mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-27 03:51:15 +08:00
1136c37971
This adds facilities to write out the function info and data object sections, which efficiently map from entries in the symbol table to types. The write-side code is entirely new: the read-side code was merely significantly changed and support for indexed tables added (pointed to by the no-longer-unused cth_objtidxoff and cth_funcidxoff header fields). With this in place, you can use ctf_lookup_by_symbol to look up the types of symbols of function and object type (and, as before, you can use ctf_lookup_variable to look up types of file-scope variables not present in the symbol table, as long as you know their name: but variables that are also data objects are now found in the data object section instead.) (Compatible) file format change: The CTF spec has always said that the function info section looks much like the CTF_K_FUNCTIONs in the type section: an info word (including an argument count) followed by a return type and N argument types. This format is suboptimal: it means function symbols cannot be deduplicated and it causes a lot of ugly code duplication in libctf. But conveniently the compiler has never emitted this! Because it has always emitted a rather different format that libctf has never accepted, we can be sure that there are no instances of this function info section in the wild, and can freely change its format without compatibility concerns or a file format version bump. (And since it has never been emitted in any code that generated any older file format version, either, we need keep no code to read the format as specified at all!) So the function info section is now specified as an array of uint32_t, exactly like the object data section: each entry is a type ID in the type section which must be of kind CTF_K_FUNCTION, the prototype of this function. This allows function types to be deduplicated and also correctly encodes the fact that all functions declared in C really are types available to the program: so they should be stored in the type section like all other types. (In format v4, we will be able to represent the types of static functions as well, but that really does require a file format change.) We introduce a new header flag, CTF_F_NEWFUNCINFO, which is set if the new function info format is in use. A sufficiently new compiler will always set this flag. New libctf will always set this flag: old libctf will refuse to open any CTF dicts that have this flag set. If the flag is not set on a dict being read in, new libctf will disregard the function info section. Format v4 will remove this flag (or, rather, the flag has no meaning there and the bit position may be recycled for some other purpose). New API: Symbol addition: ctf_add_func_sym: Add a symbol with a given name and type. The type must be of kind CTF_K_FUNCTION (a function pointer). Internally this adds a name -> type mapping to the ctf_funchash in the ctf_dict. ctf_add_objt_sym: Add a symbol with a given name and type. The type kind can be anything, including function pointers. This adds to ctf_objthash. These both treat symbols as name -> type mappings: the linker associates symbol names with symbol indexes via the ctf_link_shuffle_syms callback, which sets up the ctf_dynsyms/ctf_dynsymidx/ctf_dynsymmax fields in the ctf_dict. Repeated relinks can add more symbols. Variables that are also exposed as symbols are removed from the variable section at serialization time. CTF symbol type sections which have enough pads, defined by CTF_INDEX_PAD_THRESHOLD (whether because they are in dicts with symbols where most types are unknown, or in archive where most types are defined in some child or parent dict, not in this specific dict) are sorted by name rather than symidx and accompanied by an index which associates each symbol type entry with a name: the existing ctf_lookup_by_symbol will map symbol indexes to symbol names and look the names up in the index automatically. (This is currently ELF-symbol-table-dependent, but there is almost nothing specific to ELF in here and we can add support for other symbol table formats easily). The compiler also uses index sections to communicate the contents of object file symbol tables without relying on any specific ordering of symbols: it doesn't need to sort them, and libctf will detect an unsorted index section via the absence of the new CTF_F_IDXSORTED header flag, and sort it if needed. Iteration: ctf_symbol_next: Iterator which returns the types and names of symbols one by one, either for function or data symbols. This does not require any sorting: the ctf_link machinery uses it to pull in all the compiler-provided symbols cheaply, but it is not restricted to that use. (Compatible) changes in API: ctf_lookup_by_symbol: can now be called for object and function symbols: never returns ECTF_NOTDATA (which is now not thrown by anything, but is kept for compatibility and because it is a plausible error that we might start throwing again at some later date). Internally we also have changes to the ctf-string functionality so that "external" strings (those where we track a string -> offset mapping, but only write out an offset) can be consulted via the usual means (ctf_strptr) before the strtab is written out. This is important because ctf_link_add_linker_symbol can now be handed symbols named via strtab offsets, and ctf_link_shuffle_syms must figure out their actual names by looking in the external