mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-12 12:16:04 +08:00
349c5d5f6c
* gdb-events.sh (XMALLOC): Delete macro. * gdb-events.c, gdb-events.h: Regenerate. * gdbarch.sh (XMALLOC): Delete macro. * gdbarch.c: Regenerate. * serial.c (XMALLOC): Delete macro. * ui-file.c (XMALLOC): Ditto. * ser-unix.h (XMALLOC): Ditto. * sh-tdep.c (XMALLOC): Ditto. * ui-out.c (XMALLOC): Ditto. * utils.c (XMALLOC): Ditto. * i386-tdep.c (XMALLOC): Ditto. * gdb-events.c (XMALLOC): Ditto. * d10v-tdep.c (XMALLOC): Ditto. * cli-out.c (XMALLOC): Ditto. * cli-out.c, d10v-tdep.c, gdb-events.c: Update copyright. * gdb-events.sh, i386-tdep.c, ser-unix.h, serial.c: Ditto. * ui-file.c, ui-out.c: Ditto.
2183 lines
69 KiB
C
2183 lines
69 KiB
C
/* Target-dependent code for Hitachi Super-H, for GDB.
|
|
Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
|
|
Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
/*
|
|
Contributed by Steve Chamberlain
|
|
sac@cygnus.com
|
|
*/
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "obstack.h"
|
|
#include "symtab.h"
|
|
#include "symfile.h"
|
|
#include "gdbtypes.h"
|
|
#include "gdbcmd.h"
|
|
#include "gdbcore.h"
|
|
#include "value.h"
|
|
#include "dis-asm.h"
|
|
#include "inferior.h" /* for BEFORE_TEXT_END etc. */
|
|
#include "gdb_string.h"
|
|
#include "arch-utils.h"
|
|
#include "floatformat.h"
|
|
#include "regcache.h"
|
|
#include "doublest.h"
|
|
|
|
#include "solib-svr4.h"
|
|
|
|
void (*sh_show_regs) (void);
|
|
CORE_ADDR (*skip_prologue_hard_way) (CORE_ADDR);
|
|
void (*do_pseudo_register) (int);
|
|
|
|
#define SH_DEFAULT_NUM_REGS 59
|
|
|
|
/* Define other aspects of the stack frame.
|
|
we keep a copy of the worked out return pc lying around, since it
|
|
is a useful bit of info */
|
|
|
|
struct frame_extra_info
|
|
{
|
|
CORE_ADDR return_pc;
|
|
int leaf_function;
|
|
int f_offset;
|
|
};
|
|
|
|
static char *
|
|
sh_generic_register_name (int reg_nr)
|
|
{
|
|
static char *register_names[] =
|
|
{
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
|
"fpul", "fpscr",
|
|
"fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
|
|
"fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
|
|
"ssr", "spc",
|
|
"r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
|
|
"r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
|
|
};
|
|
if (reg_nr < 0)
|
|
return NULL;
|
|
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
|
return NULL;
|
|
return register_names[reg_nr];
|
|
}
|
|
|
|
static char *
|
|
sh_sh_register_name (int reg_nr)
|
|
{
|
|
static char *register_names[] =
|
|
{
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
|
"", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
};
|
|
if (reg_nr < 0)
|
|
return NULL;
|
|
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
|
return NULL;
|
|
return register_names[reg_nr];
|
|
}
|
|
|
|
static char *
|
|
sh_sh3_register_name (int reg_nr)
|
|
{
|
|
static char *register_names[] =
|
|
{
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
|
"", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"ssr", "spc",
|
|
"r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
|
|
"r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
|
|
};
|
|
if (reg_nr < 0)
|
|
return NULL;
|
|
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
|
return NULL;
|
|
return register_names[reg_nr];
|
|
}
|
|
|
|
static char *
|
|
sh_sh3e_register_name (int reg_nr)
|
|
{
|
|
static char *register_names[] =
|
|
{
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
|
"fpul", "fpscr",
|
|
"fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
|
|
"fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
|
|
"ssr", "spc",
|
|
"r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
|
|
"r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
|
|
};
|
|
if (reg_nr < 0)
|
|
return NULL;
|
|
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
|
return NULL;
|
|
return register_names[reg_nr];
|
|
}
|
|
|
|
static char *
|
|
sh_sh_dsp_register_name (int reg_nr)
|
|
{
|
|
static char *register_names[] =
|
|
{
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
|
"", "dsr",
|
|
"a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
|
|
"y0", "y1", "", "", "", "", "", "mod",
|
|
"", "",
|
|
"rs", "re", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
};
|
|
if (reg_nr < 0)
|
|
return NULL;
|
|
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
|
return NULL;
|
|
return register_names[reg_nr];
|
|
}
|
|
|
|
static char *
|
|
sh_sh3_dsp_register_name (int reg_nr)
|
|
{
|
|
static char *register_names[] =
|
|
{
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
|
"", "dsr",
|
|
"a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
|
|
"y0", "y1", "", "", "", "", "", "mod",
|
|
"ssr", "spc",
|
|
"rs", "re", "", "", "", "", "", "",
|
|
"r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b"
|
|
"", "", "", "", "", "", "", "",
|
|
};
|
|
if (reg_nr < 0)
|
|
return NULL;
|
|
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
|
return NULL;
|
|
return register_names[reg_nr];
|
|
}
|
|
|
|
static char *
|
|
sh_sh4_register_name (int reg_nr)
|
|
{
|
|
static char *register_names[] =
|
|
{
|
|
/* general registers 0-15 */
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
/* 16 - 22 */
|
|
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
|
/* 23, 24 */
|
|
"fpul", "fpscr",
|
|
/* floating point registers 25 - 40 */
|
|
"fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
|
|
"fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
|
|
/* 41, 42 */
|
|
"ssr", "spc",
|
|
/* bank 0 43 - 50 */
|
|
"r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
|
|
/* bank 1 51 - 58 */
|
|
"r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
|
|
/* double precision (pseudo) 59 - 66 */
|
|
"dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
|
|
/* vectors (pseudo) 67 - 70 */
|
|
"fv0", "fv4", "fv8", "fv12",
|
|
/* FIXME: missing XF 71 - 86 */
|
|
/* FIXME: missing XD 87 - 94 */
|
|
};
|
|
if (reg_nr < 0)
|
|
return NULL;
|
|
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
|
return NULL;
|
|
return register_names[reg_nr];
|
|
}
|
|
|
|
static unsigned char *
|
|
sh_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
|
|
{
|
|
/* 0xc3c3 is trapa #c3, and it works in big and little endian modes */
|
|
static unsigned char breakpoint[] = {0xc3, 0xc3};
|
|
|
|
*lenptr = sizeof (breakpoint);
|
|
return breakpoint;
|
|
}
|
|
|
|
/* Prologue looks like
|
|
[mov.l <regs>,@-r15]...
|
|
[sts.l pr,@-r15]
|
|
[mov.l r14,@-r15]
|
|
[mov r15,r14]
|
|
|
|
Actually it can be more complicated than this. For instance, with
|
|
newer gcc's:
|
|
|
|
mov.l r14,@-r15
|
|
add #-12,r15
|
|
mov r15,r14
|
|
mov r4,r1
|
|
mov r5,r2
|
|
mov.l r6,@(4,r14)
|
|
mov.l r7,@(8,r14)
|
|
mov.b r1,@r14
|
|
mov r14,r1
|
|
mov r14,r1
|
|
add #2,r1
|
|
mov.w r2,@r1
|
|
|
|
*/
|
|
|
|
/* STS.L PR,@-r15 0100111100100010
|
|
r15-4-->r15, PR-->(r15) */
|
|
#define IS_STS(x) ((x) == 0x4f22)
|
|
|
|
/* MOV.L Rm,@-r15 00101111mmmm0110
|
|
r15-4-->r15, Rm-->(R15) */
|
|
#define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
|
|
|
|
#define GET_PUSHED_REG(x) (((x) >> 4) & 0xf)
|
|
|
|
/* MOV r15,r14 0110111011110011
|
|
r15-->r14 */
|
|
#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
|
|
|
|
/* ADD #imm,r15 01111111iiiiiiii
|
|
r15+imm-->r15 */
|
|
#define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
|
|
|
|
#define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
|
|
#define IS_SHLL_R3(x) ((x) == 0x4300)
|
|
|
|
/* ADD r3,r15 0011111100111100
|
|
r15+r3-->r15 */
|
|
#define IS_ADD_R3SP(x) ((x) == 0x3f3c)
|
|
|
|
/* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
|
|
FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
|
|
FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
|
|
#define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b)
|
|
|
|
/* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011
|
|
MOV.L Rm,@(disp,Rn) Rm-->(dispx4+Rn) 0001nnnnmmmmdddd
|
|
MOV.L Rm,@Rn Rm-->(Rn) 0010nnnnmmmm0010
|
|
where Rm is one of r4,r5,r6,r7 which are the argument registers. */
|
|
#define IS_ARG_MOV(x) \
|
|
(((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070)) \
|
|
|| ((((x) & 0xf000) == 0x1000) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070)) \
|
|
|| ((((x) & 0xf00f) == 0x2002) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070)))
|
|
|
|
/* MOV.L Rm,@(disp,r14) 00011110mmmmdddd
|
|
Rm-->(dispx4+r14) where Rm is one of r4,r5,r6,r7 */
|
|
#define IS_MOV_TO_R14(x) \
|
|
((((x) & 0xff00) == 0x1e) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070))
|
|
|
|
#define FPSCR_SZ (1 << 20)
|
|
|
|
/* Skip any prologue before the guts of a function */
|
|
|
|
/* Skip the prologue using the debug information. If this fails we'll
|
|
fall back on the 'guess' method below. */
|
|
static CORE_ADDR
|
|
after_prologue (CORE_ADDR pc)
|
|
{
|
|
struct symtab_and_line sal;
|
|
CORE_ADDR func_addr, func_end;
|
|
|
|
/* If we can not find the symbol in the partial symbol table, then
|
|
there is no hope we can determine the function's start address
|
|
with this code. */
|
|
if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
|
return 0;
|
|
|
|
/* Get the line associated with FUNC_ADDR. */
|
|
sal = find_pc_line (func_addr, 0);
|
|
|
|
/* There are only two cases to consider. First, the end of the source line
|
|
is within the function bounds. In that case we return the end of the
|
|
source line. Second is the end of the source line extends beyond the
|
|
bounds of the current function. We need to use the slow code to
|
|
examine instructions in that case. */
|
|
if (sal.end < func_end)
|
|
return sal.end;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* Here we look at each instruction in the function, and try to guess
|
|
where the prologue ends. Unfortunately this is not always
|
|
accurate. */
|
|
static CORE_ADDR
|
|
sh_skip_prologue_hard_way (CORE_ADDR start_pc)
|
|
{
|
|
CORE_ADDR here, end;
|
|
int updated_fp = 0;
|
|
|
|
if (!start_pc)
|
|
return 0;
|
|
|
|
for (here = start_pc, end = start_pc + (2 * 28); here < end;)
|
|
{
|
|
int w = read_memory_integer (here, 2);
|
|
here += 2;
|
|
if (IS_FMOV (w) || IS_PUSH (w) || IS_STS (w) || IS_MOV_R3 (w)
|
|
|| IS_ADD_R3SP (w) || IS_ADD_SP (w) || IS_SHLL_R3 (w)
|
|
|| IS_ARG_MOV (w) || IS_MOV_TO_R14 (w))
|
|
{
|
|
start_pc = here;
|
|
}
|
|
else if (IS_MOV_SP_FP (w))
|
|
{
|
|
start_pc = here;
|
|
updated_fp = 1;
|
|
}
|
|
else
|
|
/* Don't bail out yet, if we are before the copy of sp. */
|
|
if (updated_fp)
|
|
break;
|
|
}
|
|
|
|
return start_pc;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
sh_skip_prologue (CORE_ADDR pc)
|
|
{
|
|
CORE_ADDR post_prologue_pc;
|
|
|
|
/* See if we can determine the end of the prologue via the symbol table.
