mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-27 03:51:15 +08:00
2317 lines
53 KiB
C
2317 lines
53 KiB
C
/* tc-mcore.c -- Assemble code for M*Core
|
||
Copyright 1999, 2000, 2001, 2002, 2003, 2005, 2006
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GAS, the GNU Assembler.
|
||
|
||
GAS is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GAS is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GAS; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
#include "as.h"
|
||
#include "subsegs.h"
|
||
#define DEFINE_TABLE
|
||
#include "../opcodes/mcore-opc.h"
|
||
#include "safe-ctype.h"
|
||
|
||
#ifdef OBJ_ELF
|
||
#include "elf/mcore.h"
|
||
#endif
|
||
|
||
#ifndef streq
|
||
#define streq(a,b) (strcmp (a, b) == 0)
|
||
#endif
|
||
|
||
/* Forward declarations for dumb compilers. */
|
||
|
||
/* Several places in this file insert raw instructions into the
|
||
object. They should use MCORE_INST_XXX macros to get the opcodes
|
||
and then use these two macros to crack the MCORE_INST value into
|
||
the appropriate byte values. */
|
||
#define INST_BYTE0(x) (target_big_endian ? (((x) >> 8) & 0xFF) : ((x) & 0xFF))
|
||
#define INST_BYTE1(x) (target_big_endian ? ((x) & 0xFF) : (((x) >> 8) & 0xFF))
|
||
|
||
const char comment_chars[] = "#/";
|
||
const char line_separator_chars[] = ";";
|
||
const char line_comment_chars[] = "#/";
|
||
|
||
static int do_jsri2bsr = 0; /* Change here from 1 by Cruess 19 August 97. */
|
||
static int sifilter_mode = 0;
|
||
|
||
const char EXP_CHARS[] = "eE";
|
||
|
||
/* Chars that mean this number is a floating point constant
|
||
As in 0f12.456
|
||
or 0d1.2345e12 */
|
||
const char FLT_CHARS[] = "rRsSfFdDxXpP";
|
||
|
||
#define C(what,length) (((what) << 2) + (length))
|
||
#define GET_WHAT(x) ((x >> 2))
|
||
|
||
/* These are the two types of relaxable instruction. */
|
||
#define COND_JUMP 1
|
||
#define UNCD_JUMP 2
|
||
|
||
#define UNDEF_DISP 0
|
||
#define DISP12 1
|
||
#define DISP32 2
|
||
#define UNDEF_WORD_DISP 3
|
||
|
||
#define C12_LEN 2
|
||
#define C32_LEN 10 /* Allow for align. */
|
||
#define U12_LEN 2
|
||
#define U32_LEN 8 /* Allow for align. */
|
||
|
||
typedef enum
|
||
{
|
||
M210,
|
||
M340
|
||
}
|
||
cpu_type;
|
||
|
||
cpu_type cpu = M340;
|
||
|
||
/* Initialize the relax table. */
|
||
const relax_typeS md_relax_table[] =
|
||
{
|
||
{ 0, 0, 0, 0 },
|
||
{ 0, 0, 0, 0 },
|
||
{ 0, 0, 0, 0 },
|
||
{ 0, 0, 0, 0 },
|
||
|
||
/* COND_JUMP */
|
||
{ 0, 0, 0, 0 }, /* UNDEF_DISP */
|
||
{ 2048, -2046, C12_LEN, C(COND_JUMP, DISP32) }, /* DISP12 */
|
||
{ 0, 0, C32_LEN, 0 }, /* DISP32 */
|
||
{ 0, 0, C32_LEN, 0 }, /* UNDEF_WORD_DISP */
|
||
|
||
/* UNCD_JUMP */
|
||
{ 0, 0, 0, 0 }, /* UNDEF_DISP */
|
||
{ 2048, -2046, U12_LEN, C(UNCD_JUMP, DISP32) }, /* DISP12 */
|
||
{ 0, 0, U32_LEN, 0 }, /* DISP32 */
|
||
{ 0, 0, U32_LEN, 0 } /* UNDEF_WORD_DISP */
|
||
|
||
};
|
||
|
||
/* Literal pool data structures. */
|
||
struct literal
|
||
{
|
||
unsigned short refcnt;
|
||
unsigned char ispcrel;
|
||
unsigned char unused;
|
||
expressionS e;
|
||
};
|
||
|
||
#define MAX_POOL_SIZE (1024/4)
|
||
static struct literal litpool [MAX_POOL_SIZE];
|
||
static unsigned poolsize;
|
||
static unsigned poolnumber;
|
||
static unsigned long poolspan;
|
||
|
||
/* SPANPANIC: the point at which we get too scared and force a dump
|
||
of the literal pool, and perhaps put a branch in place.
|
||
Calculated as:
|
||
1024 span of lrw/jmpi/jsri insn (actually span+1)
|
||
-2 possible alignment at the insn.
|
||
-2 possible alignment to get the table aligned.
|
||
-2 an inserted branch around the table.
|
||
== 1018
|
||
at 1018, we might be in trouble.
|
||
-- so we have to be smaller than 1018 and since we deal with 2-byte
|
||
instructions, the next good choice is 1016.
|
||
-- Note we have a test case that fails when we've got 1018 here. */
|
||
#define SPANPANIC (1016) /* 1024 - 1 entry - 2 byte rounding. */
|
||
#define SPANCLOSE (900)
|
||
#define SPANEXIT (600)
|
||
static symbolS * poolsym; /* Label for current pool. */
|
||
static char poolname[8];
|
||
static struct hash_control * opcode_hash_control; /* Opcode mnemonics. */
|
||
|
||
#define POOL_END_LABEL ".LE"
|
||
#define POOL_START_LABEL ".LS"
|
||
|
||
static void
|
||
make_name (char * s, char * p, int n)
|
||
{
|
||
static const char hex[] = "0123456789ABCDEF";
|
||
|
||
s[0] = p[0];
|
||
s[1] = p[1];
|
||
s[2] = p[2];
|
||
s[3] = hex[(n >> 12) & 0xF];
|
||
s[4] = hex[(n >> 8) & 0xF];
|
||
s[5] = hex[(n >> 4) & 0xF];
|
||
s[6] = hex[(n) & 0xF];
|
||
s[7] = 0;
|
||
}
|
||
|
||
static void
|
||
dump_literals (int isforce)
|
||
{
|
||
unsigned int i;
|
||
struct literal * p;
|
||
symbolS * brarsym = NULL;
|
||
|
||
if (poolsize == 0)
|
||
return;
|
||
|
||
/* Must we branch around the literal table? */
|
||
if (isforce)
|
||
{
|
||
char * output;
|
||
char brarname[8];
|
||
|
||
make_name (brarname, POOL_END_LABEL, poolnumber);
|
||
|
||
brarsym = symbol_make (brarname);
|
||
|
||
symbol_table_insert (brarsym);
|
||
|
||
output = frag_var (rs_machine_dependent,
|
||
md_relax_table[C (UNCD_JUMP, DISP32)].rlx_length,
|
||
md_relax_table[C (UNCD_JUMP, DISP12)].rlx_length,
|
||
C (UNCD_JUMP, 0), brarsym, 0, 0);
|
||
output[0] = INST_BYTE0 (MCORE_INST_BR); /* br .+xxx */
|
||
output[1] = INST_BYTE1 (MCORE_INST_BR);
|
||
}
|
||
|
||
/* Make sure that the section is sufficiently aligned and that
|
||
the literal table is aligned within it. */
|
||
record_alignment (now_seg, 2);
|
||
frag_align (2, 0, 0);
|
||
|
||
colon (S_GET_NAME (poolsym));
|
||
|
||
for (i = 0, p = litpool; i < poolsize; i++, p++)
|
||
emit_expr (& p->e, 4);
|
||
|
||
if (brarsym != NULL)
|
||
colon (S_GET_NAME (brarsym));
|
||
|
||
poolsize = 0;
|
||
}
|
||
|
||
static void
|
||
mcore_s_literals (int ignore ATTRIBUTE_UNUSED)
|
||
{
|
||
dump_literals (0);
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
/* Perform FUNC (ARG), and track number of bytes added to frag. */
|
||
|
||
static void
|
||
mcore_pool_count (void (*func) (int), int arg)
|
||
{
|
||
const fragS *curr_frag = frag_now;
|
||
offsetT added = -frag_now_fix_octets ();
|
||
|
||
(*func) (arg);
|
||
|
||
while (curr_frag != frag_now)
|
||
{
|
||
added += curr_frag->fr_fix;
|
||
curr_frag = curr_frag->fr_next;
|
||
}
|
||
|
||
added += frag_now_fix_octets ();
|
||
poolspan += added;
|
||
}
|
||
|
||
static void
|
||
check_literals (int kind, int offset)
|
||
{
|
||
poolspan += offset;
|
||
|
||
/* SPANCLOSE and SPANEXIT are smaller numbers than SPANPANIC.
|
||
SPANPANIC means that we must dump now.
|
||
kind == 0 is any old instruction.
|
||
kind > 0 means we just had a control transfer instruction.
|
||
kind == 1 means within a function
|
||
kind == 2 means we just left a function
|
||
|
||
The dump_literals (1) call inserts a branch around the table, so
|
||
we first look to see if its a situation where we won't have to
|
||
insert a branch (e.g., the previous instruction was an unconditional
|
||
branch).
|
||
|
||
SPANPANIC is the point where we must dump a single-entry pool.
|
||
it accounts for alignments and an inserted branch.
|
||
the 'poolsize*2' accounts for the scenario where we do:
|
||
lrw r1,lit1; lrw r2,lit2; lrw r3,lit3
|
||
Note that the 'lit2' reference is 2 bytes further along
|
||
but the literal it references will be 4 bytes further along,
|
||
so we must consider the poolsize into this equation.
