again;
|
||
bfd_boolean swappit;
|
||
|
||
/* This is almost a classic bubblesort. It's the slowest sort, but
|
||
we're taking advantage of the fact that the relocations are
|
||
mostly in order already (the assembler emits them that way) and
|
||
we need relocs with the same address to remain in the same
|
||
relative order. */
|
||
again = TRUE;
|
||
while (again)
|
||
{
|
||
again = FALSE;
|
||
for (i = 0; i < count - 1; i ++)
|
||
{
|
||
if (r[i].r_offset > r[i + 1].r_offset)
|
||
swappit = TRUE;
|
||
else if (r[i].r_offset < r[i + 1].r_offset)
|
||
swappit = FALSE;
|
||
else if (ELF32_R_TYPE (r[i + 1].r_info) == R_RX_RH_RELAX
|
||
&& (r[i + 1].r_addend & RX_RELAXA_ALIGN))
|
||
swappit = TRUE;
|
||
else if (ELF32_R_TYPE (r[i + 1].r_info) == R_RX_RH_RELAX
|
||
&& (r[i + 1].r_addend & RX_RELAXA_ELIGN)
|
||
&& !(ELF32_R_TYPE (r[i].r_info) == R_RX_RH_RELAX
|
||
&& (r[i].r_addend & RX_RELAXA_ALIGN)))
|
||
swappit = TRUE;
|
||
else
|
||
swappit = FALSE;
|
||
|
||
if (swappit)
|
||
{
|
||
Elf_Internal_Rela tmp;
|
||
|
||
tmp = r[i];
|
||
r[i] = r[i + 1];
|
||
r[i + 1] = tmp;
|
||
/* If we do move a reloc back, re-scan to see if it
|
||
needs to be moved even further back. This avoids
|
||
most of the O(n^2) behavior for our cases. */
|
||
if (i > 0)
|
||
i -= 2;
|
||
again = TRUE;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
#define OFFSET_FOR_RELOC(rel, lrel, scale) \
|
||
rx_offset_for_reloc (abfd, rel + 1, symtab_hdr, shndx_buf, intsyms, \
|
||
lrel, abfd, sec, link_info, scale)
|
||
|
||
static bfd_vma
|
||
rx_offset_for_reloc (bfd * abfd,
|
||
Elf_Internal_Rela * rel,
|
||
Elf_Internal_Shdr * symtab_hdr,
|
||
Elf_External_Sym_Shndx * shndx_buf ATTRIBUTE_UNUSED,
|
||
Elf_Internal_Sym * intsyms,
|
||
Elf_Internal_Rela ** lrel,
|
||
bfd * input_bfd,
|
||
asection * input_section,
|
||
struct bfd_link_info * info,
|
||
int * scale)
|
||
{
|
||
bfd_vma symval;
|
||
bfd_reloc_status_type r;
|
||
|
||
*scale = 1;
|
||
|
||
/* REL is the first of 1..N relocations. We compute the symbol
|
||
value for each relocation, then combine them if needed. LREL
|
||
gets a pointer to the last relocation used. */
|
||
while (1)
|
||
{
|
||
int32_t tmp1, tmp2;
|
||
|
||
/* Get the value of the symbol referred to by the reloc. */
|
||
if (ELF32_R_SYM (rel->r_info) < symtab_hdr->sh_info)
|
||
{
|
||
/* A local symbol. */
|
||
Elf_Internal_Sym *isym;
|
||
asection *ssec;
|
||
|
||
isym = intsyms + ELF32_R_SYM (rel->r_info);
|
||
|
||
if (isym->st_shndx == SHN_UNDEF)
|
||
ssec = bfd_und_section_ptr;
|
||
else if (isym->st_shndx == SHN_ABS)
|
||
ssec = bfd_abs_section_ptr;
|
||
else if (isym->st_shndx == SHN_COMMON)
|
||
ssec = bfd_com_section_ptr;
|
||
else
|
||
ssec = bfd_section_from_elf_index (abfd,
|
||
isym->st_shndx);
|
||
|
||
/* Initial symbol value. */
|
||
symval = isym->st_value;
|
||
|
||
/* GAS may have made this symbol relative to a section, in
|
||
which case, we have to add the addend to find the
|
||
symbol. */
|
||
if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
|
||
symval += rel->r_addend;
|
||
|
||
if (ssec)
|
||
{
|
||
if ((ssec->flags & SEC_MERGE)
|
||
&& ssec->sec_info_type == SEC_INFO_TYPE_MERGE)
|
||
symval = _bfd_merged_section_offset (abfd, & ssec,
|
||
elf_section_data (ssec)->sec_info,
|
||
symval);
|
||
}
|
||
|
||
/* Now make the offset relative to where the linker is putting it. */
|
||
if (ssec)
|
||
symval +=
|
||
ssec->output_section->vma + ssec->output_offset;
|
||
|
||
symval += rel->r_addend;
|
||
}
|
||
else
|
||
{
|
||
unsigned long indx;
|
||
struct elf_link_hash_entry * h;
|
||
|
||
/* An external symbol. */
|
||
indx = ELF32_R_SYM (rel->r_info) - symtab_hdr->sh_info;
|
||
h = elf_sym_hashes (abfd)[indx];
|
||
BFD_ASSERT (h != NULL);
|
||
|
||
if (h->root.type != bfd_link_hash_defined
|
||
&& h->root.type != bfd_link_hash_defweak)
|
||
{
|
||
/* This appears to be a reference to an undefined
|
||
symbol. Just ignore it--it will be caught by the
|
||
regular reloc processing. */
|
||
if (lrel)
|
||
*lrel = rel;
|
||
return 0;
|
||
}
|
||
|
||
symval = (h->root.u.def.value
|
||
+ h->root.u.def.section->output_section->vma
|
||
+ h->root.u.def.section->output_offset);
|
||
|
||
symval += rel->r_addend;
|
||
}
|
||
|
||
switch (ELF32_R_TYPE (rel->r_info))
|
||
{
|
||
case R_RX_SYM:
|
||
RX_STACK_PUSH (symval);
|
||
break;
|
||
|
||
case R_RX_OPneg:
|
||
RX_STACK_POP (tmp1);
|
||
tmp1 = - tmp1;
|
||
RX_STACK_PUSH (tmp1);
|
||
break;
|
||
|
||
case R_RX_OPadd:
|
||
RX_STACK_POP (tmp1);
|
||
RX_STACK_POP (tmp2);
|
||
tmp1 += tmp2;
|
||
RX_STACK_PUSH (tmp1);
|
||
break;
|
||
|
||
case R_RX_OPsub:
|
||
RX_STACK_POP (tmp1);
|
||
RX_STACK_POP (tmp2);
|
||
tmp2 -= tmp1;
|
||
RX_STACK_PUSH (tmp2);
|
||
break;
|
||
|
||
case R_RX_OPmul:
|
||
RX_STACK_POP (tmp1);
|
||
RX_STACK_POP (tmp2);
|
||
tmp1 *= tmp2;
|
||
RX_STACK_PUSH (tmp1);
|
||
break;
|
||
|
||
case R_RX_OPdiv:
|
||
RX_STACK_POP (tmp1);
|
||
RX_STACK_POP (tmp2);
|
||
tmp1 /= tmp2;
|
||
RX_STACK_PUSH (tmp1);
|
||
break;
|
||
|
||
case R_RX_OPshla:
|
||
RX_STACK_POP (tmp1);
|
||
RX_STACK_POP (tmp2);
|
||
tmp1 <<= tmp2;
|
||
RX_STACK_PUSH (tmp1);
|
||
break;
|
||
|
||
case R_RX_OPshra:
|
||
RX_STACK_POP (tmp1);
|
||
RX_STACK_POP (tmp2);
|
||
tmp1 >>= tmp2;
|
||
RX_STACK_PUSH (tmp1);
|
||
break;
|
||
|
||
case R_RX_OPsctsize:
|
||
RX_STACK_PUSH (input_section->size);
|
||
break;
|
||
|
||
case R_RX_OPscttop:
|
||
RX_STACK_PUSH (input_section->output_section->vma);
|
||
break;
|
||
|
||
case R_RX_OPand:
|
||
RX_STACK_POP (tmp1);
|
||
RX_STACK_POP (tmp2);
|
||
tmp1 &= tmp2;
|
||
RX_STACK_PUSH (tmp1);
|
||
break;
|
||
|
||
case R_RX_OPor:
|
||
RX_STACK_POP (tmp1);
|
||
RX_STACK_POP (tmp2);
|
||
tmp1 |= tmp2;
|
||
RX_STACK_PUSH (tmp1);
|
||
break;
|
||
|
||
case R_RX_OPxor:
|
||
RX_STACK_POP (tmp1);
|
||
RX_STACK_POP (tmp2);
|
||
tmp1 ^= tmp2;
|
||
RX_STACK_PUSH (tmp1);
|
||
break;
|
||
|
||
case R_RX_OPnot:
|
||
RX_STACK_POP (tmp1);
|
||
tmp1 = ~ tmp1;
|
||
RX_STACK_PUSH (tmp1);
|
||
break;
|
||
|
||
case R_RX_OPmod:
|
||
RX_STACK_POP (tmp1);
|
||
RX_STACK_POP (tmp2);
|
||
tmp1 %= tmp2;
|
||
RX_STACK_PUSH (tmp1);
|
||
break;
|
||
|
||
case R_RX_OPromtop:
|
||
RX_STACK_PUSH (get_romstart (&r, info, input_bfd, input_section, rel->r_offset));
|
||
break;
|
||
|
||
case R_RX_OPramtop:
|
||
RX_STACK_PUSH (get_ramstart (&r, info, input_bfd, input_section, rel->r_offset));
|
||
break;
|
||
|
||
case R_RX_DIR16UL:
|
||
case R_RX_DIR8UL:
|
||
case R_RX_ABS16UL:
|
||
case R_RX_ABS8UL:
|
||
if (rx_stack_top)
|
||
RX_STACK_POP (symval);
|
||
if (lrel)
|
||
*lrel = rel;
|
||
*scale = 4;
|
||
return symval;
|
||
|
||
case R_RX_DIR16UW:
|
||
case R_RX_DIR8UW:
|
||
case R_RX_ABS16UW:
|
||
case R_RX_ABS8UW:
|
||
if (rx_stack_top)
|
||
RX_STACK_POP (symval);
|
||
if (lrel)
|
||
*lrel = rel;
|
||
*scale = 2;
|
||
return symval;
|
||
|
||
default:
|
||
if (rx_stack_top)
|
||
RX_STACK_POP (symval);
|
||
if (lrel)
|
||
*lrel = rel;
|
||
return symval;
|
||
}
|
||
|
||
rel ++;
|
||
}
|
||
}
|
||
|
||
static void
|
||
move_reloc (Elf_Internal_Rela * irel, Elf_Internal_Rela * srel, int delta)
|
||
{
|
||
bfd_vma old_offset = srel->r_offset;
|
||
|
||
irel ++;
|
||
while (irel <= srel)
|
||
{
|
||
if (irel->r_offset == old_offset)
|
||
irel->r_offset += delta;
|
||
irel ++;
|
||
}
|
||
}
|
||
|
||
/* Relax one section. */
|
||
|
||
static bfd_boolean
|
||
elf32_rx_relax_section (bfd * abfd,
|
||
asection * sec,
|
||
struct bfd_link_info * link_info,
|
||
bfd_boolean * again,
|
||
bfd_boolean allow_pcrel3)
|
||
{
|
||
