binutils-gdb/gold/object.cc
Ian Lance Taylor f0641a0b38 Rework stringpool and hash tables so that we always generate the same
output regardless of randomize_va_space.
2006-11-07 04:40:46 +00:00

945 lines
27 KiB
C++

// object.cc -- support for an object file for linking in gold
#include "gold.h"
#include <cerrno>
#include <cstring>
#include <cassert>
#include "target-select.h"
#include "layout.h"
#include "output.h"
#include "symtab.h"
#include "object.h"
#include "dynobj.h"
namespace gold
{
// Class Sized_relobj.
template<int size, bool big_endian>
Sized_relobj<size, big_endian>::Sized_relobj(
const std::string& name,
Input_file* input_file,
off_t offset,
const elfcpp::Ehdr<size, big_endian>& ehdr)
: Relobj(name, input_file, offset),
section_headers_(NULL),
flags_(ehdr.get_e_flags()),
shoff_(ehdr.get_e_shoff()),
shstrndx_(0),
symtab_shnum_(0),
local_symbol_count_(0),
output_local_symbol_count_(0),
symbols_(NULL),
local_symbol_offset_(0),
values_(NULL)
{
if (ehdr.get_e_ehsize() != This::ehdr_size)
{
fprintf(stderr, _("%s: %s: bad e_ehsize field (%d != %d)\n"),
program_name, this->name().c_str(), ehdr.get_e_ehsize(),
This::ehdr_size);
gold_exit(false);
}
if (ehdr.get_e_shentsize() != This::shdr_size)
{
fprintf(stderr, _("%s: %s: bad e_shentsize field (%d != %d)\n"),
program_name, this->name().c_str(), ehdr.get_e_shentsize(),
This::shdr_size);
gold_exit(false);
}
}
template<int size, bool big_endian>
Sized_relobj<size, big_endian>::~Sized_relobj()
{
}
// Read the section header for section SHNUM.
template<int size, bool big_endian>
inline const unsigned char*
Sized_relobj<size, big_endian>::section_header(unsigned int shnum)
{
assert(shnum < this->shnum());
off_t symtabshdroff = this->shoff_ + shnum * This::shdr_size;
return this->get_view(symtabshdroff, This::shdr_size);
}
// Return the name of section SHNUM. The object must already be
// locked.
template<int size, bool big_endian>
std::string
Sized_relobj<size, big_endian>::do_section_name(unsigned int shnum)
{
// Read the section names.
typename This::Shdr shdrnames(this->section_header(this->shstrndx_));
const unsigned char* pnamesu = this->get_view(shdrnames.get_sh_offset(),
shdrnames.get_sh_size());
const char* pnames = reinterpret_cast<const char*>(pnamesu);
typename This::Shdr shdr(this->section_header(shnum));
if (shdr.get_sh_name() >= shdrnames.get_sh_size())
{
fprintf(stderr,
_("%s: %s: bad section name offset for section %u: %lu\n"),
program_name, this->name().c_str(), shnum,
static_cast<unsigned long>(shdr.get_sh_name()));
gold_exit(false);
}
return std::string(pnames + shdr.get_sh_name());
}
// Return a view of the contents of section SHNUM. The object does
// not have to be locked.
template<int size, bool big_endian>
const unsigned char*
Sized_relobj<size, big_endian>::do_section_contents(unsigned int shnum,
off_t* plen)
{
Task_locker_obj<Object> tl(*this);
typename This::Shdr shdr(this->section_header(shnum));
*plen = shdr.get_sh_size();
return this->get_view(shdr.get_sh_offset(), shdr.get_sh_size());
}
// Set up an object file bsaed on the file header. This sets up the
// target and reads the section information.
