mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-24 12:35:55 +08:00
1351 lines
38 KiB
C
1351 lines
38 KiB
C
/* BFD back-end for HP PA-RISC ELF files.
|
|
Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 97, 98, 99, 2000
|
|
Free Software Foundation, Inc.
|
|
|
|
Written by
|
|
|
|
Center for Software Science
|
|
Department of Computer Science
|
|
University of Utah
|
|
|
|
This file is part of BFD, the Binary File Descriptor library.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
|
|
|
#include "bfd.h"
|
|
#include "sysdep.h"
|
|
#include "libbfd.h"
|
|
#include "elf-bfd.h"
|
|
#include "elf/hppa.h"
|
|
#include "libhppa.h"
|
|
#include "elf32-hppa.h"
|
|
#define ARCH_SIZE 32
|
|
#include "elf-hppa.h"
|
|
#include "elf32-hppa.h"
|
|
|
|
|
|
/* We use two hash tables to hold information for linking PA ELF objects.
|
|
|
|
The first is the elf32_hppa_link_hash_table which is derived
|
|
from the standard ELF linker hash table. We use this as a place to
|
|
attach other hash tables and static information.
|
|
|
|
The second is the stub hash table which is derived from the
|
|
base BFD hash table. The stub hash table holds the information
|
|
necessary to build the linker stubs during a link. */
|
|
|
|
/* Hash table for linker stubs. */
|
|
|
|
struct elf32_hppa_stub_hash_entry
|
|
{
|
|
/* Base hash table entry structure. */
|
|
struct bfd_hash_entry root;
|
|
|
|
/* The stub section. */
|
|
asection *stub_sec;
|
|
|
|
/* Offset within stub_sec of the beginning of this stub. */
|
|
bfd_vma offset;
|
|
|
|
/* Given the symbol's value and its section we can determine its final
|
|
value when building the stubs (so the stub knows where to jump. */
|
|
symvalue target_value;
|
|
asection *target_section;
|
|
};
|
|
|
|
struct elf32_hppa_link_hash_table
|
|
{
|
|
/* The main hash table. */
|
|
struct elf_link_hash_table root;
|
|
|
|
/* The stub hash table. */
|
|
struct bfd_hash_table stub_hash_table;
|
|
|
|
/* Current offsets in the stub sections. */
|
|
bfd_vma *offset;
|
|
|
|
/* Global data pointer. */
|
|
bfd_vma global_value;
|
|
};
|
|
|
|
|
|
/* For linker stub hash tables. */
|
|
|
|
#define elf32_hppa_stub_hash_lookup(table, string, create, copy) \
|
|
((struct elf32_hppa_stub_hash_entry *) \
|
|
bfd_hash_lookup ((table), (string), (create), (copy)))
|
|
|
|
/* Get the PA ELF linker hash table from a link_info structure. */
|
|
|
|
#define elf32_hppa_hash_table(p) \
|
|
((struct elf32_hppa_link_hash_table *) ((p)->hash))
|
|
|
|
|
|
static struct bfd_hash_entry *elf32_hppa_stub_hash_newfunc
|
|
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
|
|
|
|
static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create
|
|
PARAMS ((bfd *));
|
|
|
|
static char *elf32_hppa_stub_name
|
|
PARAMS ((const char *, const asection *, const asection *,
|
|
bfd_vma, const struct elf_link_hash_entry *));
|
|
|
|
static int elf32_hppa_relocate_insn
|
|
PARAMS ((int, bfd_vma, bfd_signed_vma, unsigned int, int,
|
|
enum hppa_reloc_field_selector_type_alt));
|
|
|
|
static bfd_reloc_status_type elf32_hppa_bfd_final_link_relocate
|
|
PARAMS ((reloc_howto_type *, bfd *, asection *,
|
|
bfd_byte *, bfd_vma, bfd_vma, bfd_signed_vma,
|
|
struct bfd_link_info *, asection *, const char *,
|
|
struct elf_link_hash_entry *));
|
|
|
|
static boolean elf32_hppa_relocate_section
|
|
PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
|
|
bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
|
|
|
|
static boolean elf32_hppa_add_symbol_hook
|
|
PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
|
|
const char **, flagword *, asection **, bfd_vma *));
|
|
|
|
static unsigned int elf32_hppa_size_of_stub
|
|
PARAMS ((asection *, bfd_vma, bfd_vma));
|
|
|
|
static boolean elf32_hppa_build_one_stub
|
|
PARAMS ((struct bfd_hash_entry *, PTR));
|
|
|
|
|
|
/* Assorted hash table functions. */
|
|
|
|
/* Initialize an entry in the stub hash table. */
|
|
|
|
static struct bfd_hash_entry *
|
|
elf32_hppa_stub_hash_newfunc (entry, table, string)
|
|
struct bfd_hash_entry *entry;
|
|
struct bfd_hash_table *table;
|
|
const char *string;
|
|
{
|
|
struct elf32_hppa_stub_hash_entry *ret;
|
|
|
|
ret = (struct elf32_hppa_stub_hash_entry *) entry;
|
|
|
|
/* Allocate the structure if it has not already been allocated by a
|
|
subclass. */
|
|
if (ret == NULL)
|
|
ret = ((struct elf32_hppa_stub_hash_entry *)
|
|
bfd_hash_allocate (table,
|
|
sizeof (struct elf32_hppa_stub_hash_entry)));
|
|
if (ret == NULL)
|
|
return NULL;
|
|
|
|
/* Call the allocation method of the superclass. */
|
|
ret = ((struct elf32_hppa_stub_hash_entry *)
|
|
bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
|
|
|
|
if (ret)
|
|
{
|
|
/* Initialize the local fields. */
|
|
ret->stub_sec = NULL;
|
|
ret->offset = 0;
|
|
ret->target_value = 0;
|
|
ret->target_section = NULL;
|
|
}
|
|
|
|
return (struct bfd_hash_entry *) ret;
