binutils-gdb/gdb/infptrace.c
John Gilmore 997cc2c0a3 Preliminary cleanup for splitting host/native/target.
* infptrace.c (child_resume):  Don't deal with NO_SINGLE_STEP
here; it is dealt with at a gdb-target-independent level.
* rs6000-tdep.c (single_step):  Don't call ptrace, we are a
high toned routine.  Fix return type to void.
1992-09-18 07:40:15 +00:00

442 lines
11 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Low level Unix child interface to ptrace, for GDB when running under Unix.
Copyright 1988, 1989, 1990, 1991, 1992 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "target.h"
#ifdef USG
#include <sys/types.h>
#endif
#include <sys/param.h>
#include <sys/dir.h>
#include <signal.h>
#include <sys/ioctl.h>
#ifndef USG
#ifdef PTRACE_IN_WRONG_PLACE
#include <ptrace.h>
#else
#include <sys/ptrace.h>
#endif
#endif
#if !defined (PT_KILL)
#define PT_KILL 8
#define PT_STEP 9
#define PT_CONTINUE 7
#define PT_READ_U 3
#define PT_WRITE_U 6
#define PT_READ_I 1
#define PT_READ_D 2
#define PT_WRITE_I 4
#define PT_WRITE_D 5
#endif /* No PT_KILL. */
#ifndef PT_ATTACH
#define PT_ATTACH PTRACE_ATTACH
#endif
#ifndef PT_DETACH
#define PT_DETACH PTRACE_DETACH
#endif
#include "gdbcore.h"
#ifndef NO_SYS_FILE
#include <sys/file.h>
#endif
#include <sys/stat.h>
#if !defined (FETCH_INFERIOR_REGISTERS)
#include <sys/user.h> /* Probably need to poke the user structure */
#if defined (KERNEL_U_ADDR_BSD)
#include <a.out.h> /* For struct nlist */
#endif /* KERNEL_U_ADDR_BSD. */
#endif /* !FETCH_INFERIOR_REGISTERS */
/* This function simply calls ptrace with the given arguments.
It exists so that all calls to ptrace are isolated in this
machine-dependent file. */
int
call_ptrace (request, pid, addr, data)
int request, pid;
PTRACE_ARG3_TYPE addr;
int data;
{
return ptrace (request, pid, addr, data);
}
#ifdef DEBUG_PTRACE
/* For the rest of the file, use an extra level of indirection */
/* This lets us breakpoint usefully on call_ptrace. */
#define ptrace call_ptrace
#endif
/* This is used when GDB is exiting. It gives less chance of error.*/
void
kill_inferior_fast ()
{
if (inferior_pid == 0)
return;
ptrace (PT_KILL, inferior_pid, (PTRACE_ARG3_TYPE) 0, 0);
wait ((int *)0);
}
void
kill_inferior ()
{
kill_inferior_fast ();
target_mourn_inferior ();
}
/* Resume execution of the inferior process.
If STEP is nonzero, single-step it.
If SIGNAL is nonzero, give it that signal. */
void
child_resume (step, signal)
int step;
int signal;
{
errno = 0;
/* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
it was. (If GDB wanted it to start some other way, we have already
written a new PC value to the child.)
If this system does not support PT_STEP, a higher level function will
have called single_step() to transmute the step request into a
continue request (by setting breakpoints on all possible successor
instructions), so we don't have to worry about that here. */
if (step)
ptrace (PT_STEP, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal);
else
#ifdef AIX_BUGGY_PTRACE_CONTINUE
AIX_BUGGY_PTRACE_CONTINUE;
#else
ptrace (PT_CONTINUE, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal);
#endif
if (errno)
perror_with_name ("ptrace");
}
#ifdef ATTACH_DETACH
/* Nonzero if we are debugging an attached process rather than
an inferior. */
extern int attach_flag;
/* Start debugging the process whose number is PID. */
int
attach (pid)
int pid;
{
errno = 0;
ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0);
if (errno)
perror_with_name ("ptrace");
attach_flag = 1;
return pid;
}
/* Stop debugging the process whose number is PID
and continue it with signal number SIGNAL.