template<int size, bool big_endian>
void
Sized_relobj<size, big_endian>::setup(
const elfcpp::Ehdr<size, big_endian>& ehdr)
{
int machine = ehdr.get_e_machine();
Target* target = select_target(machine, size, big_endian,
ehdr.get_e_ident()[elfcpp::EI_OSABI],
ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
if (target == NULL)
{
fprintf(stderr, _("%s: %s: unsupported ELF machine number %d\n"),
program_name, this->name().c_str(), machine);
gold_exit(false);
}
this->set_target(target);
unsigned int shnum = ehdr.get_e_shnum();
unsigned int shstrndx = ehdr.get_e_shstrndx();
if ((shnum == 0 || shstrndx == elfcpp::SHN_XINDEX)
&& this->shoff_ != 0)
{
typename This::Shdr shdr(this->section_header(0));
if (shnum == 0)
shnum = shdr.get_sh_size();
if (shstrndx == elfcpp::SHN_XINDEX)
shstrndx = shdr.get_sh_link();
}
this->set_shnum(shnum);
this->shstrndx_ = shstrndx;
if (shnum == 0)
return;
// We store the section headers in a File_view until do_read_symbols.
this->section_headers_ = this->get_lasting_view(this->shoff_,
shnum * This::shdr_size);
// Find the SHT_SYMTAB section. The ELF standard says that maybe in
// the future there can be more than one SHT_SYMTAB section. Until
// somebody figures out how that could work, we assume there is only
// one.
const unsigned char* p = this->section_headers_->data();
// Skip the first section, which is always empty.
p += This::shdr_size;
for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
{
typename This::Shdr shdr(p);
if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
{
this->symtab_shnum_ = i;
break;
}
}
}
// Read the sections and symbols from an object file.
template<int size, bool big_endian>
void
Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
{
// Transfer our view of the section headers to SD.
sd->section_headers = this->section_headers_;
this->section_headers_ = NULL;
// Read the section names.
const unsigned char* pshdrs = sd->section_headers->data();
const unsigned char* pshdrnames = pshdrs + this->shstrndx_ * This::shdr_size;
typename This::Shdr shdrnames(pshdrnames);
sd->section_names_size = shdrnames.get_sh_size();
sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
sd->section_names_size);
if (this->symtab_shnum_ == 0)
{
// No symbol table. Weird but legal.
sd->symbols = NULL;
sd->symbols_size = 0;
sd->symbol_names = NULL;
sd->symbol_names_size = 0;
return;
}
// Get the symbol table section header.
typename This::Shdr symtabshdr(pshdrs
+ this->symtab_shnum_ * This::shdr_size);
assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
// We only need the external symbols.
const int sym_size = This::sym_size;
const unsigned int loccount = symtabshdr.get_sh_info();
this->local_symbol_count_ = loccount;
off_t locsize = loccount * sym_size;
off_t extoff = symtabshdr.get_sh_offset() + locsize;
off_t extsize = symtabshdr.get_sh_size() - locsize;
// Read the symbol table.
File_view* fvsymtab = this->get_lasting_view(extoff, extsize);
// Read the section header for the symbol names.
unsigned int shnum = this->shnum();
unsigned int strtab_shnum = symtabshdr.get_sh_link();
if (strtab_shnum == 0 || strtab_shnum >= shnum)
{
fprintf(stderr, _("%s: %s: invalid symbol table name index: %u\n"),
program_name, this->name().c_str(), strtab_shnum);
gold_exit(false);
}
typename This::Shdr strtabshdr(pshdrs + strtab_shnum * This::shdr_size);
if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
{
fprintf(stderr,
_("%s: %s: symbol table name section has wrong type: %u\n"),
program_name, this->name().c_str(),
static_cast<unsigned int>(strtabshdr.get_sh_type()));
gold_exit(false);
}
// Read the symbol names.
File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
strtabshdr.get_sh_size());
sd->symbols = fvsymtab;
sd->symbols_size = extsize;
sd->symbol_names = fvstrtab;
sd->symbol_names_size = strtabshdr.get_sh_size();
}
// Return whether to include a section group in the link. LAYOUT is
// used to keep track of which section groups we have already seen.