|
|
}
|
|
|
|
/* Create the derived linker hash table. The PA ELF port uses the derived
|
|
hash table to keep information specific to the PA ELF linker (without
|
|
using static variables). */
|
|
|
|
static struct bfd_link_hash_table *
|
|
elf32_hppa_link_hash_table_create (abfd)
|
|
bfd *abfd;
|
|
{
|
|
struct elf32_hppa_link_hash_table *ret;
|
|
|
|
ret = ((struct elf32_hppa_link_hash_table *) bfd_alloc (abfd, sizeof (*ret)));
|
|
if (ret == NULL)
|
|
return NULL;
|
|
|
|
if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
|
|
_bfd_elf_link_hash_newfunc))
|
|
{
|
|
bfd_release (abfd, ret);
|
|
return NULL;
|
|
}
|
|
|
|
/* Init the stub hash table too. */
|
|
if (!bfd_hash_table_init (&ret->stub_hash_table,
|
|
elf32_hppa_stub_hash_newfunc))
|
|
return NULL;
|
|
|
|
ret->offset = NULL;
|
|
ret->global_value = 0;
|
|
|
|
return &ret->root.root;
|
|
}
|
|
|
|
/* Build a name for a long branch stub. */
|
|
static char *
|
|
elf32_hppa_stub_name (sym_name, sym_sec, input_section, addend, hash)
|
|
const char *sym_name;
|
|
const asection *sym_sec;
|
|
const asection *input_section;
|
|
bfd_vma addend;
|
|
const struct elf_link_hash_entry *hash;
|
|
{
|
|
char *stub_name;
|
|
int len;
|
|
|
|
len = strlen (sym_name) + 19;
|
|
if (hash == NULL)
|
|
len += 9;
|
|
|
|
stub_name = bfd_malloc (len);
|
|
if (stub_name != NULL)
|
|
{
|
|
sprintf (stub_name, "%08x_%08x_%s",
|
|
input_section->id & 0xffffffff,
|
|
(int) addend & 0xffffffff,
|
|
sym_name);
|
|
|
|
/* Tack on an ID so we can uniquely identify
|
|
this local symbol in the stub hash tables. */
|
|
if (hash == NULL)
|
|
sprintf (stub_name + len - 10, "_%08x",
|
|
sym_sec->id & 0xffffffff);
|
|
}
|
|
return stub_name;
|
|
}
|
|
|
|
/* Relocate the given INSN given the various input parameters. */
|
|
|
|
static int
|
|
elf32_hppa_relocate_insn (insn, sym_value, r_addend, r_type, r_format, r_field)
|
|
int insn;
|
|
bfd_vma sym_value;
|
|
bfd_signed_vma r_addend;
|
|
unsigned int r_type;
|
|
int r_format;
|
|
enum hppa_reloc_field_selector_type_alt r_field;
|
|
{
|
|
int value;
|
|
#ifdef ELF_ARG_RELOC
|
|
#ifndef ELF_ARG_RELOC_INSN
|
|
/* Ick. Who would want to support this? */
|
|
int imm;
|
|
|
|
switch (r_type)
|
|
{
|
|
/* The offset is partly stored in the instruction for cases
|
|
where the top ten bits of the addend are used for arg_reloc.
|
|
This is a little tricky, because the immediate value in the
|
|
instruction not only needs to be pieced together from
|
|
multiple bit fields, but also needs to be shifted left to
|
|
restore the original quantity. Which bits of the offset
|
|
we can retrieve from the instruction depend on exactly which
|
|
instruction we are dealing with. */
|
|
case R_PARISC_PCREL17R:
|
|
case R_PARISC_PCREL17F:
|
|
case R_PARISC_PCREL17C:
|
|
case R_PARISC_DIR17R:
|
|
case R_PARISC_DIR17F:
|
|
/* For these relocs, we choose to use the low 10 bits from the
|
|
instruction and store the high 22 bits in the reloc addend.
|
|
It doesn't matter that the bottom 2 bits of the value are
|
|
always zero, as branches must be to a location which is a
|
|
multiple of 4. */
|
|
#if 0
|
|
/* It isn't necessary to retrieve the whole immediate, but
|
|
this documents what we have in the instruction. */
|
|
imm = (((insn & 0x1f0000) >> 5)
|
|
| ((insn & 0x0004) << 8)
|
|
| ((insn & 0x1ff8) >> 3)) - ((insn & 1) << 17);
|
|
imm <<= 2;
|
|
imm = imm & 0x3ff;
|
|
#else
|
|
imm = (insn & 0x7f8) >> 1;
|
|
#endif
|
|
r_addend = (r_addend << (BFD_ARCH_SIZE-22)) >> (BFD_ARCH_SIZE-32);
|
|
r_addend = r_addend | imm;
|
|
break;
|
|
|
|
case R_PARISC_PCREL21L:
|
|
case R_PARISC_DIR21L:
|
|
/* In this case, the instruction stores the high 21 bits of the
|
|
value, so we pick off the top 10 bits, and use the reloc
|
|
addend to store the low 22 bits. */
|
|
#if 0
|
|
/* It isn't necessary to retrieve the whole immediate, but
|
|
this documents what we have in the instruction. */
|
|
imm = (( (insn & 0x000ffe) << 8)
|
|
| ((insn & 0x00c000) >> 7)
|
|
| ((insn & 0x1f0000) >> 14)
|
|
| ((insn & 0x003000) >> 12)) - ((insn & 1) << 20);
|
|
imm <<= 11;
|
|
imm = imm & ~ 0x3fffff;
|
|
#else
|
|
/* Just pick off the 10 needed bits, ensuring we sign extend. */
|
|
imm = ((insn & 0x000ff8) << 19) - ((insn & 1) << 31);
|
|
#endif
|
|
r_addend = imm | (r_addend & 0x3fffff);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_PARISC_PCREL21L:
|
|
case R_PARISC_PCREL17C:
|
|
case R_PARISC_PCREL17F:
|
|
case R_PARISC_PCREL17R:
|
|
case R_PARISC_PCREL14R:
|
|
/* Adjust PC relative offset. */
|
|
r_addend -= 8;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
value = hppa_field_adjust (sym_value, r_addend, r_field);
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_PARISC_PCREL17C:
|
|
case R_PARISC_PCREL17F:
|
|
case R_PARISC_PCREL17R:
|
|
case R_PARISC_DIR17F:
|
|
case R_PARISC_DIR17R:
|
|
/* This is a branch. Divide the offset by four.
