mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-27 04:52:05 +08:00
2f408ecb92
This replaces most of the remaining ui_file_xstrdup calls with ui_file_as_string calls. Whenever a call was replaced, that led to a cascade of other necessary adjustments throughout, to make the code use std::string instead of raw pointers. And then whenever I added a std::string as member of a struct, I needed to adjust allocation/destruction of said struct to use new/delete instead of xmalloc/xfree. The stopping point was once gdb built again. These doesn't seem to be a way to reasonably split this out further. Maybe-not-obvious changes: - demangle_for_lookup returns a cleanup today. To get rid of that, and avoid unnecessary string dupping/copying, this introduces a demangle_result_storage type that the caller instantiates and passes to demangle_for_lookup. - Many methods returned a "char *" to indicate that the caller owns the memory and must free it. Those are switched to return a std::string instead. Methods that return a "view" into some internal string return a "const char *" instead. I.e., we only copy/allocate when necessary. gdb/ChangeLog: 2016-11-08 Pedro Alves <palves@redhat.com> * ada-lang.c (ada_name_for_lookup, type_as_string): Use and return std::string. (type_as_string_and_cleanup): Delete. (ada_lookup_struct_elt_type): Use type_as_string. * ada-lang.h (ada_name_for_lookup): Now returns std::string. * ada-varobj.c (ada_varobj_scalar_image): Return a std::string. (ada_varobj_describe_child): Make 'child_name' and 'child_path_expr' parameters std::string pointers. (ada_varobj_describe_struct_child, ada_varobj_describe_ptr_child): Likewise, and use string_printf. (ada_varobj_describe_simple_array_child) (ada_varobj_describe_child): Likewise. (ada_varobj_get_name_of_child, ada_varobj_get_path_expr_of_child) (ada_varobj_get_value_image) (ada_varobj_get_value_of_array_variable) (ada_varobj_get_value_of_variable, ada_name_of_variable) (ada_name_of_child, ada_path_expr_of_child) (ada_value_of_variable): Now returns std::string. Use string_printf. (ada_value_of_child): Adjust. * break-catch-throw.c (check_status_exception_catchpoint): Adjust to use std::string. * breakpoint.c (watch_command_1): Adjust to use std::string. * c-lang.c (c_get_string): Adjust to use std::string. * c-typeprint.c (print_name_maybe_canonical): Use std::string. * c-varobj.c (varobj_is_anonymous_child): Use ==/!= std::string operators. (c_name_of_variable): Now returns a std::string. (c_describe_child): The 'cname' and 'cfull_expression' output parameters are now std::string pointers. Adjust. (c_name_of_child, c_path_expr_of_child, c_value_of_variable) (cplus_number_of_children): Adjust to use std::string and string_printf. (cplus_name_of_variable): Now returns a std::string. (cplus_describe_child): The 'cname' and 'cfull_expression' output parameters are now std::string pointers. Adjust. (cplus_name_of_child, cplus_path_expr_of_child) (cplus_value_of_variable): Now returns a std::string. * cp-abi.c (cplus_typename_from_type_info): Return std::string. * cp-abi.h (cplus_typename_from_type_info): Return std::string. (struct cp_abi_ops) <get_typename_from_type_info>: Return std::string. * cp-support.c (inspect_type): Use std::string. (cp_canonicalize_string_full, cp_canonicalize_string_no_typedefs) (cp_canonicalize_string): Return std::string and adjust. * cp-support.h (cp_canonicalize_string) (cp_canonicalize_string_no_typedefs, cp_canonicalize_string_full): Return std::string. * dbxread.c (read_dbx_symtab): Use std::string. * dwarf2read.c (dwarf2_canonicalize_name): Adjust to use std::string. * gdbcmd.h (lookup_struct_elt_type): Adjust to use std::string. * gnu-v3-abi.c (gnuv3_get_typeid): Use std::string. (gnuv3_get_typename_from_type_info): Return a std::string and adjust. (gnuv3_get_type_from_type_info): Adjust to use std::string. * guile/guile.c (gdbscm_execute_gdb_command): Adjust to use std::string. * infcmd.c (print_return_value_1): Adjust to use std::string. * linespec.c (find_linespec_symbols): Adjust to demangle_for_lookup API change. Use std::string. * mi/mi-cmd-var.c (print_varobj, mi_cmd_var_set_format) (mi_cmd_var_info_type, mi_cmd_var_info_path_expression) (mi_cmd_var_info_expression, mi_cmd_var_evaluate_expression) (mi_cmd_var_assign, varobj_update_one): Adjust to use std::string. * minsyms.c (lookup_minimal_symbol): Use std::string. * python/py-varobj.c (py_varobj_iter_next): Use new instead of XNEW. vitem->name is a std::string