// INDEX is the index of the section group and SHDR is the section
// header. If we do not want to include this group, we set bits in
// OMIT for each section which should be discarded.
template<int size, bool big_endian>
bool
Sized_relobj<size, big_endian>::include_section_group(
Layout* layout,
unsigned int index,
const elfcpp::Shdr<size, big_endian>& shdr,
std::vector<bool>* omit)
{
// Read the section contents.
const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
shdr.get_sh_size());
const elfcpp::Elf_Word* pword =
reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
// The first word contains flags. We only care about COMDAT section
// groups. Other section groups are always included in the link
// just like ordinary sections.
elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
if ((flags & elfcpp::GRP_COMDAT) == 0)
return true;
// Look up the group signature, which is the name of a symbol. This
// is a lot of effort to go to to read a string. Why didn't they
// just use the name of the SHT_GROUP section as the group
// signature?
// Get the appropriate symbol table header (this will normally be
// the single SHT_SYMTAB section, but in principle it need not be).
if (shdr.get_sh_link() >= this->shnum())
{
fprintf(stderr, _("%s: %s: section group %u link %u out of range\n"),
program_name, this->name().c_str(), index, shdr.get_sh_link());
gold_exit(false);
}
typename This::Shdr symshdr(this->section_header(shdr.get_sh_link()));
// Read the symbol table entry.
if (shdr.get_sh_info() >= symshdr.get_sh_size() / This::sym_size)
{
fprintf(stderr, _("%s: %s: section group %u info %u out of range\n"),
program_name, this->name().c_str(), index, shdr.get_sh_info());
gold_exit(false);
}
off_t symoff = symshdr.get_sh_offset() + shdr.get_sh_info() * This::sym_size;
const unsigned char* psym = this->get_view(symoff, This::sym_size);
elfcpp::Sym<size, big_endian> sym(psym);
// Read the section header for the symbol table names.
if (symshdr.get_sh_link() >= this->shnum())
{
fprintf(stderr, _("%s; %s: symtab section %u link %u out of range\n"),
program_name, this->name().c_str(), shdr.get_sh_link(),
symshdr.get_sh_link());
gold_exit(false);
}
typename This::Shdr symnamehdr(this->section_header(symshdr.get_sh_link()));
// Read the symbol table names.
const unsigned char *psymnamesu = this->get_view(symnamehdr.get_sh_offset(),
symnamehdr.get_sh_size());
const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
// Get the section group signature.
if (sym.get_st_name() >= symnamehdr.get_sh_size())
{
fprintf(stderr, _("%s: %s: symbol %u name offset %u out of range\n"),
program_name, this->name().c_str(), shdr.get_sh_info(),
sym.get_st_name());
gold_exit(false);
}
const char* signature = psymnames + sym.get_st_name();
// It seems that some versions of gas will create a section group
// associated with a section symbol, and then fail to give a name to
// the section symbol. In such a case, use the name of the section.
// FIXME.
if (signature[0] == '\0'
&& sym.get_st_type() == elfcpp::STT_SECTION
&& sym.get_st_shndx() < this->shnum())
{
typename This::Shdr shdrnames(this->section_header(this->shstrndx_));
const unsigned char* pnamesu = this->get_view(shdrnames.get_sh_offset(),
shdrnames.get_sh_size());
const char* pnames = reinterpret_cast<const char*>(pnamesu);
typename This::Shdr sechdr(this->section_header(sym.get_st_shndx()));
if (sechdr.get_sh_name() >= shdrnames.get_sh_size())
{
fprintf(stderr,
_("%s: %s: bad section name offset for section %u: %lu\n"),
program_name, this->name().c_str(), sym.get_st_shndx(),
static_cast<unsigned long>(sechdr.get_sh_name()));
gold_exit(false);
}
signature = pnames + sechdr.get_sh_name();
}
// Record this section group, and see whether we've already seen one
// with the same signature.
if (layout->add_comdat(signature, true))
return true;
// This is a duplicate. We want to discard the sections in this
// group.
size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
for (size_t i = 1; i < count; ++i)
{
elfcpp::Elf_Word secnum =
elfcpp::Swap<32, big_endian>::readval(pword + i);
if (secnum >= this->shnum())
{
fprintf(stderr,
_("%s: %s: section %u in section group %u out of range"),
program_name, this->name().c_str(), secnum,
index);
gold_exit(false);
}
(*omit)[secnum] = true;
}
return false;
}
// Whether to include a linkonce section in the link. NAME is the
// name of the section and SHDR is the section header.