|
|
Note that we need to decide whether it's a branch or
|
|
otherwise by inspecting the reloc. Inspecting insn won't
|
|
work as insn might be from a .word directive. */
|
|
value >>= 2;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return hppa_rebuild_insn (insn, value, r_format);
|
|
}
|
|
|
|
/* Actually perform a relocation as part of a final link. This can get
|
|
rather hairy when linker stubs are needed. */
|
|
|
|
static bfd_reloc_status_type
|
|
elf32_hppa_bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, offset, value, addend,
|
|
info, sym_sec, sym_name, h)
|
|
reloc_howto_type *howto;
|
|
bfd *input_bfd;
|
|
asection *input_section;
|
|
bfd_byte *contents;
|
|
bfd_vma offset;
|
|
bfd_vma value;
|
|
bfd_signed_vma addend;
|
|
struct bfd_link_info *info;
|
|
asection *sym_sec;
|
|
const char *sym_name;
|
|
struct elf_link_hash_entry *h;
|
|
{
|
|
int insn;
|
|
unsigned int r_type = howto->type;
|
|
int r_format = howto->bitsize;
|
|
enum hppa_reloc_field_selector_type_alt r_field = e_fsel;
|
|
bfd_byte *hit_data = contents + offset;
|
|
bfd_vma location;
|
|
|
|
if (r_type == R_PARISC_NONE)
|
|
return bfd_reloc_ok;
|
|
|
|
insn = bfd_get_32 (input_bfd, hit_data);
|
|
|
|
/* Find out where we are and where we're going. */
|
|
location = (offset +
|
|
input_section->output_offset +
|
|
input_section->output_section->vma);
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_PARISC_PCREL21L:
|
|
case R_PARISC_PCREL17C:
|
|
case R_PARISC_PCREL17F:
|
|
case R_PARISC_PCREL17R:
|
|
case R_PARISC_PCREL14R:
|
|
/* Make it a pc relative offset. */
|
|
value -= location;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_PARISC_DIR32:
|
|
case R_PARISC_DIR17F:
|
|
case R_PARISC_PCREL17C:
|
|
r_field = e_fsel;
|
|
break;
|
|
|
|
case R_PARISC_DIR21L:
|
|
case R_PARISC_PCREL21L:
|
|
r_field = e_lrsel;
|
|
break;
|
|
|
|
case R_PARISC_DIR17R:
|
|
case R_PARISC_PCREL17R:
|
|
case R_PARISC_DIR14R:
|
|
case R_PARISC_PCREL14R:
|
|
r_field = e_rrsel;
|
|
break;
|
|
|
|
/* For all the DP relative relocations, we need to examine the symbol's
|
|
section. If it's a code section, then "data pointer relative" makes
|
|
no sense. In that case we don't adjust the "value", and for 21 bit
|
|
addil instructions, we change the source addend register from %dp to
|
|
%r0. */
|
|
case R_PARISC_DPREL21L:
|
|
r_field = e_lrsel;
|
|
if (sym_sec != NULL)
|
|
{
|
|
if ((sym_sec->flags & SEC_CODE) != 0)
|
|
{
|
|
if ((insn & ((0x3f << 26) | (0x1f << 21)))
|
|
== (((int) OP_ADDIL << 26) | (27 << 21)))
|
|
{
|
|
insn &= ~ (0x1f << 21);
|
|
}
|
|
}
|
|
else
|
|
value -= elf32_hppa_hash_table (info)->global_value;
|
|
}
|
|
break;
|
|
|
|
case R_PARISC_DPREL14R:
|
|
r_field = e_rrsel;
|
|
if (sym_sec != NULL && (sym_sec->flags & SEC_CODE) == 0)
|
|
value -= elf32_hppa_hash_table (info)->global_value;
|
|
break;
|
|
|
|
case R_PARISC_DPREL14F:
|
|
r_field = e_fsel;
|
|
if (sym_sec != NULL && (sym_sec->flags & SEC_CODE) == 0)
|
|
value -= elf32_hppa_hash_table (info)->global_value;
|
|
break;
|
|
|
|
case R_PARISC_PLABEL32:
|
|
r_field = e_fsel;
|
|
break;
|
|
|
|
case R_PARISC_PLABEL21L:
|
|
r_field = e_lrsel;
|
|
break;
|
|
|
|
case R_PARISC_PLABEL14R:
|
|
r_field = e_rrsel;
|
|
break;
|
|
|
|
/* This case is separate as it may involve a lot more work
|
|
to deal with linker stubs. */
|
|
case R_PARISC_PCREL17F:
|
|
r_field = e_fsel;
|
|
|
|
/* bfd_link_hash_undefweak symbols have sym_sec == NULL. */
|
|
if (sym_sec == NULL)
|
|
break;
|
|
|
|
/* Any kind of linker stub needed? */
|
|
/* bfd_vma value is unsigned, so this is testing for offsets
|
|
outside the range -0x40000 to +0x3ffff */
|
|
if (value + addend - 8 + 0x40000 >= 0x80000)
|
|
{
|
|
struct bfd_hash_table *stub_hash_table;
|
|
struct elf32_hppa_stub_hash_entry *stub_entry;
|
|
char *stub_name;
|
|
|
|
stub_name = elf32_hppa_stub_name (sym_name, sym_sec,
|
|
input_section, addend, h);
|
|
if (!stub_name)
|
|
{
|
|
(*_bfd_error_handler) ("%s: %s",
|
|
bfd_get_filename (input_bfd),
|
|
bfd_errmsg (bfd_get_error ()));
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
|
|
stub_hash_table = &elf32_hppa_hash_table (info)->stub_hash_table;
|
|
|
|
stub_entry = elf32_hppa_stub_hash_lookup (stub_hash_table,
|
|
stub_name,
|
|
false,
|
|
false);
|
|
if (stub_entry == NULL)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%s: cannot find stub entry %s"),
|
|
bfd_get_filename (input_bfd),
|
|
stub_name);
|
|
free (stub_name);
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
|
|
/* Munge up the value and addend for elf32_hppa_relocate_insn. */
|
|
value = (stub_entry->offset
|
|
+ stub_entry->stub_sec->output_offset
|
|
+ stub_entry->stub_sec->output_section->vma
|
|
- location);
|
|
addend = 0;
|
|
|
|
if (value + addend - 8 + 0x40000 >= 0x80000)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%s: cannot reach stub %s, recompile with -ffunction-sections"),