|
|
If so, then return either PC, or the PC after the prologue, whichever
|
|
is greater. */
|
|
post_prologue_pc = after_prologue (pc);
|
|
|
|
/* If after_prologue returned a useful address, then use it. Else
|
|
fall back on the instruction skipping code. */
|
|
if (post_prologue_pc != 0)
|
|
return max (pc, post_prologue_pc);
|
|
else
|
|
return (skip_prologue_hard_way (pc));
|
|
}
|
|
|
|
/* Immediately after a function call, return the saved pc.
|
|
Can't always go through the frames for this because on some machines
|
|
the new frame is not set up until the new function executes
|
|
some instructions.
|
|
|
|
The return address is the value saved in the PR register + 4 */
|
|
static CORE_ADDR
|
|
sh_saved_pc_after_call (struct frame_info *frame)
|
|
{
|
|
return (ADDR_BITS_REMOVE (read_register (gdbarch_tdep (current_gdbarch)->PR_REGNUM)));
|
|
}
|
|
|
|
/* Should call_function allocate stack space for a struct return? */
|
|
static int
|
|
sh_use_struct_convention (int gcc_p, struct type *type)
|
|
{
|
|
return (TYPE_LENGTH (type) > 1);
|
|
}
|
|
|
|
/* Store the address of the place in which to copy the structure the
|
|
subroutine will return. This is called from call_function.
|
|
|
|
We store structs through a pointer passed in R2 */
|
|
static void
|
|
sh_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
|
|
{
|
|
write_register (STRUCT_RETURN_REGNUM, (addr));
|
|
}
|
|
|
|
/* Disassemble an instruction. */
|
|
static int
|
|
gdb_print_insn_sh (bfd_vma memaddr, disassemble_info *info)
|
|
{
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
return print_insn_sh (memaddr, info);
|
|
else
|
|
return print_insn_shl (memaddr, info);
|
|
}
|
|
|
|
/* Given a GDB frame, determine the address of the calling function's frame.
|
|
This will be used to create a new GDB frame struct, and then
|
|
INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
|
|
|
|
For us, the frame address is its stack pointer value, so we look up
|
|
the function prologue to determine the caller's sp value, and return it. */
|
|
static CORE_ADDR
|
|
sh_frame_chain (struct frame_info *frame)
|
|
{
|
|
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
|
|
return frame->frame; /* dummy frame same as caller's frame */
|
|
if (frame->pc && !inside_entry_file (frame->pc))
|
|
return read_memory_integer (FRAME_FP (frame) + frame->extra_info->f_offset, 4);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* Find REGNUM on the stack. Otherwise, it's in an active register. One thing
|
|
we might want to do here is to check REGNUM against the clobber mask, and
|
|
somehow flag it as invalid if it isn't saved on the stack somewhere. This
|
|
would provide a graceful failure mode when trying to get the value of
|
|
caller-saves registers for an inner frame. */
|
|
static CORE_ADDR
|
|
sh_find_callers_reg (struct frame_info *fi, int regnum)
|
|
{
|
|
for (; fi; fi = fi->next)
|
|
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
|
/* When the caller requests PR from the dummy frame, we return PC because
|
|
that's where the previous routine appears to have done a call from. */
|
|
return generic_read_register_dummy (fi->pc, fi->frame, regnum);
|
|
else
|
|
{
|
|
FRAME_INIT_SAVED_REGS (fi);
|
|
if (!fi->pc)
|
|
return 0;
|
|
if (fi->saved_regs[regnum] != 0)
|
|
return read_memory_integer (fi->saved_regs[regnum],
|
|
REGISTER_RAW_SIZE (regnum));
|
|
}
|
|
return read_register (regnum);
|
|
}
|
|
|
|
/* Put here the code to store, into a struct frame_saved_regs, the
|
|
addresses of the saved registers of frame described by FRAME_INFO.
|
|
This includes special registers such as pc and fp saved in special
|
|
ways in the stack frame. sp is even more special: the address we
|
|
return for it IS the sp for the next frame. */
|
|
static void
|
|
sh_nofp_frame_init_saved_regs (struct frame_info *fi)
|
|
{
|
|
int where[NUM_REGS + NUM_PSEUDO_REGS];
|
|
int rn;
|
|
int have_fp = 0;
|
|
int depth;
|
|
int pc;
|
|
int opc;
|
|
int insn;
|
|
int r3_val = 0;
|
|
char *dummy_regs = generic_find_dummy_frame (fi->pc, fi->frame);
|
|
|
|
if (fi->saved_regs == NULL)
|
|
frame_saved_regs_zalloc (fi);
|
|
else
|
|
memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
|
|
|
|
if (dummy_regs)
|
|
{
|
|
/* DANGER! This is ONLY going to work if the char buffer format of
|
|
the saved registers is byte-for-byte identical to the
|
|
CORE_ADDR regs[NUM_REGS] format used by struct frame_saved_regs! */
|
|
memcpy (fi->saved_regs, dummy_regs, sizeof (fi->saved_regs));
|
|
return;
|
|
}
|
|
|
|
fi->extra_info->leaf_function = 1;
|
|
fi->extra_info->f_offset = 0;
|
|
|
|
for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++)
|
|
where[rn] = -1;
|
|
|
|
depth = 0;
|
|
|
|
/* Loop around examining the prologue insns until we find something
|
|
that does not appear to be part of the prologue. But give up
|
|
after 20 of them, since we're getting silly then. */
|
|
|
|
pc = get_pc_function_start (fi->pc);
|
|
if (!pc)
|
|
{
|
|
fi->pc = 0;
|
|
return;
|
|
}
|
|
|
|
for (opc = pc + (2 * 28); pc < opc; pc += 2)
|
|
{
|
|
insn = read_memory_integer (pc, 2);
|
|
/* See where the registers will be saved to */
|
|
if (IS_PUSH (insn))
|
|
{
|
|
rn = GET_PUSHED_REG (insn);
|
|
where[rn] = depth;
|
|
depth += 4;
|
|
}
|
|
else if (IS_STS (insn))
|
|
{
|
|
where[gdbarch_tdep (current_gdbarch)->PR_REGNUM] = depth;
|
|
/* If we're storing the pr then this isn't a leaf */
|
|
fi->extra_info->leaf_function = 0;
|
|
depth += 4;
|
|
}
|
|
else if (IS_MOV_R3 (insn))
|
|
{
|
|
r3_val = ((insn & 0xff) ^ 0x80) - 0x80;
|
|
}
|
|
else if (IS_SHLL_R3 (insn))
|
|
{
|
|
r3_val <<= 1;
|
|
}
|
|
else if (IS_ADD_R3SP (insn))
|
|
{
|
|
depth += -r3_val;
|
|
}
|
|
else if (IS_ADD_SP (insn))
|
|
{
|
|
depth -= ((insn & 0xff) ^ 0x80) - 0x80;
|
|
}
|
|
else if (IS_MOV_SP_FP (insn))
|
|
break;
|
|
#if 0 /* This used to just stop when it found an instruction that
|
|
was not considered part of the prologue. Now, we just
|
|
keep going looking for likely instructions. */
|
|
else
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
/* Now we know how deep things are, we can work out their addresses */
|
|
|
|
for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++)
|
|
{
|
|
if (where[rn] >= 0)
|
|
{
|
|
if (rn == FP_REGNUM)
|
|
have_fp = 1;
|
|
|
|
fi->saved_regs[rn] = fi->frame - where[rn] + depth - 4;
|
|
}
|
|
else
|
|
{
|
|
fi->saved_regs[rn] = 0;
|
|
}
|
|
}
|
|
|
|
if (have_fp)
|
|
{
|
|
fi->saved_regs[SP_REGNUM] = read_memory_integer (fi->saved_regs[FP_REGNUM], 4);
|
|
}
|
|
else
|
|
{
|
|
fi->saved_regs[SP_REGNUM] = fi->frame - 4;
|
|
}
|
|
|
|
fi->extra_info->f_offset = depth - where[FP_REGNUM] - 4;
|
|
/* Work out the return pc - either from the saved pr or the pr
|
|
value */
|
|
}
|
|
|
|
/* For vectors of 4 floating point registers. */
|
|
static int
|
|
fv_reg_base_num (int fv_regnum)
|
|
{
|
|
int fp_regnum;
|
|
|
|
fp_regnum = FP0_REGNUM +
|
|
(fv_regnum - gdbarch_tdep (current_gdbarch)->FV0_REGNUM) * 4;
|
|
return fp_regnum;
|
|
}
|
|
|
|
/* For double precision floating point registers, i.e 2 fp regs.*/
|
|
static int
|
|
dr_reg_base_num (int dr_regnum)
|
|
{
|
|
int fp_regnum;
|
|
|
|
fp_regnum = FP0_REGNUM +
|
|
(dr_regnum - gdbarch_tdep (current_gdbarch)->DR0_REGNUM) * 2;
|
|
return fp_regnum;
|
|
}
|
|
|
|
static void
|
|