|
||
This is slightly over-cautious, but guarantees that we won't
|
||
panic because a relocation is too distant. */
|
||
|
||
if (poolspan > SPANCLOSE && kind > 0)
|
||
dump_literals (0);
|
||
else if (poolspan > SPANEXIT && kind > 1)
|
||
dump_literals (0);
|
||
else if (poolspan >= (SPANPANIC - poolsize * 2))
|
||
dump_literals (1);
|
||
}
|
||
|
||
static void
|
||
mcore_cons (int nbytes)
|
||
{
|
||
if (now_seg == text_section)
|
||
mcore_pool_count (cons, nbytes);
|
||
else
|
||
cons (nbytes);
|
||
|
||
/* In theory we ought to call check_literals (2,0) here in case
|
||
we need to dump the literal table. We cannot do this however,
|
||
as the directives that we are intercepting may be being used
|
||
to build a switch table, and we must not interfere with its
|
||
contents. Instead we cross our fingers and pray... */
|
||
}
|
||
|
||
static void
|
||
mcore_float_cons (int float_type)
|
||
{
|
||
if (now_seg == text_section)
|
||
mcore_pool_count (float_cons, float_type);
|
||
else
|
||
float_cons (float_type);
|
||
|
||
/* See the comment in mcore_cons () about calling check_literals.
|
||
It is unlikely that a switch table will be constructed using
|
||
floating point values, but it is still likely that an indexed
|
||
table of floating point constants is being created by these
|
||
directives, so again we must not interfere with their placement. */
|
||
}
|
||
|
||
static void
|
||
mcore_stringer (int append_zero)
|
||
{
|
||
if (now_seg == text_section)
|
||
mcore_pool_count (stringer, append_zero);
|
||
else
|
||
stringer (append_zero);
|
||
|
||
/* We call check_literals here in case a large number of strings are
|
||
being placed into the text section with a sequence of stringer
|
||
directives. In theory we could be upsetting something if these
|
||
strings are actually in an indexed table instead of referenced by
|
||
individual labels. Let us hope that that never happens. */
|
||
check_literals (2, 0);
|
||
}
|
||
|
||
static void
|
||
mcore_fill (int unused)
|
||
{
|
||
if (now_seg == text_section)
|
||
mcore_pool_count (s_fill, unused);
|
||
else
|
||
s_fill (unused);
|
||
|
||
check_literals (2, 0);
|
||
}
|
||
|
||
/* Handle the section changing pseudo-ops. These call through to the
|
||
normal implementations, but they dump the literal pool first. */
|
||
|
||
static void
|
||
mcore_s_text (int ignore)
|
||
{
|
||
dump_literals (0);
|
||
|
||
#ifdef OBJ_ELF
|
||
obj_elf_text (ignore);
|
||
#else
|
||
s_text (ignore);
|
||
#endif
|
||
}
|
||
|
||
static void
|
||
mcore_s_data (int ignore)
|
||
{
|
||
dump_literals (0);
|
||
|
||
#ifdef OBJ_ELF
|
||
obj_elf_data (ignore);
|
||
#else
|
||
s_data (ignore);
|
||
#endif
|
||
}
|
||
|
||
static void
|
||
mcore_s_section (int ignore)
|
||
{
|
||
/* Scan forwards to find the name of the section. If the section
|
||
being switched to is ".line" then this is a DWARF1 debug section
|
||
which is arbitrarily placed inside generated code. In this case
|
||
do not dump the literal pool because it is a) inefficient and
|
||
b) would require the generation of extra code to jump around the
|
||
pool. */
|
||
char * ilp = input_line_pointer;
|
||
|
||
while (*ilp != 0 && ISSPACE (*ilp))
|
||
++ ilp;
|
||
|
||
if (strncmp (ilp, ".line", 5) == 0
|
||
&& (ISSPACE (ilp[5]) || *ilp == '\n' || *ilp == '\r'))
|
||
;
|
||
else
|
||
dump_literals (0);
|
||
|
||
#ifdef OBJ_ELF
|
||
obj_elf_section (ignore);
|
||
#endif
|
||
#ifdef OBJ_COFF
|
||
obj_coff_section (ignore);
|
||
#endif
|
||
}
|
||
|
||
static void
|
||
mcore_s_bss (int needs_align)
|
||
{
|
||
dump_literals (0);
|
||
|
||
s_lcomm_bytes (needs_align);
|
||
}
|
||
|
||
#ifdef OBJ_ELF
|
||
static void
|
||
mcore_s_comm (int needs_align)
|
||
{
|
||
dump_literals (0);
|
||
|
||
obj_elf_common (needs_align);
|
||
}
|
||
#endif
|
||
|
||
/* This table describes all the machine specific pseudo-ops the assembler
|
||
has to support. The fields are:
|
||
Pseudo-op name without dot
|
||
Function to call to execute this pseudo-op
|
||
Integer arg to pass to the function. */
|
||
const pseudo_typeS md_pseudo_table[] =
|
||
{
|
||
{ "export", s_globl, 0 },
|
||
{ "import", s_ignore, 0 },
|
||
{ "literals", mcore_s_literals, 0 },
|
||
{ "page", listing_eject, 0 },
|
||
|
||
/* The following are to intercept the placement of data into the text
|
||
section (eg addresses for a switch table), so that the space they
|
||
occupy can be taken into account when deciding whether or not to
|
||
dump the current literal pool.
|
||
XXX - currently we do not cope with the .space and .dcb.d directives. */
|
||
{ "ascii", mcore_stringer, 0 },
|
||
{ "asciz", mcore_stringer, 1 },
|
||
{ "byte", mcore_cons, 1 },
|
||
{ "dc", mcore_cons, 2 },
|
||
{ "dc.b", mcore_cons, 1 },
|
||
{ "dc.d", mcore_float_cons, 'd'},
|
||
{ "dc.l", mcore_cons, 4 },
|
||
{ "dc.s", mcore_float_cons, 'f'},
|
||
{ "dc.w", mcore_cons, 2 },
|
||
{ "dc.x", mcore_float_cons, 'x'},
|
||
{ "double", mcore_float_cons, 'd'},
|
||
{ "float", mcore_float_cons, 'f'},
|
||
{ "hword", mcore_cons, 2 },
|
||
{ "int", mcore_cons, 4 },
|
||
{ "long", mcore_cons, 4 },
|
||
{ "octa", mcore_cons, 16 },
|
||
{ "quad", mcore_cons, 8 },
|
||
{ "short", mcore_cons, 2 },
|
||
{ "single", mcore_float_cons, 'f'},
|
||
{ "string", mcore_stringer, 1 },
|
||
{ "word", mcore_cons, 2 },
|
||
{ "fill", mcore_fill, 0 },
|
||
|
||
/* Allow for the effect of section changes. */
|
||
{ "text", mcore_s_text, 0 },
|
||
{ "data", mcore_s_data, 0 },
|
||
{ "bss", mcore_s_bss, 1 },
|
||
#ifdef OBJ_ELF
|
||
{ "comm", mcore_s_comm, 0 },
|
||
#endif
|
||
{ "section", mcore_s_section, 0 },
|
||
{ "section.s", mcore_s_section, 0 },
|
||
{ "sect", mcore_s_section, 0 },
|
||
{ "sect.s", mcore_s_section, 0 },
|
||
|
||
{ 0, 0, 0 }
|
||
};
|
||
|
||
/* This function is called once, at assembler startup time. This should
|
||
set up all the tables, etc that the MD part of the assembler needs. */
|
||
|
||
void
|
||
md_begin (void)
|
||
{
|
||
const mcore_opcode_info * opcode;
|
||
char * prev_name = "";
|
||
|
||
opcode_hash_control = hash_new ();
|
||
|
||
/* Insert unique names into hash table. */
|
||
for (opcode = mcore_table; opcode->name; opcode ++)
|
||
{
|
||
if (! streq (prev_name, opcode->name))
|
||
{
|
||
prev_name = opcode->name;
|
||
hash_insert (opcode_hash_control, opcode->name, (char *) opcode);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Get a log2(val). */
|
||
|
||
static int
|
||
mylog2 (unsigned int val)
|
||
{
|
||
int log = -1;
|
||
|
||
while (val != 0)
|
||
{
|
||
log ++;
|
||
val >>= 1;
|
||
}
|
||
|
||
return log;
|
||
}
|
||
|
||
/* Try to parse a reg name. */
|
||
|
||
static char *
|
||
parse_reg (char * s, unsigned * reg)
|
||
{
|
||
/* Strip leading whitespace. */
|
||
while (ISSPACE (* s))
|
||
++ s;
|
||
|
||
if (TOLOWER (s[0]) == 'r')
|
||
{
|
||
if (s[1] == '1' && s[2] >= '0' && s[2] <= '5')
|
||
{
|
||
*reg = 10 + s[2] - '0';
|
||
return s + 3;
|
||
}
|
||
|
||
if (s[1] >= '0' && s[1] <= '9')
|
||
{
|
||
*reg = s[1] - '0';
|
||
return s + 2;
|
||
}
|
||
}
|
||
else if ( TOLOWER (s[0]) == 's'
|
||
&& TOLOWER (s[1]) == 'p'
|
||
&& ! ISALNUM (s[2]))
|
||
{
|
||
* reg = 0;
|
||
return s + 2;
|
||
}
|
||
|
||