symtab we have just been fed by the ctf_link_add_strtab callback, long before that strtab is written out. include/ChangeLog 2020-11-20 Nick Alcock <nick.alcock@oracle.com> * ctf-api.h (ctf_symbol_next): New. (ctf_add_objt_sym): Likewise. (ctf_add_func_sym): Likewise. * ctf.h: Document new function info section format. (CTF_F_NEWFUNCINFO): New. (CTF_F_IDXSORTED): New. (CTF_F_MAX): Adjust accordingly. libctf/ChangeLog 2020-11-20 Nick Alcock <nick.alcock@oracle.com> * ctf-impl.h (CTF_INDEX_PAD_THRESHOLD): New. (_libctf_nonnull_): Likewise. (ctf_in_flight_dynsym_t): New. (ctf_dict_t) <ctf_funcidx_names>: Likewise. <ctf_objtidx_names>: Likewise. <ctf_nfuncidx>: Likewise. <ctf_nobjtidx>: Likewise. <ctf_funcidx_sxlate>: Likewise. <ctf_objtidx_sxlate>: Likewise. <ctf_objthash>: Likewise. <ctf_funchash>: Likewise. <ctf_dynsyms>: Likewise. <ctf_dynsymidx>: Likewise. <ctf_dynsymmax>: Likewise. <ctf_in_flight_dynsym>: Likewise. (struct ctf_next) <u.ctn_next>: Likewise. (ctf_symtab_skippable): New prototype. (ctf_add_funcobjt_sym): Likewise. (ctf_dynhash_sort_by_name): Likewise. (ctf_sym_to_elf64): Rename to... (ctf_elf32_to_link_sym): ... this, and... (ctf_elf64_to_link_sym): ... this. * ctf-open.c (init_symtab): Check for lack of CTF_F_NEWFUNCINFO flag, and presence of index sections. Refactor out ctf_symtab_skippable and ctf_elf*_to_link_sym, and use them. Use ctf_link_sym_t, not Elf64_Sym. Skip initializing objt or func sxlate sections if corresponding index section is present. Adjust for new func info section format. (ctf_bufopen_internal): Add ctf_err_warn to corrupt-file error handling. Report incorrect-length index sections. Always do an init_symtab, even if there is no symtab section (there may be index sections still). (flip_objts): Adjust comment: func and objt sections are actually identical in structure now, no need to caveat. (ctf_dict_close): Free newly-added data structures. * ctf-create.c (ctf_create): Initialize them. (ctf_symtab_skippable): New, refactored out of init_symtab, with st_nameidx_set check added. (ctf_add_funcobjt_sym): New, add a function or object symbol to the ctf_objthash or ctf_funchash, by name. (ctf_add_objt_sym): Call it. (ctf_add_func_sym): Likewise. (symtypetab_delete_nonstatic_vars): New, delete vars also present as data objects. (CTF_SYMTYPETAB_EMIT_FUNCTION): New flag to symtypetab emitters: this is a function emission, not a data object emission. (CTF_SYMTYPETAB_EMIT_PAD): New flag to symtypetab emitters: emit pads for symbols with no type (only set for unindexed sections). (CTF_SYMTYPETAB_FORCE_INDEXED): New flag to symtypetab emitters: always emit indexed. (symtypetab_density): New, figure out section sizes. (emit_symtypetab): New, emit a symtypetab. (emit_symtypetab_index): New, emit a symtypetab index. (ctf_serialize): Call them, emitting suitably sorted symtypetab sections and indexes. Set suitable header flags. Copy over new fields. * ctf-hash.c (ctf_dynhash_sort_by_name): New, used to impose an order on symtypetab index sections. * ctf-link.c (ctf_add_type_mapping): Delete erroneous comment relating to code that was never committed. (ctf_link_one_variable): Improve variable name. (check_sym): New, symtypetab analogue of check_variable. (ctf_link_deduplicating_one_symtypetab): New. (ctf_link_deduplicating_syms): Likewise. (ctf_link_deduplicating): Call them. (ctf_link_deduplicating_per_cu): Note that we don't call them in this case (yet). (ctf_link_add_strtab): Set the error on the fp correctly. (ctf_link_add_linker_symbol): New (no longer a do-nothing stub), add a linker symbol to the in-flight list. (ctf_link_shuffle_syms): New (no longer a do-nothing stub), turn the in-flight list into a mapping we can use, now its names are resolvable in the external strtab. * ctf-string.c (ctf_str_rollback_atom): Don't roll back atoms with external strtab offsets. (ctf_str_rollback): Adjust comment. (ctf_str_write_strtab): Migrate ctf_syn_ext_strtab population from writeout time... (ctf_str_add_external): ... to string addition time. * ctf-lookup.c (ctf_lookup_var_key_t): Rename to... (ctf_lookup_idx_key_t): ... this, now we use it for syms too. <clik_names>: New member, a name table. (ctf_lookup_var): Adjust accordingly. (ctf_lookup_variable): Likewise. (ctf_lookup_by_id): Shuffle further up in the file. (ctf_symidx_sort_arg_cb): New, callback for... (sort_symidx_by_name): ... this new function to sort a symidx found to be unsorted (likely originating from the compiler). (ctf_symidx_sort): New, sort a symidx. (ctf_lookup_symbol_name): Support dynamic symbols with indexes provided by the linker. Use ctf_link_sym_t, not Elf64_Sym. Check the parent if a child lookup fails. (ctf_lookup_by_symbol): Likewise. Work for function symbols too. (ctf_symbol_next): New, iterate over symbols with types (without sorting). (ctf_lookup_idx_name): New, bsearch for symbol names in indexes. (ctf_try_lookup_indexed): New, attempt an indexed lookup. (ctf_func_info): Reimplement in terms of ctf_lookup_by_symbol. (ctf_func_args): Likewise. (ctf_get_dict): Move... * ctf-types.c (ctf_get_dict): ... here. * ctf-util.c (ctf_sym_to_elf64): Re-express as... (ctf_elf64_to_link_sym): ... this. Add new st_symidx field, and st_nameidx_set (always 0, so st_nameidx can be ignored). Look in the ELF strtab for names. (ctf_elf32_to_link_sym): Likewise, for Elf32_Sym. (ctf_next_destroy): Destroy ctf_next_t.u.ctn_next if need be. * libctf.ver: Add ctf_symbol_next, ctf_add_objt_sym and ctf_add_func_sym.