|
|
bfd_get_filename (input_bfd),
|
|
stub_name);
|
|
free (stub_name);
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
|
|
free (stub_name);
|
|
}
|
|
break;
|
|
|
|
/* Something we don't know how to handle. */
|
|
default:
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
|
|
/* bfd_link_hash_undefweak symbols have sym_sec == NULL. */
|
|
if (sym_sec == NULL)
|
|
{
|
|
BFD_ASSERT (h != NULL && h->root.type == bfd_link_hash_undefweak);
|
|
value = 0;
|
|
}
|
|
|
|
insn = elf32_hppa_relocate_insn (insn, value, addend,
|
|
r_type, r_format, r_field);
|
|
|
|
/* Update the instruction word. */
|
|
bfd_put_32 (input_bfd, insn, hit_data);
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
/* Relocate an HPPA ELF section. */
|
|
|
|
static boolean
|
|
elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section,
|
|
contents, relocs, local_syms, local_sections)
|
|
bfd *output_bfd ATTRIBUTE_UNUSED;
|
|
struct bfd_link_info *info;
|
|
bfd *input_bfd;
|
|
asection *input_section;
|
|
bfd_byte *contents;
|
|
Elf_Internal_Rela *relocs;
|
|
Elf_Internal_Sym *local_syms;
|
|
asection **local_sections;
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
Elf_Internal_Rela *rel;
|
|
Elf_Internal_Rela *relend;
|
|
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
|
|
|
rel = relocs;
|
|
relend = relocs + input_section->reloc_count;
|
|
for (; rel < relend; rel++)
|
|
{
|
|
unsigned int r_type;
|
|
reloc_howto_type *howto;
|
|
unsigned int r_symndx;
|
|
struct elf_link_hash_entry *h;
|
|
Elf_Internal_Sym *sym;
|
|
asection *sym_sec;
|
|
bfd_vma relocation;
|
|
bfd_reloc_status_type r;
|
|
const char *sym_name;
|
|
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
|
if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return false;
|
|
}
|
|
howto = elf_hppa_howto_table + r_type;
|
|
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
|
|
|
if (info->relocateable)
|
|
{
|
|
/* This is a relocateable link. We don't have to change
|
|
anything, unless the reloc is against a section symbol,
|
|
in which case we have to adjust according to where the
|
|
section symbol winds up in the output section. */
|
|
if (r_symndx < symtab_hdr->sh_info)
|
|
{
|
|
sym = local_syms + r_symndx;
|
|
if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
|
|
{
|
|
sym_sec = local_sections[r_symndx];
|
|
rel->r_addend += sym_sec->output_offset;
|
|
}
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
/* This is a final link. */
|
|
h = NULL;
|
|
sym = NULL;
|
|
sym_sec = NULL;
|
|
if (r_symndx < symtab_hdr->sh_info)
|
|
{
|
|
sym = local_syms + r_symndx;
|
|
sym_sec = local_sections[r_symndx];
|
|
relocation = ((ELF_ST_TYPE (sym->st_info) == STT_SECTION
|
|
? 0 : sym->st_value)
|
|
+ sym_sec->output_offset
|
|
+ sym_sec->output_section->vma);
|
|
}
|
|
else
|
|
{
|
|
int indx;
|
|
|
|
indx = r_symndx - symtab_hdr->sh_info;
|
|
h = elf_sym_hashes (input_bfd)[indx];
|
|
while (h->root.type == bfd_link_hash_indirect
|
|
|| h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
if (h->root.type == bfd_link_hash_defined
|
|
|| h->root.type == bfd_link_hash_defweak)
|
|
{
|
|
sym_sec = h->root.u.def.section;
|
|
relocation = (h->root.u.def.value
|
|
+ sym_sec->output_offset
|
|
+ sym_sec->output_section->vma);
|
|
}
|
|
else if (h->root.type == bfd_link_hash_undefweak)
|
|
relocation = 0;
|
|
else
|
|
{
|
|
if (!((*info->callbacks->undefined_symbol)
|
|
(info, h->root.root.string, input_bfd,
|
|
input_section, rel->r_offset, true)))
|
|
return false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (h != NULL)
|
|
sym_name = h->root.root.string;
|
|
else
|
|
{
|
|
sym_name = bfd_elf_string_from_elf_section (input_bfd,
|
|
symtab_hdr->sh_link,
|
|
sym->st_name);
|
|
if (sym_name == NULL)
|
|
return false;
|
|
if (*sym_name == '\0')
|
|
sym_name = bfd_section_name (input_bfd, sym_sec);
|
|
}
|
|
|
|
r = elf32_hppa_bfd_final_link_relocate (howto, input_bfd,
|
|
input_section, contents,
|
|
rel->r_offset, relocation,
|
|
rel->r_addend, info, sym_sec,
|
|
sym_name, h);
|
|
|
|
switch (r)
|
|
{
|
|
case bfd_reloc_ok:
|
|
break;
|
|
|
|
case bfd_reloc_undefined:
|
|
case bfd_reloc_notsupported:
|
|
(*_bfd_error_handler)
|
|
(_("%s: cannot handle relocation %s for %s at 0x%x in %s"),
|
|
bfd_get_filename (input_bfd),
|
|
howto->name,
|
|
sym_name,
|
|
rel->r_offset,
|
|
input_section->name);
|
|
return false;
|
|
|
|
default:
|
|
case bfd_reloc_outofrange:
|
|
case bfd_reloc_overflow:
|
|
{
|
|
if (!((*info->callbacks->reloc_overflow)
|
|
(info, sym_name, howto->name, (bfd_vma) 0,
|
|
input_bfd, input_section, rel->r_offset)))
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Called after we have seen all the input files/sections, but before
|
|
final symbol resolution and section placement has been determined.
