mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-21 01:12:32 +08:00
e5dc0d5d04
Move some declarations related to the "quit" machinery from defs.h to event-top.h. Most of the definitions associated to these declarations are in event-top.c. The exceptions are `quit()` and `maybe_quit()`, that are defined in utils.c. For consistency, move these two definitions to event-top.c. Include "event-top.h" in many files that use these things. Change-Id: I6594f6df9047a9a480e7b9934275d186afb14378 Approved-By: Tom Tromey <tom@tromey.com>
659 lines
20 KiB
C
659 lines
20 KiB
C
/* Find a variable's value in memory, for GDB, the GNU debugger.
|
||
|
||
Copyright (C) 1986-2024 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "event-top.h"
|
||
#include "extract-store-integer.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "frame.h"
|
||
#include "value.h"
|
||
#include "gdbcore.h"
|
||
#include "inferior.h"
|
||
#include "target.h"
|
||
#include "symfile.h"
|
||
#include "regcache.h"
|
||
#include "user-regs.h"
|
||
#include "block.h"
|
||
#include "objfiles.h"
|
||
#include "language.h"
|
||
|
||
/* Basic byte-swapping routines. All 'extract' functions return a
|
||
host-format integer from a target-format integer at ADDR which is
|
||
LEN bytes long. */
|
||
|
||
#if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8
|
||
/* 8 bit characters are a pretty safe assumption these days, so we
|
||
assume it throughout all these swapping routines. If we had to deal with
|
||
9 bit characters, we would need to make len be in bits and would have
|
||
to re-write these routines... */
|
||
you lose
|
||
#endif
|
||
|
||
/* See value.h. */
|
||
|
||
value *
|
||
value_of_register (int regnum, const frame_info_ptr &next_frame)
|
||
{
|
||
gdbarch *gdbarch = frame_unwind_arch (next_frame);
|
||
|
||
/* User registers lie completely outside of the range of normal
|
||
registers. Catch them early so that the target never sees them. */
|
||
if (regnum >= gdbarch_num_cooked_regs (gdbarch))
|
||
return value_of_user_reg (regnum, get_prev_frame_always (next_frame));
|
||
|
||
value *reg_val = value_of_register_lazy (next_frame, regnum);
|
||
reg_val->fetch_lazy ();
|
||
return reg_val;
|
||
}
|
||
|
||
/* See value.h. */
|
||
|
||
value *
|
||
value_of_register_lazy (const frame_info_ptr &next_frame, int regnum)
|
||
{
|
||
gdbarch *gdbarch = frame_unwind_arch (next_frame);
|
||
|
||
gdb_assert (regnum < gdbarch_num_cooked_regs (gdbarch));
|
||
gdb_assert (next_frame != nullptr);
|
||
|
||
return value::allocate_register_lazy (next_frame, regnum);
|
||
}
|
||
|
||
/* Given a pointer of type TYPE in target form in BUF, return the
|
||
address it represents. */
|
||
CORE_ADDR
|
||
unsigned_pointer_to_address (struct gdbarch *gdbarch,
|
||
struct type *type, const gdb_byte *buf)
|
||
{
|
||
enum bfd_endian byte_order = type_byte_order (type);
|
||
|
||
return extract_unsigned_integer (buf, type->length (), byte_order);
|
||
}
|
||
|
||
CORE_ADDR
|
||
signed_pointer_to_address (struct gdbarch *gdbarch,
|
||
struct type *type, const gdb_byte *buf)
|
||
{
|
||
enum bfd_endian byte_order = type_byte_order (type);
|
||
|
||
return extract_signed_integer (buf, type->length (), byte_order);
|
||
}
|
||
|
||
/* Given an address, store it as a pointer of type TYPE in target
|
||
format in BUF. */
|
||
void
|
||