850 lines
21 KiB
C
850 lines
21 KiB
C
/* Interface to hashtable implementations.
|
|
Copyright (C) 2006-2020 Free Software Foundation, Inc.
|
|
|
|
This file is part of libctf.
|
|
|
|
libctf is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; see the file COPYING. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <ctf-impl.h>
|
|
#include <string.h>
|
|
#include "libiberty.h"
|
|
#include "hashtab.h"
|
|
|
|
/* We have three hashtable implementations:
|
|
|
|
- ctf_hash_* is an interface to a fixed-size hash from const char * ->
|
|
ctf_id_t with number of elements specified at creation time, that should
|
|
support addition of items but need not support removal.
|
|
|
|
- ctf_dynhash_* is an interface to a dynamically-expanding hash with
|
|
unknown size that should support addition of large numbers of items, and
|
|
removal as well, and is used only at type-insertion time and during
|
|
linking.
|
|
|
|
- ctf_dynset_* is an interface to a dynamically-expanding hash that contains
|
|
only keys: no values.
|
|
|
|
These can be implemented by the same underlying hashmap if you wish. */
|
|
|
|
/* The helem is used for general key/value mappings in both the ctf_hash and
|
|
ctf_dynhash: the owner may not have space allocated for it, and will be
|
|
garbage (not NULL!) in that case. */
|
|
|
|
typedef struct ctf_helem
|
|
{
|
|
void *key; /* Either a pointer, or a coerced ctf_id_t. */
|
|
void *value; /* The value (possibly a coerced int). */
|
|
ctf_dynhash_t *owner; /* The hash that owns us. */
|
|
} ctf_helem_t;
|
|
|
|
/* Equally, the key_free and value_free may not exist. */
|
|
|
|
struct ctf_dynhash
|
|
{
|
|
struct htab *htab;
|
|
ctf_hash_free_fun key_free;
|
|
ctf_hash_free_fun value_free;
|
|
};
|
|
|
|
/* Hash and eq functions for the dynhash and hash. */
|
|
|
|
unsigned int
|
|
ctf_hash_integer (const void *ptr)
|
|
{
|
|
ctf_helem_t *hep = (ctf_helem_t *) ptr;
|
|
|
|
return htab_hash_pointer (hep->key);
|
|
}
|
|
|
|
int
|
|
ctf_hash_eq_integer (const void *a, const void *b)
|
|
{
|
|
ctf_helem_t *hep_a = (ctf_helem_t *) a;
|
|
ctf_helem_t *hep_b = (ctf_helem_t *) b;
|
|
|
|
return htab_eq_pointer (hep_a->key, hep_b->key);
|
|
}
|
|
|
|
unsigned int
|
|
ctf_hash_string (const void *ptr)
|
|
{
|
|
ctf_helem_t *hep = (ctf_helem_t *) ptr;
|
|
|
|
return htab_hash_string (hep->key);
|
|
}
|
|
|
|
int
|
|
ctf_hash_eq_string (const void *a, const void *b)
|
|
{
|
|
ctf_helem_t *hep_a = (ctf_helem_t *) a;
|
|
ctf_helem_t *hep_b = (ctf_helem_t *) b;
|
|
|
|
return !strcmp((const char *) hep_a->key, (const char *) hep_b->key);
|
|
}
|
|
|
|
/* Hash a type_key. */
|
|
unsigned int
|
|
ctf_hash_type_key (const void *ptr)
|
|
{
|
|
ctf_helem_t *hep = (ctf_helem_t *) ptr;
|
|
ctf_link_type_key_t *k = (ctf_link_type_key_t *) hep->key;
|
|
|
|
return htab_hash_pointer (k->cltk_fp) + 59
|
|
* htab_hash_pointer ((void *) (uintptr_t) k->cltk_idx);
|
|
}
|
|
|
|
int
|
|
ctf_hash_eq_type_key (const void *a, const void *b)
|
|
{
|
|
ctf_helem_t *hep_a = (ctf_helem_t *) a;
|
|
ctf_helem_t *hep_b = (ctf_helem_t *) b;
|
|
ctf_link_type_key_t *key_a = (ctf_link_type_key_t *) hep_a->key;
|
|
ctf_link_type_key_t *key_b = (ctf_link_type_key_t *) hep_b->key;
|
|
|
|
return (key_a->cltk_fp == key_b->cltk_fp)
|
|
&& (key_a->cltk_idx == key_b->cltk_idx);
|
|
}
|
|
|
|
/* Hash a type_id_key. */
|
|
unsigned int
|
|
ctf_hash_type_id_key (const void *ptr)
|
|
{
|
|
ctf_helem_t *hep = (ctf_helem_t *) ptr;
|
|
ctf_type_id_key_t *k = (ctf_type_id_key_t *) hep->key;
|
|
|
|
return htab_hash_pointer ((void *) (uintptr_t) k->ctii_input_num)
|
|
+ 59 * htab_hash_pointer ((void *) (uintptr_t) k->ctii_type);
|
|
}
|
|
|
|
int
|
|
ctf_hash_eq_type_id_key (const void *a, const void *b)
|
|
{
|
|
ctf_helem_t *hep_a = (ctf_helem_t *) a;
|
|
ctf_helem_t *hep_b = (ctf_helem_t *) b;