|
|
|
|
We use this hook to (possibly) provide a value for __gp, then we
|
|
fall back to the generic ELF final link routine. */
|
|
|
|
boolean
|
|
elf32_hppa_final_link (abfd, info)
|
|
bfd *abfd;
|
|
struct bfd_link_info *info;
|
|
{
|
|
if (!info->relocateable)
|
|
{
|
|
struct elf_link_hash_entry *h;
|
|
asection *sec;
|
|
bfd_vma gp_val;
|
|
|
|
h = elf_link_hash_lookup (elf_hash_table (info), "$global$",
|
|
false, false, false);
|
|
|
|
if (h != NULL
|
|
&& h->root.type == bfd_link_hash_defined)
|
|
{
|
|
gp_val = h->root.u.def.value;
|
|
sec = h->root.u.def.section;
|
|
}
|
|
else
|
|
{
|
|
/* If $global$ isn't defined, we could make one up ourselves
|
|
from the start of .plt, .dlt, or .data For the time
|
|
being, just bomb. */
|
|
(*info->callbacks->undefined_symbol)
|
|
(info, "$global$", abfd, NULL, 0, true);
|
|
return false;
|
|
}
|
|
|
|
elf32_hppa_hash_table (info)->global_value = (gp_val
|
|
+ sec->output_section->vma
|
|
+ sec->output_offset);
|
|
}
|
|
|
|
/* Invoke the standard linker. */
|
|
return bfd_elf_bfd_final_link (abfd, info);
|
|
}
|
|
|
|
/* Undo the generic ELF code's subtraction of section->vma from the
|
|
value of each external symbol. */
|
|
|
|
static boolean
|
|
elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
|
|
bfd *abfd ATTRIBUTE_UNUSED;
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
|
const Elf_Internal_Sym *sym ATTRIBUTE_UNUSED;
|
|
const char **namep ATTRIBUTE_UNUSED;
|
|
flagword *flagsp ATTRIBUTE_UNUSED;
|
|
asection **secp;
|
|
bfd_vma *valp;
|
|
{
|
|
*valp += (*secp)->vma;
|
|
return true;
|
|
}
|
|
|
|
/* Compute the size of the stub needed to call from INPUT_SEC (OFFSET)
|
|
to DESTINATION. Return zero if no stub is needed to perform such a
|
|
call. */
|
|
|
|
static unsigned int
|
|
elf32_hppa_size_of_stub (input_sec, offset, destination)
|
|
asection *input_sec;
|
|
bfd_vma offset;
|
|
bfd_vma destination;
|
|
{
|
|
bfd_vma location;
|
|
|
|
/* Determine where the call point is. */
|
|
location = (input_sec->output_offset
|
|
+ input_sec->output_section->vma
|
|
+ offset);
|
|
|
|
/* Determine if a long branch stub is needed. parisc branch offsets
|
|
are relative to the second instruction past the branch, ie. +8
|
|
bytes on from the branch instruction location. The offset is
|
|
signed, 17 bits wide, and counts in units of 4 bytes.
|
|
bfd_vma is unsigned, so this is testing for offsets outside the
|
|
range -0x40000 to +0x3ffff */
|
|
if (destination - location - 8 + 0x40000 >= 0x80000)
|
|
return 8;
|
|
return 0;
|
|
}
|
|
|
|
/* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
|
|
IN_ARG contains the link info pointer. */
|
|
|
|
#define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
|
|
#define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
|
|
|
|
static boolean
|
|
elf32_hppa_build_one_stub (gen_entry, in_arg)
|
|
struct bfd_hash_entry *gen_entry;
|
|
PTR in_arg;
|
|
{
|
|
struct elf32_hppa_stub_hash_entry *stub_entry;
|
|
struct elf32_hppa_link_hash_table *hppa_link_hash;
|
|
asection *stub_sec;
|
|
bfd *stub_bfd;
|
|
bfd_byte *loc;
|
|
symvalue sym_value;
|
|
int insn;
|
|
|
|
/* Massage our args to the form they really have. */
|
|
stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
|
|
hppa_link_hash = (struct elf32_hppa_link_hash_table *) in_arg;
|
|
|
|
stub_sec = stub_entry->stub_sec;
|
|
|
|
/* Make a note of the offset within the stubs for this entry. */
|
|
stub_entry->offset = hppa_link_hash->offset[stub_sec->index];
|
|
loc = stub_sec->contents + stub_entry->offset;
|
|
|
|
sym_value = (stub_entry->target_value
|
|
+ stub_entry->target_section->output_offset
|
|
+ stub_entry->target_section->output_section->vma);
|
|
|
|
stub_bfd = stub_sec->owner;
|
|
|
|
/* Create the long branch. A long branch is formed with "ldil"
|
|
loading the upper bits of the target address into a register,
|
|
then branching with "be" which adds in the lower bits.
|
|
The "be" has its delay slot nullified. */
|
|
insn = hppa_rebuild_insn (LDIL_R1,
|
|
hppa_field_adjust (sym_value, 0, e_lrsel),
|
|
21);
|
|
bfd_put_32 (stub_bfd, insn, loc);
|
|
|
|
insn = hppa_rebuild_insn (BE_SR4_R1,
|
|
hppa_field_adjust (sym_value, 0, e_rrsel) >> 2,
|
|
17);
|
|
bfd_put_32 (stub_bfd, insn, loc + 4);
|
|
|
|
hppa_link_hash->offset[stub_sec->index] += 8;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* As above, but don't actually build the stub. Just bump offset so
|
|
we know stub section sizes. */
|
|
|
|
static boolean
|
|
elf32_hppa_size_one_stub (gen_entry, in_arg)
|
|
struct bfd_hash_entry *gen_entry;
|
|
PTR in_arg;
|
|
{
|
|
struct elf32_hppa_stub_hash_entry *stub_entry;
|
|
struct elf32_hppa_link_hash_table *hppa_link_hash;
|
|
|
|
/* Massage our args to the form they really have. */
|
|
stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
|
|
hppa_link_hash = (struct elf32_hppa_link_hash_table *) in_arg;
|
|
|
|
hppa_link_hash->offset[stub_entry->stub_sec->index] += 8;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* External entry points for sizing and building linker stubs. */
|
|
|
|
/* Build all the stubs associated with the current output file. The
|
|
stubs are kept in a hash table attached to the main linker hash
|
|
table. This is called via hppaelf_finish in the linker. */
|
|
|
|
boolean
|
|
elf32_hppa_build_stubs (stub_bfd, link_info)
|
|
bfd *stub_bfd;
|
|
struct bfd_link_info *link_info;
|
|
{
|
|
asection *stub_sec;
|
|
struct bfd_hash_table *table;
|
|
struct elf32_hppa_link_hash_table *hppa_link_hash;
|
|
|
|
for (stub_sec = stub_bfd->sections; stub_sec; stub_sec = stub_sec->next)
|
|
{
|
|
unsigned int size;
|
|
|
|
/* Allocate memory to hold the linker stubs. */
|
|
size = bfd_section_size (stub_bfd, stub_sec);
|
|
stub_sec->contents = (unsigned char *) bfd_zalloc (stub_bfd, size);
|
|
if (stub_sec->contents == NULL && size != 0)
|
|
return false;
|
|
}
|
|
|
|
/* Build the stubs as directed by the stub hash table. */
|
|
hppa_link_hash = elf32_hppa_hash_table (link_info);
|
|
memset (hppa_link_hash->offset, 0,
|
|
stub_bfd->section_count * sizeof (bfd_vma));
|
|
|
|
table = &hppa_link_hash->stub_hash_table;
|
|
bfd_hash_traverse (table, elf32_hppa_build_one_stub, hppa_link_hash);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Determine and set the size of the stub section for a final link.