as_bad (_("register expected, but saw '%.6s'"), s);
|
||
return s;
|
||
}
|
||
|
||
static struct Cregs
|
||
{
|
||
char * name;
|
||
unsigned int crnum;
|
||
}
|
||
cregs[] =
|
||
{
|
||
{ "psr", 0},
|
||
{ "vbr", 1},
|
||
{ "epsr", 2},
|
||
{ "fpsr", 3},
|
||
{ "epc", 4},
|
||
{ "fpc", 5},
|
||
{ "ss0", 6},
|
||
{ "ss1", 7},
|
||
{ "ss2", 8},
|
||
{ "ss3", 9},
|
||
{ "ss4", 10},
|
||
{ "gcr", 11},
|
||
{ "gsr", 12},
|
||
{ "", 0}
|
||
};
|
||
|
||
static char *
|
||
parse_creg (char * s, unsigned * reg)
|
||
{
|
||
int i;
|
||
|
||
/* Strip leading whitespace. */
|
||
while (ISSPACE (* s))
|
||
++s;
|
||
|
||
if ((TOLOWER (s[0]) == 'c' && TOLOWER (s[1]) == 'r'))
|
||
{
|
||
if (s[2] == '3' && s[3] >= '0' && s[3] <= '1')
|
||
{
|
||
*reg = 30 + s[3] - '0';
|
||
return s + 4;
|
||
}
|
||
|
||
if (s[2] == '2' && s[3] >= '0' && s[3] <= '9')
|
||
{
|
||
*reg = 20 + s[3] - '0';
|
||
return s + 4;
|
||
}
|
||
|
||
if (s[2] == '1' && s[3] >= '0' && s[3] <= '9')
|
||
{
|
||
*reg = 10 + s[3] - '0';
|
||
return s + 4;
|
||
}
|
||
|
||
if (s[2] >= '0' && s[2] <= '9')
|
||
{
|
||
*reg = s[2] - '0';
|
||
return s + 3;
|
||
}
|
||
}
|
||
|
||
/* Look at alternate creg names before giving error. */
|
||
for (i = 0; cregs[i].name[0] != '\0'; i++)
|
||
{
|
||
char buf [10];
|
||
int length;
|
||
int j;
|
||
|
||
length = strlen (cregs[i].name);
|
||
|
||
for (j = 0; j < length; j++)
|
||
buf[j] = TOLOWER (s[j]);
|
||
|
||
if (strncmp (cregs[i].name, buf, length) == 0)
|
||
{
|
||
*reg = cregs[i].crnum;
|
||
return s + length;
|
||
}
|
||
}
|
||
|
||
as_bad (_("control register expected, but saw '%.6s'"), s);
|
||
|
||
return s;
|
||
}
|
||
|
||
static char *
|
||
parse_psrmod (char * s, unsigned * reg)
|
||
{
|
||
int i;
|
||
char buf[10];
|
||
static struct psrmods
|
||
{
|
||
char * name;
|
||
unsigned int value;
|
||
}
|
||
psrmods[] =
|
||
{
|
||
{ "ie", 1 },
|
||
{ "fe", 2 },
|
||
{ "ee", 4 },
|
||
{ "af", 8 } /* Really 0 and non-combinable. */
|
||
};
|
||
|
||
for (i = 0; i < 2; i++)
|
||
buf[i] = TOLOWER (s[i]);
|
||
|
||
for (i = sizeof (psrmods) / sizeof (psrmods[0]); i--;)
|
||
{
|
||
if (! strncmp (psrmods[i].name, buf, 2))
|
||
{
|
||
* reg = psrmods[i].value;
|
||
|
||
return s + 2;
|
||
}
|
||
}
|
||
|
||
as_bad (_("bad/missing psr specifier"));
|
||
|
||
* reg = 0;
|
||
|
||
return s;
|
||
}
|
||
|
||
static char *
|
||
parse_exp (char * s, expressionS * e)
|
||
{
|
||
char * save;
|
||
char * new;
|
||
|
||
/* Skip whitespace. */
|
||
while (ISSPACE (* s))
|
||
++ s;
|
||
|
||
save = input_line_pointer;
|
||
input_line_pointer = s;
|
||
|
||
expression (e);
|
||
|
||
if (e->X_op == O_absent)
|
||
as_bad (_("missing operand"));
|
||
|
||
new = input_line_pointer;
|
||
input_line_pointer = save;
|
||
|
||
return new;
|
||
}
|
||
|
||
static int
|
||
enter_literal (expressionS * e, int ispcrel)
|
||
{
|
||
unsigned int i;
|
||
struct literal * p;
|
||
|
||
if (poolsize >= MAX_POOL_SIZE - 2)
|
||
/* The literal pool is as full as we can handle. We have
|
||
to be 2 entries shy of the 1024/4=256 entries because we
|
||
have to allow for the branch (2 bytes) and the alignment
|
||
(2 bytes before the first insn referencing the pool and
|
||
2 bytes before the pool itself) == 6 bytes, rounds up
|
||
to 2 entries. */
|
||
dump_literals (1);
|
||
|
||
if (poolsize == 0)
|
||
{
|
||
/* Create new literal pool. */
|
||
if (++ poolnumber > 0xFFFF)
|
||
as_fatal (_("more than 65K literal pools"));
|
||
|
||
make_name (poolname, POOL_START_LABEL, poolnumber);
|
||
poolsym = symbol_make (poolname);
|
||
symbol_table_insert (poolsym);
|
||
poolspan = 0;
|
||
}
|
||
|
||
/* Search pool for value so we don't have duplicates. */
|
||
for (p = litpool, i = 0; i < poolsize; i++, p++)
|
||
{
|
||
if (e->X_op == p->e.X_op
|
||
&& e->X_add_symbol == p->e.X_add_symbol
|
||
&& e->X_add_number == p->e.X_add_number
|
||
&& ispcrel == p->ispcrel)
|
||
{
|
||
p->refcnt ++;
|
||
return i;
|
||
}
|
||
}
|
||
|
||
p->refcnt = 1;
|
||
p->ispcrel = ispcrel;
|
||
p->e = * e;
|
||
|
||
poolsize ++;
|
||
|
||
return i;
|
||
}
|
||
|
||
/* Parse a literal specification. -- either new or old syntax.
|
||
old syntax: the user supplies the label and places the literal.
|
||
new syntax: we put it into the literal pool. */
|
||
|
||
static char *
|
||
parse_rt (char * s,
|
||
char ** outputp,
|
||
int ispcrel,
|
||
expressionS * ep)
|
||
{
|
||
expressionS e;
|
||
int n;
|
||
|
||
if (ep)
|
||
/* Indicate nothing there. */
|
||
ep->X_op = O_absent;
|
||
|
||
if (*s == '[')
|
||
{
|
||
s = parse_exp (s + 1, & e);
|
||
|
||
if (*s == ']')
|
||
s++;
|
||
else
|
||
as_bad (_("missing ']'"));
|
||
}
|
||
else
|
||
{
|
||
s = parse_exp (s, & e);
|
||
|
||
n = enter_literal (& e, ispcrel);
|
||
|
||
if (ep)
|
||
*ep = e;
|
||
|
||
/* Create a reference to pool entry. */
|
||
e.X_op = O_symbol;
|
||
e.X_add_symbol = poolsym;
|
||
e.X_add_number = n << 2;
|
||
}
|
||
|
||
* outputp = frag_more (2);
|
||
|
||
fix_new_exp (frag_now, (*outputp) - frag_now->fr_literal, 2, & e, 1,
|
||
BFD_RELOC_MCORE_PCREL_IMM8BY4);
|
||
|
||
return s;
|
||
}
|
||
|
||
static char *
|
||
parse_imm (char * s,
|
||
unsigned * val,
|
||
unsigned min,
|
||
unsigned max)
|
||
{
|
||
char * new;
|
||
expressionS e;
|
||
|
||
new = parse_exp (s, & e);
|
||
|
||
if (e.X_op == O_absent)
|
||
; /* An error message has already been emitted. */
|
||
else if (e.X_op != O_constant)
|
||
as_bad (_("operand must be a constant"));
|
||
else if ((addressT) e.X_add_number < min || (addressT) e.X_add_number > max)
|
||
as_bad (_("operand must be absolute in range %u..%u, not %ld"),
|
||
min, max, (long) e.X_add_number);
|
||
|
||
* val = e.X_add_number;
|
||
|
||
return new;
|
||
}
|
||
|
||
static char *
|
||
parse_mem (char * s,
|
||
unsigned * reg,
|
||
unsigned * off,
|
||
unsigned siz)
|
||
{
|
||
* off = 0;
|
||
|
||
while (ISSPACE (* s))
|
||
++ s;
|
||
|
||
if (* s == '(')
|
||
{
|
||
s = parse_reg (s + 1, reg);
|
||
|
||
while (ISSPACE (* s))
|
||
++ s;
|
||
|
||
if (* s == ',')
|
||
{
|
||
s = parse_imm (s + 1, off, 0, 63);
|
||
|
||
if (siz > 1)
|
||
{
|
||
if (siz > 2)
|
||
{
|
||
if (* off & 0x3)
|
||
as_bad (_("operand must be a multiple of 4"));
|
||
|
||
* off >>= 2;
|
||
}
|
||
else
|
||
{
|
||
if (* off & 0x1)
|
||
as_bad (_("operand must be a multiple of 2"));
|
||
|
||
* off >>= 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
while (ISSPACE (* s))
|
||
++ s;
|
||
|
||
if (* s == ')')
|
||
s ++;
|
||
}
|
||
else
|
||
as_bad (_("base register expected"));
|
||
|
||
return s;
|
||
}
|
||
|
||
/* This is the guts of the machine-dependent assembler. STR points to a
|
||
machine dependent instruction. This function is supposed to emit
|
||
the frags/bytes it assembles to. */
|
||
|
||
void
|
||
md_assemble (char * str)
|
||
{
|
||
char * op_start;
|
||
char * op_end;
|
||
mcore_opcode_info * opcode;
|
||
char * output;
|
||
int nlen = 0;
|
||
unsigned short inst;
|
||
unsigned reg;
|
||
unsigned off;
|
||
unsigned isize;
|
||
expressionS e;
|
||
char name[20];
|
||
|
||
/* Drop leading whitespace. */
|
||
while (ISSPACE (* str))
|
||
str ++;
|
||
|
||
/* Find the op code end. */
|
||
for (op_start = op_end = str;
|
||