|
|
ctf_type_id_key_t *key_a = (ctf_type_id_key_t *) hep_a->key;
|
|
ctf_type_id_key_t *key_b = (ctf_type_id_key_t *) hep_b->key;
|
|
|
|
return (key_a->ctii_input_num == key_b->ctii_input_num)
|
|
&& (key_a->ctii_type == key_b->ctii_type);
|
|
}
|
|
|
|
/* Hash and eq functions for the dynset. Most of these can just use the
|
|
underlying hashtab functions directly. */
|
|
|
|
int
|
|
ctf_dynset_eq_string (const void *a, const void *b)
|
|
{
|
|
return !strcmp((const char *) a, (const char *) b);
|
|
}
|
|
|
|
/* The dynhash, used for hashes whose size is not known at creation time. */
|
|
|
|
/* Free a single ctf_helem with arbitrary key/value functions. */
|
|
|
|
static void
|
|
ctf_dynhash_item_free (void *item)
|
|
{
|
|
ctf_helem_t *helem = item;
|
|
|
|
if (helem->owner->key_free && helem->key)
|
|
helem->owner->key_free (helem->key);
|
|
if (helem->owner->value_free && helem->value)
|
|
helem->owner->value_free (helem->value);
|
|
free (helem);
|
|
}
|
|
|
|
ctf_dynhash_t *
|
|
ctf_dynhash_create (ctf_hash_fun hash_fun, ctf_hash_eq_fun eq_fun,
|
|
ctf_hash_free_fun key_free, ctf_hash_free_fun value_free)
|
|
{
|
|
ctf_dynhash_t *dynhash;
|
|
htab_del del = ctf_dynhash_item_free;
|
|
|
|
if (key_free || value_free)
|
|
dynhash = malloc (sizeof (ctf_dynhash_t));
|
|
else
|
|
dynhash = malloc (offsetof (ctf_dynhash_t, key_free));
|
|
if (!dynhash)
|
|
return NULL;
|
|
|
|
if (key_free == NULL && value_free == NULL)
|
|
del = free;
|
|
|
|
/* 7 is arbitrary and untested for now. */
|
|
if ((dynhash->htab = htab_create_alloc (7, (htab_hash) hash_fun, eq_fun,
|
|
del, xcalloc, free)) == NULL)
|
|
{
|
|
free (dynhash);
|
|
return NULL;
|
|
}
|
|
|
|
if (key_free || value_free)
|
|
{
|
|
dynhash->key_free = key_free;
|
|
dynhash->value_free = value_free;
|
|
}
|
|
|
|
return dynhash;
|
|
}
|
|
|
|
static ctf_helem_t **
|
|
ctf_hashtab_lookup (struct htab *htab, const void *key, enum insert_option insert)
|
|
{
|
|
ctf_helem_t tmp = { .key = (void *) key };
|
|
return (ctf_helem_t **) htab_find_slot (htab, &tmp, insert);
|
|
}
|
|
|
|
static ctf_helem_t *
|
|
ctf_hashtab_insert (struct htab *htab, void *key, void *value,
|
|
ctf_hash_free_fun key_free,
|
|
ctf_hash_free_fun value_free)
|
|
{
|
|
ctf_helem_t **slot;
|
|
|
|
slot = ctf_hashtab_lookup (htab, key, INSERT);
|
|
|
|
if (!slot)
|
|
{
|
|
errno = ENOMEM;
|
|
return NULL;
|
|
}
|
|
|
|
if (!*slot)
|
|
{
|
|
/* Only spend space on the owner if we're going to use it: if there is a
|
|
key or value freeing function. */
|
|
if (key_free || value_free)
|
|
*slot = malloc (sizeof (ctf_helem_t));
|
|
else
|
|
*slot = malloc (offsetof (ctf_helem_t, owner));
|
|
if (!*slot)
|
|
return NULL;
|
|
(*slot)->key = key;
|
|
}
|
|
else
|
|
{
|
|
if (key_free)
|
|
key_free (key);
|
|
if (value_free)
|
|
value_free ((*slot)->value);
|
|
}
|
|
(*slot)->value = value;
|
|
return *slot;
|
|
}
|
|
|
|
int
|
|
ctf_dynhash_insert (ctf_dynhash_t *hp, void *key, void *value)
|
|
{
|
|
ctf_helem_t *slot;
|
|
ctf_hash_free_fun key_free = NULL, value_free = NULL;
|
|
|
|
if (hp->htab->del_f == ctf_dynhash_item_free)
|
|
{
|
|
key_free = hp->key_free;
|
|
value_free = hp->value_free;
|
|
}
|
|
slot = ctf_hashtab_insert (hp->htab, key, value,
|
|
key_free, value_free);
|
|
|
|
if (!slot)
|
|
return errno;
|
|
|
|
/* Keep track of the owner, so that the del function can get at the key_free
|
|
and value_free functions. Only do this if one of those functions is set:
|
|
if not, the owner is not even present in the helem. */
|
|
|
|
if (key_free || value_free)
|
|
slot->owner = hp;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ctf_dynhash_remove (ctf_dynhash_t *hp, const void *key)
|
|
{
|
|
ctf_helem_t hep = { (void *) key, NULL, NULL };
|
|
htab_remove_elt (hp->htab, &hep);
|
|
}
|
|
|
|
void