Elf_Internal_Shdr * symtab_hdr;
|
||
Elf_Internal_Shdr * shndx_hdr;
|
||
Elf_Internal_Rela * internal_relocs;
|
||
Elf_Internal_Rela * free_relocs = NULL;
|
||
Elf_Internal_Rela * irel;
|
||
Elf_Internal_Rela * srel;
|
||
Elf_Internal_Rela * irelend;
|
||
Elf_Internal_Rela * next_alignment;
|
||
Elf_Internal_Rela * prev_alignment;
|
||
bfd_byte * contents = NULL;
|
||
bfd_byte * free_contents = NULL;
|
||
Elf_Internal_Sym * intsyms = NULL;
|
||
Elf_Internal_Sym * free_intsyms = NULL;
|
||
Elf_External_Sym_Shndx * shndx_buf = NULL;
|
||
bfd_vma pc;
|
||
bfd_vma sec_start;
|
||
bfd_vma symval = 0;
|
||
int pcrel = 0;
|
||
int code = 0;
|
||
int section_alignment_glue;
|
||
/* how much to scale the relocation by - 1, 2, or 4. */
|
||
int scale;
|
||
|
||
/* Assume nothing changes. */
|
||
*again = FALSE;
|
||
|
||
/* We don't have to do anything for a relocatable link, if
|
||
this section does not have relocs, or if this is not a
|
||
code section. */
|
||
if (link_info->relocatable
|
||
|| (sec->flags & SEC_RELOC) == 0
|
||
|| sec->reloc_count == 0
|
||
|| (sec->flags & SEC_CODE) == 0)
|
||
return TRUE;
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
|
||
|
||
sec_start = sec->output_section->vma + sec->output_offset;
|
||
|
||
/* Get the section contents. */
|
||
if (elf_section_data (sec)->this_hdr.contents != NULL)
|
||
contents = elf_section_data (sec)->this_hdr.contents;
|
||
/* Go get them off disk. */
|
||
else
|
||
{
|
||
if (! bfd_malloc_and_get_section (abfd, sec, &contents))
|
||
goto error_return;
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
}
|
||
|
||
/* Read this BFD's symbols. */
|
||
/* Get cached copy if it exists. */
|
||
if (symtab_hdr->contents != NULL)
|
||
intsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
|
||
else
|
||
{
|
||
intsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr, symtab_hdr->sh_info, 0, NULL, NULL, NULL);
|
||
symtab_hdr->contents = (bfd_byte *) intsyms;
|
||
}
|
||
|
||
if (shndx_hdr->sh_size != 0)
|
||
{
|
||
bfd_size_type amt;
|
||
|
||
amt = symtab_hdr->sh_info;
|
||
amt *= sizeof (Elf_External_Sym_Shndx);
|
||
shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
|
||
if (shndx_buf == NULL)
|
||
goto error_return;
|
||
if (bfd_seek (abfd, shndx_hdr->sh_offset, SEEK_SET) != 0
|
||
|| bfd_bread (shndx_buf, amt, abfd) != amt)
|
||
goto error_return;
|
||
shndx_hdr->contents = (bfd_byte *) shndx_buf;
|
||
}
|
||
|
||
/* Get a copy of the native relocations. */
|
||
internal_relocs = (_bfd_elf_link_read_relocs
|
||
(abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
|
||
link_info->keep_memory));
|
||
if (internal_relocs == NULL)
|
||
goto error_return;
|
||
if (! link_info->keep_memory)
|
||
free_relocs = internal_relocs;
|
||
|
||
/* The RL_ relocs must be just before the operand relocs they go
|
||
with, so we must sort them to guarantee this. We use bubblesort
|
||
instead of qsort so we can guarantee that relocs with the same
|
||
address remain in the same relative order. */
|
||
reloc_bubblesort (internal_relocs, sec->reloc_count);
|
||
|
||
/* Walk through them looking for relaxing opportunities. */
|
||
irelend = internal_relocs + sec->reloc_count;
|
||
|
||
/* This will either be NULL or a pointer to the next alignment
|
||
relocation. */
|
||
next_alignment = internal_relocs;
|
||
/* This will be the previous alignment, although at first it points
|
||
to the first real relocation. */
|
||
prev_alignment = internal_relocs;
|
||
|
||
/* We calculate worst case shrinkage caused by alignment directives.
|
||
No fool-proof, but better than either ignoring the problem or
|
||
doing heavy duty analysis of all the alignment markers in all
|
||
input sections. */
|
||
section_alignment_glue = 0;
|
||
for (irel = internal_relocs; irel < irelend; irel++)
|
||
if (ELF32_R_TYPE (irel->r_info) == R_RX_RH_RELAX
|
||
&& irel->r_addend & RX_RELAXA_ALIGN)
|
||
{
|
||
int this_glue = 1 << (irel->r_addend & RX_RELAXA_ANUM);
|
||
|
||
if (section_alignment_glue < this_glue)
|
||
section_alignment_glue = this_glue;
|
||
}
|
||
/* Worst case is all 0..N alignments, in order, causing 2*N-1 byte
|
||
shrinkage. */
|
||
section_alignment_glue *= 2;
|
||
|
||
for (irel = internal_relocs; irel < irelend; irel++)
|
||
{
|
||
unsigned char *insn;
|
||
int nrelocs;
|
||
|
||
/* The insns we care about are all marked with one of these. */
|
||
if (ELF32_R_TYPE (irel->r_info) != R_RX_RH_RELAX)
|
||
continue;
|
||
|
||
if (irel->r_addend & RX_RELAXA_ALIGN
|
||
|| next_alignment == internal_relocs)
|
||
{
|
||
/* When we delete bytes, we need to maintain all the alignments
|
||
indicated. In addition, we need to be careful about relaxing
|
||
jumps across alignment boundaries - these displacements
|
||
*grow* when we delete bytes. For now, don't shrink
|
||
displacements across an alignment boundary, just in case.
|
||
Note that this only affects relocations to the same
|
||
section. */
|
||
prev_alignment = next_alignment;
|
||
next_alignment += 2;
|
||
while (next_alignment < irelend
|
||
&& (ELF32_R_TYPE (next_alignment->r_info) != R_RX_RH_RELAX
|
||
|| !(next_alignment->r_addend & RX_RELAXA_ELIGN)))
|
||
next_alignment ++;
|
||
if (next_alignment >= irelend || next_alignment->r_offset == 0)
|
||
next_alignment = NULL;
|
||
}
|
||
|
||
/* When we hit alignment markers, see if we've shrunk enough
|
||
before them to reduce the gap without violating the alignment
|
||
requirements. */
|
||
if (irel->r_addend & RX_RELAXA_ALIGN)
|
||
{
|
||
/* At this point, the next relocation *should* be the ELIGN
|
||
end marker. */
|
||
Elf_Internal_Rela *erel = irel + 1;
|
||
unsigned int alignment, nbytes;
|
||
|
||
if (ELF32_R_TYPE (erel->r_info) != R_RX_RH_RELAX)
|
||
continue;
|
||
if (!(erel->r_addend & RX_RELAXA_ELIGN))
|
||
continue;
|
||
|
||
alignment = 1 << (irel->r_addend & RX_RELAXA_ANUM);
|
||
|
||
if (erel->r_offset - irel->r_offset < alignment)
|
||
continue;
|
||
|
||
nbytes = erel->r_offset - irel->r_offset;
|
||
nbytes /= alignment;
|
||
nbytes *= alignment;
|
||
|
||
elf32_rx_relax_delete_bytes (abfd, sec, erel->r_offset-nbytes, nbytes, next_alignment,
|
||
erel->r_offset == sec->size);
|
||
*again = TRUE;
|
||
|
||
continue;
|
||
}
|
||
|
||
if (irel->r_addend & RX_RELAXA_ELIGN)
|
||
continue;
|
||
|
||
insn = contents + irel->r_offset;
|
||
|
||
nrelocs = irel->r_addend & RX_RELAXA_RNUM;
|
||
|
||
/* At this point, we have an insn that is a candidate for linker
|
||
relaxation. There are NRELOCS relocs following that may be
|
||
relaxed, although each reloc may be made of more than one
|
||
reloc entry (such as gp-rel symbols). */
|
||
|
||
/* Get the value of the symbol referred to by the reloc. Just
|
||
in case this is the last reloc in the list, use the RL's
|
||
addend to choose between this reloc (no addend) or the next
|
||
(yes addend, which means at least one following reloc). */
|
||
|
||
/* srel points to the "current" reloction for this insn -
|
||
actually the last reloc for a given operand, which is the one
|
||
we need to update. We check the relaxations in the same
|
||
order that the relocations happen, so we'll just push it
|
||
along as we go. */
|
||
srel = irel;
|
||
|
||
pc = sec->output_section->vma + sec->output_offset
|
||
+ srel->r_offset;
|
||
|
||
#define GET_RELOC \
|
||
symval = OFFSET_FOR_RELOC (srel, &srel, &scale); \
|
||
pcrel = symval - pc + srel->r_addend; \
|
||
nrelocs --;
|
||
|
||
#define SNIPNR(offset, nbytes) \
|
||
elf32_rx_relax_delete_bytes (abfd, sec, (insn - contents) + offset, nbytes, next_alignment, 0);