|
|
|
|
The basic idea here is to examine all the relocations looking for
|
|
PC-relative calls to a target that is unreachable with a "bl"
|
|
instruction or calls where the caller and callee disagree on the
|
|
location of their arguments or return value. Currently, we don't
|
|
support elf arg relocs. */
|
|
|
|
boolean
|
|
elf32_hppa_size_stubs (stub_bfd, link_info,
|
|
add_stub_section, layout_sections_again)
|
|
bfd *stub_bfd;
|
|
struct bfd_link_info *link_info;
|
|
asection * (*add_stub_section) PARAMS ((const char *, asection *));
|
|
void (*layout_sections_again) PARAMS ((void));
|
|
{
|
|
bfd *input_bfd;
|
|
asection *section;
|
|
Elf_Internal_Sym *local_syms, **all_local_syms;
|
|
asection **stub_section_created;
|
|
unsigned int i, indx, bfd_count, sec_count;
|
|
asection *stub_sec;
|
|
asection *first_init_sec = NULL;
|
|
asection *first_fini_sec = NULL;
|
|
struct elf32_hppa_link_hash_table *hppa_link_hash;
|
|
struct bfd_hash_table *stub_hash_table;
|
|
boolean stub_changed;
|
|
|
|
/* Count the number of input BFDs and the total number of input sections. */
|
|
for (input_bfd = link_info->input_bfds, bfd_count = 0, sec_count = 0;
|
|
input_bfd != NULL;
|
|
input_bfd = input_bfd->link_next)
|
|
{
|
|
bfd_count += 1;
|
|
sec_count += input_bfd->section_count;
|
|
}
|
|
|
|
stub_section_created
|
|
= (asection **) bfd_zmalloc (sizeof (asection *) * sec_count);
|
|
if (stub_section_created == NULL)
|
|
return false;
|
|
|
|
/* We want to read in symbol extension records only once. To do this
|
|
we need to read in the local symbols in parallel and save them for
|
|
later use; so hold pointers to the local symbols in an array. */
|
|
all_local_syms
|
|
= (Elf_Internal_Sym **) bfd_zmalloc (sizeof (Elf_Internal_Sym *)
|
|
* bfd_count);
|
|
if (all_local_syms == NULL)
|
|
goto error_ret_free_stub;
|
|
|
|
/* Walk over all the input BFDs adding entries to the args hash table
|
|
for all the external functions. */
|
|
for (input_bfd = link_info->input_bfds, indx = 0;
|
|
input_bfd != NULL;
|
|
input_bfd = input_bfd->link_next, indx++)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
Elf_Internal_Sym *isym;
|
|
Elf32_External_Sym *ext_syms, *esym;
|
|
|
|
/* We'll need the symbol table in a second. */
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
|
if (symtab_hdr->sh_info == 0)
|
|
continue;
|
|
|
|
/* We need an array of the local symbols attached to the input bfd.
|
|
Unfortunately, we're going to have to read & swap them in. */
|
|
local_syms = (Elf_Internal_Sym *)
|
|
bfd_malloc (symtab_hdr->sh_info * sizeof (Elf_Internal_Sym));
|
|
if (local_syms == NULL)
|
|
{
|
|
goto error_ret_free_local;
|
|
}
|
|
all_local_syms[indx] = local_syms;
|
|
ext_syms = (Elf32_External_Sym *)
|
|
bfd_malloc (symtab_hdr->sh_info * sizeof (Elf32_External_Sym));
|
|
if (ext_syms == NULL)
|
|
{
|
|
goto error_ret_free_local;
|
|
}
|
|
|
|
if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
|
|
|| (bfd_read (ext_syms, 1,
|
|
(symtab_hdr->sh_info * sizeof (Elf32_External_Sym)),
|
|
input_bfd)
|
|
!= (symtab_hdr->sh_info * sizeof (Elf32_External_Sym))))
|
|
{
|
|
free (ext_syms);
|
|
goto error_ret_free_local;
|
|
}
|
|
|
|
/* Swap the local symbols in. */
|
|
isym = local_syms;
|
|
esym = ext_syms;
|
|
for (i = 0; i < symtab_hdr->sh_info; i++, esym++, isym++)
|
|
bfd_elf32_swap_symbol_in (input_bfd, esym, isym);
|
|
|
|
/* Now we can free the external symbols. */
|
|
free (ext_syms);
|
|
}
|
|
|
|
stub_hash_table = &elf32_hppa_hash_table (link_info)->stub_hash_table;
|
|
|
|
while (1)
|
|
{
|
|
stub_changed = 0;
|
|
|
|
/* Now that we have argument location information for all the
|
|
global functions we can start looking for stubs. */
|
|
for (input_bfd = link_info->input_bfds, indx = 0, sec_count = 0;
|
|
input_bfd != NULL;
|
|
input_bfd = input_bfd->link_next, indx++)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
|
|
/* We'll need the symbol table in a second. */
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
|
if (symtab_hdr->sh_info == 0)
|
|
continue;
|
|
|
|
local_syms = all_local_syms[indx];
|
|
|
|
/* Walk over each section attached to the input bfd. */
|
|
for (section = input_bfd->sections;
|
|
section != NULL;
|
|
section = section->next, sec_count++)
|
|
{
|
|
Elf_Internal_Shdr *input_rel_hdr;
|
|
Elf32_External_Rela *external_relocs, *erelaend, *erela;