|
|
ctf_dynhash_empty (ctf_dynhash_t *hp)
|
|
{
|
|
htab_empty (hp->htab);
|
|
}
|
|
|
|
size_t
|
|
ctf_dynhash_elements (ctf_dynhash_t *hp)
|
|
{
|
|
return htab_elements (hp->htab);
|
|
}
|
|
|
|
void *
|
|
ctf_dynhash_lookup (ctf_dynhash_t *hp, const void *key)
|
|
{
|
|
ctf_helem_t **slot;
|
|
|
|
slot = ctf_hashtab_lookup (hp->htab, key, NO_INSERT);
|
|
|
|
if (slot)
|
|
return (*slot)->value;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* TRUE/FALSE return. */
|
|
int
|
|
ctf_dynhash_lookup_kv (ctf_dynhash_t *hp, const void *key,
|
|
const void **orig_key, void **value)
|
|
{
|
|
ctf_helem_t **slot;
|
|
|
|
slot = ctf_hashtab_lookup (hp->htab, key, NO_INSERT);
|
|
|
|
if (slot)
|
|
{
|
|
if (orig_key)
|
|
*orig_key = (*slot)->key;
|
|
if (value)
|
|
*value = (*slot)->value;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
typedef struct ctf_traverse_cb_arg
|
|
{
|
|
ctf_hash_iter_f fun;
|
|
void *arg;
|
|
} ctf_traverse_cb_arg_t;
|
|
|
|
static int
|
|
ctf_hashtab_traverse (void **slot, void *arg_)
|
|
{
|
|
ctf_helem_t *helem = *((ctf_helem_t **) slot);
|
|
ctf_traverse_cb_arg_t *arg = (ctf_traverse_cb_arg_t *) arg_;
|
|
|
|
arg->fun (helem->key, helem->value, arg->arg);
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
ctf_dynhash_iter (ctf_dynhash_t *hp, ctf_hash_iter_f fun, void *arg_)
|
|
{
|
|
ctf_traverse_cb_arg_t arg = { fun, arg_ };
|
|
htab_traverse (hp->htab, ctf_hashtab_traverse, &arg);
|
|
}
|
|
|
|
typedef struct ctf_traverse_find_cb_arg
|
|
{
|
|
ctf_hash_iter_find_f fun;
|
|
void *arg;
|
|
void *found_key;
|
|
} ctf_traverse_find_cb_arg_t;
|
|
|
|
static int
|
|
ctf_hashtab_traverse_find (void **slot, void *arg_)
|
|
{
|
|
ctf_helem_t *helem = *((ctf_helem_t **) slot);
|
|
ctf_traverse_find_cb_arg_t *arg = (ctf_traverse_find_cb_arg_t *) arg_;
|
|
|
|
if (arg->fun (helem->key, helem->value, arg->arg))
|
|
{
|
|
arg->found_key = helem->key;
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
void *
|
|
ctf_dynhash_iter_find (ctf_dynhash_t *hp, ctf_hash_iter_find_f fun, void *arg_)
|
|
{
|
|
ctf_traverse_find_cb_arg_t arg = { fun, arg_, NULL };
|
|
htab_traverse (hp->htab, ctf_hashtab_traverse_find, &arg);
|
|
return arg.found_key;
|
|
}
|
|
|
|
typedef struct ctf_traverse_remove_cb_arg
|
|
{
|
|
struct htab *htab;
|
|
ctf_hash_iter_remove_f fun;
|
|
void *arg;
|
|
} ctf_traverse_remove_cb_arg_t;
|
|
|
|
static int
|
|
ctf_hashtab_traverse_remove (void **slot, void *arg_)
|
|
{
|
|
ctf_helem_t *helem = *((ctf_helem_t **) slot);
|
|
ctf_traverse_remove_cb_arg_t *arg = (ctf_traverse_remove_cb_arg_t *) arg_;
|
|
|
|
if (arg->fun (helem->key, helem->value, arg->arg))
|
|
htab_clear_slot (arg->htab, slot);
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
ctf_dynhash_iter_remove (ctf_dynhash_t *hp, ctf_hash_iter_remove_f fun,
|
|
void *arg_)
|
|
{
|
|
ctf_traverse_remove_cb_arg_t arg = { hp->htab, fun, arg_ };
|
|
htab_traverse (hp->htab, ctf_hashtab_traverse_remove, &arg);
|
|
}
|
|
|
|
/* Traverse a dynhash in arbitrary order, in _next iterator form.
|
|
|
|
Mutating the dynhash while iterating is not supported (just as it isn't for
|
|
htab_traverse).
|
|
|
|
Note: unusually, this returns zero on success and a *positive* value on
|
|
error, because it does not take an fp, taking an error pointer would be
|
|
incredibly clunky, and nearly all error-handling ends up stuffing the result
|
|
of this into some sort of errno or ctf_errno, which is invariably
|
|
positive. So doing this simplifies essentially all callers. */
|
|
int
|
|
ctf_dynhash_next (ctf_dynhash_t *h, ctf_next_t **it, void **key, void **value)
|
|
{
|
|
ctf_next_t *i = *it;
|
|
ctf_helem_t *slot;
|
|
|
|
if (!i)
|
|
{
|
|
size_t size = htab_size (h->htab);
|
|
|
|
/* If the table has too many entries to fit in an ssize_t, just give up.