SIGNAL = 0 means just continue it. */
void
detach (signal)
int signal;
{
errno = 0;
ptrace (PT_DETACH, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal);
if (errno)
perror_with_name ("ptrace");
attach_flag = 0;
}
#endif /* ATTACH_DETACH */
#if !defined (FETCH_INFERIOR_REGISTERS)
/* KERNEL_U_ADDR is the amount to subtract from u.u_ar0
to get the offset in the core file of the register values. */
#if defined (KERNEL_U_ADDR_BSD)
/* Get kernel_u_addr using BSD-style nlist(). */
CORE_ADDR kernel_u_addr;
void
_initialize_kernel_u_addr ()
{
struct nlist names[2];
names[0].n_un.n_name = "_u";
names[1].n_un.n_name = NULL;
if (nlist ("/vmunix", names) == 0)
kernel_u_addr = names[0].n_value;
else
fatal ("Unable to get kernel u area address.");
}
#endif /* KERNEL_U_ADDR_BSD. */
#if defined (KERNEL_U_ADDR_HPUX)
/* Get kernel_u_addr using HPUX-style nlist(). */
CORE_ADDR kernel_u_addr;
struct hpnlist {
char * n_name;
long n_value;
unsigned char n_type;
unsigned char n_length;
short n_almod;
short n_unused;
};
static struct hpnlist nl[] = {{ "_u", -1, }, { (char *) 0, }};
/* read the value of the u area from the hp-ux kernel */
void _initialize_kernel_u_addr ()
{
nlist ("/hp-ux", &nl);
kernel_u_addr = nl[0].n_value;
}
#endif /* KERNEL_U_ADDR_HPUX. */
#if !defined (offsetof)
#define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
#endif
/* U_REGS_OFFSET is the offset of the registers within the u area. */
#if !defined (U_REGS_OFFSET)
#define U_REGS_OFFSET \
ptrace (PT_READ_U, inferior_pid, \
(PTRACE_ARG3_TYPE) (offsetof (struct user, u_ar0)), 0) \
- KERNEL_U_ADDR
#endif
/* Registers we shouldn't try to fetch. */
#if !defined (CANNOT_FETCH_REGISTER)
#define CANNOT_FETCH_REGISTER(regno) 0
#endif
/* Fetch one register. */
static void
fetch_register (regno)
int regno;
{
register unsigned int regaddr;
char buf[MAX_REGISTER_RAW_SIZE];
char mess[128]; /* For messages */
register int i;
/* Offset of registers within the u area. */
unsigned int offset;
if (CANNOT_FETCH_REGISTER (regno))
{
bzero (buf, REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
supply_register (regno, buf);
return;
}
offset = U_REGS_OFFSET;
regaddr = register_addr (regno, offset);
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
{
errno = 0;
*(int *) &buf[i] = ptrace (PT_READ_U, inferior_pid,
(PTRACE_ARG3_TYPE) regaddr, 0);
regaddr += sizeof (int);
if (errno != 0)
{
sprintf (mess, "reading register %s (#%d)", reg_names[regno], regno);
perror_with_name (mess);
}
}
supply_register (regno, buf);
}
/* Fetch all registers, or just one, from the child process. */
void
fetch_inferior_registers (regno)
int regno;
{
if (regno == -1)
for (regno = 0; regno < NUM_REGS; regno++)
fetch_register (regno);
else
fetch_register (regno);
}
/* Registers we shouldn't try to store. */
#if !defined (CANNOT_STORE_REGISTER)
#define CANNOT_STORE_REGISTER(regno) 0
#endif
/* Store our register values back into the inferior.
If REGNO is -1, do this for all registers.
Otherwise, REGNO specifies which register (so we can save time). */
void
store_inferior_registers (regno)
int regno;
{
register unsigned int regaddr;
char buf[80];
extern char registers[];
register int i;
unsigned int offset = U_REGS_OFFSET;
if (regno >= 0)
{
regaddr = register_addr (regno, offset);
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(int))
{
errno = 0;
ptrace (PT_WRITE_U, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
*(int *) &registers[REGISTER_BYTE (regno) + i]);
if (errno != 0)
{
sprintf (buf, "writing register number %d(%d)", regno, i);
perror_with_name (buf);
}
regaddr += sizeof(int);
}
}
else
{
for (regno = 0; regno < NUM_REGS; regno++)
{
if (CANNOT_STORE_REGISTER (regno))
continue;
regaddr = register_addr (regno, offset);
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(int))
{
errno = 0;
ptrace (PT_WRITE_U, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
*(int *) &registers[REGISTER_BYTE (regno) + i]);
if (errno != 0)
{
sprintf (buf, "writing register number %d(%d)", regno, i);
perror_with_name (buf);
}
regaddr += sizeof(int);
}
}
}
}
#endif /* !defined (FETCH_INFERIOR_REGISTERS). */
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
in the NEW_SUN_PTRACE case.
It ought to be straightforward. But it appears that writing did
not write the data that I specified. I cannot understand where
it got the data that it actually did write. */
/* Copy LEN bytes to or from inferior's memory starting at MEMADDR
to debugger memory starting at MYADDR. Copy to inferior if
WRITE is nonzero.
Returns the length copied, which is either the LEN argument or zero.
This xfer function does not do partial moves, since child_ops
doesn't allow memory operations to cross below us in the target stack
anyway. */
int
child_xfer_memory (memaddr, myaddr, len, write, target)
CORE_ADDR memaddr;
char *myaddr;
int len;
int write;
struct target_ops *target; /* ignored */
{
register int i;
/* Round starting address down to longword boundary. */
register CORE_ADDR addr = memaddr & - sizeof (int);
/* Round ending address up; get number of longwords that makes. */
register int count
= (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
/* Allocate buffer of that many longwords. */
register int *buffer = (int *) alloca (count * sizeof (int));
if (write)
{
/* Fill start and end extra bytes of buffer with existing memory data. */
if (addr != memaddr || len < (int)sizeof (int)) {
/* Need part of initial word -- fetch it. */
buffer[0] = ptrace (PT_READ_I, inferior_pid, (PTRACE_ARG3_TYPE) addr,
0);
}
if (count > 1) /* FIXME, avoid if even boundary */
{
buffer[count - 1]
= ptrace (PT_READ_I, inferior_pid,
(PTRACE_ARG3_TYPE) (addr + (count - 1) * sizeof (int)),
0);
}
/* Copy data to be written over corresponding part of buffer */
memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
/* Write the entire buffer. */
for (i = 0; i < count; i++, addr += sizeof (int))
{
errno = 0;
ptrace (PT_WRITE_D, inferior_pid, (PTRACE_ARG3_TYPE) addr,
buffer[i]);
if (errno)
{
/* Using the appropriate one (I or D) is necessary for
Gould NP1, at least. */
errno = 0;
ptrace (PT_WRITE_I, inferior_pid, (PTRACE_ARG3_TYPE) addr,
buffer[i]);
}
if (errno)
return 0;
}
}
else
{
/* Read all the longwords */
for (i = 0; i < count; i++, addr += sizeof (int))
{
errno = 0;
buffer[i] = ptrace (PT_READ_I, inferior_pid,
(PTRACE_ARG3_TYPE) addr, 0);
if (errno)
return 0;
QUIT;
}
/* Copy appropriate bytes out of the buffer. */
memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
}
return len;
}