|
||
#define SNIP(offset, nbytes, newtype) \
|
||
SNIPNR (offset, nbytes); \
|
||
srel->r_info = ELF32_R_INFO (ELF32_R_SYM (srel->r_info), newtype)
|
||
|
||
/* The order of these bit tests must match the order that the
|
||
relocs appear in. Since we sorted those by offset, we can
|
||
predict them. */
|
||
|
||
/* Note that the numbers in, say, DSP6 are the bit offsets of
|
||
the code fields that describe the operand. Bits number 0 for
|
||
the MSB of insn[0]. */
|
||
|
||
/* DSP* codes:
|
||
0 00 [reg]
|
||
1 01 dsp:8[reg]
|
||
2 10 dsp:16[reg]
|
||
3 11 reg */
|
||
if (irel->r_addend & RX_RELAXA_DSP6)
|
||
{
|
||
GET_RELOC;
|
||
|
||
code = insn[0] & 3;
|
||
if (code == 2 && symval/scale <= 255)
|
||
{
|
||
unsigned int newrel = ELF32_R_TYPE (srel->r_info);
|
||
insn[0] &= 0xfc;
|
||
insn[0] |= 0x01;
|
||
newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info));
|
||
if (newrel != ELF32_R_TYPE (srel->r_info))
|
||
{
|
||
SNIP (3, 1, newrel);
|
||
*again = TRUE;
|
||
}
|
||
}
|
||
|
||
else if (code == 1 && symval == 0)
|
||
{
|
||
insn[0] &= 0xfc;
|
||
SNIP (2, 1, R_RX_NONE);
|
||
*again = TRUE;
|
||
}
|
||
|
||
/* Special case DSP:5 format: MOV.bwl dsp:5[Rsrc],Rdst. */
|
||
else if (code == 1 && symval/scale <= 31
|
||
/* Decodable bits. */
|
||
&& (insn[0] & 0xcc) == 0xcc
|
||
/* Width. */
|
||
&& (insn[0] & 0x30) != 0x30
|
||
/* Register MSBs. */
|
||
&& (insn[1] & 0x88) == 0x00)
|
||
{
|
||
int newrel = 0;
|
||
|
||
insn[0] = 0x88 | (insn[0] & 0x30);
|
||
/* The register fields are in the right place already. */
|
||
|
||
/* We can't relax this new opcode. */
|
||
irel->r_addend = 0;
|
||
|
||
switch ((insn[0] & 0x30) >> 4)
|
||
{
|
||
case 0:
|
||
newrel = R_RX_RH_ABS5p5B;
|
||
break;
|
||
case 1:
|
||
newrel = R_RX_RH_ABS5p5W;
|
||
break;
|
||
case 2:
|
||
newrel = R_RX_RH_ABS5p5L;
|
||
break;
|
||
}
|
||
|
||
move_reloc (irel, srel, -2);
|
||
SNIP (2, 1, newrel);
|
||
}
|
||
|
||
/* Special case DSP:5 format: MOVU.bw dsp:5[Rsrc],Rdst. */
|
||
else if (code == 1 && symval/scale <= 31
|
||
/* Decodable bits. */
|
||
&& (insn[0] & 0xf8) == 0x58
|
||
/* Register MSBs. */
|
||
&& (insn[1] & 0x88) == 0x00)
|
||
{
|
||
int newrel = 0;
|
||
|
||
insn[0] = 0xb0 | ((insn[0] & 0x04) << 1);
|
||
/* The register fields are in the right place already. */
|
||
|
||
/* We can't relax this new opcode. */
|
||
irel->r_addend = 0;
|
||
|
||
switch ((insn[0] & 0x08) >> 3)
|
||
{
|
||
case 0:
|
||
newrel = R_RX_RH_ABS5p5B;
|
||
break;
|
||
case 1:
|
||
newrel = R_RX_RH_ABS5p5W;
|
||
break;
|
||
}
|
||
|
||
move_reloc (irel, srel, -2);
|
||
SNIP (2, 1, newrel);
|
||
}
|
||
}
|
||
|
||
/* A DSP4 operand always follows a DSP6 operand, even if there's
|
||
no relocation for it. We have to read the code out of the
|
||
opcode to calculate the offset of the operand. */
|
||
if (irel->r_addend & RX_RELAXA_DSP4)
|
||
{
|
||
int code6, offset = 0;
|
||
|
||
GET_RELOC;
|
||
|
||
code6 = insn[0] & 0x03;
|
||
switch (code6)
|
||
{
|
||
case 0: offset = 2; break;
|
||
case 1: offset = 3; break;
|
||
case 2: offset = 4; break;
|
||
case 3: offset = 2; break;
|
||
}
|
||
|
||
code = (insn[0] & 0x0c) >> 2;
|
||
|
||
if (code == 2 && symval / scale <= 255)
|
||
{
|
||
unsigned int newrel = ELF32_R_TYPE (srel->r_info);
|
||
|
||
insn[0] &= 0xf3;
|
||
insn[0] |= 0x04;
|
||
newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info));
|
||
if (newrel != ELF32_R_TYPE (srel->r_info))
|
||
{
|
||
SNIP (offset+1, 1, newrel);
|
||
*again = TRUE;
|
||
}
|
||
}
|
||
|
||
else if (code == 1 && symval == 0)
|
||
{
|
||
insn[0] &= 0xf3;
|
||
SNIP (offset, 1, R_RX_NONE);
|
||
*again = TRUE;
|
||
}
|
||
/* Special case DSP:5 format: MOV.bwl Rsrc,dsp:5[Rdst] */
|
||
else if (code == 1 && symval/scale <= 31
|
||
/* Decodable bits. */
|
||
&& (insn[0] & 0xc3) == 0xc3
|
||
/* Width. */
|
||
&& (insn[0] & 0x30) != 0x30
|
||
/* Register MSBs. */
|
||
&& (insn[1] & 0x88) == 0x00)
|
||
{
|
||
int newrel = 0;
|
||
|
||
insn[0] = 0x80 | (insn[0] & 0x30);
|
||
/* The register fields are in the right place already. */
|
||
|
||
/* We can't relax this new opcode. */
|
||
irel->r_addend = 0;
|
||
|
||
switch ((insn[0] & 0x30) >> 4)
|
||
{
|
||
case 0:
|
||
newrel = R_RX_RH_ABS5p5B;
|
||
break;
|
||
case 1:
|
||
newrel = R_RX_RH_ABS5p5W;
|
||
break;
|
||
case 2:
|
||
newrel = R_RX_RH_ABS5p5L;
|
||
break;
|
||
}
|
||
|
||
move_reloc (irel, srel, -2);
|
||
SNIP (2, 1, newrel);
|
||
}
|
||
}
|
||
|
||
/* These always occur alone, but the offset depends on whether
|
||
it's a MEMEX opcode (0x06) or not. */
|
||
if (irel->r_addend & RX_RELAXA_DSP14)
|
||
{
|
||
int offset;
|
||
GET_RELOC;
|
||
|
||
if (insn[0] == 0x06)
|
||
offset = 3;
|
||
else
|
||
offset = 4;
|
||
|
||
code = insn[1] & 3;
|
||
|
||
if (code == 2 && symval / scale <= 255)
|
||
{
|
||
unsigned int newrel = ELF32_R_TYPE (srel->r_info);
|
||
|
||
insn[1] &= 0xfc;
|
||
insn[1] |= 0x01;
|
||
newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info));
|
||
if (newrel != ELF32_R_TYPE (srel->r_info))
|
||
{
|
||
SNIP (offset, 1, newrel);
|
||
*again = TRUE;
|
||
}
|
||
}
|
||
else if (code == 1 && symval == 0)
|
||
{
|
||
insn[1] &= 0xfc;
|
||
SNIP (offset, 1, R_RX_NONE);
|
||
*again = TRUE;
|
||
}
|
||
}
|
||
|
||
/* IMM* codes:
|
||
0 00 imm:32
|
||
1 01 simm:8
|
||
2 10 simm:16
|
||
3 11 simm:24. */
|
||
|
||
/* These always occur alone. */
|
||
if (irel->r_addend & RX_RELAXA_IMM6)
|
||
{
|
||
long ssymval;
|
||
|
||
GET_RELOC;
|
||
|
||
/* These relocations sign-extend, so we must do signed compares. */
|
||
ssymval = (long) symval;
|
||
|
||
code = insn[0] & 0x03;
|
||
|
||
if (code == 0 && ssymval <= 8388607 && ssymval >= -8388608)
|
||
{
|
||
unsigned int newrel = ELF32_R_TYPE (srel->r_info);
|
||
|
||
insn[0] &= 0xfc;
|
||
insn[0] |= 0x03;
|
||
newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info));
|
||
if (newrel != ELF32_R_TYPE (srel->r_info))
|
||
{
|
||
SNIP (2, 1, newrel);
|
||
*again = TRUE;
|
||
}
|
||
}
|
||
|
||
else if (code == 3 && ssymval <= 32767 && ssymval >= -32768)
|
||
{
|
||
unsigned int newrel = ELF32_R_TYPE (srel->r_info);
|
||
|
||
insn[0] &= 0xfc;
|
||
insn[0] |= 0x02;
|
||
newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info));
|
||
if (newrel != ELF32_R_TYPE (srel->r_info))
|
||
{
|
||
SNIP (2, 1, newrel);
|
||
*again = TRUE;
|
||
}
|
||
}
|
||
|
||
/* Special case UIMM8 format: CMP #uimm8,Rdst. */
|
||
else if (code == 2 && ssymval <= 255 && ssymval >= 16
|
||
/* Decodable bits. */
|
||
&& (insn[0] & 0xfc) == 0x74
|
||
/* Decodable bits. */
|
||
&& ((insn[1] & 0xf0) == 0x00))
|
||
{
|
||
int newrel;
|
||
|
||
insn[0] = 0x75;
|
||
insn[1] = 0x50 | (insn[1] & 0x0f);
|
||
|
||
/* We can't relax this new opcode. */
|
||
irel->r_addend = 0;
|
||
|
||
if (STACK_REL_P (ELF32_R_TYPE (srel->r_info)))
|
||
newrel = R_RX_ABS8U;
|
||
else
|
||
newrel = R_RX_DIR8U;
|
||
|
||
SNIP (2, 1, newrel);
|
||
*again = TRUE;
|
||
}
|
||
|
||
else if (code == 2 && ssymval <= 127 && ssymval >= -128)
|
||
{
|
||
unsigned int newrel = ELF32_R_TYPE (srel->r_info);
|
||
|
||
insn[0] &= 0xfc;
|
||
insn[0] |= 0x01;
|
||
newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info));
|
||
if (newrel != ELF32_R_TYPE (srel->r_info))
|
||
{
|
||
SNIP (2, 1, newrel);
|
||
*again = TRUE;
|
||
}
|
||
}
|
||
|
||
/* Special case UIMM4 format: CMP, MUL, AND, OR. */
|
||
else if (code == 1 && ssymval <= 15 && ssymval >= 0
|
||
/* Decodable bits and immediate type. */
|
||
&& insn[0] == 0x75
|
||
/* Decodable bits. */
|
||
&& (insn[1] & 0xc0) == 0x00)