|
|
This might be spurious, but if any type-related hashtable has ever been
|
|
nearly as large as that then something very odd is going on. */
|
|
if (((ssize_t) size) < 0)
|
|
return EDOM;
|
|
|
|
if ((i = ctf_next_create ()) == NULL)
|
|
return ENOMEM;
|
|
|
|
i->u.ctn_hash_slot = h->htab->entries;
|
|
i->cu.ctn_h = h;
|
|
i->ctn_n = 0;
|
|
i->ctn_size = (ssize_t) size;
|
|
i->ctn_iter_fun = (void (*) (void)) ctf_dynhash_next;
|
|
*it = i;
|
|
}
|
|
|
|
if ((void (*) (void)) ctf_dynhash_next != i->ctn_iter_fun)
|
|
return ECTF_NEXT_WRONGFUN;
|
|
|
|
if (h != i->cu.ctn_h)
|
|
return ECTF_NEXT_WRONGFP;
|
|
|
|
if ((ssize_t) i->ctn_n == i->ctn_size)
|
|
goto hash_end;
|
|
|
|
while ((ssize_t) i->ctn_n < i->ctn_size
|
|
&& (*i->u.ctn_hash_slot == HTAB_EMPTY_ENTRY
|
|
|| *i->u.ctn_hash_slot == HTAB_DELETED_ENTRY))
|
|
{
|
|
i->u.ctn_hash_slot++;
|
|
i->ctn_n++;
|
|
}
|
|
|
|
if ((ssize_t) i->ctn_n == i->ctn_size)
|
|
goto hash_end;
|
|
|
|
slot = *i->u.ctn_hash_slot;
|
|
|
|
if (key)
|
|
*key = slot->key;
|
|
if (value)
|
|
*value = slot->value;
|
|
|
|
i->u.ctn_hash_slot++;
|
|
i->ctn_n++;
|
|
|
|
return 0;
|
|
|
|
hash_end:
|
|
ctf_next_destroy (i);
|
|
*it = NULL;
|
|
return ECTF_NEXT_END;
|
|
}
|
|
|
|
int
|
|
ctf_dynhash_sort_by_name (const ctf_next_hkv_t *one, const ctf_next_hkv_t *two,
|
|
void *unused _libctf_unused_)
|
|
{
|
|
return strcmp ((char *) one->hkv_key, (char *) two->hkv_key);
|
|
}
|
|
|
|
/* Traverse a sorted dynhash, in _next iterator form.
|
|
|
|
See ctf_dynhash_next for notes on error returns, etc.
|
|
|
|
Sort keys before iterating over them using the SORT_FUN and SORT_ARG.
|
|
|
|
If SORT_FUN is null, thunks to ctf_dynhash_next. */
|
|
int
|
|
ctf_dynhash_next_sorted (ctf_dynhash_t *h, ctf_next_t **it, void **key,
|
|
void **value, ctf_hash_sort_f sort_fun, void *sort_arg)
|
|
{
|
|
ctf_next_t *i = *it;
|
|
|
|
if (sort_fun == NULL)
|
|
return ctf_dynhash_next (h, it, key, value);
|
|
|
|
if (!i)
|
|
{
|
|
size_t els = ctf_dynhash_elements (h);
|
|
ctf_next_t *accum_i = NULL;
|
|
void *key, *value;
|
|
int err;
|
|
ctf_next_hkv_t *walk;
|
|
|
|
if (((ssize_t) els) < 0)
|
|
return EDOM;
|
|
|
|
if ((i = ctf_next_create ()) == NULL)
|
|
return ENOMEM;
|
|
|
|
if ((i->u.ctn_sorted_hkv = calloc (els, sizeof (ctf_next_hkv_t))) == NULL)
|
|
{
|
|
ctf_next_destroy (i);
|
|
return ENOMEM;
|
|
}
|
|
walk = i->u.ctn_sorted_hkv;
|
|
|
|
i->cu.ctn_h = h;
|
|
|
|
while ((err = ctf_dynhash_next (h, &accum_i, &key, &value)) == 0)
|
|
{
|
|
walk->hkv_key = key;
|
|
walk->hkv_value = value;
|
|
walk++;
|
|
}
|
|
if (err != ECTF_NEXT_END)
|
|
{
|
|
ctf_next_destroy (i);
|
|
return err;
|
|
}
|
|
|
|
if (sort_fun)
|
|
ctf_qsort_r (i->u.ctn_sorted_hkv, els, sizeof (ctf_next_hkv_t),
|
|
(int (*) (const void *, const void *, void *)) sort_fun,
|
|
sort_arg);
|
|
i->ctn_n = 0;
|
|
i->ctn_size = (ssize_t) els;
|
|
i->ctn_iter_fun = (void (*) (void)) ctf_dynhash_next_sorted;
|
|
*it = i;
|
|
}
|
|
|
|
if ((void (*) (void)) ctf_dynhash_next_sorted != i->ctn_iter_fun)
|
|
return ECTF_NEXT_WRONGFUN;
|
|
|
|
if (h != i->cu.ctn_h)
|
|
return ECTF_NEXT_WRONGFP;
|
|
|
|
if ((ssize_t) i->ctn_n == i->ctn_size)
|
|
{
|
|
ctf_next_destroy (i);
|
|
*it = NULL;
|
|
return ECTF_NEXT_END;
|
|
}
|
|
|
|
if (key)
|
|
*key = i->u.ctn_sorted_hkv[i->ctn_n].hkv_key;
|
|
if (value)
|
|
*value = i->u.ctn_sorted_hkv[i->ctn_n].hkv_value;
|
|
i->ctn_n++;
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ctf_dynhash_destroy (ctf_dynhash_t *hp)
|
|
{
|
|
if (hp != NULL)
|
|
htab_delete (hp->htab);
|
|
free (hp);
|
|
}
|
|
|
|
/* The dynset, used for sets of keys with no value. The implementation of this
|
|
can be much simpler, because without a value the slot can simply be the
|
|
stored key, which means we don't need to store the freeing functions and the
|
|
dynset itself is just a htab. */
|
|
|
|
ctf_dynset_t *
|
|
ctf_dynset_create (htab_hash hash_fun, htab_eq eq_fun,
|
|
ctf_hash_free_fun key_free)
|
|
{
|
|
/* 7 is arbitrary and untested for now. */
|
|
return (ctf_dynset_t *) htab_create_alloc (7, (htab_hash) hash_fun, eq_fun,
|
|
key_free, xcalloc, free);
|
|
}
|
|
|
|
/* The dynset has one complexity: the underlying implementation reserves two
|
|
values for internal hash table implementation details (empty versus deleted
|
|
entries). These values are otherwise very useful for pointers cast to ints,
|
|
so transform the ctf_dynset_inserted value to allow for it. (This
|
|
introduces an ambiguity in that one can no longer store these two values in
|
|
the dynset, but if we pick high enough values this is very unlikely to be a
|
|
problem.)