nlen < 20 && !is_end_of_line [(unsigned char) *op_end] && *op_end != ' ';
|
||
op_end++)
|
||
{
|
||
name[nlen] = op_start[nlen];
|
||
nlen++;
|
||
}
|
||
|
||
name [nlen] = 0;
|
||
|
||
if (nlen == 0)
|
||
{
|
||
as_bad (_("can't find opcode "));
|
||
return;
|
||
}
|
||
|
||
opcode = (mcore_opcode_info *) hash_find (opcode_hash_control, name);
|
||
if (opcode == NULL)
|
||
{
|
||
as_bad (_("unknown opcode \"%s\""), name);
|
||
return;
|
||
}
|
||
|
||
inst = opcode->inst;
|
||
isize = 2;
|
||
|
||
switch (opcode->opclass)
|
||
{
|
||
case O0:
|
||
output = frag_more (2);
|
||
break;
|
||
|
||
case OT:
|
||
op_end = parse_imm (op_end + 1, & reg, 0, 3);
|
||
inst |= reg;
|
||
output = frag_more (2);
|
||
break;
|
||
|
||
case O1:
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
inst |= reg;
|
||
output = frag_more (2);
|
||
break;
|
||
|
||
case JMP:
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
inst |= reg;
|
||
output = frag_more (2);
|
||
/* In a sifilter mode, we emit this insn 2 times,
|
||
fixes problem of an interrupt during a jmp.. */
|
||
if (sifilter_mode)
|
||
{
|
||
output[0] = INST_BYTE0 (inst);
|
||
output[1] = INST_BYTE1 (inst);
|
||
output = frag_more (2);
|
||
}
|
||
break;
|
||
|
||
case JSR:
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
|
||
if (reg == 15)
|
||
as_bad (_("invalid register: r15 illegal"));
|
||
|
||
inst |= reg;
|
||
output = frag_more (2);
|
||
|
||
if (sifilter_mode)
|
||
{
|
||
/* Replace with: bsr .+2 ; addi r15,6; jmp rx ; jmp rx. */
|
||
inst = MCORE_INST_BSR; /* With 0 displacement. */
|
||
output[0] = INST_BYTE0 (inst);
|
||
output[1] = INST_BYTE1 (inst);
|
||
|
||
output = frag_more (2);
|
||
inst = MCORE_INST_ADDI;
|
||
inst |= 15; /* addi r15,6 */
|
||
inst |= (6 - 1) << 4; /* Over the jmp's. */
|
||
output[0] = INST_BYTE0 (inst);
|
||
output[1] = INST_BYTE1 (inst);
|
||
|
||
output = frag_more (2);
|
||
inst = MCORE_INST_JMP | reg;
|
||
output[0] = INST_BYTE0 (inst);
|
||
output[1] = INST_BYTE1 (inst);
|
||
|
||
/* 2nd emitted in fallthrough. */
|
||
output = frag_more (2);
|
||
}
|
||
break;
|
||
|
||
case OC:
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
inst |= reg;
|
||
|
||
/* Skip whitespace. */
|
||
while (ISSPACE (* op_end))
|
||
++ op_end;
|
||
|
||
if (*op_end == ',')
|
||
{
|
||
op_end = parse_creg (op_end + 1, & reg);
|
||
inst |= reg << 4;
|
||
}
|
||
|
||
output = frag_more (2);
|
||
break;
|
||
|
||
case MULSH:
|
||
if (cpu == M210)
|
||
{
|
||
as_bad (_("M340 specific opcode used when assembling for M210"));
|
||
break;
|
||
}
|
||
/* drop through... */
|
||
case O2:
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
inst |= reg;
|
||
|
||
/* Skip whitespace. */
|
||
while (ISSPACE (* op_end))
|
||
++ op_end;
|
||
|
||
if (* op_end == ',')
|
||
{
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
inst |= reg << 4;
|
||
}
|
||
else
|
||
as_bad (_("second operand missing"));
|
||
|
||
output = frag_more (2);
|
||
break;
|
||
|
||
case X1:
|
||
/* Handle both syntax-> xtrb- r1,rx OR xtrb- rx. */
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
|
||
/* Skip whitespace. */
|
||
while (ISSPACE (* op_end))
|
||
++ op_end;
|
||
|
||
if (* op_end == ',') /* xtrb- r1,rx. */
|
||
{
|
||
if (reg != 1)
|
||
as_bad (_("destination register must be r1"));
|
||
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
}
|
||
|
||
inst |= reg;
|
||
output = frag_more (2);
|
||
break;
|
||
|
||
case O1R1: /* div- rx,r1. */
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
inst |= reg;
|
||
|
||
/* Skip whitespace. */
|
||
while (ISSPACE (* op_end))
|
||
++ op_end;
|
||
|
||
if (* op_end == ',')
|
||
{
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
if (reg != 1)
|
||
as_bad (_("source register must be r1"));
|
||
}
|
||
else
|
||
as_bad (_("second operand missing"));
|
||
|
||
output = frag_more (2);
|
||
break;
|
||
|
||
case OI:
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
inst |= reg;
|
||
|
||
/* Skip whitespace. */
|
||
while (ISSPACE (* op_end))
|
||
++ op_end;
|
||
|
||
if (* op_end == ',')
|
||
{
|
||
op_end = parse_imm (op_end + 1, & reg, 1, 32);
|
||
inst |= (reg - 1) << 4;
|
||
}
|
||
else
|
||
as_bad (_("second operand missing"));
|
||
|
||
output = frag_more (2);
|
||
break;
|
||
|
||
case OB:
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
inst |= reg;
|
||
|
||
/* Skip whitespace. */
|
||
while (ISSPACE (* op_end))
|
||
++ op_end;
|
||
|
||
if (* op_end == ',')
|
||
{
|
||
op_end = parse_imm (op_end + 1, & reg, 0, 31);
|
||
inst |= reg << 4;
|
||
}
|
||
else
|
||
as_bad (_("second operand missing"));
|
||
|
||
output = frag_more (2);
|
||
break;
|
||
|
||
case OB2:
|
||
/* Like OB, but arg is 2^n instead of n. */
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
inst |= reg;
|
||
|
||
/* Skip whitespace. */
|
||
while (ISSPACE (* op_end))
|
||
++ op_end;
|
||
|
||
if (* op_end == ',')
|
||
{
|
||
op_end = parse_imm (op_end + 1, & reg, 1, 1 << 31);
|
||
/* Further restrict the immediate to a power of two. */
|
||
if ((reg & (reg - 1)) == 0)
|
||
reg = mylog2 (reg);
|
||
else
|
||
{
|
||
reg = 0;
|
||
as_bad (_("immediate is not a power of two"));
|
||
}
|
||
inst |= (reg) << 4;
|
||
}
|
||
else
|
||
as_bad (_("second operand missing"));
|
||
|
||
output = frag_more (2);
|
||
break;
|
||
|
||
case OBRa: /* Specific for bgeni: imm of 0->6 translate to movi. */
|
||
case OBRb:
|
||
case OBRc:
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
inst |= reg;
|
||
|
||
/* Skip whitespace. */
|
||
while (ISSPACE (* op_end))
|
||
++ op_end;
|
||
|
||
if (* op_end == ',')
|
||
{
|
||
op_end = parse_imm (op_end + 1, & reg, 0, 31);
|
||
/* Immediate values of 0 -> 6 translate to movi. */
|
||
if (reg <= 6)
|
||
{
|
||
inst = (inst & 0xF) | MCORE_INST_BGENI_ALT;
|
||
reg = 0x1 << reg;
|
||
as_warn (_("translating bgeni to movi"));
|
||
}
|
||
inst &= ~ 0x01f0;
|
||
inst |= reg << 4;
|
||
}
|
||
else
|
||
as_bad (_("second operand missing"));
|
||
|
||
output = frag_more (2);
|
||
break;
|
||
|
||
case OBR2: /* Like OBR, but arg is 2^n instead of n. */
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
inst |= reg;
|
||
|
||
/* Skip whitespace. */
|
||
while (ISSPACE (* op_end))
|
||
++ op_end;
|
||
|
||
if (* op_end == ',')
|
||
{
|
||
op_end = parse_imm (op_end + 1, & reg, 1, 1 << 31);
|
||
|
||
/* Further restrict the immediate to a power of two. */
|
||
if ((reg & (reg - 1)) == 0)
|
||
reg = mylog2 (reg);
|
||
else
|
||
{
|
||
reg = 0;
|
||
as_bad (_("immediate is not a power of two"));
|
||
}
|
||
|
||
/* Immediate values of 0 -> 6 translate to movi. */
|
||
if (reg <= 6)
|
||
{
|
||
inst = (inst & 0xF) | MCORE_INST_BGENI_ALT;
|
||
reg = 0x1 << reg;
|
||
as_warn (_("translating mgeni to movi"));
|
||
}
|
||
|
||
inst |= reg << 4;
|
||
}
|
||
else
|
||
as_bad (_("second operand missing"));
|
||
|
||
output = frag_more (2);
|
||
break;
|
||
|
||
case OMa: /* Specific for bmaski: imm 1->7 translate to movi. */
|
||
case OMb:
|
||
case OMc:
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
inst |= reg;
|
||
|
||
/* Skip whitespace. */
|
||
while (ISSPACE (* op_end))
|
||
++ op_end;
|
||
|
||
if (* op_end == ',')
|
||
{
|
||