sh_fp_frame_init_saved_regs (struct frame_info *fi)
|
|
{
|
|
int where[NUM_REGS + NUM_PSEUDO_REGS];
|
|
int rn;
|
|
int have_fp = 0;
|
|
int depth;
|
|
int pc;
|
|
int opc;
|
|
int insn;
|
|
int r3_val = 0;
|
|
char *dummy_regs = generic_find_dummy_frame (fi->pc, fi->frame);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
|
|
if (fi->saved_regs == NULL)
|
|
frame_saved_regs_zalloc (fi);
|
|
else
|
|
memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
|
|
|
|
if (dummy_regs)
|
|
{
|
|
/* DANGER! This is ONLY going to work if the char buffer format of
|
|
the saved registers is byte-for-byte identical to the
|
|
CORE_ADDR regs[NUM_REGS] format used by struct frame_saved_regs! */
|
|
memcpy (fi->saved_regs, dummy_regs, sizeof (fi->saved_regs));
|
|
return;
|
|
}
|
|
|
|
fi->extra_info->leaf_function = 1;
|
|
fi->extra_info->f_offset = 0;
|
|
|
|
for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++)
|
|
where[rn] = -1;
|
|
|
|
depth = 0;
|
|
|
|
/* Loop around examining the prologue insns until we find something
|
|
that does not appear to be part of the prologue. But give up
|
|
after 20 of them, since we're getting silly then. */
|
|
|
|
pc = get_pc_function_start (fi->pc);
|
|
if (!pc)
|
|
{
|
|
fi->pc = 0;
|
|
return;
|
|
}
|
|
|
|
for (opc = pc + (2 * 28); pc < opc; pc += 2)
|
|
{
|
|
insn = read_memory_integer (pc, 2);
|
|
/* See where the registers will be saved to */
|
|
if (IS_PUSH (insn))
|
|
{
|
|
rn = GET_PUSHED_REG (insn);
|
|
where[rn] = depth;
|
|
depth += 4;
|
|
}
|
|
else if (IS_STS (insn))
|
|
{
|
|
where[tdep->PR_REGNUM] = depth;
|
|
/* If we're storing the pr then this isn't a leaf */
|
|
fi->extra_info->leaf_function = 0;
|
|
depth += 4;
|
|
}
|
|
else if (IS_MOV_R3 (insn))
|
|
{
|
|
r3_val = ((insn & 0xff) ^ 0x80) - 0x80;
|
|
}
|
|
else if (IS_SHLL_R3 (insn))
|
|
{
|
|
r3_val <<= 1;
|
|
}
|
|
else if (IS_ADD_R3SP (insn))
|
|
{
|
|
depth += -r3_val;
|
|
}
|
|
else if (IS_ADD_SP (insn))
|
|
{
|
|
depth -= ((insn & 0xff) ^ 0x80) - 0x80;
|
|
}
|
|
else if (IS_FMOV (insn))
|
|
{
|
|
if (read_register (tdep->FPSCR_REGNUM) & FPSCR_SZ)
|
|
{
|
|
depth += 8;
|
|
}
|
|
else
|
|
{
|
|
depth += 4;
|
|
}
|
|
}
|
|
else if (IS_MOV_SP_FP (insn))
|
|
break;
|
|
#if 0 /* This used to just stop when it found an instruction that
|
|
was not considered part of the prologue. Now, we just
|
|
keep going looking for likely instructions. */
|
|
else
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
/* Now we know how deep things are, we can work out their addresses */
|
|
|
|
for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++)
|
|
{
|
|
if (where[rn] >= 0)
|
|
{
|
|
if (rn == FP_REGNUM)
|
|
have_fp = 1;
|
|
|
|
fi->saved_regs[rn] = fi->frame - where[rn] + depth - 4;
|
|
}
|
|
else
|
|
{
|
|
fi->saved_regs[rn] = 0;
|
|
}
|
|
}
|
|
|
|
if (have_fp)
|
|
{
|
|
fi->saved_regs[SP_REGNUM] =
|
|
read_memory_integer (fi->saved_regs[FP_REGNUM], 4);
|
|
}
|
|
else
|
|
{
|
|
fi->saved_regs[SP_REGNUM] = fi->frame - 4;
|
|
}
|
|
|
|
fi->extra_info->f_offset = depth - where[FP_REGNUM] - 4;
|
|
/* Work out the return pc - either from the saved pr or the pr
|
|
value */
|
|
}
|
|
|
|
/* Initialize the extra info saved in a FRAME */
|
|
static void
|
|
sh_init_extra_frame_info (int fromleaf, struct frame_info *fi)
|
|
{
|
|
|
|
fi->extra_info = (struct frame_extra_info *)
|
|
frame_obstack_alloc (sizeof (struct frame_extra_info));
|
|
|
|
if (fi->next)
|
|
fi->pc = FRAME_SAVED_PC (fi->next);
|
|
|
|
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
|
{
|
|
/* We need to setup fi->frame here because run_stack_dummy gets it wrong
|
|
by assuming it's always FP. */
|
|
fi->frame = generic_read_register_dummy (fi->pc, fi->frame,
|
|
SP_REGNUM);
|
|
fi->extra_info->return_pc = generic_read_register_dummy (fi->pc,
|
|
fi->frame,
|
|
PC_REGNUM);
|
|
fi->extra_info->f_offset = -(CALL_DUMMY_LENGTH + 4);
|
|
fi->extra_info->leaf_function = 0;
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
FRAME_INIT_SAVED_REGS (fi);
|
|
fi->extra_info->return_pc =
|
|
sh_find_callers_reg (fi, gdbarch_tdep (current_gdbarch)->PR_REGNUM);
|
|
}
|
|
}
|
|
|
|
/* Extract from an array REGBUF containing the (raw) register state
|
|
the address in which a function should return its structure value,
|
|
as a CORE_ADDR (or an expression that can be used as one). */
|
|
static CORE_ADDR
|
|
sh_extract_struct_value_address (char *regbuf)
|
|
{
|
|
return (extract_address ((regbuf), REGISTER_RAW_SIZE (0)));
|
|
}
|
|
|
|
static CORE_ADDR
|
|
sh_frame_saved_pc (struct frame_info *frame)
|
|
{
|
|
return ((frame)->extra_info->return_pc);
|
|
}
|
|
|
|
/* Discard from the stack the innermost frame,
|
|
restoring all saved registers. */
|
|
static void
|
|
sh_pop_frame (void)
|
|
{
|
|
register struct frame_info *frame = get_current_frame ();
|
|
register CORE_ADDR fp;
|
|
register int regnum;
|
|
|
|
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
|
|
generic_pop_dummy_frame ();
|
|
else
|
|
{
|
|
fp = FRAME_FP (frame);
|
|
FRAME_INIT_SAVED_REGS (frame);
|
|
|
|
/* Copy regs from where they were saved in the frame */
|
|
for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
|
|
if (frame->saved_regs[regnum])
|
|
write_register (regnum,
|
|
read_memory_integer (frame->saved_regs[regnum], 4));
|
|
|
|
write_register (PC_REGNUM, frame->extra_info->return_pc);
|
|
write_register (SP_REGNUM, fp + 4);
|
|
}
|
|
flush_cached_frames ();
|
|
}
|
|
|
|
/* Function: push_arguments
|
|
Setup the function arguments for calling a function in the inferior.
|
|
|
|
On the Hitachi SH architecture, there are four registers (R4 to R7)
|
|
which are dedicated for passing function arguments. Up to the first
|
|
four arguments (depending on size) may go into these registers.
|
|
The rest go on the stack.
|
|
|
|
Arguments that are smaller than 4 bytes will still take up a whole
|
|
register or a whole 32-bit word on the stack, and will be
|
|
right-justified in the register or the stack word. This includes
|
|
chars, shorts, and small aggregate types.
|
|
|
|
Arguments that are larger than 4 bytes may be split between two or
|
|
more registers. If there are not enough registers free, an argument
|
|
may be passed partly in a register (or registers), and partly on the
|
|
stack. This includes doubles, long longs, and larger aggregates.
|
|
As far as I know, there is no upper limit to the size of aggregates
|
|
that will be passed in this way; in other words, the convention of
|
|
passing a pointer to a large aggregate instead of a copy is not used.
|
|
|
|
An exceptional case exists for struct arguments (and possibly other
|
|
aggregates such as arrays) if the size is larger than 4 bytes but
|
|
not a multiple of 4 bytes. In this case the argument is never split
|
|
between the registers and the stack, but instead is copied in its
|
|
entirety onto the stack, AND also copied into as many registers as
|
|
there is room for. In other words, space in registers permitting,
|
|
two copies of the same argument are passed in. As far as I can tell,
|
|
only the one on the stack is used, although that may be a function
|
|
of the level of compiler optimization. I suspect this is a compiler
|
|
bug. Arguments of these odd sizes are left-justified within the
|
|
word (as opposed to arguments smaller than 4 bytes, which are
|
|
right-justified).