// Linkonce sections are a GNU extension implemented in the original
// GNU linker before section groups were defined. The semantics are
// that we only include one linkonce section with a given name. The
// name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
// where T is the type of section and SYMNAME is the name of a symbol.
// In an attempt to make linkonce sections interact well with section
// groups, we try to identify SYMNAME and use it like a section group
// signature. We want to block section groups with that signature,
// but not other linkonce sections with that signature. We also use
// the full name of the linkonce section as a normal section group
// signature.
template<int size, bool big_endian>
bool
Sized_relobj<size, big_endian>::include_linkonce_section(
Layout* layout,
const char* name,
const elfcpp::Shdr<size, big_endian>&)
{
const char* symname = strrchr(name, '.') + 1;
bool include1 = layout->add_comdat(symname, false);
bool include2 = layout->add_comdat(name, true);
return include1 && include2;
}
// Lay out the input sections. We walk through the sections and check
// whether they should be included in the link. If they should, we
// pass them to the Layout object, which will return an output section
// and an offset.
template<int size, bool big_endian>
void
Sized_relobj<size, big_endian>::do_layout(const General_options& options,
Symbol_table* symtab,
Layout* layout,
Read_symbols_data* sd)
{
unsigned int shnum = this->shnum();
if (shnum == 0)
return;
// Get the section headers.
const unsigned char* pshdrs = sd->section_headers->data();
// Get the section names.
const unsigned char* pnamesu = sd->section_names->data();
const char* pnames = reinterpret_cast<const char*>(pnamesu);
std::vector<Map_to_output>& map_sections(this->map_to_output());
map_sections.resize(shnum);
// Keep track of which sections to omit.
std::vector<bool> omit(shnum, false);
const char warn_prefix[] = ".gnu.warning.";
const int warn_prefix_len = sizeof warn_prefix - 1;
// Skip the first, dummy, section.
pshdrs += This::shdr_size;
for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
{
typename This::Shdr shdr(pshdrs);
if (shdr.get_sh_name() >= sd->section_names_size)
{
fprintf(stderr,
_("%s: %s: bad section name offset for section %u: %lu\n"),
program_name, this->name().c_str(), i,
static_cast<unsigned long>(shdr.get_sh_name()));
gold_exit(false);
}
const char* name = pnames + shdr.get_sh_name();
if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
{
symtab->add_warning(name + warn_prefix_len, this, i);
if (!options.is_relocatable())
omit[i] = true;
}
bool discard = omit[i];
if (!discard)
{
if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
{
if (!this->include_section_group(layout, i, shdr, &omit))
discard = true;
}
else if (Layout::is_linkonce(name))
{
if (!this->include_linkonce_section(layout, name, shdr))
discard = true;
}
}
if (discard)
{
// Do not include this section in the link.
map_sections[i].output_section = NULL;
continue;
}
off_t offset;
Output_section* os = layout->layout(this, i, name, shdr, &offset);
map_sections[i].output_section = os;
map_sections[i].offset = offset;
}
delete sd->section_headers;
sd->section_headers = NULL;
delete sd->section_names;
sd->section_names = NULL;
}
// Add the symbols to the symbol table.