|
||
{
|
||
static const int newop[4] = { 1, 3, 4, 5 };
|
||
|
||
insn[0] = 0x60 | newop[insn[1] >> 4];
|
||
/* The register number doesn't move. */
|
||
|
||
/* We can't relax this new opcode. */
|
||
irel->r_addend = 0;
|
||
|
||
move_reloc (irel, srel, -1);
|
||
|
||
SNIP (2, 1, R_RX_RH_UIMM4p8);
|
||
*again = TRUE;
|
||
}
|
||
|
||
/* Special case UIMM4 format: ADD -> ADD/SUB. */
|
||
else if (code == 1 && ssymval <= 15 && ssymval >= -15
|
||
/* Decodable bits and immediate type. */
|
||
&& insn[0] == 0x71
|
||
/* Same register for source and destination. */
|
||
&& ((insn[1] >> 4) == (insn[1] & 0x0f)))
|
||
{
|
||
int newrel;
|
||
|
||
/* Note that we can't turn "add $0,Rs" into a NOP
|
||
because the flags need to be set right. */
|
||
|
||
if (ssymval < 0)
|
||
{
|
||
insn[0] = 0x60; /* Subtract. */
|
||
newrel = R_RX_RH_UNEG4p8;
|
||
}
|
||
else
|
||
{
|
||
insn[0] = 0x62; /* Add. */
|
||
newrel = R_RX_RH_UIMM4p8;
|
||
}
|
||
|
||
/* The register number is in the right place. */
|
||
|
||
/* We can't relax this new opcode. */
|
||
irel->r_addend = 0;
|
||
|
||
move_reloc (irel, srel, -1);
|
||
|
||
SNIP (2, 1, newrel);
|
||
*again = TRUE;
|
||
}
|
||
}
|
||
|
||
/* These are either matched with a DSP6 (2-byte base) or an id24
|
||
(3-byte base). */
|
||
if (irel->r_addend & RX_RELAXA_IMM12)
|
||
{
|
||
int dspcode, offset = 0;
|
||
long ssymval;
|
||
|
||
GET_RELOC;
|
||
|
||
if ((insn[0] & 0xfc) == 0xfc)
|
||
dspcode = 1; /* Just something with one byte operand. */
|
||
else
|
||
dspcode = insn[0] & 3;
|
||
switch (dspcode)
|
||
{
|
||
case 0: offset = 2; break;
|
||
case 1: offset = 3; break;
|
||
case 2: offset = 4; break;
|
||
case 3: offset = 2; break;
|
||
}
|
||
|
||
/* These relocations sign-extend, so we must do signed compares. */
|
||
ssymval = (long) symval;
|
||
|
||
code = (insn[1] >> 2) & 3;
|
||
if (code == 0 && ssymval <= 8388607 && ssymval >= -8388608)
|
||
{
|
||
unsigned int newrel = ELF32_R_TYPE (srel->r_info);
|
||
|
||
insn[1] &= 0xf3;
|
||
insn[1] |= 0x0c;
|
||
newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info));
|
||
if (newrel != ELF32_R_TYPE (srel->r_info))
|
||
{
|
||
SNIP (offset, 1, newrel);
|
||
*again = TRUE;
|
||
}
|
||
}
|
||
|
||
else if (code == 3 && ssymval <= 32767 && ssymval >= -32768)
|
||
{
|
||
unsigned int newrel = ELF32_R_TYPE (srel->r_info);
|
||
|
||
insn[1] &= 0xf3;
|
||
insn[1] |= 0x08;
|
||
newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info));
|
||
if (newrel != ELF32_R_TYPE (srel->r_info))
|
||
{
|
||
SNIP (offset, 1, newrel);
|
||
*again = TRUE;
|
||
}
|
||
}
|
||
|
||
/* Special case UIMM8 format: MOV #uimm8,Rdst. */
|
||
else if (code == 2 && ssymval <= 255 && ssymval >= 16
|
||
/* Decodable bits. */
|
||
&& insn[0] == 0xfb
|
||
/* Decodable bits. */
|
||
&& ((insn[1] & 0x03) == 0x02))
|
||
{
|
||
int newrel;
|
||
|
||
insn[0] = 0x75;
|
||
insn[1] = 0x40 | (insn[1] >> 4);
|
||
|
||
/* We can't relax this new opcode. */
|
||
irel->r_addend = 0;
|
||
|
||
if (STACK_REL_P (ELF32_R_TYPE (srel->r_info)))
|
||
newrel = R_RX_ABS8U;
|
||
else
|
||
newrel = R_RX_DIR8U;
|
||
|
||
SNIP (2, 1, newrel);
|
||
*again = TRUE;
|
||
}
|
||
|
||
else if (code == 2 && ssymval <= 127 && ssymval >= -128)
|
||
{
|
||
unsigned int newrel = ELF32_R_TYPE(srel->r_info);
|
||
|
||
insn[1] &= 0xf3;
|
||
insn[1] |= 0x04;
|
||
newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info));
|
||
if (newrel != ELF32_R_TYPE(srel->r_info))
|
||
{
|
||
SNIP (offset, 1, newrel);
|
||
*again = TRUE;
|
||
}
|
||
}
|
||
|
||
/* Special case UIMM4 format: MOV #uimm4,Rdst. */
|
||
else if (code == 1 && ssymval <= 15 && ssymval >= 0
|
||
/* Decodable bits. */
|
||
&& insn[0] == 0xfb
|
||
/* Decodable bits. */
|
||
&& ((insn[1] & 0x03) == 0x02))
|
||
{
|
||
insn[0] = 0x66;
|
||
insn[1] = insn[1] >> 4;
|
||
|
||
/* We can't relax this new opcode. */
|
||
irel->r_addend = 0;
|
||
|
||
move_reloc (irel, srel, -1);
|
||
|
||
SNIP (2, 1, R_RX_RH_UIMM4p8);
|
||
*again = TRUE;
|
||
}
|
||
}
|
||
|
||
if (irel->r_addend & RX_RELAXA_BRA)
|
||
{
|
||
unsigned int newrel = ELF32_R_TYPE (srel->r_info);
|
||
int max_pcrel3 = 4;
|
||
int alignment_glue = 0;
|
||
|
||
GET_RELOC;
|
||
|
||
/* Branches over alignment chunks are problematic, as
|
||
deleting bytes here makes the branch *further* away. We
|
||
can be agressive with branches within this alignment
|
||
block, but not branches outside it. */
|
||
if ((prev_alignment == NULL
|
||
|| symval < (bfd_vma)(sec_start + prev_alignment->r_offset))
|
||
&& (next_alignment == NULL
|
||
|| symval > (bfd_vma)(sec_start + next_alignment->r_offset)))
|
||
alignment_glue = section_alignment_glue;
|
||
|
||
if (ELF32_R_TYPE(srel[1].r_info) == R_RX_RH_RELAX
|
||
&& srel[1].r_addend & RX_RELAXA_BRA
|
||
&& srel[1].r_offset < irel->r_offset + pcrel)
|
||
max_pcrel3 ++;
|
||
|
||
newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info));
|
||
|
||
/* The values we compare PCREL with are not what you'd
|
||
expect; they're off by a little to compensate for (1)
|
||
where the reloc is relative to the insn, and (2) how much
|
||
the insn is going to change when we relax it. */
|
||
|
||
/* These we have to decode. */
|
||
switch (insn[0])
|
||
{
|
||
case 0x04: /* BRA pcdsp:24 */
|
||
if (-32768 + alignment_glue <= pcrel
|
||
&& pcrel <= 32765 - alignment_glue)
|
||
{
|
||
insn[0] = 0x38;
|
||
SNIP (3, 1, newrel);
|
||
*again = TRUE;
|
||
}
|
||
break;
|
||
|
||
case 0x38: /* BRA pcdsp:16 */
|
||
if (-128 + alignment_glue <= pcrel
|
||
&& pcrel <= 127 - alignment_glue)
|
||
{
|
||
insn[0] = 0x2e;
|
||
SNIP (2, 1, newrel);
|
||
*again = TRUE;
|
||
}
|
||
break;
|
||
|
||
case 0x2e: /* BRA pcdsp:8 */
|
||
/* Note that there's a risk here of shortening things so
|
||
much that we no longer fit this reloc; it *should*
|
||
only happen when you branch across a branch, and that
|
||
branch also devolves into BRA.S. "Real" code should
|
||
be OK. */
|
||
if (max_pcrel3 + alignment_glue <= pcrel
|
||
&& pcrel <= 10 - alignment_glue
|
||
&& allow_pcrel3)
|
||
{
|
||
insn[0] = 0x08;
|
||
SNIP (1, 1, newrel);
|
||
move_reloc (irel, srel, -1);
|
||
*again = TRUE;
|
||
}
|
||
break;
|
||
|
||
case 0x05: /* BSR pcdsp:24 */
|
||
if (-32768 + alignment_glue <= pcrel
|
||
&& pcrel <= 32765 - alignment_glue)
|
||
{
|
||
insn[0] = 0x39;
|
||
SNIP (1, 1, newrel);
|
||
*again = TRUE;
|
||
}
|
||
break;
|
||
|
||
case 0x3a: /* BEQ.W pcdsp:16 */
|
||
case 0x3b: /* BNE.W pcdsp:16 */
|
||
if (-128 + alignment_glue <= pcrel
|
||
&& pcrel <= 127 - alignment_glue)
|
||
{
|
||
insn[0] = 0x20 | (insn[0] & 1);
|
||
SNIP (1, 1, newrel);
|
||
*again = TRUE;
|
||
}
|
||
break;
|
||
|
||
case 0x20: /* BEQ.B pcdsp:8 */
|
||
case 0x21: /* BNE.B pcdsp:8 */
|
||
if (max_pcrel3 + alignment_glue <= pcrel
|
||
&& pcrel - alignment_glue <= 10
|
||
&& allow_pcrel3)
|
||
{
|
||
insn[0] = 0x10 | ((insn[0] & 1) << 3);
|
||
SNIP (1, 1, newrel);
|
||
move_reloc (irel, srel, -1);
|
||
*again = TRUE;
|
||
}
|
||
break;
|
||
|
||
case 0x16: /* synthetic BNE dsp24 */
|
||
case 0x1e: /* synthetic BEQ dsp24 */
|
||
if (-32767 + alignment_glue <= pcrel
|
||
&& pcrel <= 32766 - alignment_glue
|
||
&& insn[1] == 0x04)
|
||
{
|
||
if (insn[0] == 0x16)
|
||
insn[0] = 0x3b;
|
||
else
|
||
insn[0] = 0x3a;
|
||
/* We snip out the bytes at the end else the reloc
|
||
will get moved too, and too much. */
|
||
SNIP (3, 2, newrel);
|
||
move_reloc (irel, srel, -1);
|
||
*again = TRUE;
|
||
}
|
||
break;
|
||
}
|
||
|
||
/* Special case - synthetic conditional branches, pcrel24.