|
|
|
|
If the function is to return an aggregate type such as a struct, it
|
|
is either returned in the normal return value register R0 (if its
|
|
size is no greater than one byte), or else the caller must allocate
|
|
space into which the callee will copy the return value (if the size
|
|
is greater than one byte). In this case, a pointer to the return
|
|
value location is passed into the callee in register R2, which does
|
|
not displace any of the other arguments passed in via registers R4
|
|
to R7. */
|
|
|
|
static CORE_ADDR
|
|
sh_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
|
|
int struct_return, CORE_ADDR struct_addr)
|
|
{
|
|
int stack_offset, stack_alloc;
|
|
int argreg;
|
|
int argnum;
|
|
struct type *type;
|
|
CORE_ADDR regval;
|
|
char *val;
|
|
char valbuf[4];
|
|
int len;
|
|
int odd_sized_struct;
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
|
|
/* first force sp to a 4-byte alignment */
|
|
sp = sp & ~3;
|
|
|
|
/* The "struct return pointer" pseudo-argument has its own dedicated
|
|
register */
|
|
if (struct_return)
|
|
write_register (STRUCT_RETURN_REGNUM, struct_addr);
|
|
|
|
/* Now make sure there's space on the stack */
|
|
for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
|
|
stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
|
|
sp -= stack_alloc; /* make room on stack for args */
|
|
|
|
/* Now load as many as possible of the first arguments into
|
|
registers, and push the rest onto the stack. There are 16 bytes
|
|
in four registers available. Loop thru args from first to last. */
|
|
|
|
argreg = tdep->ARG0_REGNUM;
|
|
for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
|
|
{
|
|
type = VALUE_TYPE (args[argnum]);
|
|
len = TYPE_LENGTH (type);
|
|
memset (valbuf, 0, sizeof (valbuf));
|
|
if (len < 4)
|
|
{
|
|
/* value gets right-justified in the register or stack word */
|
|
memcpy (valbuf + (4 - len),
|
|
(char *) VALUE_CONTENTS (args[argnum]), len);
|
|
val = valbuf;
|
|
}
|
|
else
|
|
val = (char *) VALUE_CONTENTS (args[argnum]);
|
|
|
|
if (len > 4 && (len & 3) != 0)
|
|
odd_sized_struct = 1; /* such structs go entirely on stack */
|
|
else
|
|
odd_sized_struct = 0;
|
|
while (len > 0)
|
|
{
|
|
if (argreg > tdep->ARGLAST_REGNUM
|
|
|| odd_sized_struct)
|
|
{
|
|
/* must go on the stack */
|
|
write_memory (sp + stack_offset, val, 4);
|
|
stack_offset += 4;
|
|
}
|
|
/* NOTE WELL!!!!! This is not an "else if" clause!!!
|
|
That's because some *&^%$ things get passed on the stack
|
|
AND in the registers! */
|
|
if (argreg <= tdep->ARGLAST_REGNUM)
|
|
{
|
|
/* there's room in a register */
|
|
regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
|
|
write_register (argreg++, regval);
|
|
}
|
|
/* Store the value 4 bytes at a time. This means that things
|
|
larger than 4 bytes may go partly in registers and partly
|
|
on the stack. */
|
|
len -= REGISTER_RAW_SIZE (argreg);
|
|
val += REGISTER_RAW_SIZE (argreg);
|
|
}
|
|
}
|
|
return sp;
|
|
}
|
|
|
|
/* Function: push_return_address (pc)
|
|
Set up the return address for the inferior function call.
|
|
Needed for targets where we don't actually execute a JSR/BSR instruction */
|
|
|
|
static CORE_ADDR
|
|
sh_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
|
|
{
|
|
write_register (gdbarch_tdep (current_gdbarch)->PR_REGNUM, CALL_DUMMY_ADDRESS ());
|
|
return sp;
|
|
}
|
|
|
|
/* Function: fix_call_dummy
|
|
Poke the callee function's address into the destination part of
|
|
the CALL_DUMMY. The address is actually stored in a data word
|
|
following the actualy CALL_DUMMY instructions, which will load
|
|
it into a register using PC-relative addressing. This function
|
|
expects the CALL_DUMMY to look like this:
|
|
|
|
mov.w @(2,PC), R8
|
|
jsr @R8
|
|
nop
|
|
trap
|
|
<destination>
|
|
*/
|
|
|
|
#if 0
|
|
void
|
|
sh_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
|
|
struct value **args, struct type *type, int gcc_p)
|
|
{
|
|
*(unsigned long *) (dummy + 8) = fun;
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
sh_coerce_float_to_double (struct type *formal, struct type *actual)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
/* Find a function's return value in the appropriate registers (in
|
|
regbuf), and copy it into valbuf. Extract from an array REGBUF
|
|
containing the (raw) register state a function return value of type
|
|
TYPE, and copy that, in virtual format, into VALBUF. */
|
|
static void
|
|
sh_extract_return_value (struct type *type, char *regbuf, char *valbuf)
|
|
{
|
|
int len = TYPE_LENGTH (type);
|
|
int return_register = R0_REGNUM;
|
|
int offset;
|
|
|
|
if (len <= 4)
|
|
{
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
offset = REGISTER_BYTE (return_register) + 4 - len;
|
|
else
|
|
offset = REGISTER_BYTE (return_register);
|
|
memcpy (valbuf, regbuf + offset, len);
|
|
}
|
|
else if (len <= 8)
|
|
{
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
offset = REGISTER_BYTE (return_register) + 8 - len;
|
|
else
|
|
offset = REGISTER_BYTE (return_register);
|
|
memcpy (valbuf, regbuf + offset, len);
|
|
}
|
|
else
|
|
error ("bad size for return value");
|
|
}
|
|
|
|
static void
|
|
sh3e_sh4_extract_return_value (struct type *type, char *regbuf, char *valbuf)
|
|
{
|
|
int return_register;
|
|
int offset;
|
|
int len = TYPE_LENGTH (type);
|
|
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
|
return_register = FP0_REGNUM;
|
|
else
|
|
return_register = R0_REGNUM;
|
|
|
|
if (len == 8 && TYPE_CODE (type) == TYPE_CODE_FLT)
|
|
{
|
|
DOUBLEST val;
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
|
|
floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
|
|
(char *) regbuf + REGISTER_BYTE (return_register),
|
|
&val);
|
|
else
|
|
floatformat_to_doublest (&floatformat_ieee_double_big,
|
|
(char *) regbuf + REGISTER_BYTE (return_register),
|
|
&val);
|
|
store_floating (valbuf, len, val);
|
|
}
|
|
else if (len <= 4)
|
|
{
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
offset = REGISTER_BYTE (return_register) + 4 - len;
|
|
else
|
|
offset = REGISTER_BYTE (return_register);
|
|
memcpy (valbuf, regbuf + offset, len);
|
|
}
|
|
else if (len <= 8)
|
|
{
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
offset = REGISTER_BYTE (return_register) + 8 - len;
|
|
else
|
|
offset = REGISTER_BYTE (return_register);
|
|
memcpy (valbuf, regbuf + offset, len);
|
|
}
|
|
else
|
|
error ("bad size for return value");
|
|
}
|
|
|
|
/* Write into appropriate registers a function return value
|
|
of type TYPE, given in virtual format.
|
|
If the architecture is sh4 or sh3e, store a function's return value
|
|
in the R0 general register or in the FP0 floating point register,
|
|
depending on the type of the return value. In all the other cases
|
|
the result is stored in r0, left-justified. */
|
|
static void
|
|
sh_default_store_return_value (struct type *type, char *valbuf)
|
|
{
|
|
char buf[32]; /* more than enough... */
|
|
|
|
if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (R0_REGNUM))
|
|
{
|
|
/* Add leading zeros to the value. */
|
|
memset (buf, 0, REGISTER_RAW_SIZE (R0_REGNUM));
|
|
memcpy (buf + REGISTER_RAW_SIZE (R0_REGNUM) - TYPE_LENGTH (type),
|
|
valbuf, TYPE_LENGTH (type));
|
|
write_register_bytes (REGISTER_BYTE (R0_REGNUM), buf,
|
|
REGISTER_RAW_SIZE (R0_REGNUM));
|
|
}
|
|
else
|
|
write_register_bytes (REGISTER_BYTE (R0_REGNUM), valbuf,
|
|
TYPE_LENGTH (type));
|
|
}
|
|
|
|
static void
|
|
sh3e_sh4_store_return_value (struct type *type, char *valbuf)
|
|
{
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
|
write_register_bytes (REGISTER_BYTE (FP0_REGNUM),
|
|
valbuf, TYPE_LENGTH (type));
|
|
else
|
|
sh_default_store_return_value (type, valbuf);
|
|
}
|
|
|
|
/* Print the registers in a form similar to the E7000 */
|
|
|
|
static void
|
|
sh_generic_show_regs (void)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
|
|
printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
|
|
paddr (read_register (PC_REGNUM)),
|
|
(long) read_register (tdep->SR_REGNUM),
|
|
(long) read_register (tdep->PR_REGNUM),
|
|
(long) read_register (MACH_REGNUM),
|
|
(long) read_register (MACL_REGNUM));
|
|
|
|
printf_filtered ("GBR=%08lx VBR=%08lx",
|
|
(long) read_register (GBR_REGNUM),
|
|
(long) read_register (VBR_REGNUM));
|
|
|
|
printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (0),
|
|
(long) read_register (1),
|
|
(long) read_register (2),
|
|
(long) read_register (3),
|
|
(long) read_register (4),
|
|
(long) read_register (5),
|
|
(long) read_register (6),
|
|
(long) read_register (7));
|
|
printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (8),
|
|
(long) read_register (9),
|
|
(long) read_register (10),
|
|
(long) read_register (11),
|
|
(long) read_register (12),
|
|
(long) read_register (13),
|
|
(long) read_register (14),
|
|
(long) read_register (15));
|
|
}
|
|
|
|