template<int size, bool big_endian>
void
Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
Read_symbols_data* sd)
{
if (sd->symbols == NULL)
{
assert(sd->symbol_names == NULL);
return;
}
const int sym_size = This::sym_size;
size_t symcount = sd->symbols_size / sym_size;
if (symcount * sym_size != sd->symbols_size)
{
fprintf(stderr,
_("%s: %s: size of symbols is not multiple of symbol size\n"),
program_name, this->name().c_str());
gold_exit(false);
}
this->symbols_ = new Symbol*[symcount];
const char* sym_names =
reinterpret_cast<const char*>(sd->symbol_names->data());
symtab->add_from_object<size, big_endian>(this, sd->symbols->data(),
symcount, sym_names,
sd->symbol_names_size,
this->symbols_);
delete sd->symbols;
sd->symbols = NULL;
delete sd->symbol_names;
sd->symbol_names = NULL;
}
// Finalize the local symbols. Here we record the file offset at
// which they should be output, we add their names to *POOL, and we
// add their values to THIS->VALUES_. Return the new file offset.
// This function is always called from the main thread. The actual
// output of the local symbols will occur in a separate task.
template<int size, bool big_endian>
off_t
Sized_relobj<size, big_endian>::do_finalize_local_symbols(off_t off,
Stringpool* pool)
{
if (this->symtab_shnum_ == 0)
{
// This object has no symbols. Weird but legal.
return off;
}
off = align_address(off, size >> 3);
this->local_symbol_offset_ = off;
// Read the symbol table section header.
typename This::Shdr symtabshdr(this->section_header(this->symtab_shnum_));
assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
// Read the local symbols.
const int sym_size = This::sym_size;
const unsigned int loccount = this->local_symbol_count_;
assert(loccount == symtabshdr.get_sh_info());
off_t locsize = loccount * sym_size;
const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
locsize);
this->values_ = new typename elfcpp::Elf_types<size>::Elf_Addr[loccount];
// Read the section header for the symbol names.
typename This::Shdr strtabshdr(
this->section_header(symtabshdr.get_sh_link()));
assert(strtabshdr.get_sh_type() == elfcpp::SHT_STRTAB);
// Read the symbol names.
const unsigned char* pnamesu = this->get_view(strtabshdr.get_sh_offset(),
strtabshdr.get_sh_size());
const char* pnames = reinterpret_cast<const char*>(pnamesu);
// Loop over the local symbols.
std::vector<Map_to_output>& mo(this->map_to_output());
unsigned int shnum = this->shnum();
unsigned int count = 0;
// Skip the first, dummy, symbol.
psyms += sym_size;
for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
{
elfcpp::Sym<size, big_endian> sym(psyms);
unsigned int shndx = sym.get_st_shndx();
if (shndx >= elfcpp::SHN_LORESERVE)
{
if (shndx == elfcpp::SHN_ABS)
this->values_[i] = sym.get_st_value();
else
{
// FIXME: Handle SHN_XINDEX.
fprintf(stderr,
_("%s: %s: unknown section index %u "
"for local symbol %u\n"),
program_name, this->name().c_str(), shndx, i);
gold_exit(false);
}
}
else
{
if (shndx >= shnum)
{
fprintf(stderr,
_("%s: %s: local symbol %u section index %u "
"out of range\n"),
program_name, this->name().c_str(), i, shndx);
gold_exit(false);
}
if (mo[shndx].output_section == NULL)
{
this->values_[i] = 0;
continue;
}
this->values_[i] = (mo[shndx].output_section->address()
+ mo[shndx].offset
+ sym.get_st_value());
}
if (sym.get_st_type() != elfcpp::STT_SECTION)
{
pool->add(pnames + sym.get_st_name(), NULL);
off += sym_size;
++count;
}
}
this->output_local_symbol_count_ = count;
return off;
}
// Write out the local symbols.
template<int size, bool big_endian>
void
Sized_relobj<size, big_endian>::write_local_symbols(Output_file* of,
const Stringpool* sympool)
{
if (this->symtab_shnum_ == 0)
{
// This object has no symbols. Weird but legal.
return;
}
// Read the symbol table section header.