op_end = parse_imm (op_end + 1, & reg, 1, 32);
|
||
|
||
/* Immediate values of 1 -> 7 translate to movi. */
|
||
if (reg <= 7)
|
||
{
|
||
inst = (inst & 0xF) | MCORE_INST_BMASKI_ALT;
|
||
reg = (0x1 << reg) - 1;
|
||
inst |= reg << 4;
|
||
|
||
as_warn (_("translating bmaski to movi"));
|
||
}
|
||
else
|
||
{
|
||
inst &= ~ 0x01F0;
|
||
inst |= (reg & 0x1F) << 4;
|
||
}
|
||
}
|
||
else
|
||
as_bad (_("second operand missing"));
|
||
|
||
output = frag_more (2);
|
||
break;
|
||
|
||
case SI:
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
inst |= reg;
|
||
|
||
/* Skip whitespace. */
|
||
while (ISSPACE (* op_end))
|
||
++ op_end;
|
||
|
||
if (* op_end == ',')
|
||
{
|
||
op_end = parse_imm (op_end + 1, & reg, 1, 31);
|
||
inst |= reg << 4;
|
||
}
|
||
else
|
||
as_bad (_("second operand missing"));
|
||
|
||
output = frag_more (2);
|
||
break;
|
||
|
||
case I7:
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
inst |= reg;
|
||
|
||
/* Skip whitespace. */
|
||
while (ISSPACE (* op_end))
|
||
++ op_end;
|
||
|
||
if (* op_end == ',')
|
||
{
|
||
op_end = parse_imm (op_end + 1, & reg, 0, 0x7F);
|
||
inst |= reg << 4;
|
||
}
|
||
else
|
||
as_bad (_("second operand missing"));
|
||
|
||
output = frag_more (2);
|
||
break;
|
||
|
||
case LS:
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
inst |= reg << 8;
|
||
|
||
/* Skip whitespace. */
|
||
while (ISSPACE (* op_end))
|
||
++ op_end;
|
||
|
||
if (* op_end == ',')
|
||
{
|
||
int size;
|
||
|
||
if ((inst & 0x6000) == 0)
|
||
size = 4;
|
||
else if ((inst & 0x6000) == 0x4000)
|
||
size = 2;
|
||
else if ((inst & 0x6000) == 0x2000)
|
||
size = 1;
|
||
else
|
||
abort ();
|
||
|
||
op_end = parse_mem (op_end + 1, & reg, & off, size);
|
||
|
||
if (off > 16)
|
||
as_bad (_("displacement too large (%d)"), off);
|
||
else
|
||
inst |= (reg) | (off << 4);
|
||
}
|
||
else
|
||
as_bad (_("second operand missing"));
|
||
|
||
output = frag_more (2);
|
||
break;
|
||
|
||
case LR:
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
|
||
if (reg == 0 || reg == 15)
|
||
as_bad (_("Invalid register: r0 and r15 illegal"));
|
||
|
||
inst |= (reg << 8);
|
||
|
||
/* Skip whitespace. */
|
||
while (ISSPACE (* op_end))
|
||
++ op_end;
|
||
|
||
if (* op_end == ',')
|
||
{
|
||
/* parse_rt calls frag_more() for us. */
|
||
input_line_pointer = parse_rt (op_end + 1, & output, 0, 0);
|
||
op_end = input_line_pointer;
|
||
}
|
||
else
|
||
{
|
||
as_bad (_("second operand missing"));
|
||
output = frag_more (2); /* save its space */
|
||
}
|
||
break;
|
||
|
||
case LJ:
|
||
input_line_pointer = parse_rt (op_end + 1, & output, 1, 0);
|
||
/* parse_rt() calls frag_more() for us. */
|
||
op_end = input_line_pointer;
|
||
break;
|
||
|
||
case RM:
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
|
||
if (reg == 0 || reg == 15)
|
||
as_bad (_("bad starting register: r0 and r15 invalid"));
|
||
|
||
inst |= reg;
|
||
|
||
/* Skip whitespace. */
|
||
while (ISSPACE (* op_end))
|
||
++ op_end;
|
||
|
||
if (* op_end == '-')
|
||
{
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
|
||
if (reg != 15)
|
||
as_bad (_("ending register must be r15"));
|
||
|
||
/* Skip whitespace. */
|
||
while (ISSPACE (* op_end))
|
||
++ op_end;
|
||
}
|
||
|
||
if (* op_end == ',')
|
||
{
|
||
op_end ++;
|
||
|
||
/* Skip whitespace. */
|
||
while (ISSPACE (* op_end))
|
||
++ op_end;
|
||
|
||
if (* op_end == '(')
|
||
{
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
|
||
if (reg != 0)
|
||
as_bad (_("bad base register: must be r0"));
|
||
|
||
if (* op_end == ')')
|
||
op_end ++;
|
||
}
|
||
else
|
||
as_bad (_("base register expected"));
|
||
}
|
||
else
|
||
as_bad (_("second operand missing"));
|
||
|
||
output = frag_more (2);
|
||
break;
|
||
|
||
case RQ:
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
|
||
if (reg != 4)
|
||
as_fatal (_("first register must be r4"));
|
||
|
||
/* Skip whitespace. */
|
||
while (ISSPACE (* op_end))
|
||
++ op_end;
|
||
|
||
if (* op_end == '-')
|
||
{
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
|
||
if (reg != 7)
|
||
as_fatal (_("last register must be r7"));
|
||
|
||
/* Skip whitespace. */
|
||
while (ISSPACE (* op_end))
|
||
++ op_end;
|
||
|
||
if (* op_end == ',')
|
||
{
|
||
op_end ++;
|
||
|
||
/* Skip whitespace. */
|
||
while (ISSPACE (* op_end))
|
||
++ op_end;
|
||
|
||
if (* op_end == '(')
|
||
{
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
|
||
if (reg >= 4 && reg <= 7)
|
||
as_fatal ("base register cannot be r4, r5, r6, or r7");
|
||
|
||
inst |= reg;
|
||
|
||
/* Skip whitespace. */
|
||
while (ISSPACE (* op_end))
|
||
++ op_end;
|
||
|
||
if (* op_end == ')')
|
||
op_end ++;
|
||
}
|
||
else
|
||
as_bad (_("base register expected"));
|
||
}
|
||
else
|
||
as_bad (_("second operand missing"));
|
||
}
|
||
else
|
||
as_bad (_("reg-reg expected"));
|
||
|
||
output = frag_more (2);
|
||
break;
|
||
|
||
case BR:
|
||
input_line_pointer = parse_exp (op_end + 1, & e);
|
||
op_end = input_line_pointer;
|
||
|
||
output = frag_more (2);
|
||
|
||
fix_new_exp (frag_now, output-frag_now->fr_literal,
|
||
2, & e, 1, BFD_RELOC_MCORE_PCREL_IMM11BY2);
|
||
break;
|
||
|
||
case BL:
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
inst |= reg << 4;
|
||
|
||
/* Skip whitespace. */
|
||
while (ISSPACE (* op_end))
|
||
++ op_end;
|
||
|
||
if (* op_end == ',')
|
||
{
|
||
op_end = parse_exp (op_end + 1, & e);
|
||
output = frag_more (2);
|
||
|
||
fix_new_exp (frag_now, output-frag_now->fr_literal,
|
||
2, & e, 1, BFD_RELOC_MCORE_PCREL_IMM4BY2);
|
||
}
|
||
else
|
||
{
|
||
as_bad (_("second operand missing"));
|
||
output = frag_more (2);
|
||
}
|
||
break;
|
||
|
||
case JC:
|
||
input_line_pointer = parse_exp (op_end + 1, & e);
|
||
op_end = input_line_pointer;
|
||
|
||
output = frag_var (rs_machine_dependent,
|
||
md_relax_table[C (COND_JUMP, DISP32)].rlx_length,
|
||
md_relax_table[C (COND_JUMP, DISP12)].rlx_length,
|
||
C (COND_JUMP, 0), e.X_add_symbol, e.X_add_number, 0);
|
||
isize = C32_LEN;
|
||
break;
|
||
|
||
case JU:
|
||
input_line_pointer = parse_exp (op_end + 1, & e);
|
||
op_end = input_line_pointer;
|
||
|
||
output = frag_var (rs_machine_dependent,
|
||
md_relax_table[C (UNCD_JUMP, DISP32)].rlx_length,
|
||
md_relax_table[C (UNCD_JUMP, DISP12)].rlx_length,
|
||
C (UNCD_JUMP, 0), e.X_add_symbol, e.X_add_number, 0);
|
||
isize = U32_LEN;
|
||
break;
|
||
|
||
case JL:
|
||
inst = MCORE_INST_JSRI; /* jsri */
|
||
input_line_pointer = parse_rt (op_end + 1, & output, 1, & e);
|
||
/* parse_rt() calls frag_more for us. */
|
||
op_end = input_line_pointer;
|
||
|
||
/* Only do this if we know how to do it ... */
|
||
if (e.X_op != O_absent && do_jsri2bsr)
|
||
{
|
||
/* Look at adding the R_PCREL_JSRIMM11BY2. */
|
||
fix_new_exp (frag_now, output-frag_now->fr_literal,
|
||
2, & e, 1, BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2);
|
||
}
|
||
break;
|
||
|
||
case RSI:
|
||
/* SI, but imm becomes 32-imm. */
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
inst |= reg;
|
||
|
||
/* Skip whitespace. */
|
||
while (ISSPACE (* op_end))
|
||
++ op_end;
|
||
|
||
if (* op_end == ',')
|
||
{
|
||
op_end = parse_imm (op_end + 1, & reg, 1, 31);