|
|
Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
|
|
|
|
/* If there aren't any relocs, then there's nothing to do. */
|
|
if ((section->flags & SEC_RELOC) == 0
|
|
|| section->reloc_count == 0)
|
|
continue;
|
|
|
|
/* Allocate space for the external relocations. */
|
|
external_relocs
|
|
= ((Elf32_External_Rela *)
|
|
bfd_malloc (section->reloc_count
|
|
* sizeof (Elf32_External_Rela)));
|
|
if (external_relocs == NULL)
|
|
{
|
|
goto error_ret_free_local;
|
|
}
|
|
|
|
/* Likewise for the internal relocations. */
|
|
internal_relocs = ((Elf_Internal_Rela *)
|
|
bfd_malloc (section->reloc_count
|
|
* sizeof (Elf_Internal_Rela)));
|
|
if (internal_relocs == NULL)
|
|
{
|
|
free (external_relocs);
|
|
goto error_ret_free_local;
|
|
}
|
|
|
|
/* Read in the external relocs. */
|
|
input_rel_hdr = &elf_section_data (section)->rel_hdr;
|
|
if (bfd_seek (input_bfd, input_rel_hdr->sh_offset, SEEK_SET) != 0
|
|
|| bfd_read (external_relocs, 1,
|
|
input_rel_hdr->sh_size,
|
|
input_bfd) != input_rel_hdr->sh_size)
|
|
{
|
|
free (external_relocs);
|
|
error_ret_free_internal:
|
|
free (internal_relocs);
|
|
goto error_ret_free_local;
|
|
}
|
|
|
|
/* Swap in the relocs. */
|
|
erela = external_relocs;
|
|
erelaend = erela + section->reloc_count;
|
|
irela = internal_relocs;
|
|
for (; erela < erelaend; erela++, irela++)
|
|
bfd_elf32_swap_reloca_in (input_bfd, erela, irela);
|
|
|
|
/* We're done with the external relocs, free them. */
|
|
free (external_relocs);
|
|
|
|
/* Now examine each relocation. */
|
|
irela = internal_relocs;
|
|
irelaend = irela + section->reloc_count;
|
|
for (; irela < irelaend; irela++)
|
|
{
|
|
unsigned int r_type, r_indx, size_of_stub;
|
|
struct elf32_hppa_stub_hash_entry *stub_entry;
|
|
asection *sym_sec;
|
|
const char *sym_name;
|
|
symvalue sym_value;
|
|
bfd_vma destination;
|
|
struct elf_link_hash_entry *hash;
|
|
char *stub_name;
|
|
|
|
r_type = ELF32_R_TYPE (irela->r_info);
|
|
r_indx = ELF32_R_SYM (irela->r_info);
|
|
|
|
if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
goto error_ret_free_internal;
|
|
}
|
|
|
|
/* Only look for stubs on call instructions. */
|
|
if (r_type != (unsigned int) R_PARISC_PCREL17F)
|
|
continue;
|
|
|
|
/* Now determine the call target, its name, value, section
|
|
and argument relocation bits. */
|
|
sym_sec = NULL;
|
|
hash = NULL;
|
|
if (r_indx < symtab_hdr->sh_info)
|
|
{
|
|
/* It's a local symbol. */
|
|
Elf_Internal_Sym *sym;
|
|
Elf_Internal_Shdr *hdr;
|
|
|
|
sym = local_syms + r_indx;
|
|
hdr = elf_elfsections (input_bfd)[sym->st_shndx];
|
|
sym_sec = hdr->bfd_section;
|
|
sym_name =
|
|
bfd_elf_string_from_elf_section (input_bfd,
|
|
symtab_hdr->sh_link,
|
|
sym->st_name);
|
|
sym_value = (ELF_ST_TYPE (sym->st_info) == STT_SECTION
|
|
? 0 : sym->st_value);
|
|
destination = (sym_value + irela->r_addend
|
|
+ sym_sec->output_offset
|
|
+ sym_sec->output_section->vma);
|
|
}
|
|
else
|
|
{
|
|
/* It's an external symbol. */
|
|
int e_indx;
|
|
|
|
e_indx = r_indx - symtab_hdr->sh_info;
|
|
hash = elf_sym_hashes (input_bfd)[e_indx];
|
|
|
|
while (hash->root.type == bfd_link_hash_indirect
|
|
|| hash->root.type == bfd_link_hash_warning)
|
|
hash = (struct elf_link_hash_entry *)
|
|
hash->root.u.i.link;
|
|
|
|
if (hash->root.type == bfd_link_hash_undefined
|
|
|| hash->root.type == bfd_link_hash_undefweak)
|
|
continue;
|
|
|
|
if (hash->root.type == bfd_link_hash_defined
|
|
|| hash->root.type == bfd_link_hash_defweak)
|
|
{
|
|
sym_sec = hash->root.u.def.section;
|
|
sym_name = hash->root.root.string;
|
|
sym_value = hash->root.u.def.value;
|
|
destination = (sym_value + irela->r_addend
|
|
+ sym_sec->output_offset
|
|
+ sym_sec->output_section->vma);
|
|
}
|
|
else
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
goto error_ret_free_internal;
|
|
}
|
|
}
|
|
|
|
/* Determine what (if any) linker stub is needed and its
|
|
size (in bytes). */
|
|
size_of_stub = elf32_hppa_size_of_stub (section,
|
|
irela->r_offset,
|
|
destination);
|
|
if (size_of_stub == 0)
|
|
continue;
|
|
|
|
/* Get the name of this stub. */
|
|
stub_name = elf32_hppa_stub_name (sym_name,
|
|
sym_sec,
|
|
section,
|
|
irela->r_addend,
|
|
hash);
|
|
if (!stub_name)
|
|
goto error_ret_free_internal;
|
|
|
|
stub_entry = elf32_hppa_stub_hash_lookup (stub_hash_table,
|
|
stub_name,
|
|
false,
|
|