typename This::Shdr symtabshdr(this->section_header(this->symtab_shnum_));
assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
const unsigned int loccount = this->local_symbol_count_;
assert(loccount == symtabshdr.get_sh_info());
// Read the local symbols.
const int sym_size = This::sym_size;
off_t locsize = loccount * sym_size;
const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
locsize);
// Read the section header for the symbol names.
typename This::Shdr strtabshdr(
this->section_header(symtabshdr.get_sh_link()));
assert(strtabshdr.get_sh_type() == elfcpp::SHT_STRTAB);
// Read the symbol names.
const unsigned char* pnamesu = this->get_view(strtabshdr.get_sh_offset(),
strtabshdr.get_sh_size());
const char* pnames = reinterpret_cast<const char*>(pnamesu);
// Get a view into the output file.
off_t output_size = this->output_local_symbol_count_ * sym_size;
unsigned char* oview = of->get_output_view(this->local_symbol_offset_,
output_size);
std::vector<Map_to_output>& mo(this->map_to_output());
psyms += sym_size;
unsigned char* ov = oview;
for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
{
elfcpp::Sym<size, big_endian> isym(psyms);
if (isym.get_st_type() == elfcpp::STT_SECTION)
continue;
unsigned int st_shndx = isym.get_st_shndx();
if (st_shndx < elfcpp::SHN_LORESERVE)
{
assert(st_shndx < mo.size());
if (mo[st_shndx].output_section == NULL)
continue;
st_shndx = mo[st_shndx].output_section->out_shndx();
}
elfcpp::Sym_write<size, big_endian> osym(ov);
osym.put_st_name(sympool->get_offset(pnames + isym.get_st_name()));
osym.put_st_value(this->values_[i]);
osym.put_st_size(isym.get_st_size());
osym.put_st_info(isym.get_st_info());
osym.put_st_other(isym.get_st_other());
osym.put_st_shndx(st_shndx);
ov += sym_size;
}
assert(ov - oview == output_size);
of->write_output_view(this->local_symbol_offset_, output_size, oview);
}
// Input_objects methods.
// Add a regular relocatable object to the list.
void
Input_objects::add_object(Object* obj)
{
if (obj->is_dynamic())
this->dynobj_list_.push_back(static_cast<Dynobj*>(obj));
else
this->relobj_list_.push_back(static_cast<Relobj*>(obj));
Target* target = obj->target();
if (this->target_ == NULL)
this->target_ = target;
else if (this->target_ != target)
{
fprintf(stderr, "%s: %s: incompatible target\n",
program_name, obj->name().c_str());
gold_exit(false);
}
}
// Relocate_info methods.
// Return a string describing the location of a relocation. This is
// only used in error messages.
template<int size, bool big_endian>
std::string
Relocate_info<size, big_endian>::location(size_t relnum, off_t) const
{
std::string ret(this->object->name());
ret += ": reloc ";
char buf[100];
snprintf(buf, sizeof buf, "%zu", relnum);
ret += buf;
ret += " in reloc section ";
snprintf(buf, sizeof buf, "%u", this->reloc_shndx);
ret += buf;
ret += " (" + this->object->section_name(this->reloc_shndx);
ret += ") for section ";
snprintf(buf, sizeof buf, "%u", this->data_shndx);
ret += buf;
ret += " (" + this->object->section_name(this->data_shndx) + ")";
return ret;
}
} // End namespace gold.
namespace
{
using namespace gold;
// Read an ELF file with the header and return the appropriate
// instance of Object.