static void
|
|
sh3_show_regs (void)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
|
|
printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
|
|
paddr (read_register (PC_REGNUM)),
|
|
(long) read_register (tdep->SR_REGNUM),
|
|
(long) read_register (tdep->PR_REGNUM),
|
|
(long) read_register (MACH_REGNUM),
|
|
(long) read_register (MACL_REGNUM));
|
|
|
|
printf_filtered ("GBR=%08lx VBR=%08lx",
|
|
(long) read_register (GBR_REGNUM),
|
|
(long) read_register (VBR_REGNUM));
|
|
printf_filtered (" SSR=%08lx SPC=%08lx",
|
|
(long) read_register (tdep->SSR_REGNUM),
|
|
(long) read_register (tdep->SPC_REGNUM));
|
|
|
|
printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (0),
|
|
(long) read_register (1),
|
|
(long) read_register (2),
|
|
(long) read_register (3),
|
|
(long) read_register (4),
|
|
(long) read_register (5),
|
|
(long) read_register (6),
|
|
(long) read_register (7));
|
|
printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (8),
|
|
(long) read_register (9),
|
|
(long) read_register (10),
|
|
(long) read_register (11),
|
|
(long) read_register (12),
|
|
(long) read_register (13),
|
|
(long) read_register (14),
|
|
(long) read_register (15));
|
|
}
|
|
|
|
|
|
static void
|
|
sh3e_show_regs (void)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
|
|
printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
|
|
paddr (read_register (PC_REGNUM)),
|
|
(long) read_register (tdep->SR_REGNUM),
|
|
(long) read_register (tdep->PR_REGNUM),
|
|
(long) read_register (MACH_REGNUM),
|
|
(long) read_register (MACL_REGNUM));
|
|
|
|
printf_filtered ("GBR=%08lx VBR=%08lx",
|
|
(long) read_register (GBR_REGNUM),
|
|
(long) read_register (VBR_REGNUM));
|
|
printf_filtered (" SSR=%08lx SPC=%08lx",
|
|
(long) read_register (tdep->SSR_REGNUM),
|
|
(long) read_register (tdep->SPC_REGNUM));
|
|
printf_filtered (" FPUL=%08lx FPSCR=%08lx",
|
|
(long) read_register (tdep->FPUL_REGNUM),
|
|
(long) read_register (tdep->FPSCR_REGNUM));
|
|
|
|
printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (0),
|
|
(long) read_register (1),
|
|
(long) read_register (2),
|
|
(long) read_register (3),
|
|
(long) read_register (4),
|
|
(long) read_register (5),
|
|
(long) read_register (6),
|
|
(long) read_register (7));
|
|
printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (8),
|
|
(long) read_register (9),
|
|
(long) read_register (10),
|
|
(long) read_register (11),
|
|
(long) read_register (12),
|
|
(long) read_register (13),
|
|
(long) read_register (14),
|
|
(long) read_register (15));
|
|
|
|
printf_filtered (("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
|
|
(long) read_register (FP0_REGNUM + 0),
|
|
(long) read_register (FP0_REGNUM + 1),
|
|
(long) read_register (FP0_REGNUM + 2),
|
|
(long) read_register (FP0_REGNUM + 3),
|
|
(long) read_register (FP0_REGNUM + 4),
|
|
(long) read_register (FP0_REGNUM + 5),
|
|
(long) read_register (FP0_REGNUM + 6),
|
|
(long) read_register (FP0_REGNUM + 7));
|
|
printf_filtered (("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
|
|
(long) read_register (FP0_REGNUM + 8),
|
|
(long) read_register (FP0_REGNUM + 9),
|
|
(long) read_register (FP0_REGNUM + 10),
|
|
(long) read_register (FP0_REGNUM + 11),
|
|
(long) read_register (FP0_REGNUM + 12),
|
|
(long) read_register (FP0_REGNUM + 13),
|
|
(long) read_register (FP0_REGNUM + 14),
|
|
(long) read_register (FP0_REGNUM + 15));
|
|
}
|
|
|
|
static void
|
|
sh3_dsp_show_regs (void)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
|
|
printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
|
|
paddr (read_register (PC_REGNUM)),
|
|
(long) read_register (tdep->SR_REGNUM),
|
|
(long) read_register (tdep->PR_REGNUM),
|
|
(long) read_register (MACH_REGNUM),
|
|
(long) read_register (MACL_REGNUM));
|
|
|
|
printf_filtered ("GBR=%08lx VBR=%08lx",
|
|
(long) read_register (GBR_REGNUM),
|
|
(long) read_register (VBR_REGNUM));
|
|
|
|
printf_filtered (" SSR=%08lx SPC=%08lx",
|
|
(long) read_register (tdep->SSR_REGNUM),
|
|
(long) read_register (tdep->SPC_REGNUM));
|
|
|
|
printf_filtered (" DSR=%08lx",
|
|
(long) read_register (tdep->DSR_REGNUM));
|
|
|
|
printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (0),
|
|
(long) read_register (1),
|
|
(long) read_register (2),
|
|
(long) read_register (3),
|
|
(long) read_register (4),
|
|
(long) read_register (5),
|
|
(long) read_register (6),
|
|
(long) read_register (7));
|
|
printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (8),
|
|
(long) read_register (9),
|
|
(long) read_register (10),
|
|
(long) read_register (11),
|
|
(long) read_register (12),
|
|
(long) read_register (13),
|
|
(long) read_register (14),
|
|
(long) read_register (15));
|
|
|
|
printf_filtered ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
|
|
(long) read_register (tdep->A0G_REGNUM) & 0xff,
|
|
(long) read_register (tdep->A0_REGNUM),
|
|
(long) read_register (tdep->M0_REGNUM),
|
|
(long) read_register (tdep->X0_REGNUM),
|
|
(long) read_register (tdep->Y0_REGNUM),
|
|
(long) read_register (tdep->RS_REGNUM),
|
|
(long) read_register (tdep->MOD_REGNUM));
|
|
printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
|
|
(long) read_register (tdep->A1G_REGNUM) & 0xff,
|
|
(long) read_register (tdep->A1_REGNUM),
|
|
(long) read_register (tdep->M1_REGNUM),
|
|
(long) read_register (tdep->X1_REGNUM),
|
|
(long) read_register (tdep->Y1_REGNUM),
|
|
(long) read_register (tdep->RE_REGNUM));
|
|
}
|
|
|
|
static void
|
|
sh4_show_regs (void)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
|
|
int pr = read_register (tdep->FPSCR_REGNUM) & 0x80000;
|
|
printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
|
|
paddr (read_register (PC_REGNUM)),
|
|
(long) read_register (tdep->SR_REGNUM),
|
|
(long) read_register (tdep->PR_REGNUM),
|
|
(long) read_register (MACH_REGNUM),
|
|
(long) read_register (MACL_REGNUM));
|
|
|
|
printf_filtered ("GBR=%08lx VBR=%08lx",
|
|
(long) read_register (GBR_REGNUM),
|
|
(long) read_register (VBR_REGNUM));
|
|
printf_filtered (" SSR=%08lx SPC=%08lx",
|
|
(long) read_register (tdep->SSR_REGNUM),
|
|
(long) read_register (tdep->SPC_REGNUM));
|
|
printf_filtered (" FPUL=%08lx FPSCR=%08lx",
|
|
(long) read_register (tdep->FPUL_REGNUM),
|
|
(long) read_register (tdep->FPSCR_REGNUM));
|
|
|
|
printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (0),
|
|
(long) read_register (1),
|
|
(long) read_register (2),
|
|
(long) read_register (3),
|
|
(long) read_register (4),
|
|
(long) read_register (5),
|
|
(long) read_register (6),
|
|
(long) read_register (7));
|
|
printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (8),
|
|
(long) read_register (9),
|
|
(long) read_register (10),
|
|
(long) read_register (11),
|
|
(long) read_register (12),
|
|
(long) read_register (13),
|
|
(long) read_register (14),
|
|
(long) read_register (15));
|
|
|
|
printf_filtered ((pr
|
|
? "DR0-DR6 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
|
|
: "FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
|
|
(long) read_register (FP0_REGNUM + 0),
|
|
(long) read_register (FP0_REGNUM + 1),
|
|
(long) read_register (FP0_REGNUM + 2),
|
|
(long) read_register (FP0_REGNUM + 3),
|
|
(long) read_register (FP0_REGNUM + 4),
|
|
(long) read_register (FP0_REGNUM + 5),
|
|
(long) read_register (FP0_REGNUM + 6),
|
|
(long) read_register (FP0_REGNUM + 7));
|
|
printf_filtered ((pr
|
|
? "DR8-DR14 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
|
|
: "FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
|
|
(long) read_register (FP0_REGNUM + 8),
|
|
(long) read_register (FP0_REGNUM + 9),
|
|
(long) read_register (FP0_REGNUM + 10),
|
|
(long) read_register (FP0_REGNUM + 11),
|
|
(long) read_register (FP0_REGNUM + 12),
|
|
(long) read_register (FP0_REGNUM + 13),
|
|
(long) read_register (FP0_REGNUM + 14),
|
|
(long) read_register (FP0_REGNUM + 15));
|
|
}
|
|
|
|
static void
|
|
sh_dsp_show_regs (void)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
|
|
printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
|
|
paddr (read_register (PC_REGNUM)),
|
|
(long) read_register (tdep->SR_REGNUM),
|
|
(long) read_register (tdep->PR_REGNUM),
|
|
(long) read_register (MACH_REGNUM),
|
|
(long) read_register (MACL_REGNUM));
|
|
|
|
printf_filtered ("GBR=%08lx VBR=%08lx",
|
|
(long) read_register (GBR_REGNUM),
|
|
(long) read_register (VBR_REGNUM));
|
|
|
|
printf_filtered (" DSR=%08lx",
|
|
(long) read_register (tdep->DSR_REGNUM));
|
|
|
|
printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (0),
|
|
(long) read_register (1),
|
|
(long) read_register (2),
|
|
(long) read_register (3),
|
|
(long) read_register (4),
|
|
(long) read_register (5),
|
|
(long) read_register (6),
|
|
(long) read_register (7));
|
|
printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (8),
|
|
(long) read_register (9),
|
|
(long) read_register (10),
|
|
(long) read_register (11),