|
||
Note that EQ and NE have been handled above. */
|
||
if ((insn[0] & 0xf0) == 0x20
|
||
&& insn[1] == 0x06
|
||
&& insn[2] == 0x04
|
||
&& srel->r_offset != irel->r_offset + 1
|
||
&& -32767 + alignment_glue <= pcrel
|
||
&& pcrel <= 32766 - alignment_glue)
|
||
{
|
||
insn[1] = 0x05;
|
||
insn[2] = 0x38;
|
||
SNIP (5, 1, newrel);
|
||
*again = TRUE;
|
||
}
|
||
|
||
/* Special case - synthetic conditional branches, pcrel16 */
|
||
if ((insn[0] & 0xf0) == 0x20
|
||
&& insn[1] == 0x05
|
||
&& insn[2] == 0x38
|
||
&& srel->r_offset != irel->r_offset + 1
|
||
&& -127 + alignment_glue <= pcrel
|
||
&& pcrel <= 126 - alignment_glue)
|
||
{
|
||
int cond = (insn[0] & 0x0f) ^ 0x01;
|
||
|
||
insn[0] = 0x20 | cond;
|
||
/* By moving the reloc first, we avoid having
|
||
delete_bytes move it also. */
|
||
move_reloc (irel, srel, -2);
|
||
SNIP (2, 3, newrel);
|
||
*again = TRUE;
|
||
}
|
||
}
|
||
|
||
BFD_ASSERT (nrelocs == 0);
|
||
|
||
/* Special case - check MOV.bwl #IMM, dsp[reg] and see if we can
|
||
use MOV.bwl #uimm:8, dsp:5[r7] format. This is tricky
|
||
because it may have one or two relocations. */
|
||
if ((insn[0] & 0xfc) == 0xf8
|
||
&& (insn[1] & 0x80) == 0x00
|
||
&& (insn[0] & 0x03) != 0x03)
|
||
{
|
||
int dcode, icode, reg, ioff, dscale, ilen;
|
||
bfd_vma disp_val = 0;
|
||
long imm_val = 0;
|
||
Elf_Internal_Rela * disp_rel = 0;
|
||
Elf_Internal_Rela * imm_rel = 0;
|
||
|
||
/* Reset this. */
|
||
srel = irel;
|
||
|
||
dcode = insn[0] & 0x03;
|
||
icode = (insn[1] >> 2) & 0x03;
|
||
reg = (insn[1] >> 4) & 0x0f;
|
||
|
||
ioff = dcode == 1 ? 3 : dcode == 2 ? 4 : 2;
|
||
|
||
/* Figure out what the dispacement is. */
|
||
if (dcode == 1 || dcode == 2)
|
||
{
|
||
/* There's a displacement. See if there's a reloc for it. */
|
||
if (srel[1].r_offset == irel->r_offset + 2)
|
||
{
|
||
GET_RELOC;
|
||
disp_val = symval;
|
||
disp_rel = srel;
|
||
}
|
||
else
|
||
{
|
||
if (dcode == 1)
|
||
disp_val = insn[2];
|
||
else
|
||
{
|
||
#if RX_OPCODE_BIG_ENDIAN
|
||
disp_val = insn[2] * 256 + insn[3];
|
||
#else
|
||
disp_val = insn[2] + insn[3] * 256;
|
||
#endif
|
||
}
|
||
switch (insn[1] & 3)
|
||
{
|
||
case 1:
|
||
disp_val *= 2;
|
||
scale = 2;
|
||
break;
|
||
case 2:
|
||
disp_val *= 4;
|
||
scale = 4;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
dscale = scale;
|
||
|
||
/* Figure out what the immediate is. */
|
||
if (srel[1].r_offset == irel->r_offset + ioff)
|
||
{
|
||
GET_RELOC;
|
||
imm_val = (long) symval;
|
||
imm_rel = srel;
|
||
}
|
||
else
|
||
{
|
||
unsigned char * ip = insn + ioff;
|
||
|
||
switch (icode)
|
||
{
|
||
case 1:
|
||
/* For byte writes, we don't sign extend. Makes the math easier later. */
|
||
if (scale == 1)
|
||
imm_val = ip[0];
|
||
else
|
||
imm_val = (char) ip[0];
|
||
break;
|
||
case 2:
|
||
#if RX_OPCODE_BIG_ENDIAN
|
||
imm_val = ((char) ip[0] << 8) | ip[1];
|
||
#else
|
||
imm_val = ((char) ip[1] << 8) | ip[0];
|
||
#endif
|
||
break;
|
||
case 3:
|
||
#if RX_OPCODE_BIG_ENDIAN
|
||
imm_val = ((char) ip[0] << 16) | (ip[1] << 8) | ip[2];
|
||
#else
|
||
imm_val = ((char) ip[2] << 16) | (ip[1] << 8) | ip[0];
|
||
#endif
|
||
break;
|
||
case 0:
|
||
#if RX_OPCODE_BIG_ENDIAN
|
||
imm_val = (ip[0] << 24) | (ip[1] << 16) | (ip[2] << 8) | ip[3];
|
||
#else
|
||
imm_val = (ip[3] << 24) | (ip[2] << 16) | (ip[1] << 8) | ip[0];
|
||
#endif
|
||
break;
|
||
}
|
||
}
|
||
|
||
ilen = 2;
|
||
|
||
switch (dcode)
|
||
{
|
||
case 1:
|
||
ilen += 1;
|
||
break;
|
||
case 2:
|
||
ilen += 2;
|
||
break;
|
||
}
|
||
|
||
switch (icode)
|
||
{
|
||
case 1:
|
||
ilen += 1;
|
||
break;
|
||
case 2:
|
||
ilen += 2;
|
||
break;
|
||
case 3:
|
||
ilen += 3;
|
||
break;
|
||
case 4:
|
||
ilen += 4;
|
||
break;
|
||
}
|
||
|
||
/* The shortcut happens when the immediate is 0..255,
|
||
register r0 to r7, and displacement (scaled) 0..31. */
|
||
|
||
if (0 <= imm_val && imm_val <= 255
|
||
&& 0 <= reg && reg <= 7
|
||
&& disp_val / dscale <= 31)
|
||
{
|
||
insn[0] = 0x3c | (insn[1] & 0x03);
|
||
insn[1] = (((disp_val / dscale) << 3) & 0x80) | (reg << 4) | ((disp_val/dscale) & 0x0f);
|
||
insn[2] = imm_val;
|
||
|
||
if (disp_rel)
|
||
{
|
||
int newrel = R_RX_NONE;
|
||
|
||
switch (dscale)
|
||
{
|
||
case 1:
|
||
newrel = R_RX_RH_ABS5p8B;
|
||
break;
|
||
case 2:
|
||
newrel = R_RX_RH_ABS5p8W;
|
||
break;
|
||
case 4:
|
||
newrel = R_RX_RH_ABS5p8L;
|
||
break;
|
||
}
|
||
disp_rel->r_info = ELF32_R_INFO (ELF32_R_SYM (disp_rel->r_info), newrel);
|
||
move_reloc (irel, disp_rel, -1);
|
||
}
|
||
if (imm_rel)
|
||
{
|
||
imm_rel->r_info = ELF32_R_INFO (ELF32_R_SYM (imm_rel->r_info), R_RX_DIR8U);
|
||
move_reloc (disp_rel ? disp_rel : irel,
|
||
imm_rel,
|
||
irel->r_offset - imm_rel->r_offset + 2);
|
||
}
|
||
|
||
SNIPNR (3, ilen - 3);
|
||
*again = TRUE;
|
||
|
||
/* We can't relax this new opcode. */
|
||
irel->r_addend = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* We can't reliably relax branches to DIR3U_PCREL unless we know
|
||
whatever they're branching over won't shrink any more. If we're
|
||
basically done here, do one more pass just for branches - but
|
||
don't request a pass after that one! */
|
||
if (!*again && !allow_pcrel3)
|
||
{
|
||
bfd_boolean ignored;
|
||
|
||
elf32_rx_relax_section (abfd, sec, link_info, &ignored, TRUE);
|
||
}
|
||
|
||
return TRUE;
|
||
|
||
error_return:
|
||
if (free_relocs != NULL)
|
||
free (free_relocs);
|
||
|
||
if (free_contents != NULL)
|
||
free (free_contents);
|
||
|
||
if (shndx_buf != NULL)
|
||
{
|
||
shndx_hdr->contents = NULL;
|
||
free (shndx_buf);
|
||
}
|
||
|
||
if (free_intsyms != NULL)
|
||
free (free_intsyms);
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
static bfd_boolean
|
||
elf32_rx_relax_section_wrapper (bfd * abfd,
|
||
asection * sec,
|
||
struct bfd_link_info * link_info,
|
||
bfd_boolean * again)
|
||
{
|
||
return elf32_rx_relax_section (abfd, sec, link_info, again, FALSE);
|
||
}
|
||
|
||
/* Function to set the ELF flag bits. */
|
||
|
||
static bfd_boolean
|
||
rx_elf_set_private_flags (bfd * abfd, flagword flags)
|
||
{
|
||
elf_elfheader (abfd)->e_flags = flags;
|
||
elf_flags_init (abfd) = TRUE;
|
||
return TRUE;
|
||
}
|
||
|
||
static bfd_boolean no_warn_mismatch = FALSE;
|
||
static bfd_boolean ignore_lma = TRUE;
|
||
|
||
void bfd_elf32_rx_set_target_flags (bfd_boolean, bfd_boolean);
|
||
|
||
void
|
||
bfd_elf32_rx_set_target_flags (bfd_boolean user_no_warn_mismatch,
|
||
bfd_boolean user_ignore_lma)
|
||
{
|
||
no_warn_mismatch = user_no_warn_mismatch;
|
||
ignore_lma = user_ignore_lma;
|
||
}
|
||
|
||
/* Converts FLAGS into a descriptive string.
|
||
Returns a static pointer. */
|
||
|
||
static const char *
|
||
describe_flags (flagword flags)
|
||
{
|
||
static char buf [128];
|
||
|
||
buf[0] = 0;
|
||
|
||
if (flags & E_FLAG_RX_64BIT_DOUBLES)
|
||
strcat (buf, "64-bit doubles");
|
||
else
|
||
strcat (buf, "32-bit doubles");
|
||
|
||
if (flags & E_FLAG_RX_DSP)
|
||
strcat (buf, ", dsp");
|
||
else
|
||
strcat (buf, ", no dsp");
|
||
|
||
if (flags & E_FLAG_RX_PID)
|
||
strcat (buf, ", pid");
|
||
else
|
||
strcat (buf, ", no pid");
|
||
|
||
if (flags & E_FLAG_RX_ABI)
|
||
strcat (buf, ", RX ABI");
|
||
else
|
||
strcat (buf, ", GCC ABI");
|
||
|
||
return buf;
|
||
}
|
||
|
||
/* Merge backend specific data from an object file to the output
|
||
object file when linking. */
|
||
|
||
static bfd_boolean
|
||
rx_elf_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
|
||
{
|
||
flagword old_flags;
|
||
flagword new_flags;
|
||
bfd_boolean error = FALSE;
|
||
|
||
new_flags = elf_elfheader (ibfd)->e_flags;
|
||
old_flags = elf_elfheader (obfd)->e_flags;
|
||
|
||
if (!elf_flags_init (obfd))
|
||
{
|
||
/* First call, no flags set. */
|
||
elf_flags_init (obfd) = TRUE;
|
||
elf_elfheader (obfd)->e_flags = new_flags;
|
||
}
|
||
else if (old_flags != new_flags)
|
||
{
|
||
flagword known_flags;
|
||
|
||
known_flags = E_FLAG_RX_ABI | E_FLAG_RX_64BIT_DOUBLES
|
||
| E_FLAG_RX_DSP | E_FLAG_RX_PID;
|
||
|
||
if ((old_flags ^ new_flags) & known_flags)
|
||
{
|
||
/* Only complain if flag bits we care about do not match.
|
||
Other bits may be set, since older binaries did use some
|
||
deprecated flags. */
|
||
if (no_warn_mismatch)
|
||
{
|
||
elf_elfheader (obfd)->e_flags = (new_flags | old_flags) & known_flags;
|
||
}
|
||
else
|
||
{
|
||
_bfd_error_handler ("There is a conflict merging the ELF header flags from %s",
|
||
bfd_get_filename (ibfd));
|
||
_bfd_error_handler (" the input file's flags: %s",
|
||
describe_flags (new_flags));
|
||
_bfd_error_handler (" the output file's flags: %s",
|
||
describe_flags (old_flags));
|
||
error = TRUE;
|
||
}
|
||
}
|
||
else
|
||
elf_elfheader (obfd)->e_flags = new_flags & known_flags;
|
||
}
|
||
|
||
if (error)
|
||
bfd_set_error (bfd_error_bad_value);
|
||
|
||
return !error;
|
||
}
|
||
|
||
static bfd_boolean
|
||
rx_elf_print_private_bfd_data (bfd * abfd, void * ptr)
|
||
{
|
||
FILE * file = (FILE *) ptr;
|
||
flagword flags;
|
||
|
||
BFD_ASSERT (abfd != NULL && ptr != NULL);
|
||
|
||
/* Print normal ELF private data. */
|
||
_bfd_elf_print_private_bfd_data (abfd, ptr);
|
||
|
||
flags = elf_elfheader (abfd)->e_flags;
|
||
fprintf (file, _("private flags = 0x%lx:"), (long) flags);
|
||
|
||
fprintf (file, "%s", describe_flags (flags));
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return the MACH for an e_flags value. */
|
||
|
||
static int
|
||
elf32_rx_machine (bfd * abfd ATTRIBUTE_UNUSED)
|
||
{
|
||
#if 0 /* FIXME: EF_RX_CPU_MASK collides with E_FLAG_RX_...