unsigned_address_to_pointer (struct gdbarch *gdbarch, struct type *type,
|
||
gdb_byte *buf, CORE_ADDR addr)
|
||
{
|
||
enum bfd_endian byte_order = type_byte_order (type);
|
||
|
||
store_unsigned_integer (buf, type->length (), byte_order, addr);
|
||
}
|
||
|
||
void
|
||
address_to_signed_pointer (struct gdbarch *gdbarch, struct type *type,
|
||
gdb_byte *buf, CORE_ADDR addr)
|
||
{
|
||
enum bfd_endian byte_order = type_byte_order (type);
|
||
|
||
store_signed_integer (buf, type->length (), byte_order, addr);
|
||
}
|
||
|
||
/* See value.h. */
|
||
|
||
enum symbol_needs_kind
|
||
symbol_read_needs (struct symbol *sym)
|
||
{
|
||
if (const symbol_computed_ops *computed_ops = sym->computed_ops ();
|
||
computed_ops != nullptr)
|
||
return computed_ops->get_symbol_read_needs (sym);
|
||
|
||
switch (sym->aclass ())
|
||
{
|
||
/* All cases listed explicitly so that gcc -Wall will detect it if
|
||
we failed to consider one. */
|
||
case LOC_COMPUTED:
|
||
gdb_assert_not_reached ("LOC_COMPUTED variable missing a method");
|
||
|
||
case LOC_REGISTER:
|
||
case LOC_ARG:
|
||
case LOC_REF_ARG:
|
||
case LOC_REGPARM_ADDR:
|
||
case LOC_LOCAL:
|
||
return SYMBOL_NEEDS_FRAME;
|
||
|
||
case LOC_UNDEF:
|
||
case LOC_CONST:
|
||
case LOC_STATIC:
|
||
case LOC_TYPEDEF:
|
||
|
||
case LOC_LABEL:
|
||
/* Getting the address of a label can be done independently of the block,
|
||
even if some *uses* of that address wouldn't work so well without
|
||
the right frame. */
|
||
|
||
case LOC_BLOCK:
|
||
case LOC_CONST_BYTES:
|
||
case LOC_UNRESOLVED:
|
||
case LOC_OPTIMIZED_OUT:
|
||
return SYMBOL_NEEDS_NONE;
|
||
}
|
||
return SYMBOL_NEEDS_FRAME;
|
||
}
|
||
|
||
/* See value.h. */
|
||
|
||
int
|
||
symbol_read_needs_frame (struct symbol *sym)
|
||
{
|
||
return symbol_read_needs (sym) == SYMBOL_NEEDS_FRAME;
|
||
}
|
||
|
||
/* Assuming VAR is a symbol that can be reached from FRAME thanks to lexical
|
||
rules, look for the frame that is actually hosting VAR and return it. If,
|
||
for some reason, we found no such frame, return NULL.
|
||
|
||
This kind of computation is necessary to correctly handle lexically nested
|
||
functions.
|
||
|
||
Note that in some cases, we know what scope VAR comes from but we cannot
|
||
reach the specific frame that hosts the instance of VAR we are looking for.
|
||
For backward compatibility purposes (with old compilers), we then look for
|
||
the first frame that can host it. */
|
||
|
||
static frame_info_ptr
|
||
get_hosting_frame (struct symbol *var, const struct block *var_block,
|
||
const frame_info_ptr &initial_frame)
|
||
{
|
||
const struct block *frame_block = NULL;
|
||
|
||
if (!symbol_read_needs_frame (var))
|
||
return NULL;
|
||
|
||
/* Some symbols for local variables have no block: this happens when they are
|
||
not produced by a debug information reader, for instance when GDB creates
|
||
synthetic symbols. Without block information, we must assume they are
|
||
local to FRAME. In this case, there is nothing to do. */
|
||
else if (var_block == NULL)
|
||
return initial_frame;
|
||
|
||
/* We currently assume that all symbols with a location list need a frame.
|
||
This is true in practice because selecting the location description
|
||
requires to compute the CFA, hence requires a frame. However we have
|
||
tests that embed global/static symbols with null location lists.