|
||
|
||
reg = 32 - reg;
|
||
inst |= reg << 4;
|
||
}
|
||
else
|
||
as_bad (_("second operand missing"));
|
||
|
||
output = frag_more (2);
|
||
break;
|
||
|
||
case DO21: /* O2, dup rd, lit must be 1 */
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
inst |= reg;
|
||
inst |= reg << 4;
|
||
|
||
/* Skip whitespace. */
|
||
while (ISSPACE (* op_end))
|
||
++ op_end;
|
||
|
||
if (* op_end == ',')
|
||
{
|
||
op_end = parse_imm (op_end + 1, & reg, 1, 31);
|
||
|
||
if (reg != 1)
|
||
as_bad (_("second operand must be 1"));
|
||
}
|
||
else
|
||
as_bad (_("second operand missing"));
|
||
|
||
output = frag_more (2);
|
||
break;
|
||
|
||
case SIa:
|
||
op_end = parse_reg (op_end + 1, & reg);
|
||
inst |= reg;
|
||
|
||
/* Skip whitespace. */
|
||
while (ISSPACE (* op_end))
|
||
++ op_end;
|
||
|
||
if (* op_end == ',')
|
||
{
|
||
op_end = parse_imm (op_end + 1, & reg, 1, 31);
|
||
|
||
if (reg == 0)
|
||
as_bad (_("zero used as immediate value"));
|
||
|
||
inst |= reg << 4;
|
||
}
|
||
else
|
||
as_bad (_("second operand missing"));
|
||
|
||
output = frag_more (2);
|
||
break;
|
||
|
||
case OPSR:
|
||
if (cpu == M210)
|
||
{
|
||
as_bad (_("M340 specific opcode used when assembling for M210"));
|
||
break;
|
||
}
|
||
|
||
op_end = parse_psrmod (op_end + 1, & reg);
|
||
|
||
/* Look for further selectors. */
|
||
while (* op_end == ',')
|
||
{
|
||
unsigned value;
|
||
|
||
op_end = parse_psrmod (op_end + 1, & value);
|
||
|
||
if (value & reg)
|
||
as_bad (_("duplicated psr bit specifier"));
|
||
|
||
reg |= value;
|
||
}
|
||
|
||
if (reg > 8)
|
||
as_bad (_("`af' must appear alone"));
|
||
|
||
inst |= (reg & 0x7);
|
||
output = frag_more (2);
|
||
break;
|
||
|
||
default:
|
||
as_bad (_("unimplemented opcode \"%s\""), name);
|
||
}
|
||
|
||
/* Drop whitespace after all the operands have been parsed. */
|
||
while (ISSPACE (* op_end))
|
||
op_end ++;
|
||
|
||
/* Give warning message if the insn has more operands than required. */
|
||
if (strcmp (op_end, opcode->name) && strcmp (op_end, ""))
|
||
as_warn (_("ignoring operands: %s "), op_end);
|
||
|
||
output[0] = INST_BYTE0 (inst);
|
||
output[1] = INST_BYTE1 (inst);
|
||
|
||
check_literals (opcode->transfer, isize);
|
||
}
|
||
|
||
symbolS *
|
||
md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
void
|
||
md_mcore_end (void)
|
||
{
|
||
dump_literals (0);
|
||
subseg_set (text_section, 0);
|
||
}
|
||
|
||
/* Various routines to kill one day. */
|
||
/* Equal to MAX_PRECISION in atof-ieee.c. */
|
||
#define MAX_LITTLENUMS 6
|
||
|
||
/* Turn a string in input_line_pointer into a floating point constant of type
|
||
type, and store the appropriate bytes in *litP. The number of LITTLENUMS
|
||
emitted is stored in *sizeP. An error message is returned, or NULL on OK. */
|
||
|
||
char *
|
||
md_atof (int type, char * litP, int * sizeP)
|
||
{
|
||
int prec;
|
||
LITTLENUM_TYPE words[MAX_LITTLENUMS];
|
||
int i;
|
||
char * t;
|
||
|
||
switch (type)
|
||
{
|
||
case 'f':
|
||
case 'F':
|
||
case 's':
|
||
case 'S':
|
||
prec = 2;
|
||
break;
|
||
|
||
case 'd':
|
||
case 'D':
|
||
case 'r':
|
||
case 'R':
|
||
prec = 4;
|
||
break;
|
||
|
||
case 'x':
|
||
case 'X':
|
||
prec = 6;
|
||
break;
|
||
|
||
case 'p':
|
||
case 'P':
|
||
prec = 6;
|
||
break;
|
||
|
||
default:
|
||
*sizeP = 0;
|
||
return _("Bad call to MD_NTOF()");
|
||
}
|
||
|
||
t = atof_ieee (input_line_pointer, type, words);
|
||
|
||
if (t)
|
||
input_line_pointer = t;
|
||
|
||
*sizeP = prec * sizeof (LITTLENUM_TYPE);
|
||
|
||
if (! target_big_endian)
|
||
{
|
||
for (i = prec - 1; i >= 0; i--)
|
||
{
|
||
md_number_to_chars (litP, (valueT) words[i],
|
||
sizeof (LITTLENUM_TYPE));
|
||
litP += sizeof (LITTLENUM_TYPE);
|
||
}
|
||
}
|
||
else
|
||
for (i = 0; i < prec; i++)
|
||
{
|
||
md_number_to_chars (litP, (valueT) words[i],
|
||
sizeof (LITTLENUM_TYPE));
|
||
litP += sizeof (LITTLENUM_TYPE);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
const char * md_shortopts = "";
|
||
|
||
enum options
|
||
{
|
||
OPTION_JSRI2BSR_ON = OPTION_MD_BASE,
|
||
OPTION_JSRI2BSR_OFF,
|
||
OPTION_SIFILTER_ON,
|
||
OPTION_SIFILTER_OFF,
|
||
OPTION_CPU,
|
||
OPTION_EB,
|
||
OPTION_EL,
|
||
};
|
||
|
||
struct option md_longopts[] =
|
||
{
|
||
{ "no-jsri2bsr", no_argument, NULL, OPTION_JSRI2BSR_OFF},
|
||
{ "jsri2bsr", no_argument, NULL, OPTION_JSRI2BSR_ON},
|
||
{ "sifilter", no_argument, NULL, OPTION_SIFILTER_ON},
|
||
{ "no-sifilter", no_argument, NULL, OPTION_SIFILTER_OFF},
|
||
{ "cpu", required_argument, NULL, OPTION_CPU},
|
||
{ "EB", no_argument, NULL, OPTION_EB},
|
||
{ "EL", no_argument, NULL, OPTION_EL},
|
||
{ NULL, no_argument, NULL, 0}
|
||
};
|
||
|
||
size_t md_longopts_size = sizeof (md_longopts);
|
||
|
||
int
|
||
md_parse_option (int c, char * arg)
|
||
{
|
||
switch (c)
|
||
{
|
||
case OPTION_CPU:
|
||
if (streq (arg, "210"))
|
||
{
|
||
cpu = M210;
|
||
target_big_endian = 1;
|
||
}
|
||
else if (streq (arg, "340"))
|
||
cpu = M340;
|
||
else
|
||
as_warn (_("unrecognised cpu type '%s'"), arg);
|
||
break;
|
||
|
||
case OPTION_EB: target_big_endian = 1; break;
|
||
case OPTION_EL: target_big_endian = 0; cpu = M340; break;
|
||
case OPTION_JSRI2BSR_ON: do_jsri2bsr = 1; break;
|
||
case OPTION_JSRI2BSR_OFF: do_jsri2bsr = 0; break;
|
||
case OPTION_SIFILTER_ON: sifilter_mode = 1; break;
|
||
case OPTION_SIFILTER_OFF: sifilter_mode = 0; break;
|
||
default: return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
void
|
||
md_show_usage (FILE * stream)
|
||
{
|
||
fprintf (stream, _("\
|
||
MCORE specific options:\n\
|
||
-{no-}jsri2bsr {dis}able jsri to bsr transformation (def: dis)\n\
|
||
-{no-}sifilter {dis}able silicon filter behavior (def: dis)\n\
|
||
-cpu=[210|340] select CPU type\n\
|
||
-EB assemble for a big endian system (default)\n\
|
||
-EL assemble for a little endian system\n"));
|
||
}
|
||
|
||
int md_short_jump_size;
|
||
|
||
void
|
||
md_create_short_jump (char * ptr ATTRIBUTE_UNUSED,
|
||
addressT from_Nddr ATTRIBUTE_UNUSED,
|
||
addressT to_Nddr ATTRIBUTE_UNUSED,
|
||
fragS * frag ATTRIBUTE_UNUSED,
|
||
symbolS * to_symbol ATTRIBUTE_UNUSED)
|
||
{
|
||
as_fatal (_("failed sanity check: short_jump"));
|
||
}
|
||
|
||
void
|
||
md_create_long_jump (char * ptr ATTRIBUTE_UNUSED,
|
||
addressT from_Nddr ATTRIBUTE_UNUSED,
|
||
addressT to_Nddr ATTRIBUTE_UNUSED,
|
||
fragS * frag ATTRIBUTE_UNUSED,
|
||
symbolS * to_symbol ATTRIBUTE_UNUSED)
|
||
{
|
||
as_fatal (_("failed sanity check: long_jump"));
|
||
}
|
||
|
||
/* Called after relaxing, change the frags so they know how big they are. */
|
||
|
||
void
|
||
md_convert_frag (bfd * abfd ATTRIBUTE_UNUSED,
|
||
segT sec ATTRIBUTE_UNUSED,
|
||
fragS * fragP)
|
||
{
|
||
char *buffer;
|
||
int targ_addr = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
|
||
|
||
buffer = fragP->fr_fix + fragP->fr_literal;
|
||
|
||
switch (fragP->fr_subtype)
|
||
{
|
||
case C (COND_JUMP, DISP12):
|
||
case C (UNCD_JUMP, DISP12):
|
||
{
|
||
/* Get the address of the end of the instruction. */
|
||
int next_inst = fragP->fr_fix + fragP->fr_address + 2;
|
||
unsigned char t0;
|
||
int disp = targ_addr - next_inst;
|
||
|
||
if (disp & 1)