|
||
Need to sort out how these flag bits are used.
|
||
For now we assume that the flags are OK. */
|
||
if ((elf_elfheader (abfd)->e_flags & EF_RX_CPU_MASK) == EF_RX_CPU_RX)
|
||
#endif
|
||
return bfd_mach_rx;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static bfd_boolean
|
||
rx_elf_object_p (bfd * abfd)
|
||
{
|
||
int i;
|
||
unsigned int u;
|
||
Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
|
||
int nphdrs = elf_elfheader (abfd)->e_phnum;
|
||
sec_ptr bsec;
|
||
static int saw_be = FALSE;
|
||
|
||
/* We never want to automatically choose the non-swapping big-endian
|
||
target. The user can only get that explicitly, such as with -I
|
||
and objcopy. */
|
||
if (abfd->xvec == &rx_elf32_be_ns_vec
|
||
&& abfd->target_defaulted)
|
||
return FALSE;
|
||
|
||
/* BFD->target_defaulted is not set to TRUE when a target is chosen
|
||
as a fallback, so we check for "scanning" to know when to stop
|
||
using the non-swapping target. */
|
||
if (abfd->xvec == &rx_elf32_be_ns_vec
|
||
&& saw_be)
|
||
return FALSE;
|
||
if (abfd->xvec == &rx_elf32_be_vec)
|
||
saw_be = TRUE;
|
||
|
||
bfd_default_set_arch_mach (abfd, bfd_arch_rx,
|
||
elf32_rx_machine (abfd));
|
||
|
||
/* For each PHDR in the object, we must find some section that
|
||
corresponds (based on matching file offsets) and use its VMA
|
||
information to reconstruct the p_vaddr field we clobbered when we
|
||
wrote it out. */
|
||
for (i=0; i<nphdrs; i++)
|
||
{
|
||
for (u=0; u<elf_tdata(abfd)->num_elf_sections; u++)
|
||
{
|
||
Elf_Internal_Shdr *sec = elf_tdata(abfd)->elf_sect_ptr[u];
|
||
|
||
if (phdr[i].p_filesz
|
||
&& phdr[i].p_offset <= (bfd_vma) sec->sh_offset
|
||
&& (bfd_vma)sec->sh_offset <= phdr[i].p_offset + (phdr[i].p_filesz - 1))
|
||
{
|
||
/* Found one! The difference between the two addresses,
|
||
plus the difference between the two file offsets, is
|
||
enough information to reconstruct the lma. */
|
||
|
||
/* Example where they aren't:
|
||
PHDR[1] = lma fffc0100 offset 00002010 size 00000100
|
||
SEC[6] = vma 00000050 offset 00002050 size 00000040
|
||
|
||
The correct LMA for the section is fffc0140 + (2050-2010).
|
||
*/
|
||
|
||
phdr[i].p_vaddr = sec->sh_addr + (sec->sh_offset - phdr[i].p_offset);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* We must update the bfd sections as well, so we don't stop
|
||
with one match. */
|
||
bsec = abfd->sections;
|
||
while (bsec)
|
||
{
|
||
if (phdr[i].p_filesz
|
||
&& phdr[i].p_vaddr <= bsec->vma
|
||
&& bsec->vma <= phdr[i].p_vaddr + (phdr[i].p_filesz - 1))
|
||
{
|
||
bsec->lma = phdr[i].p_paddr + (bsec->vma - phdr[i].p_vaddr);
|
||
}
|
||
bsec = bsec->next;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
#ifdef DEBUG
|
||
void
|
||
rx_dump_symtab (bfd * abfd, void * internal_syms, void * external_syms)
|
||
{
|
||
size_t locsymcount;
|
||
Elf_Internal_Sym * isymbuf;
|
||
Elf_Internal_Sym * isymend;
|
||
Elf_Internal_Sym * isym;
|
||
Elf_Internal_Shdr * symtab_hdr;
|
||
bfd_boolean free_internal = FALSE, free_external = FALSE;
|
||
char * st_info_str;
|
||
char * st_info_stb_str;
|
||
char * st_other_str;
|
||
char * st_shndx_str;
|
||
|
||
if (! internal_syms)
|
||
{
|
||
internal_syms = bfd_malloc (1000);
|
||
free_internal = 1;
|
||
}
|
||
if (! external_syms)
|
||
{
|
||
external_syms = bfd_malloc (1000);
|
||
free_external = 1;
|
||
}
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
locsymcount = symtab_hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
|
||
if (free_internal)
|
||
isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
|
||
symtab_hdr->sh_info, 0,
|
||
internal_syms, external_syms, NULL);
|
||
else
|
||
isymbuf = internal_syms;
|
||
isymend = isymbuf + locsymcount;
|
||
|
||
for (isym = isymbuf ; isym < isymend ; isym++)
|
||
{
|
||
switch (ELF_ST_TYPE (isym->st_info))
|
||
{
|
||
case STT_FUNC: st_info_str = "STT_FUNC"; break;
|
||
case STT_SECTION: st_info_str = "STT_SECTION"; break;
|
||
case STT_FILE: st_info_str = "STT_FILE"; break;
|
||
case STT_OBJECT: st_info_str = "STT_OBJECT"; break;
|
||
case STT_TLS: st_info_str = "STT_TLS"; break;
|
||
default: st_info_str = "";
|
||
}
|
||
switch (ELF_ST_BIND (isym->st_info))
|
||
{
|
||
case STB_LOCAL: st_info_stb_str = "STB_LOCAL"; break;
|
||
case STB_GLOBAL: st_info_stb_str = "STB_GLOBAL"; break;
|
||
default: st_info_stb_str = "";
|
||
}
|
||
switch (ELF_ST_VISIBILITY (isym->st_other))
|
||
{
|
||
case STV_DEFAULT: st_other_str = "STV_DEFAULT"; break;
|
||
case STV_INTERNAL: st_other_str = "STV_INTERNAL"; break;
|
||
case STV_PROTECTED: st_other_str = "STV_PROTECTED"; break;
|
||
default: st_other_str = "";
|
||
}
|
||
switch (isym->st_shndx)
|
||
{
|
||
case SHN_ABS: st_shndx_str = "SHN_ABS"; break;
|
||
case SHN_COMMON: st_shndx_str = "SHN_COMMON"; break;
|
||
case SHN_UNDEF: st_shndx_str = "SHN_UNDEF"; break;
|
||
default: st_shndx_str = "";
|
||
}
|
||
|
||
printf ("isym = %p st_value = %lx st_size = %lx st_name = (%lu) %s "
|
||
"st_info = (%d) %s %s st_other = (%d) %s st_shndx = (%d) %s\n",
|
||
isym,
|
||
(unsigned long) isym->st_value,
|
||
(unsigned long) isym->st_size,
|
||
isym->st_name,
|
||
bfd_elf_string_from_elf_section (abfd, symtab_hdr->sh_link,
|
||
isym->st_name),
|
||
isym->st_info, st_info_str, st_info_stb_str,
|
||
isym->st_other, st_other_str,
|
||
isym->st_shndx, st_shndx_str);
|
||
}
|
||
if (free_internal)
|
||
free (internal_syms);
|
||
if (free_external)
|
||
free (external_syms);
|
||
}
|
||
|
||
char *
|
||
rx_get_reloc (long reloc)
|
||
{
|
||
if (0 <= reloc && reloc < R_RX_max)
|
||
return rx_elf_howto_table[reloc].name;
|
||
return "";
|
||
}
|
||
#endif /* DEBUG */
|
||
|
||
|
||
/* We must take care to keep the on-disk copy of any code sections
|
||
that are fully linked swapped if the target is big endian, to match
|
||
the Renesas tools. */
|
||
|
||
/* The rule is: big endian object that are final-link executables,
|
||
have code sections stored with 32-bit words swapped relative to
|
||
what you'd get by default. */
|
||
|
||
static bfd_boolean
|
||
rx_get_section_contents (bfd * abfd,
|
||
sec_ptr section,
|
||
void * location,
|
||
file_ptr offset,
|
||
bfd_size_type count)
|
||
{
|
||
int exec = (abfd->flags & EXEC_P) ? 1 : 0;
|
||
int s_code = (section->flags & SEC_CODE) ? 1 : 0;
|
||
bfd_boolean rv;
|
||
|
||
#ifdef DJDEBUG
|
||
fprintf (stderr, "dj: get %ld %ld from %s %s e%d sc%d %08lx:%08lx\n",
|
||
(long) offset, (long) count, section->name,
|
||
bfd_big_endian(abfd) ? "be" : "le",
|
||
exec, s_code, (long unsigned) section->filepos,
|
||
(long unsigned) offset);
|
||
#endif
|
||
|
||
if (exec && s_code && bfd_big_endian (abfd))
|
||
{
|
||
char * cloc = (char *) location;
|
||
bfd_size_type cnt, end_cnt;
|
||
|
||
rv = TRUE;
|
||
|
||
/* Fetch and swap unaligned bytes at the beginning. */
|
||
if (offset % 4)
|
||
{
|
||
char buf[4];
|
||
|
||
rv = _bfd_generic_get_section_contents (abfd, section, buf,
|
||
(offset & -4), 4);
|
||
if (!rv)
|
||
return FALSE;
|
||
|
||
bfd_putb32 (bfd_getl32 (buf), buf);
|
||
|
||
cnt = 4 - (offset % 4);
|
||
if (cnt > count)
|
||
cnt = count;
|
||
|
||
memcpy (location, buf + (offset % 4), cnt);
|
||
|
||
count -= cnt;
|
||
offset += cnt;
|
||
cloc += count;
|
||
}
|
||
|
||
end_cnt = count % 4;
|
||
|
||
/* Fetch and swap the middle bytes. */
|
||
if (count >= 4)
|
||
{
|
||
rv = _bfd_generic_get_section_contents (abfd, section, cloc, offset,
|
||
count - end_cnt);
|
||
if (!rv)
|
||
return FALSE;
|
||
|
||
for (cnt = count; cnt >= 4; cnt -= 4, cloc += 4)
|
||
bfd_putb32 (bfd_getl32 (cloc), cloc);
|
||
}
|
||
|
||
/* Fetch and swap the end bytes. */
|
||
if (end_cnt > 0)
|
||
{
|
||
char buf[4];
|
||
|
||
/* Fetch the end bytes. */
|
||
rv = _bfd_generic_get_section_contents (abfd, section, buf,
|
||
offset + count - end_cnt, 4);
|
||
if (!rv)
|
||
return FALSE;
|
||
|
||
bfd_putb32 (bfd_getl32 (buf), buf);
|
||
memcpy (cloc, buf, end_cnt);
|
||
}
|
||
}
|
||
else
|
||
rv = _bfd_generic_get_section_contents (abfd, section, location, offset, count);
|
||
|
||
return rv;
|
||
}
|
||
|
||
#ifdef DJDEBUG
|
||
static bfd_boolean
|
||
rx2_set_section_contents (bfd * abfd,
|
||
sec_ptr section,
|
||
const void * location,
|
||
file_ptr offset,
|
||
bfd_size_type count)
|
||
{
|
||
bfd_size_type i;
|
||
|
||
fprintf (stderr, " set sec %s %08x loc %p offset %#x count %#x\n",
|
||
section->name, (unsigned) section->vma, location, (int) offset, (int) count);
|
||