|
|
|
|
We leak this implementation detail to the freeing functions on the grounds
|
|
that any use of these functions is overwhelmingly likely to be in sets using
|
|
real pointers, which will be unaffected. */
|
|
|
|
#define DYNSET_EMPTY_ENTRY_REPLACEMENT ((void *) (uintptr_t) -64)
|
|
#define DYNSET_DELETED_ENTRY_REPLACEMENT ((void *) (uintptr_t) -63)
|
|
|
|
static void *
|
|
key_to_internal (const void *key)
|
|
{
|
|
if (key == HTAB_EMPTY_ENTRY)
|
|
return DYNSET_EMPTY_ENTRY_REPLACEMENT;
|
|
else if (key == HTAB_DELETED_ENTRY)
|
|
return DYNSET_DELETED_ENTRY_REPLACEMENT;
|
|
|
|
return (void *) key;
|
|
}
|
|
|
|
static void *
|
|
internal_to_key (const void *internal)
|
|
{
|
|
if (internal == DYNSET_EMPTY_ENTRY_REPLACEMENT)
|
|
return HTAB_EMPTY_ENTRY;
|
|
else if (internal == DYNSET_DELETED_ENTRY_REPLACEMENT)
|
|
return HTAB_DELETED_ENTRY;
|
|
return (void *) internal;
|
|
}
|
|
|
|
int
|
|
ctf_dynset_insert (ctf_dynset_t *hp, void *key)
|
|
{
|
|
struct htab *htab = (struct htab *) hp;
|
|
void **slot;
|
|
|
|
slot = htab_find_slot (htab, key, INSERT);
|
|
|
|
if (!slot)
|
|
{
|
|
errno = ENOMEM;
|
|
return -errno;
|
|
}
|
|
|
|
if (*slot)
|
|
{
|
|
if (htab->del_f)
|
|
(*htab->del_f) (*slot);
|
|
}
|
|
|
|
*slot = key_to_internal (key);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ctf_dynset_remove (ctf_dynset_t *hp, const void *key)
|
|
{
|
|
htab_remove_elt ((struct htab *) hp, key_to_internal (key));
|
|
}
|
|
|
|
void
|
|
ctf_dynset_destroy (ctf_dynset_t *hp)
|
|
{
|
|
if (hp != NULL)
|
|
htab_delete ((struct htab *) hp);
|
|
}
|
|
|
|
void *
|
|
ctf_dynset_lookup (ctf_dynset_t *hp, const void *key)
|
|
{
|
|
void **slot = htab_find_slot ((struct htab *) hp,
|
|
key_to_internal (key), NO_INSERT);
|
|
|
|
if (slot)
|
|
return internal_to_key (*slot);
|
|
return NULL;
|
|
}
|
|
|
|
/* TRUE/FALSE return. */
|
|
int
|
|
ctf_dynset_exists (ctf_dynset_t *hp, const void *key, const void **orig_key)
|
|
{
|
|
void **slot = htab_find_slot ((struct htab *) hp,
|
|
key_to_internal (key), NO_INSERT);
|
|
|
|
if (orig_key && slot)
|
|
*orig_key = internal_to_key (*slot);
|
|
return (slot != NULL);
|
|
}
|
|
|
|
/* Look up a completely random value from the set, if any exist.
|
|
Keys with value zero cannot be distinguished from a nonexistent key. */
|
|
void *
|
|
ctf_dynset_lookup_any (ctf_dynset_t *hp)
|
|
{
|
|
struct htab *htab = (struct htab *) hp;
|
|
void **slot = htab->entries;
|
|
void **limit = slot + htab_size (htab);
|
|
|
|
while (slot < limit
|
|
&& (*slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY))
|
|
slot++;
|
|
|
|
if (slot < limit)
|
|
return internal_to_key (*slot);
|
|
return NULL;
|
|
}
|
|
|
|
/* Traverse a dynset in arbitrary order, in _next iterator form.