|
||
as_bad (_("odd displacement at %x"), next_inst - 2);
|
||
|
||
disp >>= 1;
|
||
|
||
if (! target_big_endian)
|
||
{
|
||
t0 = buffer[1] & 0xF8;
|
||
|
||
md_number_to_chars (buffer, disp, 2);
|
||
|
||
buffer[1] = (buffer[1] & 0x07) | t0;
|
||
}
|
||
else
|
||
{
|
||
t0 = buffer[0] & 0xF8;
|
||
|
||
md_number_to_chars (buffer, disp, 2);
|
||
|
||
buffer[0] = (buffer[0] & 0x07) | t0;
|
||
}
|
||
|
||
fragP->fr_fix += 2;
|
||
}
|
||
break;
|
||
|
||
case C (COND_JUMP, DISP32):
|
||
case C (COND_JUMP, UNDEF_WORD_DISP):
|
||
{
|
||
/* A conditional branch wont fit into 12 bits so:
|
||
b!cond 1f
|
||
jmpi 0f
|
||
.align 2
|
||
0: .long disp
|
||
1:
|
||
|
||
If the b!cond is 4 byte aligned, the literal which would
|
||
go at x+4 will also be aligned. */
|
||
int first_inst = fragP->fr_fix + fragP->fr_address;
|
||
int needpad = (first_inst & 3);
|
||
|
||
if (! target_big_endian)
|
||
buffer[1] ^= 0x08;
|
||
else
|
||
buffer[0] ^= 0x08; /* Toggle T/F bit. */
|
||
|
||
buffer[2] = INST_BYTE0 (MCORE_INST_JMPI); /* Build jmpi. */
|
||
buffer[3] = INST_BYTE1 (MCORE_INST_JMPI);
|
||
|
||
if (needpad)
|
||
{
|
||
if (! target_big_endian)
|
||
{
|
||
buffer[0] = 4; /* Branch over jmpi, pad, and ptr. */
|
||
buffer[2] = 1; /* Jmpi offset of 1 gets the pointer. */
|
||
}
|
||
else
|
||
{
|
||
buffer[1] = 4; /* Branch over jmpi, pad, and ptr. */
|
||
buffer[3] = 1; /* Jmpi offset of 1 gets the pointer. */
|
||
}
|
||
|
||
buffer[4] = 0; /* Alignment/pad. */
|
||
buffer[5] = 0;
|
||
buffer[6] = 0; /* Space for 32 bit address. */
|
||
buffer[7] = 0;
|
||
buffer[8] = 0;
|
||
buffer[9] = 0;
|
||
|
||
/* Make reloc for the long disp. */
|
||
fix_new (fragP, fragP->fr_fix + 6, 4,
|
||
fragP->fr_symbol, fragP->fr_offset, 0, BFD_RELOC_32);
|
||
|
||
fragP->fr_fix += C32_LEN;
|
||
}
|
||
else
|
||
{
|
||
/* See comment below about this given gas' limitations for
|
||
shrinking the fragment. '3' is the amount of code that
|
||
we inserted here, but '4' is right for the space we reserved
|
||
for this fragment. */
|
||
if (! target_big_endian)
|
||
{
|
||
buffer[0] = 3; /* Branch over jmpi, and ptr. */
|
||
buffer[2] = 0; /* Jmpi offset of 0 gets the pointer. */
|
||
}
|
||
else
|
||
{
|
||
buffer[1] = 3; /* Branch over jmpi, and ptr. */
|
||
buffer[3] = 0; /* Jmpi offset of 0 gets the pointer. */
|
||
}
|
||
|
||
buffer[4] = 0; /* Space for 32 bit address. */
|
||
buffer[5] = 0;
|
||
buffer[6] = 0;
|
||
buffer[7] = 0;
|
||
|
||
/* Make reloc for the long disp. */
|
||
fix_new (fragP, fragP->fr_fix + 4, 4,
|
||
fragP->fr_symbol, fragP->fr_offset, 0, BFD_RELOC_32);
|
||
fragP->fr_fix += C32_LEN;
|
||
|
||
/* Frag is actually shorter (see the other side of this ifdef)
|
||
but gas isn't prepared for that. We have to re-adjust
|
||
the branch displacement so that it goes beyond the
|
||
full length of the fragment, not just what we actually
|
||
filled in. */
|
||
if (! target_big_endian)
|
||
buffer[0] = 4; /* Jmpi, ptr, and the 'tail pad'. */
|
||
else
|
||
buffer[1] = 4; /* Jmpi, ptr, and the 'tail pad'. */
|
||
}
|
||
}
|
||
break;
|
||
|
||
case C (UNCD_JUMP, DISP32):
|
||
case C (UNCD_JUMP, UNDEF_WORD_DISP):
|
||
{
|
||
/* An unconditional branch will not fit in 12 bits, make code which
|
||
looks like:
|
||
jmpi 0f
|
||
.align 2
|
||
0: .long disp
|
||
we need a pad if "first_inst" is 4 byte aligned.
|
||
[because the natural literal place is x + 2]. */
|
||
int first_inst = fragP->fr_fix + fragP->fr_address;
|
||
int needpad = !(first_inst & 3);
|
||
|
||
buffer[0] = INST_BYTE0 (MCORE_INST_JMPI); /* Build jmpi. */
|
||
buffer[1] = INST_BYTE1 (MCORE_INST_JMPI);
|
||
|
||
if (needpad)
|
||
{
|
||
if (! target_big_endian)
|
||
buffer[0] = 1; /* Jmpi offset of 1 since padded. */
|
||
else
|
||
buffer[1] = 1; /* Jmpi offset of 1 since padded. */
|
||
buffer[2] = 0; /* Alignment. */
|
||
buffer[3] = 0;
|
||
buffer[4] = 0; /* Space for 32 bit address. */
|
||
buffer[5] = 0;
|
||
buffer[6] = 0;
|
||
buffer[7] = 0;
|
||
|
||
/* Make reloc for the long disp. */
|
||
fix_new (fragP, fragP->fr_fix + 4, 4,
|
||
fragP->fr_symbol, fragP->fr_offset, 0, BFD_RELOC_32);
|
||
|
||
fragP->fr_fix += U32_LEN;
|
||
}
|
||
else
|
||
{
|
||
if (! target_big_endian)
|
||
buffer[0] = 0; /* Jmpi offset of 0 if no pad. */
|
||
else
|
||
buffer[1] = 0; /* Jmpi offset of 0 if no pad. */
|
||
buffer[2] = 0; /* Space for 32 bit address. */
|
||
buffer[3] = 0;
|
||
buffer[4] = 0;
|
||
buffer[5] = 0;
|
||
|
||
/* Make reloc for the long disp. */
|
||
fix_new (fragP, fragP->fr_fix + 2, 4,
|
||
fragP->fr_symbol, fragP->fr_offset, 0, BFD_RELOC_32);
|
||
fragP->fr_fix += U32_LEN;
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Applies the desired value to the specified location.
|
||
Also sets up addends for 'rela' type relocations. */
|
||
|
||
void
|
||
md_apply_fix (fixS * fixP,
|
||
valueT * valP,
|
||
segT segment ATTRIBUTE_UNUSED)
|
||
{
|
||
char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
|
||
char * file = fixP->fx_file ? fixP->fx_file : _("unknown");
|
||
const char * symname;
|
||
/* Note: use offsetT because it is signed, valueT is unsigned. */
|
||
offsetT val = *valP;
|
||
|
||
symname = fixP->fx_addsy ? S_GET_NAME (fixP->fx_addsy) : _("<unknown>");
|
||
/* Save this for the addend in the relocation record. */
|
||
fixP->fx_addnumber = val;
|
||
|
||
if (fixP->fx_addsy != NULL)
|
||
{
|
||
#ifdef OBJ_ELF
|
||
/* For ELF we can just return and let the reloc that will be generated
|
||
take care of everything. For COFF we still have to insert 'val'
|
||
into the insn since the addend field will be ignored. */
|
||
return;
|
||
#endif
|
||
}
|
||
else
|
||
fixP->fx_done = 1;
|
||
|
||
switch (fixP->fx_r_type)
|
||
{
|
||
/* Second byte of 2 byte opcode. */
|
||
case BFD_RELOC_MCORE_PCREL_IMM11BY2:
|
||
if ((val & 1) != 0)
|
||
as_bad_where (file, fixP->fx_line,
|
||
_("odd distance branch (0x%lx bytes)"), (long) val);
|
||
val /= 2;
|
||
if (((val & ~0x3ff) != 0) && ((val | 0x3ff) != -1))
|
||
as_bad_where (file, fixP->fx_line,
|
||
_("pcrel for branch to %s too far (0x%lx)"),
|
||
symname, (long) val);
|
||
if (target_big_endian)
|
||
{
|
||
buf[0] |= ((val >> 8) & 0x7);
|
||
buf[1] |= (val & 0xff);
|
||
}
|
||
else
|
||
{
|
||
buf[1] |= ((val >> 8) & 0x7);
|
||
buf[0] |= (val & 0xff);
|
||
}
|
||
break;
|
||
|
||
/* Lower 8 bits of 2 byte opcode. */
|
||
case BFD_RELOC_MCORE_PCREL_IMM8BY4:
|
||
val += 3;
|
||
val /= 4;
|
||
if (val & ~0xff)
|
||
as_bad_where (file, fixP->fx_line,
|
||
_("pcrel for lrw/jmpi/jsri to %s too far (0x%lx)"),
|
||
symname, (long) val);
|
||
else if (! target_big_endian)
|
||
buf[0] |= (val & 0xff);
|
||
else
|
||
buf[1] |= (val & 0xff);
|
||
break;
|
||
|
||
/* Loopt instruction. */
|
||
case BFD_RELOC_MCORE_PCREL_IMM4BY2:
|
||
if ((val < -32) || (val > -2))
|
||
as_bad_where (file, fixP->fx_line,
|
||
_("pcrel for loopt too far (0x%lx)"), (long) val);
|
||
val /= 2;
|
||
if (! target_big_endian)
|
||
buf[0] |= (val & 0xf);
|
||
else
|
||
buf[1] |= (val & 0xf);
|
||
break;
|
||
|
||
case BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2:
|
||
/* Conditional linker map jsri to bsr. */
|
||
/* If its a local target and close enough, fix it.