|
|
(long) read_register (12),
|
|
(long) read_register (13),
|
|
(long) read_register (14),
|
|
(long) read_register (15));
|
|
|
|
printf_filtered ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
|
|
(long) read_register (tdep->A0G_REGNUM) & 0xff,
|
|
(long) read_register (tdep->A0_REGNUM),
|
|
(long) read_register (tdep->M0_REGNUM),
|
|
(long) read_register (tdep->X0_REGNUM),
|
|
(long) read_register (tdep->Y0_REGNUM),
|
|
(long) read_register (tdep->RS_REGNUM),
|
|
(long) read_register (tdep->MOD_REGNUM));
|
|
printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
|
|
(long) read_register (tdep->A1G_REGNUM) & 0xff,
|
|
(long) read_register (tdep->A1_REGNUM),
|
|
(long) read_register (tdep->M1_REGNUM),
|
|
(long) read_register (tdep->X1_REGNUM),
|
|
(long) read_register (tdep->Y1_REGNUM),
|
|
(long) read_register (tdep->RE_REGNUM));
|
|
}
|
|
|
|
void sh_show_regs_command (char *args, int from_tty)
|
|
{
|
|
if (sh_show_regs)
|
|
(*sh_show_regs)();
|
|
}
|
|
|
|
/* Index within `registers' of the first byte of the space for
|
|
register N. */
|
|
static int
|
|
sh_default_register_byte (int reg_nr)
|
|
{
|
|
return (reg_nr * 4);
|
|
}
|
|
|
|
static int
|
|
sh_sh4_register_byte (int reg_nr)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
|
|
if (reg_nr >= tdep->DR0_REGNUM
|
|
&& reg_nr <= tdep->DR_LAST_REGNUM)
|
|
return (dr_reg_base_num (reg_nr) * 4);
|
|
else if (reg_nr >= tdep->FV0_REGNUM
|
|
&& reg_nr <= tdep->FV_LAST_REGNUM)
|
|
return (fv_reg_base_num (reg_nr) * 4);
|
|
else
|
|
return (reg_nr * 4);
|
|
}
|
|
|
|
/* Number of bytes of storage in the actual machine representation for
|
|
register REG_NR. */
|
|
static int
|
|
sh_default_register_raw_size (int reg_nr)
|
|
{
|
|
return 4;
|
|
}
|
|
|
|
static int
|
|
sh_sh4_register_raw_size (int reg_nr)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
|
|
if (reg_nr >= tdep->DR0_REGNUM
|
|
&& reg_nr <= tdep->DR_LAST_REGNUM)
|
|
return 8;
|
|
else if (reg_nr >= tdep->FV0_REGNUM
|
|
&& reg_nr <= tdep->FV_LAST_REGNUM)
|
|
return 16;
|
|
else
|
|
return 4;
|
|
}
|
|
|
|
/* Number of bytes of storage in the program's representation
|
|
for register N. */
|
|
static int
|
|
sh_register_virtual_size (int reg_nr)
|
|
{
|
|
return 4;
|
|
}
|
|
|
|
/* Return the GDB type object for the "standard" data type
|
|
of data in register N. */
|
|
static struct type *
|
|
sh_sh3e_register_virtual_type (int reg_nr)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
|
|
if ((reg_nr >= FP0_REGNUM
|
|
&& (reg_nr <= tdep->FP_LAST_REGNUM))
|
|
|| (reg_nr == tdep->FPUL_REGNUM))
|
|
return builtin_type_float;
|
|
else
|
|
return builtin_type_int;
|
|
}
|
|
|
|
static struct type *
|
|
sh_sh4_build_float_register_type (int high)
|
|
{
|
|
struct type *temp;
|
|
|
|
temp = create_range_type (NULL, builtin_type_int, 0, high);
|
|
return create_array_type (NULL, builtin_type_float, temp);
|
|
}
|
|
|
|
static struct type *
|
|
sh_sh4_register_virtual_type (int reg_nr)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
|
|
if ((reg_nr >= FP0_REGNUM
|
|
&& (reg_nr <= tdep->FP_LAST_REGNUM))
|
|
|| (reg_nr == tdep->FPUL_REGNUM))
|
|
return builtin_type_float;
|
|
else if (reg_nr >= tdep->DR0_REGNUM
|
|
&& reg_nr <= tdep->DR_LAST_REGNUM)
|
|
return builtin_type_double;
|
|
else if (reg_nr >= tdep->FV0_REGNUM
|
|
&& reg_nr <= tdep->FV_LAST_REGNUM)
|
|
return sh_sh4_build_float_register_type (3);
|
|
else
|
|
return builtin_type_int;
|
|
}
|
|
|
|
static struct type *
|
|
sh_default_register_virtual_type (int reg_nr)
|
|
{
|
|
return builtin_type_int;
|
|
}
|
|
|
|
/* On the sh4, the DRi pseudo registers are problematic if the target
|
|
is little endian. When the user writes one of those registers, for
|
|
instance with 'ser var $dr0=1', we want the double to be stored
|
|
like this:
|
|
fr0 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
|
|
fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
|
|
|
|
This corresponds to little endian byte order & big endian word
|
|
order. However if we let gdb write the register w/o conversion, it
|
|
will write fr0 and fr1 this way:
|
|
fr0 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
|
|
fr1 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
|
|
because it will consider fr0 and fr1 as a single LE stretch of memory.
|
|
|
|
To achieve what we want we must force gdb to store things in
|
|
floatformat_ieee_double_littlebyte_bigword (which is defined in
|
|
include/floatformat.h and libiberty/floatformat.c.
|
|
|
|
In case the target is big endian, there is no problem, the
|
|
raw bytes will look like:
|
|
fr0 = 0x3f 0xf0 0x00 0x00 0x00 0x00 0x00
|
|
fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
|
|
|
|
The other pseudo registers (the FVs) also don't pose a problem
|
|
because they are stored as 4 individual FP elements. */
|
|
|
|
static void
|
|
sh_sh4_register_convert_to_virtual (int regnum, struct type *type,
|
|
char *from, char *to)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
|
|
if (regnum >= tdep->DR0_REGNUM
|
|
&& regnum <= tdep->DR_LAST_REGNUM)
|
|
{
|
|
DOUBLEST val;
|
|
floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword, from, &val);
|
|
store_floating (to, TYPE_LENGTH (type), val);
|
|
}
|
|
else
|
|
error ("sh_register_convert_to_virtual called with non DR register number");
|
|
}
|
|
|
|
static void
|
|
sh_sh4_register_convert_to_raw (struct type *type, int regnum,
|
|
char *from, char *to)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
|
|
if (regnum >= tdep->DR0_REGNUM
|
|
&& regnum <= tdep->DR_LAST_REGNUM)
|
|
{
|
|
DOUBLEST val = extract_floating (from, TYPE_LENGTH(type));
|
|
floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword, &val, to);
|
|
}
|
|
else
|
|
error("sh_register_convert_to_raw called with non DR register number");
|
|
}
|
|
|
|
void
|
|
sh_pseudo_register_read (int reg_nr, char *buffer)
|
|
{
|
|
int base_regnum, portion;
|
|
char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
|
|
if (reg_nr >= tdep->DR0_REGNUM
|
|
&& reg_nr <= tdep->DR_LAST_REGNUM)
|
|
{
|
|
base_regnum = dr_reg_base_num (reg_nr);
|
|
|
|
/* Build the value in the provided buffer. */
|
|
/* Read the real regs for which this one is an alias. */
|
|
for (portion = 0; portion < 2; portion++)
|
|
regcache_read (base_regnum + portion,
|
|
temp_buffer
|
|
+ REGISTER_RAW_SIZE (base_regnum) * portion);
|
|
/* We must pay attention to the endiannes. */
|
|
sh_sh4_register_convert_to_virtual (reg_nr,
|
|
REGISTER_VIRTUAL_TYPE (reg_nr),
|
|
temp_buffer, buffer);
|
|
}
|
|
else if (reg_nr >= tdep->FV0_REGNUM
|
|
&& reg_nr <= tdep->FV_LAST_REGNUM)
|
|
{
|
|
base_regnum = fv_reg_base_num (reg_nr);
|
|
|
|
/* Read the real regs for which this one is an alias. */
|
|
for (portion = 0; portion < 4; portion++)
|
|
regcache_read (base_regnum + portion,
|
|
buffer + REGISTER_RAW_SIZE (base_regnum) * portion);
|
|
}
|
|
}
|
|
|
|
static void
|
|
sh4_register_read (struct gdbarch *gdbarch, int reg_nr, char *buffer)
|
|
{
|
|
if (reg_nr >= 0 && reg_nr < gdbarch_tdep (current_gdbarch)->DR0_REGNUM)
|
|
/* It is a regular register. */
|
|
regcache_read (reg_nr, buffer);
|
|
else
|
|
/* It is a pseudo register and we need to construct its value */
|
|
sh_pseudo_register_read (reg_nr, buffer);
|
|
}
|
|
|
|
void
|
|
sh_pseudo_register_write (int reg_nr, char *buffer)
|
|
{
|
|
int base_regnum, portion;
|
|
char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
|
|
if (reg_nr >= tdep->DR0_REGNUM
|
|
&& reg_nr <= tdep->DR_LAST_REGNUM)
|
|
{
|
|
base_regnum = dr_reg_base_num (reg_nr);
|
|
|
|
/* We must pay attention to the endiannes. */
|
|
sh_sh4_register_convert_to_raw (REGISTER_VIRTUAL_TYPE (reg_nr), reg_nr,
|
|
buffer, temp_buffer);
|
|
|
|
/* Write the real regs for which this one is an alias. */
|
|
for (portion = 0; portion < 2; portion++)
|
|
regcache_write (base_regnum + portion,
|
|
temp_buffer + REGISTER_RAW_SIZE (base_regnum) * portion);
|
|
}
|
|
else if (reg_nr >= tdep->FV0_REGNUM
|
|
&& reg_nr <= tdep->FV_LAST_REGNUM)
|
|
{
|
|
base_regnum = fv_reg_base_num (reg_nr);
|
|
|
|
/* Write the real regs for which this one is an alias. */
|
|
for (portion = 0; portion < 4; portion++)
|
|
regcache_write (base_regnum + portion,
|
|
buffer + REGISTER_RAW_SIZE (base_regnum) * portion);
|
|
}
|
|
}
|
|
|
|
static void
|
|
sh4_register_write (struct gdbarch *gdbarch, int reg_nr, char *buffer)
|
|
{
|
|
if (reg_nr >= 0 && reg_nr < gdbarch_tdep (current_gdbarch)->DR0_REGNUM)
|
|
/* It is a regular register. */
|
|
regcache_write (reg_nr, buffer);
|
|
else
|
|
/* It is a pseudo register and we need to construct its value */
|
|
sh_pseudo_register_write (reg_nr, buffer);
|
|
}
|
|
|
|
/* Floating point vector of 4 float registers. */
|
|
static void
|
|
do_fv_register_info (int fv_regnum)
|
|
{
|
|
int first_fp_reg_num = fv_reg_base_num (fv_regnum);
|
|