|
|
|
|
Otherwise, just like ctf_dynhash_next. */
|
|
int
|
|
ctf_dynset_next (ctf_dynset_t *hp, ctf_next_t **it, void **key)
|
|
{
|
|
struct htab *htab = (struct htab *) hp;
|
|
ctf_next_t *i = *it;
|
|
void *slot;
|
|
|
|
if (!i)
|
|
{
|
|
size_t size = htab_size (htab);
|
|
|
|
/* If the table has too many entries to fit in an ssize_t, just give up.
|
|
This might be spurious, but if any type-related hashtable has ever been
|
|
nearly as large as that then somthing very odd is going on. */
|
|
|
|
if (((ssize_t) size) < 0)
|
|
return EDOM;
|
|
|
|
if ((i = ctf_next_create ()) == NULL)
|
|
return ENOMEM;
|
|
|
|
i->u.ctn_hash_slot = htab->entries;
|
|
i->cu.ctn_s = hp;
|
|
i->ctn_n = 0;
|
|
i->ctn_size = (ssize_t) size;
|
|
i->ctn_iter_fun = (void (*) (void)) ctf_dynset_next;
|
|
*it = i;
|
|
}
|
|
|
|
if ((void (*) (void)) ctf_dynset_next != i->ctn_iter_fun)
|
|
return ECTF_NEXT_WRONGFUN;
|
|
|
|
if (hp != i->cu.ctn_s)
|
|
return ECTF_NEXT_WRONGFP;
|
|
|
|
if ((ssize_t) i->ctn_n == i->ctn_size)
|
|
goto set_end;
|
|
|
|
while ((ssize_t) i->ctn_n < i->ctn_size
|
|
&& (*i->u.ctn_hash_slot == HTAB_EMPTY_ENTRY
|
|
|| *i->u.ctn_hash_slot == HTAB_DELETED_ENTRY))
|
|
{
|
|
i->u.ctn_hash_slot++;
|
|
i->ctn_n++;
|
|
}
|
|
|
|
if ((ssize_t) i->ctn_n == i->ctn_size)
|
|
goto set_end;
|
|
|
|
slot = *i->u.ctn_hash_slot;
|
|
|
|
if (key)
|
|
*key = internal_to_key (slot);
|
|
|
|
i->u.ctn_hash_slot++;
|
|
i->ctn_n++;
|
|
|
|
return 0;
|
|
|
|
set_end:
|
|
ctf_next_destroy (i);
|
|
*it = NULL;
|
|
return ECTF_NEXT_END;
|
|
}
|
|
|
|
/* ctf_hash, used for fixed-size maps from const char * -> ctf_id_t without
|
|
removal. This is a straight cast of a hashtab. */
|
|
|
|
ctf_hash_t *
|
|
ctf_hash_create (unsigned long nelems, ctf_hash_fun hash_fun,
|
|
ctf_hash_eq_fun eq_fun)
|
|
{
|
|
return (ctf_hash_t *) htab_create_alloc (nelems, (htab_hash) hash_fun,
|
|
eq_fun, free, xcalloc, free);
|
|
}
|
|
|
|
uint32_t
|
|
ctf_hash_size (const ctf_hash_t *hp)
|
|
{
|
|
return htab_elements ((struct htab *) hp);
|
|
}
|
|
|
|
int
|
|
ctf_hash_insert_type (ctf_hash_t *hp, ctf_dict_t *fp, uint32_t type,
|
|
uint32_t name)
|
|
{
|
|
const char *str = ctf_strraw (fp, name);
|
|
|
|
if (type == 0)
|
|
return EINVAL;
|
|
|
|
if (str == NULL
|
|
&& CTF_NAME_STID (name) == CTF_STRTAB_1
|
|
&& fp->ctf_syn_ext_strtab == NULL
|
|
&& fp->ctf_str[CTF_NAME_STID (name)].cts_strs == NULL)
|
|
return ECTF_STRTAB;
|
|
|
|
if (str == NULL)
|
|
return ECTF_BADNAME;
|
|
|
|
if (str[0] == '\0')
|
|
return 0; /* Just ignore empty strings on behalf of caller. */
|
|
|
|
if (ctf_hashtab_insert ((struct htab *) hp, (char *) str,
|
|
(void *) (ptrdiff_t) type, NULL, NULL) != NULL)
|
|
return 0;
|
|
return errno;
|
|
}
|
|
|
|
/* if the key is already in the hash, override the previous definition with
|
|
this new official definition. If the key is not present, then call
|
|
ctf_hash_insert_type and hash it in. */
|
|
int
|
|
ctf_hash_define_type (ctf_hash_t *hp, ctf_dict_t *fp, uint32_t type,
|
|
uint32_t name)
|
|
{
|
|
/* This matches the semantics of ctf_hash_insert_type in this
|
|
implementation anyway. */
|
|
|
|
return ctf_hash_insert_type (hp, fp, type, name);
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_hash_lookup_type (ctf_hash_t *hp, ctf_dict_t *fp __attribute__ ((__unused__)),
|
|
const char *key)
|
|
{
|
|
ctf_helem_t **slot;
|
|
|
|
slot = ctf_hashtab_lookup ((struct htab *) hp, key, NO_INSERT);
|
|
|
|
if (slot)
|
|
return (ctf_id_t) (uintptr_t) ((*slot)->value);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ctf_hash_destroy (ctf_hash_t *hp)
|
|
{
|
|
if (hp != NULL)
|
|
htab_delete ((struct htab *) hp);
|
|
}
|