|
||
We want to get <optimized out> instead of <frame required> when evaluating
|
||
them so return a frame instead of raising an error. */
|
||
else if (var_block->is_global_block () || var_block->is_static_block ())
|
||
return initial_frame;
|
||
|
||
/* We have to handle the "my_func::my_local_var" notation. This requires us
|
||
to look for upper frames when we find no block for the current frame: here
|
||
and below, handle when frame_block == NULL. */
|
||
if (initial_frame != nullptr)
|
||
frame_block = get_frame_block (initial_frame, NULL);
|
||
|
||
/* Climb up the call stack until reaching the frame we are looking for. */
|
||
frame_info_ptr frame = initial_frame;
|
||
while (frame != NULL && frame_block != var_block)
|
||
{
|
||
/* Stacks can be quite deep: give the user a chance to stop this. */
|
||
QUIT;
|
||
|
||
if (frame_block == NULL)
|
||
{
|
||
frame = get_prev_frame (frame);
|
||
if (frame == NULL)
|
||
break;
|
||
frame_block = get_frame_block (frame, NULL);
|
||
}
|
||
|
||
/* If we failed to find the proper frame, fallback to the heuristic
|
||
method below. */
|
||
else if (frame_block->is_global_block ())
|
||
{
|
||
frame = NULL;
|
||
break;
|
||
}
|
||
|
||
/* Assuming we have a block for this frame: if we are at the function
|
||
level, the immediate upper lexical block is in an outer function:
|
||
follow the static link. */
|
||
else if (frame_block->function () != nullptr)
|
||
{
|
||
frame = frame_follow_static_link (frame);
|
||
if (frame != nullptr)
|
||
{
|
||
frame_block = get_frame_block (frame, nullptr);
|
||
if (frame_block == nullptr)
|
||
frame = nullptr;
|
||
}
|
||
}
|
||
|
||
else
|
||
/* We must be in some function nested lexical block. Just get the
|
||
outer block: both must share the same frame. */
|
||
frame_block = frame_block->superblock ();
|
||
}
|
||
|
||
/* Old compilers may not provide a static link, or they may provide an
|
||
invalid one. For such cases, fallback on the old way to evaluate
|
||
non-local references: just climb up the call stack and pick the first
|
||
frame that contains the variable we are looking for. */
|
||
if (frame == NULL)
|
||
{
|
||
frame = block_innermost_frame (var_block);
|
||
if (frame == NULL)
|
||
{
|
||
if (var_block->function ()
|
||
&& !var_block->inlined_p ()
|
||
&& var_block->function ()->print_name ())
|
||
error (_("No frame is currently executing in block %s."),
|
||
var_block->function ()->print_name ());
|
||
else
|
||
error (_("No frame is currently executing in specified"
|
||
" block"));
|
||
}
|
||
}
|
||
|
||
return frame;
|
||
}
|
||
|
||
/* See language.h. */
|
||
|
||
struct value *
|
||
language_defn::read_var_value (struct symbol *var,
|
||
const struct block *var_block,
|
||
const frame_info_ptr &frame_param) const
|
||
{
|
||
struct value *v;
|
||
struct type *type = var->type ();
|
||
CORE_ADDR addr;
|
||
enum symbol_needs_kind sym_need;
|
||
frame_info_ptr frame = frame_param;
|
||
|
||
/* Call check_typedef on our type to make sure that, if TYPE is
|
||
a TYPE_CODE_TYPEDEF, its length is set to the length of the target type
|
||
instead of zero. However, we do not replace the typedef type by the
|
||
target type, because we want to keep the typedef in order to be able to
|
||
set the returned value type description correctly. */
|
||
check_typedef (type);
|
||
|
||
sym_need = symbol_read_needs (var);
|
||
if (sym_need == SYMBOL_NEEDS_FRAME)
|
||
gdb_assert (frame != NULL);
|
||
else if (sym_need == SYMBOL_NEEDS_REGISTERS && !target_has_registers ())
|
||
error (_("Cannot read `%s' without registers"), var->print_name ());
|
||
|
||
if (frame != NULL)
|
||
frame = get_hosting_frame (var, var_block, frame);
|
||
|
||
if (const symbol_computed_ops *computed_ops = var->computed_ops ())
|
||
return computed_ops->read_variable (var, frame);
|
||
|
||
switch (var->aclass ())
|
||
{
|
||
case LOC_CONST:
|
||
if (is_dynamic_type (type))
|
||
{
|
||
gdb_byte bytes[sizeof (LONGEST)];
|
||
|
||
size_t len = std::min (sizeof (LONGEST), (size_t) type->length ());
|
||
store_unsigned_integer (bytes, len,
|
||
type_byte_order (type),
|
||
var->value_longest ());
|
||