printf_filtered ("fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
|
|
fv_regnum - gdbarch_tdep (current_gdbarch)->FV0_REGNUM,
|
|
(int) read_register (first_fp_reg_num),
|
|
(int) read_register (first_fp_reg_num + 1),
|
|
(int) read_register (first_fp_reg_num + 2),
|
|
(int) read_register (first_fp_reg_num + 3));
|
|
}
|
|
|
|
/* Double precision registers. */
|
|
static void
|
|
do_dr_register_info (int dr_regnum)
|
|
{
|
|
int first_fp_reg_num = dr_reg_base_num (dr_regnum);
|
|
|
|
printf_filtered ("dr%d\t0x%08x%08x\n",
|
|
dr_regnum - gdbarch_tdep (current_gdbarch)->DR0_REGNUM,
|
|
(int) read_register (first_fp_reg_num),
|
|
(int) read_register (first_fp_reg_num + 1));
|
|
}
|
|
|
|
static void
|
|
sh_do_pseudo_register (int regnum)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
|
|
if (regnum < NUM_REGS || regnum >= NUM_REGS + NUM_PSEUDO_REGS)
|
|
internal_error (__FILE__, __LINE__,
|
|
"Invalid pseudo register number %d\n", regnum);
|
|
else if (regnum >= tdep->DR0_REGNUM
|
|
&& regnum < tdep->DR_LAST_REGNUM)
|
|
do_dr_register_info (regnum);
|
|
else if (regnum >= tdep->FV0_REGNUM
|
|
&& regnum <= tdep->FV_LAST_REGNUM)
|
|
do_fv_register_info (regnum);
|
|
}
|
|
|
|
static void
|
|
sh_do_fp_register (int regnum)
|
|
{ /* do values for FP (float) regs */
|
|
char *raw_buffer;
|
|
double flt; /* double extracted from raw hex data */
|
|
int inv;
|
|
int j;
|
|
|
|
/* Allocate space for the float. */
|
|
raw_buffer = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
|
|
|
|
/* Get the data in raw format. */
|
|
if (read_relative_register_raw_bytes (regnum, raw_buffer))
|
|
error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
|
|
|
|
/* Get the register as a number */
|
|
flt = unpack_double (builtin_type_float, raw_buffer, &inv);
|
|
|
|
/* Print the name and some spaces. */
|
|
fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
|
|
print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), gdb_stdout);
|
|
|
|
/* Print the value. */
|
|
if (inv)
|
|
printf_filtered ("<invalid float>");
|
|
else
|
|
printf_filtered ("%-10.9g", flt);
|
|
|
|
/* Print the fp register as hex. */
|
|
printf_filtered ("\t(raw 0x");
|
|
for (j = 0; j < REGISTER_RAW_SIZE (regnum); j++)
|
|
{
|
|
register int idx = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? j
|
|
: REGISTER_RAW_SIZE (regnum) - 1 - j;
|
|
printf_filtered ("%02x", (unsigned char) raw_buffer[idx]);
|
|
}
|
|
printf_filtered (")");
|
|
printf_filtered ("\n");
|
|
}
|
|
|
|
static void
|
|
sh_do_register (int regnum)
|
|
{
|
|
char raw_buffer[MAX_REGISTER_RAW_SIZE];
|
|
|
|
fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
|
|
print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), gdb_stdout);
|
|
|
|
/* Get the data in raw format. */
|
|
if (read_relative_register_raw_bytes (regnum, raw_buffer))
|
|
printf_filtered ("*value not available*\n");
|
|
|
|
val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
|
|
gdb_stdout, 'x', 1, 0, Val_pretty_default);
|
|
printf_filtered ("\t");
|
|
val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
|
|
gdb_stdout, 0, 1, 0, Val_pretty_default);
|
|
printf_filtered ("\n");
|
|
}
|
|
|
|
static void
|
|
sh_print_register (int regnum)
|
|
{
|
|
if (regnum < 0 || regnum >= NUM_REGS + NUM_PSEUDO_REGS)
|
|
internal_error (__FILE__, __LINE__,
|
|
"Invalid register number %d\n", regnum);
|
|
|
|
else if (regnum >= 0 && regnum < NUM_REGS)
|
|
{
|
|
if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
|
|
sh_do_fp_register (regnum); /* FP regs */
|
|
else
|
|
sh_do_register (regnum); /* All other regs */
|
|
}
|
|
|
|
else if (regnum < NUM_REGS + NUM_PSEUDO_REGS)
|
|
do_pseudo_register (regnum);
|
|
}
|
|
|
|
void
|
|
sh_do_registers_info (int regnum, int fpregs)
|
|
{
|
|
if (regnum != -1) /* do one specified register */
|
|
{
|
|
if (*(REGISTER_NAME (regnum)) == '\0')
|
|
error ("Not a valid register for the current processor type");
|
|
|
|
sh_print_register (regnum);
|
|
}
|
|
else
|
|
/* do all (or most) registers */
|
|
{
|
|
regnum = 0;
|
|
while (regnum < NUM_REGS)
|
|
{
|
|
/* If the register name is empty, it is undefined for this
|
|
processor, so don't display anything. */
|
|
if (REGISTER_NAME (regnum) == NULL
|
|
|| *(REGISTER_NAME (regnum)) == '\0')
|
|
{
|
|
regnum++;
|
|
continue;
|
|
}
|
|
|
|
if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
|
|
{
|
|
if (fpregs)
|
|
{
|
|
/* true for "INFO ALL-REGISTERS" command */
|
|
sh_do_fp_register (regnum); /* FP regs */
|
|
regnum ++;
|
|
}
|
|
else
|
|
regnum += (gdbarch_tdep (current_gdbarch)->FP_LAST_REGNUM - FP0_REGNUM); /* skip FP regs */
|
|
}
|
|
else
|
|
{
|
|
sh_do_register (regnum); /* All other regs */
|
|
regnum++;
|
|
}
|
|
}
|
|
|
|
if (fpregs)
|
|
while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
|
|
{
|
|
do_pseudo_register (regnum);
|
|
regnum++;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef SVR4_SHARED_LIBS
|
|
|
|
/* Fetch (and possibly build) an appropriate link_map_offsets structure
|
|
for native i386 linux targets using the struct offsets defined in
|
|
link.h (but without actual reference to that file).
|
|
|
|
This makes it possible to access i386-linux shared libraries from
|
|
a gdb that was not built on an i386-linux host (for cross debugging).
|
|
*/
|
|
|
|
struct link_map_offsets *
|
|
sh_linux_svr4_fetch_link_map_offsets (void)
|
|
{
|
|
static struct link_map_offsets lmo;
|
|
static struct link_map_offsets *lmp = 0;
|
|
|
|
if (lmp == 0)
|
|
{
|
|
lmp = &lmo;
|
|
|
|
lmo.r_debug_size = 8; /* 20 not actual size but all we need */
|
|
|
|
lmo.r_map_offset = 4;
|
|
lmo.r_map_size = 4;
|
|
|
|
lmo.link_map_size = 20; /* 552 not actual size but all we need */
|
|
|
|
lmo.l_addr_offset = 0;
|
|
lmo.l_addr_size = 4;
|
|
|
|
lmo.l_name_offset = 4;
|
|
lmo.l_name_size = 4;
|
|
|
|
lmo.l_next_offset = 12;
|
|
lmo.l_next_size = 4;
|
|
|
|
lmo.l_prev_offset = 16;
|
|
lmo.l_prev_size = 4;
|
|
}
|
|
|
|
return lmp;
|
|
}
|
|
#endif /* SVR4_SHARED_LIBS */
|
|
|
|
static gdbarch_init_ftype sh_gdbarch_init;
|
|
|
|
static struct gdbarch *
|
|
sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|
{
|
|
static LONGEST sh_call_dummy_words[] = {0};
|
|
struct gdbarch *gdbarch;
|
|
struct gdbarch_tdep *tdep;
|
|
gdbarch_register_name_ftype *sh_register_name;
|
|
gdbarch_store_return_value_ftype *sh_store_return_value;
|
|
gdbarch_register_virtual_type_ftype *sh_register_virtual_type;
|
|
|
|
/* Find a candidate among the list of pre-declared architectures. */
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
|
if (arches != NULL)
|
|
return arches->gdbarch;
|
|
|
|
/* None found, create a new architecture from the information
|
|
provided. */
|
|
tdep = XMALLOC (struct gdbarch_tdep);
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
|
|
|
/* Initialize the register numbers that are not common to all the
|
|
variants to -1, if necessary thse will be overwritten in the case
|
|
statement below. */
|
|
tdep->FPUL_REGNUM = -1;
|
|
tdep->FPSCR_REGNUM = -1;
|
|
tdep->PR_REGNUM = 17;
|
|
tdep->SR_REGNUM = 22;
|
|
tdep->DSR_REGNUM = -1;
|
|
tdep->FP_LAST_REGNUM = -1;
|
|
tdep->A0G_REGNUM = -1;
|
|
tdep->A0_REGNUM = -1;
|
|
tdep->A1G_REGNUM = -1;
|
|
tdep->A1_REGNUM = -1;
|
|
tdep->M0_REGNUM = -1;
|
|
tdep->M1_REGNUM = -1;
|
|
tdep->X0_REGNUM = -1;
|
|
tdep->X1_REGNUM = -1;
|
|
tdep->Y0_REGNUM = -1;
|
|
tdep->Y1_REGNUM = -1;
|
|
tdep->MOD_REGNUM = -1;
|
|
tdep->RS_REGNUM = -1;
|
|
tdep->RE_REGNUM = -1;
|
|
tdep->SSR_REGNUM = -1;
|
|
tdep->SPC_REGNUM = -1;
|
|
tdep->DR0_REGNUM = -1;
|
|
tdep->DR_LAST_REGNUM = -1;
|
|
tdep->FV0_REGNUM = -1;
|
|
tdep->FV_LAST_REGNUM = -1;
|
|
tdep->ARG0_REGNUM = 4;
|
|
tdep->ARGLAST_REGNUM = 7;
|
|
tdep->RETURN_REGNUM = 0;
|
|
tdep->FLOAT_ARGLAST_REGNUM = -1;
|
|
|
|
set_gdbarch_fp0_regnum (gdbarch, -1);
|
|
set_gdbarch_num_pseudo_regs (gdbarch, 0);
|
|
set_gdbarch_max_register_raw_size (gdbarch, 4);
|
|
set_gdbarch_max_register_virtual_size (gdbarch, 4);
|
|
set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_num_regs (gdbarch, SH_DEFAULT_NUM_REGS);
|
|
set_gdbarch_sp_regnum (gdbarch, 15);
|
|
set_gdbarch_fp_regnum (gdbarch, 14);
|
|
set_gdbarch_pc_regnum (gdbarch, 16);
|
|
set_gdbarch_register_size (gdbarch, 4);
|
|
set_gdbarch_register_bytes (gdbarch, SH_DEFAULT_NUM_REGS * 4);
|
|
set_gdbarch_do_registers_info (gdbarch, sh_do_registers_info);
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, sh_breakpoint_from_pc);
|
|
set_gdbarch_frame_chain (gdbarch, sh_frame_chain);
|
|
set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
|
|
set_gdbarch_init_extra_frame_info (gdbarch, sh_init_extra_frame_info);
|
|
set_gdbarch_extract_return_value (gdbarch, sh_extract_return_value);
|
|
set_gdbarch_push_arguments (gdbarch, sh_push_arguments);
|
|
set_gdbarch_store_struct_return (gdbarch, sh_store_struct_return);
|
|
set_gdbarch_use_struct_convention (gdbarch, sh_use_struct_convention);