for (i = 0; i < count; i++)
|
||
{
|
||
if (i % 16 == 0 && i > 0)
|
||
fprintf (stderr, "\n");
|
||
|
||
if (i % 16 && i % 4 == 0)
|
||
fprintf (stderr, " ");
|
||
|
||
if (i % 16 == 0)
|
||
fprintf (stderr, " %08x:", (int) (section->vma + offset + i));
|
||
|
||
fprintf (stderr, " %02x", ((unsigned char *) location)[i]);
|
||
}
|
||
fprintf (stderr, "\n");
|
||
|
||
return _bfd_elf_set_section_contents (abfd, section, location, offset, count);
|
||
}
|
||
#define _bfd_elf_set_section_contents rx2_set_section_contents
|
||
#endif
|
||
|
||
static bfd_boolean
|
||
rx_set_section_contents (bfd * abfd,
|
||
sec_ptr section,
|
||
const void * location,
|
||
file_ptr offset,
|
||
bfd_size_type count)
|
||
{
|
||
bfd_boolean exec = (abfd->flags & EXEC_P) ? TRUE : FALSE;
|
||
bfd_boolean s_code = (section->flags & SEC_CODE) ? TRUE : FALSE;
|
||
bfd_boolean rv;
|
||
char * swapped_data = NULL;
|
||
bfd_size_type i;
|
||
bfd_vma caddr = section->vma + offset;
|
||
file_ptr faddr = 0;
|
||
bfd_size_type scount;
|
||
|
||
#ifdef DJDEBUG
|
||
bfd_size_type i;
|
||
|
||
fprintf (stderr, "\ndj: set %ld %ld to %s %s e%d sc%d\n",
|
||
(long) offset, (long) count, section->name,
|
||
bfd_big_endian (abfd) ? "be" : "le",
|
||
exec, s_code);
|
||
|
||
for (i = 0; i < count; i++)
|
||
{
|
||
int a = section->vma + offset + i;
|
||
|
||
if (a % 16 == 0 && a > 0)
|
||
fprintf (stderr, "\n");
|
||
|
||
if (a % 16 && a % 4 == 0)
|
||
fprintf (stderr, " ");
|
||
|
||
if (a % 16 == 0 || i == 0)
|
||
fprintf (stderr, " %08x:", (int) (section->vma + offset + i));
|
||
|
||
fprintf (stderr, " %02x", ((unsigned char *) location)[i]);
|
||
}
|
||
|
||
fprintf (stderr, "\n");
|
||
#endif
|
||
|
||
if (! exec || ! s_code || ! bfd_big_endian (abfd))
|
||
return _bfd_elf_set_section_contents (abfd, section, location, offset, count);
|
||
|
||
while (count > 0 && caddr > 0 && caddr % 4)
|
||
{
|
||
switch (caddr % 4)
|
||
{
|
||
case 0: faddr = offset + 3; break;
|
||
case 1: faddr = offset + 1; break;
|
||
case 2: faddr = offset - 1; break;
|
||
case 3: faddr = offset - 3; break;
|
||
}
|
||
|
||
rv = _bfd_elf_set_section_contents (abfd, section, location, faddr, 1);
|
||
if (! rv)
|
||
return rv;
|
||
|
||
location ++;
|
||
offset ++;
|
||
count --;
|
||
caddr ++;
|
||
}
|
||
|
||
scount = (int)(count / 4) * 4;
|
||
if (scount > 0)
|
||
{
|
||
char * cloc = (char *) location;
|
||
|
||
swapped_data = (char *) bfd_alloc (abfd, count);
|
||
|
||
for (i = 0; i < count; i += 4)
|
||
{
|
||
bfd_vma v = bfd_getl32 (cloc + i);
|
||
bfd_putb32 (v, swapped_data + i);
|
||
}
|
||
|
||
rv = _bfd_elf_set_section_contents (abfd, section, swapped_data, offset, scount);
|
||
|
||
if (!rv)
|
||
return rv;
|
||
}
|
||
|
||
count -= scount;
|
||
location += scount;
|
||
offset += scount;
|
||
|
||
if (count > 0)
|
||
{
|
||
caddr = section->vma + offset;
|
||
while (count > 0)
|
||
{
|
||
switch (caddr % 4)
|
||
{
|
||
case 0: faddr = offset + 3; break;
|
||
case 1: faddr = offset + 1; break;
|
||
case 2: faddr = offset - 1; break;
|
||
case 3: faddr = offset - 3; break;
|
||
}
|
||
rv = _bfd_elf_set_section_contents (abfd, section, location, faddr, 1);
|
||
if (! rv)
|
||
return rv;
|
||
|
||
location ++;
|
||
offset ++;
|
||
count --;
|
||
caddr ++;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
static bfd_boolean
|
||
rx_final_link (bfd * abfd, struct bfd_link_info * info)
|
||
{
|
||
asection * o;
|
||
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
{
|
||
#ifdef DJDEBUG
|
||
fprintf (stderr, "sec %s fl %x vma %lx lma %lx size %lx raw %lx\n",
|
||
o->name, o->flags, o->vma, o->lma, o->size, o->rawsize);
|
||
#endif
|
||
if (o->flags & SEC_CODE
|
||
&& bfd_big_endian (abfd)
|
||
&& o->size % 4)
|
||
{
|
||
#ifdef DJDEBUG
|
||
fprintf (stderr, "adjusting...\n");
|
||
#endif
|
||
o->size += 4 - (o->size % 4);
|
||
}
|
||
}
|
||
|
||
return bfd_elf_final_link (abfd, info);
|
||
}
|
||
|
||
static bfd_boolean
|
||
elf32_rx_modify_program_headers (bfd * abfd ATTRIBUTE_UNUSED,
|
||
struct bfd_link_info * info ATTRIBUTE_UNUSED)
|
||
{
|
||
const struct elf_backend_data * bed;
|
||
struct elf_obj_tdata * tdata;
|
||
Elf_Internal_Phdr * phdr;
|
||
unsigned int count;
|
||
unsigned int i;
|
||
|
||
bed = get_elf_backend_data (abfd);
|
||
tdata = elf_tdata (abfd);
|
||
phdr = tdata->phdr;
|
||
count = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
|
||
|
||
if (ignore_lma)
|
||
for (i = count; i-- != 0;)
|
||
if (phdr[i].p_type == PT_LOAD)
|
||
{
|
||
/* The Renesas tools expect p_paddr to be zero. However,
|
||
there is no other way to store the writable data in ROM for
|
||
startup initialization. So, we let the linker *think*
|
||
we're using paddr and vaddr the "usual" way, but at the
|
||
last minute we move the paddr into the vaddr (which is what
|
||
the simulator uses) and zero out paddr. Note that this
|
||
does not affect the section headers, just the program
|
||
headers. We hope. */
|
||
phdr[i].p_vaddr = phdr[i].p_paddr;
|
||
#if 0 /* If we zero out p_paddr, then the LMA in the section table
|
||
becomes wrong. */
|
||
phdr[i].p_paddr = 0;
|
||
#endif
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* The default literal sections should always be marked as "code" (i.e.,
|
||
SHF_EXECINSTR). This is particularly important for big-endian mode
|
||
when we do not want their contents byte reversed. */
|
||
static const struct bfd_elf_special_section elf32_rx_special_sections[] =
|
||
{
|
||
{ STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_EXECINSTR },
|
||
{ STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_EXECINSTR },
|
||
{ STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_EXECINSTR },
|
||
{ NULL, 0, 0, 0, 0 }
|
||
};
|
||
|
||
typedef struct {
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
bfd_vma table_start;
|
||
int table_size;
|
||
bfd_vma *table_handlers;
|
||
bfd_vma table_default_handler;
|
||
struct bfd_link_hash_entry **table_entries;
|
||
struct bfd_link_hash_entry *table_default_entry;
|
||
FILE *mapfile;
|
||
} RX_Table_Info;
|
||
|
||
static bfd_boolean
|
||
rx_table_find (struct bfd_hash_entry *vent, void *vinfo)
|
||
{
|
||
RX_Table_Info *info = (RX_Table_Info *)vinfo;
|
||
struct bfd_link_hash_entry *ent = (struct bfd_link_hash_entry *)vent;
|
||
const char *name; /* of the symbol we've found */
|
||
asection *sec;
|
||
struct bfd *abfd;
|
||
int idx;
|
||
const char *tname; /* name of the table */
|
||
bfd_vma start_addr, end_addr;
|
||
char *buf;
|
||
struct bfd_link_hash_entry * h;
|
||
|
||
/* We're looking for globally defined symbols of the form
|
||
$tablestart$<NAME>. */
|
||
if (ent->type != bfd_link_hash_defined
|
||
&& ent->type != bfd_link_hash_defweak)
|
||
return TRUE;
|
||
|
||
name = ent->root.string;
|
||
sec = ent->u.def.section;
|
||
abfd = sec->owner;
|
||
|
||
if (strncmp (name, "$tablestart$", 12))
|
||
return TRUE;
|
||
|
||
sec->flags |= SEC_KEEP;
|
||
|
||
tname = name + 12;
|
||
|
||
start_addr = ent->u.def.value;
|
||
|
||
/* At this point, we can't build the table but we can (and must)
|
||
find all the related symbols and mark their sections as SEC_KEEP
|
||
so we don't garbage collect them. */
|
||
|
||
buf = (char *) malloc (12 + 10 + strlen (tname));
|
||
|
||
sprintf (buf, "$tableend$%s", tname);
|
||
h = bfd_link_hash_lookup (info->info->hash, buf, FALSE, FALSE, TRUE);
|
||
if (!h || (h->type != bfd_link_hash_defined
|
||
&& h->type != bfd_link_hash_defweak))
|
||
{
|
||
_bfd_error_handler (_("%B:%A: table %s missing corresponding %s"),
|
||
abfd, sec, name, buf);
|
||
return TRUE;
|
||
}
|
||
|
||
if (h->u.def.section != ent->u.def.section)
|
||
{
|
||
_bfd_error_handler (_("%B:%A: %s and %s must be in the same input section"),
|
||
h->u.def.section->owner, h->u.def.section,
|
||
name, buf);
|
||
return TRUE;
|
||
}
|
||
|
||
end_addr = h->u.def.value;
|
||
|
||
sprintf (buf, "$tableentry$default$%s", tname);
|
||
h = bfd_link_hash_lookup (info->info->hash, buf, FALSE, FALSE, TRUE);
|
||
if (h && (h->type == bfd_link_hash_defined
|
||
|| h->type == bfd_link_hash_defweak))
|
||
{
|
||
h->u.def.section->flags |= SEC_KEEP;
|
||
}
|
||
|
||
for (idx = 0; idx < (int) (end_addr - start_addr) / 4; idx ++)
|
||
{
|
||
sprintf (buf, "$tableentry$%d$%s", idx, tname);
|
||
h = bfd_link_hash_lookup (info->info->hash, buf, FALSE, FALSE, TRUE);
|
||
if (h && (h->type == bfd_link_hash_defined
|
||
|| h->type == bfd_link_hash_defweak))
|
||