gdb::array_view<const gdb_byte> view (bytes, len);
|
||
|
||
/* Value is a constant byte-sequence. */
|
||
type = resolve_dynamic_type (type, view, /* Unused address. */ 0);
|
||
}
|
||
/* Put the constant back in target format. */
|
||
v = value::allocate (type);
|
||
store_signed_integer (v->contents_raw ().data (), type->length (),
|
||
type_byte_order (type), var->value_longest ());
|
||
v->set_lval (not_lval);
|
||
return v;
|
||
|
||
case LOC_LABEL:
|
||
{
|
||
/* Put the constant back in target format. */
|
||
if (overlay_debugging)
|
||
{
|
||
struct objfile *var_objfile = var->objfile ();
|
||
addr = symbol_overlayed_address (var->value_address (),
|
||
var->obj_section (var_objfile));
|
||
}
|
||
else
|
||
addr = var->value_address ();
|
||
|
||
/* First convert the CORE_ADDR to a function pointer type, this
|
||
ensures the gdbarch knows what type of pointer we are
|
||
manipulating when value_from_pointer is called. */
|
||
type = builtin_type (var->arch ())->builtin_func_ptr;
|
||
v = value_from_pointer (type, addr);
|
||
|
||
/* But we want to present the value as 'void *', so cast it to the
|
||
required type now, this will not change the values bit
|
||
representation. */
|
||
struct type *void_ptr_type
|
||
= builtin_type (var->arch ())->builtin_data_ptr;
|
||
v = value_cast_pointers (void_ptr_type, v, 0);
|
||
v->set_lval (not_lval);
|
||
return v;
|
||
}
|
||
|
||
case LOC_CONST_BYTES:
|
||
if (is_dynamic_type (type))
|
||
{
|
||
gdb::array_view<const gdb_byte> view (var->value_bytes (),
|
||
type->length ());
|
||
|
||
/* Value is a constant byte-sequence. */
|
||
type = resolve_dynamic_type (type, view, /* Unused address. */ 0);
|
||
}
|
||
v = value::allocate (type);
|
||
memcpy (v->contents_raw ().data (), var->value_bytes (),
|
||
type->length ());
|
||
v->set_lval (not_lval);
|
||
return v;
|
||
|
||
case LOC_STATIC:
|
||
if (overlay_debugging)
|
||
addr
|
||
= symbol_overlayed_address (var->value_address (),
|
||
var->obj_section (var->objfile ()));
|
||
else
|
||
addr = var->value_address ();
|
||
break;
|
||
|
||
case LOC_ARG:
|
||
addr = get_frame_args_address (frame);
|
||
if (!addr)
|
||
error (_("Unknown argument list address for `%s'."),
|
||
var->print_name ());
|
||
addr += var->value_longest ();
|
||
break;
|
||
|
||
case LOC_REF_ARG:
|
||
{
|
||
struct value *ref;
|
||
CORE_ADDR argref;
|
||
|
||
argref = get_frame_args_address (frame);
|
||
if (!argref)
|
||
error (_("Unknown argument list address for `%s'."),
|
||
var->print_name ());
|
||
argref += var->value_longest ();
|
||
ref = value_at (lookup_pointer_type (type), argref);
|
||
addr = value_as_address (ref);
|
||
break;
|
||
}
|
||
|
||
case LOC_LOCAL:
|
||
addr = get_frame_locals_address (frame);
|
||
addr += var->value_longest ();
|
||
break;
|
||
|
||
case LOC_TYPEDEF:
|
||
error (_("Cannot look up value of a typedef `%s'."),
|
||
var->print_name ());
|
||
break;
|
||
|
||
case LOC_BLOCK:
|
||
if (overlay_debugging)
|
||
addr = symbol_overlayed_address
|
||
(var->value_block ()->entry_pc (),
|
||
var->obj_section (var->objfile ()));
|
||
else
|
||
addr = var->value_block ()->entry_pc ();
|
||
break;
|
||
|
||
case LOC_REGISTER:
|
||
case LOC_REGPARM_ADDR:
|
||
{
|
||
const symbol_register_ops *reg_ops = var->register_ops ();
|
||
int regno = reg_ops->register_number (var, get_frame_arch (frame));
|
||
|
||
if (var->aclass () == LOC_REGPARM_ADDR)
|
||
addr = value_as_address
|
||
(value_from_register (lookup_pointer_type (type), regno, frame));
|
||
else
|
||
return value_from_register (type, regno, frame);
|
||
}
|
||
break;
|
||
|
||
case LOC_COMPUTED:
|
||
gdb_assert_not_reached ("LOC_COMPUTED variable missing a method");
|
||
|
||
case LOC_UNRESOLVED:
|
||
{
|
||
struct obj_section *obj_section;
|
||
bound_minimal_symbol bmsym;
|
||
|
||
gdbarch_iterate_over_objfiles_in_search_order
|
||
(var->arch (),
|
||
[var, &bmsym] (objfile *objfile)
|
||
{
|
||
bmsym = lookup_minimal_symbol (var->linkage_name (), nullptr,
|
||
objfile);
|
||
|
||
/* Stop if a match is found. */
|
||
return bmsym.minsym != nullptr;
|
||
},
|
||
var->objfile ());
|
||
|
||
/* If we can't find the minsym there's a problem in the symbol info.