false);
|
|
if (stub_entry != NULL)
|
|
{
|
|
/* The proper stub has already been created. */
|
|
free (stub_name);
|
|
continue;
|
|
}
|
|
|
|
stub_sec = stub_section_created[sec_count];
|
|
if (stub_sec == NULL)
|
|
{
|
|
char *s_name;
|
|
int nstub;
|
|
int special_sec = 0;
|
|
|
|
/* We only want one stub for .init and .fini
|
|
because glibc splits the _init and _fini
|
|
functions into two parts. We don't want to
|
|
put a stub in the middle of a function. */
|
|
if (strncmp (section->name, ".init", 5) == 0)
|
|
{
|
|
stub_sec = first_init_sec;
|
|
special_sec = 1;
|
|
}
|
|
else if (strncmp (section->name, ".fini", 5) == 0)
|
|
{
|
|
stub_sec = first_fini_sec;
|
|
special_sec = 2;
|
|
}
|
|
if (stub_sec == NULL)
|
|
{
|
|
s_name = bfd_alloc (stub_bfd, 16);
|
|
if (s_name == NULL)
|
|
{
|
|
free (stub_name);
|
|
goto error_ret_free_internal;
|
|
}
|
|
nstub = stub_bfd->section_count;
|
|
sprintf (s_name, ".stub_%x", nstub);
|
|
stub_sec = (*add_stub_section) (s_name, section);
|
|
if (stub_sec == NULL)
|
|
{
|
|
free (stub_name);
|
|
goto error_ret_free_internal;
|
|
}
|
|
if (special_sec != 0)
|
|
{
|
|
if (special_sec == 1)
|
|
first_init_sec = stub_sec;
|
|
else
|
|
first_fini_sec = stub_sec;
|
|
}
|
|
}
|
|
stub_section_created[sec_count] = stub_sec;
|
|
}
|
|
|
|
/* Enter this entry into the linker stub
|
|
hash table. */
|
|
stub_entry = elf32_hppa_stub_hash_lookup (stub_hash_table,
|
|
stub_name,
|
|
true,
|
|
false);
|
|
if (stub_entry == NULL)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%s: cannot find stub entry %s"),
|
|
bfd_get_filename (section->owner),
|
|
stub_name);
|
|
free (stub_name);
|
|
goto error_ret_free_internal;
|
|
}
|
|
|
|
/* We'll need these to determine the address
|
|
that the stub will branch to. */
|
|
stub_entry->stub_sec = stub_sec;
|
|
stub_entry->offset = 0;
|
|
stub_entry->target_value = sym_value;
|
|
stub_entry->target_section = sym_sec;
|
|
stub_changed = 1;
|
|
}
|
|
/* We're done with the internal relocs, free them. */
|
|
free (internal_relocs);
|
|
}
|
|
}
|
|
|
|
if (!stub_changed)
|
|
break;
|
|
|
|
/* OK, we've added some stubs. Find out the new size of the
|
|
stub sections. */
|
|
hppa_link_hash = elf32_hppa_hash_table (link_info);
|
|
hppa_link_hash->offset = (bfd_vma *)
|
|
bfd_realloc (hppa_link_hash->offset,
|
|
stub_bfd->section_count * sizeof (bfd_vma));
|
|
if (hppa_link_hash->offset == NULL)
|
|
goto error_ret_free_local;
|
|
|
|
memset (hppa_link_hash->offset, 0,
|
|
stub_bfd->section_count * sizeof (bfd_vma));
|
|
|
|
bfd_hash_traverse (stub_hash_table,
|
|
elf32_hppa_size_one_stub,
|
|
hppa_link_hash);
|
|
|
|
for (stub_sec = stub_bfd->sections;
|
|
stub_sec != NULL;
|
|
stub_sec = stub_sec->next)
|
|
{
|
|
bfd_set_section_size (stub_bfd, stub_sec,
|
|
hppa_link_hash->offset[stub_sec->index]);
|
|
}
|
|
/* Ask the linker to do its stuff. */
|
|
(*layout_sections_again) ();
|
|
}
|
|
|
|
/* We're done with the local symbols, free them. */
|
|
for (i = 0; i < bfd_count; i++)
|
|
if (all_local_syms[i])
|
|
free (all_local_syms[i]);
|
|
free (all_local_syms);
|
|
free (stub_section_created);
|
|
return true;
|
|
|
|
error_ret_free_local:
|
|
for (i = 0; i < bfd_count; i++)
|
|
if (all_local_syms[i])
|
|
free (all_local_syms[i]);
|
|
free (all_local_syms);
|
|
|
|
error_ret_free_stub:
|
|
free (stub_section_created);
|
|
return false;
|
|
}
|
|
|
|
/* Misc BFD support code. */
|
|
#define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
|
|
#define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
|
|
#define elf_info_to_howto elf_hppa_info_to_howto
|
|
#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
|
|
|
|
/* Stuff for the BFD linker. */
|
|
#define elf_backend_relocate_section elf32_hppa_relocate_section
|
|
#define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook
|
|
#define bfd_elf32_bfd_final_link elf32_hppa_final_link
|
|
#if 0
|
|
#define elf_backend_check_relocs elf32_hppa_check_relocs
|
|
#endif
|
|
#define bfd_elf32_bfd_link_hash_table_create \
|
|
elf32_hppa_link_hash_table_create
|
|
#define elf_backend_fake_sections elf_hppa_fake_sections
|
|
|
|
|
|
#define TARGET_BIG_SYM bfd_elf32_hppa_vec
|
|
#define TARGET_BIG_NAME "elf32-hppa"
|
|
#define ELF_ARCH bfd_arch_hppa
|
|
#define ELF_MACHINE_CODE EM_PARISC
|
|
#define ELF_MAXPAGESIZE 0x1000
|
|
|
|
#include "elf32-target.h"
|