|
|
set_gdbarch_extract_struct_value_address (gdbarch, sh_extract_struct_value_address);
|
|
set_gdbarch_pop_frame (gdbarch, sh_pop_frame);
|
|
set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh);
|
|
skip_prologue_hard_way = sh_skip_prologue_hard_way;
|
|
do_pseudo_register = sh_do_pseudo_register;
|
|
|
|
switch (info.bfd_arch_info->mach)
|
|
{
|
|
case bfd_mach_sh:
|
|
sh_register_name = sh_sh_register_name;
|
|
sh_show_regs = sh_generic_show_regs;
|
|
sh_store_return_value = sh_default_store_return_value;
|
|
sh_register_virtual_type = sh_default_register_virtual_type;
|
|
set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
|
|
set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
|
|
set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
|
|
set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
|
|
break;
|
|
case bfd_mach_sh2:
|
|
sh_register_name = sh_sh_register_name;
|
|
sh_show_regs = sh_generic_show_regs;
|
|
sh_store_return_value = sh_default_store_return_value;
|
|
sh_register_virtual_type = sh_default_register_virtual_type;
|
|
set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
|
|
set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
|
|
set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
|
|
set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
|
|
break;
|
|
case bfd_mach_sh_dsp:
|
|
sh_register_name = sh_sh_dsp_register_name;
|
|
sh_show_regs = sh_dsp_show_regs;
|
|
sh_store_return_value = sh_default_store_return_value;
|
|
sh_register_virtual_type = sh_default_register_virtual_type;
|
|
set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
|
|
set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
|
|
set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
|
|
set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
|
|
tdep->DSR_REGNUM = 24;
|
|
tdep->A0G_REGNUM = 25;
|
|
tdep->A0_REGNUM = 26;
|
|
tdep->A1G_REGNUM = 27;
|
|
tdep->A1_REGNUM = 28;
|
|
tdep->M0_REGNUM = 29;
|
|
tdep->M1_REGNUM = 30;
|
|
tdep->X0_REGNUM = 31;
|
|
tdep->X1_REGNUM = 32;
|
|
tdep->Y0_REGNUM = 33;
|
|
tdep->Y1_REGNUM = 34;
|
|
tdep->MOD_REGNUM = 40;
|
|
tdep->RS_REGNUM = 43;
|
|
tdep->RE_REGNUM = 44;
|
|
break;
|
|
case bfd_mach_sh3:
|
|
sh_register_name = sh_sh3_register_name;
|
|
sh_show_regs = sh3_show_regs;
|
|
sh_store_return_value = sh_default_store_return_value;
|
|
sh_register_virtual_type = sh_default_register_virtual_type;
|
|
set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
|
|
set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
|
|
set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
|
|
set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
|
|
tdep->SSR_REGNUM = 41;
|
|
tdep->SPC_REGNUM = 42;
|
|
break;
|
|
case bfd_mach_sh3e:
|
|
sh_register_name = sh_sh3e_register_name;
|
|
sh_show_regs = sh3e_show_regs;
|
|
sh_store_return_value = sh3e_sh4_store_return_value;
|
|
sh_register_virtual_type = sh_sh3e_register_virtual_type;
|
|
set_gdbarch_frame_init_saved_regs (gdbarch, sh_fp_frame_init_saved_regs);
|
|
set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
|
|
set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
|
|
set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
|
|
set_gdbarch_extract_return_value (gdbarch, sh3e_sh4_extract_return_value);
|
|
set_gdbarch_fp0_regnum (gdbarch, 25);
|
|
tdep->FPUL_REGNUM = 23;
|
|
tdep->FPSCR_REGNUM = 24;
|
|
tdep->FP_LAST_REGNUM = 40;
|
|
tdep->SSR_REGNUM = 41;
|
|
tdep->SPC_REGNUM = 42;
|
|
break;
|
|
case bfd_mach_sh3_dsp:
|
|
sh_register_name = sh_sh3_dsp_register_name;
|
|
sh_show_regs = sh3_dsp_show_regs;
|
|
sh_store_return_value = sh_default_store_return_value;
|
|
sh_register_virtual_type = sh_default_register_virtual_type;
|
|
set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
|
|
set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
|
|
set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
|
|
set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
|
|
tdep->DSR_REGNUM = 24;
|
|
tdep->A0G_REGNUM = 25;
|
|
tdep->A0_REGNUM = 26;
|
|
tdep->A1G_REGNUM = 27;
|
|
tdep->A1_REGNUM = 28;
|
|
tdep->M0_REGNUM = 29;
|
|
tdep->M1_REGNUM = 30;
|
|
tdep->X0_REGNUM = 31;
|
|
tdep->X1_REGNUM = 32;
|
|
tdep->Y0_REGNUM = 33;
|
|
tdep->Y1_REGNUM = 34;
|
|
tdep->MOD_REGNUM = 40;
|
|
tdep->RS_REGNUM = 43;
|
|
tdep->RE_REGNUM = 44;
|
|
tdep->SSR_REGNUM = 41;
|
|
tdep->SPC_REGNUM = 42;
|
|
break;
|
|
case bfd_mach_sh4:
|
|
sh_register_name = sh_sh4_register_name;
|
|
sh_show_regs = sh4_show_regs;
|
|
sh_store_return_value = sh3e_sh4_store_return_value;
|
|
sh_register_virtual_type = sh_sh4_register_virtual_type;
|
|
set_gdbarch_frame_init_saved_regs (gdbarch, sh_fp_frame_init_saved_regs);
|
|
set_gdbarch_extract_return_value (gdbarch, sh3e_sh4_extract_return_value);
|
|
set_gdbarch_fp0_regnum (gdbarch, 25);
|
|
set_gdbarch_register_raw_size (gdbarch, sh_sh4_register_raw_size);
|
|
set_gdbarch_register_virtual_size (gdbarch, sh_sh4_register_raw_size);
|
|
set_gdbarch_register_byte (gdbarch, sh_sh4_register_byte);
|
|
set_gdbarch_num_pseudo_regs (gdbarch, 12);
|
|
set_gdbarch_max_register_raw_size (gdbarch, 4 * 4);
|
|
set_gdbarch_max_register_virtual_size (gdbarch, 4 * 4);
|
|
set_gdbarch_register_read (gdbarch, sh4_register_read);
|
|
set_gdbarch_register_write (gdbarch, sh4_register_write);
|
|
tdep->FPUL_REGNUM = 23;
|
|
tdep->FPSCR_REGNUM = 24;
|
|
tdep->FP_LAST_REGNUM = 40;
|
|
tdep->SSR_REGNUM = 41;
|
|
tdep->SPC_REGNUM = 42;
|
|
tdep->DR0_REGNUM = 59;
|
|
tdep->DR_LAST_REGNUM = 66;
|
|
tdep->FV0_REGNUM = 67;
|
|
tdep->FV_LAST_REGNUM = 70;
|
|
break;
|
|
default:
|
|
sh_register_name = sh_generic_register_name;
|
|
sh_show_regs = sh_generic_show_regs;
|
|
sh_store_return_value = sh_default_store_return_value;
|
|
sh_register_virtual_type = sh_default_register_virtual_type;
|
|
set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
|
|
set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
|
|
set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
|
|
set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
|
|
break;
|
|
}
|
|
|
|
set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
|
|
set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
|
|
set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
|
|
set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
|
|
set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
|
|
set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
|
|
|
|
set_gdbarch_register_name (gdbarch, sh_register_name);
|
|
set_gdbarch_register_virtual_type (gdbarch, sh_register_virtual_type);
|
|
|
|
set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
|
set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
|
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
|
set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);/*??should be 8?*/
|
|
|
|
set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
|
|
set_gdbarch_call_dummy_length (gdbarch, 0);
|
|
set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
|
|
set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
|
|
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); /*???*/
|
|
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
|
|
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
|
|
set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
|
|
set_gdbarch_call_dummy_words (gdbarch, sh_call_dummy_words);
|
|
set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (sh_call_dummy_words));
|
|
set_gdbarch_call_dummy_p (gdbarch, 1);
|
|
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
|
|
set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
|
|
set_gdbarch_coerce_float_to_double (gdbarch,
|
|
sh_coerce_float_to_double);
|
|
|
|
set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
|
|
set_gdbarch_push_return_address (gdbarch, sh_push_return_address);
|
|
|
|
set_gdbarch_store_return_value (gdbarch, sh_store_return_value);
|
|
set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 0);
|
|
set_gdbarch_function_start_offset (gdbarch, 0);
|
|
|
|
set_gdbarch_frame_args_skip (gdbarch, 0);
|
|
set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
|
|
set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
|
|
set_gdbarch_frame_saved_pc (gdbarch, sh_frame_saved_pc);
|
|
set_gdbarch_frame_args_address (gdbarch, default_frame_address);
|
|
set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
|
|
set_gdbarch_saved_pc_after_call (gdbarch, sh_saved_pc_after_call);
|
|
set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
|
|
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
|
|
|
|
return gdbarch;
|
|
}
|
|
|
|
void
|
|
_initialize_sh_tdep (void)
|
|
{
|
|
struct cmd_list_element *c;
|
|
|
|
register_gdbarch_init (bfd_arch_sh, sh_gdbarch_init);
|
|
|
|
add_com ("regs", class_vars, sh_show_regs_command, "Print all registers");
|
|
}
|