|
||
The symbol exists in the debug info, but it's missing in the minsym
|
||
table. */
|
||
if (bmsym.minsym == nullptr)
|
||
{
|
||
const char *flavour_name
|
||
= objfile_flavour_name (var->objfile ());
|
||
|
||
/* We can't get here unless we've opened the file, so flavour_name
|
||
can't be NULL. */
|
||
gdb_assert (flavour_name != NULL);
|
||
error (_("Missing %s symbol \"%s\"."),
|
||
flavour_name, var->linkage_name ());
|
||
}
|
||
|
||
obj_section = bmsym.minsym->obj_section (bmsym.objfile);
|
||
/* Relocate address, unless there is no section or the variable is
|
||
a TLS variable. */
|
||
if (obj_section == NULL
|
||
|| (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
|
||
addr = CORE_ADDR (bmsym.minsym->unrelocated_address ());
|
||
else
|
||
addr = bmsym.value_address ();
|
||
if (overlay_debugging)
|
||
addr = symbol_overlayed_address (addr, obj_section);
|
||
/* Determine address of TLS variable. */
|
||
if (obj_section
|
||
&& (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
|
||
addr = target_translate_tls_address (obj_section->objfile, addr);
|
||
}
|
||
break;
|
||
|
||
case LOC_OPTIMIZED_OUT:
|
||
if (is_dynamic_type (type))
|
||
type = resolve_dynamic_type (type, {}, /* Unused address. */ 0);
|
||
return value::allocate_optimized_out (type);
|
||
|
||
default:
|
||
error (_("Cannot look up value of a botched symbol `%s'."),
|
||
var->print_name ());
|
||
break;
|
||
}
|
||
|
||
v = value_at_lazy (type, addr);
|
||
return v;
|
||
}
|
||
|
||
/* Calls VAR's language read_var_value hook with the given arguments. */
|
||
|
||
struct value *
|
||
read_var_value (struct symbol *var, const struct block *var_block,
|
||
const frame_info_ptr &frame)
|
||
{
|
||
const struct language_defn *lang = language_def (var->language ());
|
||
|
||
gdb_assert (lang != NULL);
|
||
|
||
return lang->read_var_value (var, var_block, frame);
|
||
}
|
||
|
||
/* Install default attributes for register values. */
|
||
|
||
value *
|
||
default_value_from_register (gdbarch *gdbarch, type *type, int regnum,
|
||
const frame_info_ptr &this_frame)
|
||
{
|
||
value *value
|
||
= value::allocate_register (get_next_frame_sentinel_okay (this_frame),
|
||
regnum, type);
|
||
|
||
/* Any structure stored in more than one register will always be
|
||
an integral number of registers. Otherwise, you need to do
|
||
some fiddling with the last register copied here for little
|
||
endian machines. */
|
||
if (type_byte_order (type) == BFD_ENDIAN_BIG
|
||
&& type->length () < register_size (gdbarch, regnum))
|
||
/* Big-endian, and we want less than full size. */
|
||
value->set_offset (register_size (gdbarch, regnum) - type->length ());
|
||
else
|
||
value->set_offset (0);
|
||
|
||
return value;
|
||
}
|
||
|
||
/* VALUE must be an lval_register value. If regnum is the value's
|
||
associated register number, and len the length of the value's type,
|
||
read one or more registers in VALUE's frame, starting with register REGNUM,
|
||
until we've read LEN bytes.