|
||
NB: >= -2k for backwards bsr; < 2k for forwards... */
|
||
if (fixP->fx_addsy == 0 && val >= -2048 && val < 2048)
|
||
{
|
||
long nval = (val / 2) & 0x7ff;
|
||
nval |= MCORE_INST_BSR;
|
||
|
||
/* REPLACE the instruction, don't just modify it. */
|
||
buf[0] = INST_BYTE0 (nval);
|
||
buf[1] = INST_BYTE1 (nval);
|
||
}
|
||
else
|
||
fixP->fx_done = 0;
|
||
break;
|
||
|
||
case BFD_RELOC_MCORE_PCREL_32:
|
||
case BFD_RELOC_VTABLE_INHERIT:
|
||
case BFD_RELOC_VTABLE_ENTRY:
|
||
fixP->fx_done = 0;
|
||
break;
|
||
|
||
default:
|
||
if (fixP->fx_addsy != NULL)
|
||
{
|
||
/* If the fix is an absolute reloc based on a symbol's
|
||
address, then it cannot be resolved until the final link. */
|
||
fixP->fx_done = 0;
|
||
}
|
||
#ifdef OBJ_ELF
|
||
else
|
||
#endif
|
||
{
|
||
if (fixP->fx_size == 4)
|
||
;
|
||
else if (fixP->fx_size == 2 && val >= -32768 && val <= 32767)
|
||
;
|
||
else if (fixP->fx_size == 1 && val >= -256 && val <= 255)
|
||
;
|
||
else
|
||
abort ();
|
||
md_number_to_chars (buf, val, fixP->fx_size);
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
void
|
||
md_operand (expressionS * expressionP)
|
||
{
|
||
/* Ignore leading hash symbol, if poresent. */
|
||
if (* input_line_pointer == '#')
|
||
{
|
||
input_line_pointer ++;
|
||
expression (expressionP);
|
||
}
|
||
}
|
||
|
||
int md_long_jump_size;
|
||
|
||
/* Called just before address relaxation, return the length
|
||
by which a fragment must grow to reach it's destination. */
|
||
int
|
||
md_estimate_size_before_relax (fragS * fragP, segT segment_type)
|
||
{
|
||
switch (fragP->fr_subtype)
|
||
{
|
||
default:
|
||
abort ();
|
||
|
||
case C (UNCD_JUMP, UNDEF_DISP):
|
||
/* Used to be a branch to somewhere which was unknown. */
|
||
if (!fragP->fr_symbol)
|
||
fragP->fr_subtype = C (UNCD_JUMP, DISP12);
|
||
else if (S_GET_SEGMENT (fragP->fr_symbol) == segment_type)
|
||
fragP->fr_subtype = C (UNCD_JUMP, DISP12);
|
||
else
|
||
fragP->fr_subtype = C (UNCD_JUMP, UNDEF_WORD_DISP);
|
||
break;
|
||
|
||
case C (COND_JUMP, UNDEF_DISP):
|
||
/* Used to be a branch to somewhere which was unknown. */
|
||
if (fragP->fr_symbol
|
||
&& S_GET_SEGMENT (fragP->fr_symbol) == segment_type)
|
||
/* Got a symbol and it's defined in this segment, become byte
|
||
sized - maybe it will fix up */
|
||
fragP->fr_subtype = C (COND_JUMP, DISP12);
|
||
else if (fragP->fr_symbol)
|
||
/* Its got a segment, but its not ours, so it will always be long. */
|
||
fragP->fr_subtype = C (COND_JUMP, UNDEF_WORD_DISP);
|
||
else
|
||
/* We know the abs value. */
|
||
fragP->fr_subtype = C (COND_JUMP, DISP12);
|
||
break;
|
||
|
||
case C (UNCD_JUMP, DISP12):
|
||
case C (UNCD_JUMP, DISP32):
|
||
case C (UNCD_JUMP, UNDEF_WORD_DISP):
|
||
case C (COND_JUMP, DISP12):
|
||
case C (COND_JUMP, DISP32):
|
||
case C (COND_JUMP, UNDEF_WORD_DISP):
|
||
/* When relaxing a section for the second time, we don't need to
|
||
do anything besides return the current size. */
|
||
break;
|
||
}
|
||
|
||
return md_relax_table[fragP->fr_subtype].rlx_length;
|
||
}
|
||
|
||
/* Put number into target byte order. */
|
||
|
||
void
|
||
md_number_to_chars (char * ptr, valueT use, int nbytes)
|
||
{
|
||
if (! target_big_endian)
|
||
switch (nbytes)
|
||
{
|
||
case 4: ptr[3] = (use >> 24) & 0xff; /* Fall through. */
|
||
case 3: ptr[2] = (use >> 16) & 0xff; /* Fall through. */
|
||
case 2: ptr[1] = (use >> 8) & 0xff; /* Fall through. */
|
||
case 1: ptr[0] = (use >> 0) & 0xff; break;
|
||
default: abort ();
|
||
}
|
||
else
|
||
switch (nbytes)
|
||
{
|
||
case 4: *ptr++ = (use >> 24) & 0xff; /* Fall through. */
|
||
case 3: *ptr++ = (use >> 16) & 0xff; /* Fall through. */
|
||
case 2: *ptr++ = (use >> 8) & 0xff; /* Fall through. */
|
||
case 1: *ptr++ = (use >> 0) & 0xff; break;
|
||
default: abort ();
|
||
}
|
||
}
|
||
|
||
/* Round up a section size to the appropriate boundary. */
|
||
|
||
valueT
|
||
md_section_align (segT segment ATTRIBUTE_UNUSED,
|
||
valueT size)
|
||
{
|
||
/* Byte alignment is fine. */
|
||
return size;
|
||
}
|
||
|
||
/* The location from which a PC relative jump should be calculated,
|
||
given a PC relative reloc. */
|
||
|
||
long
|
||
md_pcrel_from_section (fixS * fixp, segT sec ATTRIBUTE_UNUSED)
|
||
{
|
||
#ifdef OBJ_ELF
|
||
/* If the symbol is undefined or defined in another section
|
||
we leave the add number alone for the linker to fix it later.
|
||
Only account for the PC pre-bump (which is 2 bytes on the MCore). */
|
||
if (fixp->fx_addsy != (symbolS *) NULL
|
||
&& (! S_IS_DEFINED (fixp->fx_addsy)
|
||
|| (S_GET_SEGMENT (fixp->fx_addsy) != sec)))
|
||
|
||
{
|
||
assert (fixp->fx_size == 2); /* must be an insn */
|
||
return fixp->fx_size;
|
||
}
|
||
#endif
|
||
|
||
/* The case where we are going to resolve things... */
|
||
return fixp->fx_size + fixp->fx_where + fixp->fx_frag->fr_address;
|
||
}
|
||
|
||
#define F(SZ,PCREL) (((SZ) << 1) + (PCREL))
|
||
#define MAP(SZ,PCREL,TYPE) case F (SZ, PCREL): code = (TYPE); break
|
||
|
||
arelent *
|
||
tc_gen_reloc (asection * section ATTRIBUTE_UNUSED, fixS * fixp)
|
||
{
|
||
arelent * rel;
|
||
bfd_reloc_code_real_type code;
|
||
|
||
switch (fixp->fx_r_type)
|
||
{
|
||
/* These confuse the size/pcrel macro approach. */
|
||
case BFD_RELOC_VTABLE_INHERIT:
|
||
case BFD_RELOC_VTABLE_ENTRY:
|
||
case BFD_RELOC_MCORE_PCREL_IMM4BY2:
|
||
case BFD_RELOC_MCORE_PCREL_IMM8BY4:
|
||
case BFD_RELOC_MCORE_PCREL_IMM11BY2:
|
||
case BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2:
|
||
case BFD_RELOC_RVA:
|
||
code = fixp->fx_r_type;
|
||
break;
|
||
|
||
default:
|
||
switch (F (fixp->fx_size, fixp->fx_pcrel))
|
||
{
|
||
MAP (1, 0, BFD_RELOC_8);
|
||
MAP (2, 0, BFD_RELOC_16);
|
||
MAP (4, 0, BFD_RELOC_32);
|
||
MAP (1, 1, BFD_RELOC_8_PCREL);
|
||
MAP (2, 1, BFD_RELOC_16_PCREL);
|
||
MAP (4, 1, BFD_RELOC_32_PCREL);
|
||
default:
|
||
code = fixp->fx_r_type;
|
||
as_bad (_("Can not do %d byte %srelocation"),
|
||
fixp->fx_size,
|
||
fixp->fx_pcrel ? _("pc-relative") : "");
|
||
}
|
||
break;
|
||
}
|
||
|
||
rel = xmalloc (sizeof (arelent));
|
||
rel->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
|
||
*rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
|
||
rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
|
||
/* Always pass the addend along! */
|
||
rel->addend = fixp->fx_addnumber;
|
||
|
||
rel->howto = bfd_reloc_type_lookup (stdoutput, code);
|
||
|
||
if (rel->howto == NULL)
|
||
{
|
||
as_bad_where (fixp->fx_file, fixp->fx_line,
|
||
_("Cannot represent relocation type %s"),
|
||
bfd_get_reloc_code_name (code));
|
||
|
||
/* Set howto to a garbage value so that we can keep going. */
|
||
rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
|
||
assert (rel->howto != NULL);
|
||
}
|
||
|
||
return rel;
|
||
}
|
||
|
||
#ifdef OBJ_ELF
|
||
/* See whether we need to force a relocation into the output file.
|
||
This is used to force out switch and PC relative relocations when
|
||
relaxing. */
|
||
int
|
||
mcore_force_relocation (fixS * fix)
|
||
{
|
||
if (fix->fx_r_type == BFD_RELOC_RVA)
|
||
return 1;
|
||
|
||
return generic_force_reloc (fix);
|
||
}
|
||
|
||
/* Return true if the fix can be handled by GAS, false if it must
|
||
be passed through to the linker. */
|
||
|
||
bfd_boolean
|
||
mcore_fix_adjustable (fixS * fixP)
|
||
{
|
||
/* We need the symbol name for the VTABLE entries. */
|
||
if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|
||
|| fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
#endif /* OBJ_ELF */
|