template<int size, bool big_endian>
Object*
make_elf_sized_object(const std::string& name, Input_file* input_file,
off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
{
int et = ehdr.get_e_type();
if (et != elfcpp::ET_REL && et != elfcpp::ET_DYN)
{
fprintf(stderr, "%s: %s: unsupported ELF type %d\n",
program_name, name.c_str(), static_cast<int>(et));
gold_exit(false);
}
if (et == elfcpp::ET_REL)
{
Sized_relobj<size, big_endian>* obj =
new Sized_relobj<size, big_endian>(name, input_file, offset, ehdr);
obj->setup(ehdr);
return obj;
}
else
{
// elfcpp::ET_DYN
fprintf(stderr, _("%s: %s: dynamic objects are not yet supported\n"),
program_name, name.c_str());
gold_exit(false);
// Sized_dynobj<size, big_endian>* obj =
// new Sized_dynobj<size, big_endian>(this->input_.name(), input_file,
// offset, ehdr);
// obj->setup(ehdr);
// return obj;
}
}
} // End anonymous namespace.
namespace gold
{
// Read an ELF file and return the appropriate instance of Object.
Object*
make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
const unsigned char* p, off_t bytes)
{
if (bytes < elfcpp::EI_NIDENT)
{
fprintf(stderr, _("%s: %s: ELF file too short\n"),
program_name, name.c_str());
gold_exit(false);
}
int v = p[elfcpp::EI_VERSION];
if (v != elfcpp::EV_CURRENT)
{
if (v == elfcpp::EV_NONE)
fprintf(stderr, _("%s: %s: invalid ELF version 0\n"),
program_name, name.c_str());
else
fprintf(stderr, _("%s: %s: unsupported ELF version %d\n"),
program_name, name.c_str(), v);
gold_exit(false);
}
int c = p[elfcpp::EI_CLASS];
if (c == elfcpp::ELFCLASSNONE)
{
fprintf(stderr, _("%s: %s: invalid ELF class 0\n"),
program_name, name.c_str());
gold_exit(false);
}
else if (c != elfcpp::ELFCLASS32
&& c != elfcpp::ELFCLASS64)
{
fprintf(stderr, _("%s: %s: unsupported ELF class %d\n"),
program_name, name.c_str(), c);
gold_exit(false);
}
int d = p[elfcpp::EI_DATA];
if (d == elfcpp::ELFDATANONE)
{
fprintf(stderr, _("%s: %s: invalid ELF data encoding\n"),
program_name, name.c_str());
gold_exit(false);
}
else if (d != elfcpp::ELFDATA2LSB
&& d != elfcpp::ELFDATA2MSB)
{
fprintf(stderr, _("%s: %s: unsupported ELF data encoding %d\n"),
program_name, name.c_str(), d);
gold_exit(false);
}
bool big_endian = d == elfcpp::ELFDATA2MSB;
if (c == elfcpp::ELFCLASS32)
{
if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
{
fprintf(stderr, _("%s: %s: ELF file too short\n"),
program_name, name.c_str());
gold_exit(false);
}
if (big_endian)
{
elfcpp::Ehdr<32, true> ehdr(p);
return make_elf_sized_object<32, true>(name, input_file,
offset, ehdr);
}
else
{
elfcpp::Ehdr<32, false> ehdr(p);
return make_elf_sized_object<32, false>(name, input_file,
offset, ehdr);
}
}
else
{
if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
{
fprintf(stderr, _("%s: %s: ELF file too short\n"),
program_name, name.c_str());
gold_exit(false);
}
if (big_endian)
{
elfcpp::Ehdr<64, true> ehdr(p);
return make_elf_sized_object<64, true>(name, input_file,
offset, ehdr);
}
else
{
elfcpp::Ehdr<64, false> ehdr(p);
return make_elf_sized_object<64, false>(name, input_file,
offset, ehdr);
}
}
}
// Instantiate the templates we need. We could use the configure
// script to restrict this to only the ones for implemented targets.
template
class Sized_relobj<32, false>;
template
class Sized_relobj<32, true>;
template
class Sized_relobj<64, false>;
template
class Sized_relobj<64, true>;
template
struct Relocate_info<32, false>;
template
struct Relocate_info<32, true>;
template
struct Relocate_info<64, false>;
template
struct Relocate_info<64, true>;
} // End namespace gold.