|
||
|
||
If any of the registers we try to read are optimized out, then mark the
|
||
complete resulting value as optimized out. */
|
||
|
||
static void
|
||
read_frame_register_value (value *value)
|
||
{
|
||
gdb_assert (value->lval () == lval_register);
|
||
|
||
frame_info_ptr next_frame = frame_find_by_id (value->next_frame_id ());
|
||
gdb_assert (next_frame != nullptr);
|
||
|
||
gdbarch *gdbarch = frame_unwind_arch (next_frame);
|
||
LONGEST offset = 0;
|
||
LONGEST reg_offset = value->offset ();
|
||
int regnum = value->regnum ();
|
||
int len = type_length_units (check_typedef (value->type ()));
|
||
|
||
/* Skip registers wholly inside of REG_OFFSET. */
|
||
while (reg_offset >= register_size (gdbarch, regnum))
|
||
{
|
||
reg_offset -= register_size (gdbarch, regnum);
|
||
regnum++;
|
||
}
|
||
|
||
/* Copy the data. */
|
||
while (len > 0)
|
||
{
|
||
struct value *regval = frame_unwind_register_value (next_frame, regnum);
|
||
int reg_len = type_length_units (regval->type ()) - reg_offset;
|
||
|
||
/* If the register length is larger than the number of bytes
|
||
remaining to copy, then only copy the appropriate bytes. */
|
||
if (reg_len > len)
|
||
reg_len = len;
|
||
|
||
regval->contents_copy (value, offset, reg_offset, reg_len);
|
||
|
||
offset += reg_len;
|
||
len -= reg_len;
|
||
reg_offset = 0;
|
||
regnum++;
|
||
}
|
||
}
|
||
|
||
/* Return a value of type TYPE, stored in register REGNUM, in frame FRAME. */
|
||
|
||
struct value *
|
||
value_from_register (struct type *type, int regnum, const frame_info_ptr &frame)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (frame);
|
||
struct type *type1 = check_typedef (type);
|
||
struct value *v;
|
||
|
||
if (gdbarch_convert_register_p (gdbarch, regnum, type1))
|
||
{
|
||
int optim, unavail, ok;
|
||
|
||
/* The ISA/ABI need to something weird when obtaining the
|
||
specified value from this register. It might need to
|
||
re-order non-adjacent, starting with REGNUM (see MIPS and
|
||
i386). It might need to convert the [float] register into
|
||
the corresponding [integer] type (see Alpha). The assumption
|
||
is that gdbarch_register_to_value populates the entire value
|
||
including the location. */
|
||
v = value::allocate_register (get_next_frame_sentinel_okay (frame),
|
||
regnum, type);
|
||
ok = gdbarch_register_to_value (gdbarch, frame, regnum, type1,
|
||
v->contents_raw ().data (), &optim,
|
||
&unavail);
|
||
|
||
if (!ok)
|
||
{
|
||
if (optim)
|
||
v->mark_bytes_optimized_out (0, type->length ());
|
||
if (unavail)
|
||
v->mark_bytes_unavailable (0, type->length ());
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Construct the value. */
|
||
v = gdbarch_value_from_register (gdbarch, type, regnum, frame);
|
||
|
||
/* Get the data. */
|
||
read_frame_register_value (v);
|
||
}
|
||
|
||
return v;
|
||
}
|
||
|
||
/* Return contents of register REGNUM in frame FRAME as address.
|
||
Will abort if register value is not available. */
|
||
|
||
CORE_ADDR
|
||
address_from_register (int regnum, const frame_info_ptr &frame)
|
||
{
|
||
type *type = builtin_type (get_frame_arch (frame))->builtin_data_ptr;
|
||
value_ref_ptr v = release_value (value_from_register (type, regnum, frame));
|
||
|
||
if (v->optimized_out ())
|
||
{
|
||
/* This function is used while computing a location expression.
|
||
Complain about the value being optimized out, rather than
|
||
letting value_as_address complain about some random register
|
||
the expression depends on not being saved. */
|
||
error_value_optimized_out ();
|
||
}
|
||
|
||
return value_as_address (v.get ());
|
||
}
|