{
|
||
h->u.def.section->flags |= SEC_KEEP;
|
||
}
|
||
}
|
||
|
||
/* Return TRUE to keep scanning, FALSE to end the traversal. */
|
||
return TRUE;
|
||
}
|
||
|
||
/* We need to check for table entry symbols and build the tables, and
|
||
we need to do it before the linker does garbage collection. This function is
|
||
called once per input object file. */
|
||
static bfd_boolean
|
||
rx_check_directives
|
||
(bfd * abfd ATTRIBUTE_UNUSED,
|
||
struct bfd_link_info * info ATTRIBUTE_UNUSED)
|
||
{
|
||
RX_Table_Info stuff;
|
||
|
||
stuff.abfd = abfd;
|
||
stuff.info = info;
|
||
bfd_hash_traverse (&(info->hash->table), rx_table_find, &stuff);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
rx_table_map_2 (struct bfd_hash_entry *vent, void *vinfo)
|
||
{
|
||
RX_Table_Info *info = (RX_Table_Info *)vinfo;
|
||
struct bfd_link_hash_entry *ent = (struct bfd_link_hash_entry *)vent;
|
||
int idx;
|
||
const char *name;
|
||
bfd_vma addr;
|
||
|
||
/* See if the symbol ENT has an address listed in the table, and
|
||
isn't a debug/special symbol. If so, put it in the table. */
|
||
|
||
if (ent->type != bfd_link_hash_defined
|
||
&& ent->type != bfd_link_hash_defweak)
|
||
return TRUE;
|
||
|
||
name = ent->root.string;
|
||
|
||
if (name[0] == '$' || name[0] == '.' || name[0] < ' ')
|
||
return TRUE;
|
||
|
||
addr = (ent->u.def.value
|
||
+ ent->u.def.section->output_section->vma
|
||
+ ent->u.def.section->output_offset);
|
||
|
||
for (idx = 0; idx < info->table_size; idx ++)
|
||
if (addr == info->table_handlers[idx])
|
||
info->table_entries[idx] = ent;
|
||
|
||
if (addr == info->table_default_handler)
|
||
info->table_default_entry = ent;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
static bfd_boolean
|
||
rx_table_map (struct bfd_hash_entry *vent, void *vinfo)
|
||
{
|
||
RX_Table_Info *info = (RX_Table_Info *)vinfo;
|
||
struct bfd_link_hash_entry *ent = (struct bfd_link_hash_entry *)vent;
|
||
const char *name; /* of the symbol we've found */
|
||
int idx;
|
||
const char *tname; /* name of the table */
|
||
bfd_vma start_addr, end_addr;
|
||
char *buf;
|
||
struct bfd_link_hash_entry * h;
|
||
int need_elipses;
|
||
|
||
/* We're looking for globally defined symbols of the form
|
||
$tablestart$<NAME>. */
|
||
if (ent->type != bfd_link_hash_defined
|
||
&& ent->type != bfd_link_hash_defweak)
|
||
return TRUE;
|
||
|
||
name = ent->root.string;
|
||
|
||
if (strncmp (name, "$tablestart$", 12))
|
||
return TRUE;
|
||
|
||
tname = name + 12;
|
||
start_addr = (ent->u.def.value
|
||
+ ent->u.def.section->output_section->vma
|
||
+ ent->u.def.section->output_offset);
|
||
|
||
buf = (char *) malloc (12 + 10 + strlen (tname));
|
||
|
||
sprintf (buf, "$tableend$%s", tname);
|
||
end_addr = get_symbol_value_maybe (buf, info->info);
|
||
|
||
sprintf (buf, "$tableentry$default$%s", tname);
|
||
h = bfd_link_hash_lookup (info->info->hash, buf, FALSE, FALSE, TRUE);
|
||
if (h)
|
||
{
|
||
info->table_default_handler = (h->u.def.value
|
||
+ h->u.def.section->output_section->vma
|
||
+ h->u.def.section->output_offset);
|
||
}
|
||
else
|
||
/* Zero is a valid handler address! */
|
||
info->table_default_handler = (bfd_vma) (-1);
|
||
info->table_default_entry = NULL;
|
||
|
||
info->table_start = start_addr;
|
||
info->table_size = (int) (end_addr - start_addr) / 4;
|
||
info->table_handlers = (bfd_vma *) malloc (info->table_size * sizeof (bfd_vma));
|
||
info->table_entries = (struct bfd_link_hash_entry **) malloc (info->table_size * sizeof (struct bfd_link_hash_entry));
|
||
|
||
for (idx = 0; idx < (int) (end_addr - start_addr) / 4; idx ++)
|
||
{
|
||
sprintf (buf, "$tableentry$%d$%s", idx, tname);
|
||
h = bfd_link_hash_lookup (info->info->hash, buf, FALSE, FALSE, TRUE);
|
||
if (h && (h->type == bfd_link_hash_defined
|
||
|| h->type == bfd_link_hash_defweak))
|
||
{
|
||
info->table_handlers[idx] = (h->u.def.value
|
||
+ h->u.def.section->output_section->vma
|
||
+ h->u.def.section->output_offset);
|
||
}
|
||
else
|
||
info->table_handlers[idx] = info->table_default_handler;
|
||
info->table_entries[idx] = NULL;
|
||
}
|
||
|
||
free (buf);
|
||
|
||
bfd_hash_traverse (&(info->info->hash->table), rx_table_map_2, info);
|
||
|
||
fprintf (info->mapfile, "\nRX Vector Table: %s has %d entries at 0x%08" BFD_VMA_FMT "x\n\n",
|
||
tname, info->table_size, start_addr);
|
||
|
||
if (info->table_default_entry)
|
||
fprintf (info->mapfile, " default handler is: %s at 0x%08" BFD_VMA_FMT "x\n",
|
||
info->table_default_entry->root.string,
|
||
info->table_default_handler);
|
||
else if (info->table_default_handler != (bfd_vma)(-1))
|
||
fprintf (info->mapfile, " default handler is at 0x%08" BFD_VMA_FMT "x\n",
|
||
info->table_default_handler);
|
||
else
|
||
fprintf (info->mapfile, " no default handler\n");
|
||
|
||
need_elipses = 1;
|
||
for (idx = 0; idx < info->table_size; idx ++)
|
||
{
|
||
if (info->table_handlers[idx] == info->table_default_handler)
|
||
{
|
||
if (need_elipses)
|
||
fprintf (info->mapfile, " . . .\n");
|
||
need_elipses = 0;
|
||
continue;
|
||
}
|
||
need_elipses = 1;
|
||
|
||
fprintf (info->mapfile, " 0x%08" BFD_VMA_FMT "x [%3d] ", start_addr + 4 * idx, idx);
|
||
|
||
if (info->table_handlers[idx] == (bfd_vma) (-1))
|
||
fprintf (info->mapfile, "(no handler found)\n");
|
||
|
||
else if (info->table_handlers[idx] == info->table_default_handler)
|
||
{
|
||
if (info->table_default_entry)
|
||
fprintf (info->mapfile, "(default)\n");
|
||
else
|
||
fprintf (info->mapfile, "(default)\n");
|
||
}
|
||
|
||
else if (info->table_entries[idx])
|
||
{
|
||
fprintf (info->mapfile, "0x%08" BFD_VMA_FMT "x %s\n", info->table_handlers[idx], info->table_entries[idx]->root.string);
|
||
}
|
||
|
||
else
|
||
{
|
||
fprintf (info->mapfile, "0x%08" BFD_VMA_FMT "x ???\n", info->table_handlers[idx]);
|
||
}
|
||
}
|
||
if (need_elipses)
|
||
fprintf (info->mapfile, " . . .\n");
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
void
|
||
rx_additional_link_map_text (bfd *obfd, struct bfd_link_info *info, FILE *mapfile)
|
||
{
|
||
/* We scan the symbol table looking for $tableentry$'s, and for
|
||
each, try to deduce which handlers go with which entries. */
|
||
|
||
RX_Table_Info stuff;
|
||
|
||
stuff.abfd = obfd;
|
||
stuff.info = info;
|
||
stuff.mapfile = mapfile;
|
||
bfd_hash_traverse (&(info->hash->table), rx_table_map, &stuff);
|
||
}
|
||
|
||
|
||
#define ELF_ARCH bfd_arch_rx
|
||
#define ELF_MACHINE_CODE EM_RX
|
||
#define ELF_MAXPAGESIZE 0x1000
|
||
|
||
#define TARGET_BIG_SYM rx_elf32_be_vec
|
||
#define TARGET_BIG_NAME "elf32-rx-be"
|
||
|
||
#define TARGET_LITTLE_SYM rx_elf32_le_vec
|
||
#define TARGET_LITTLE_NAME "elf32-rx-le"
|
||
|
||
#define elf_info_to_howto_rel NULL
|
||
#define elf_info_to_howto rx_info_to_howto_rela
|
||
#define elf_backend_object_p rx_elf_object_p
|
||
#define elf_backend_relocate_section rx_elf_relocate_section
|
||
#define elf_symbol_leading_char ('_')
|
||
#define elf_backend_can_gc_sections 1
|
||
#define elf_backend_modify_program_headers elf32_rx_modify_program_headers
|
||
|
||
#define bfd_elf32_bfd_reloc_type_lookup rx_reloc_type_lookup
|
||
#define bfd_elf32_bfd_reloc_name_lookup rx_reloc_name_lookup
|
||
#define bfd_elf32_bfd_set_private_flags rx_elf_set_private_flags
|
||
#define bfd_elf32_bfd_merge_private_bfd_data rx_elf_merge_private_bfd_data
|
||
#define bfd_elf32_bfd_print_private_bfd_data rx_elf_print_private_bfd_data
|
||
#define bfd_elf32_get_section_contents rx_get_section_contents
|
||
#define bfd_elf32_set_section_contents rx_set_section_contents
|
||
#define bfd_elf32_bfd_final_link rx_final_link
|
||
#define bfd_elf32_bfd_relax_section elf32_rx_relax_section_wrapper
|
||
#define elf_backend_special_sections elf32_rx_special_sections
|
||
#define elf_backend_check_directives rx_check_directives
|
||
|
||
#include "elf32-target.h"
|
||
|
||
/* We define a second big-endian target that doesn't have the custom
|
||
section get/set hooks, for times when we want to preserve the
|
||
pre-swapped .text sections (like objcopy). */
|
||
|
||
#undef TARGET_BIG_SYM
|
||
#define TARGET_BIG_SYM rx_elf32_be_ns_vec
|
||
#undef TARGET_BIG_NAME
|
||
#define TARGET_BIG_NAME "elf32-rx-be-ns"
|
||
#undef TARGET_LITTLE_SYM
|
||
|
||
#undef bfd_elf32_get_section_contents
|
||
#undef bfd_elf32_set_section_contents
|
||
|
||
#undef elf32_bed
|
||
#define elf32_bed elf32_rx_be_ns_bed
|
||
|
||
#include "elf32-target.h"
|