now, adjust. * rust-exp.y (convert_ast_to_type, convert_name): Adjust to use std::string. * stabsread.c (define_symbol): Adjust to use std::string. * symtab.c (demangle_for_lookup): Now returns 'const char *'. Add a demangle_result_storage parameter. Use it for storage. (lookup_symbol_in_language) (lookup_symbol_in_objfile_from_linkage_name): Adjust to new demangle_for_lookup API. * symtab.h (struct demangle_result_storage): New type. (demangle_for_lookup): Now returns 'const char *'. Add a demangle_result_storage parameter. * typeprint.c (type_to_string): Return std::string and use ui_file_as_string. * value.h (type_to_string): Change return type to std::string. * varobj-iter.h (struct varobj_item) <name>: Now a std::string. (varobj_iter_delete): Use delete instead of xfree. * varobj.c (create_child): Return std::string instead of char * in output parameter. (name_of_variable, name_of_child, my_value_of_variable): Return std::string instead of char *. (varobj_create, varobj_get_handle): Constify 'objname' parameter. Adjust to std::string fields. (varobj_get_objname): Return a const char * instead of a char *. (varobj_get_expression): Return a std::string. (varobj_list_children): Adjust to use std::string. (varobj_get_type): Return a std::string. (varobj_get_path_expr): Return a const char * instead of a char *. Adjust to std::string fields. (varobj_get_formatted_value, varobj_get_value): Return a std::string. (varobj_set_value): Change type of 'expression' parameter to std::string. Use std::string. (install_new_value): Use std::string. (delete_variable_1): Adjust to use std::string. (create_child): Change the 'name' parameter to a std::string reference. Swap it into the new item's name. (create_child_with_value): Swap item's name into the new child's name. Use string_printf. (new_variable): Use new instead of XNEW. (free_variable): Don't xfree fields that are now std::string. (name_of_variable, name_of_child): Now returns std::string. (value_of_root): Adjust to use std::string. (my_value_of_variable, varobj_value_get_print_value): Return and use std::string. (varobj_value_get_print_value): Adjust to use ui_file_as_string and std::string. * varobj.h (struct varobj) <name, path_expr, obj_name, print_value>: Now std::string's. <name_of_variable, name_of_child, path_expr_of_child, value_of_variable>: Return std::string. (varobj_create, varobj_get_handle): Constify 'objname' parameter. (varobj_get_objname): Return a const char * instead of a char *. (varobj_get_expression, varobj_get_type): Return a std::string. (varobj_get_path_expr): Return a const char * instead of a char *. (varobj_get_formatted_value, varobj_get_value): Return a std::string. (varobj_set_value): Constify 'expression' parameter. (varobj_value_get_print_value): Return a std::string.
258 lines
9.5 KiB
C++
258 lines
9.5 KiB
C++
/* Abstraction of various C++ ABI's we support, and the info we need
|
|
to get from them.
|
|
|
|
Contributed by Daniel Berlin <dberlin@redhat.com>
|
|
|
|
Copyright (C) 2001-2016 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#ifndef CP_ABI_H_
|
|
#define CP_ABI_H_ 1
|
|
|
|
struct fn_field;
|
|
struct type;
|
|
struct value;
|
|
struct ui_file;
|
|
struct frame_info;
|
|
|
|
/* The functions here that attempt to determine what sort of thing a
|
|
mangled name refers to may well be revised in the future. It would
|
|
certainly be cleaner to carry this information explicitly in GDB's
|
|
data structures than to derive it from the mangled name. */
|
|
|
|
|
|
/* Kinds of constructors. All these values are guaranteed to be
|
|
non-zero. */
|
|
enum ctor_kinds {
|
|
|
|
/* Initialize a complete object, including virtual bases, using
|
|
memory provided by caller. */
|
|
complete_object_ctor = 1,
|
|
|
|
/* Initialize a base object of some larger object. */
|
|
base_object_ctor,
|
|
|
|
/* An allocating complete-object constructor. */
|
|
complete_object_allocating_ctor
|
|
};
|
|
|
|
/* Return non-zero iff NAME is the mangled name of a constructor.
|
|
Actually, return an `enum ctor_kind' value describing what *kind*
|
|
of constructor it is. */
|
|
extern enum ctor_kinds is_constructor_name (const char *name);
|
|
|
|
|
|
/* Kinds of destructors. All these values are guaranteed to be
|
|
non-zero. */
|
|
enum dtor_kinds {
|
|
|
|
/* A destructor which finalizes the entire object, and then calls
|
|
`delete' on its storage. */
|
|
deleting_dtor = 1,
|
|
|
|
/* A destructor which finalizes the entire object, but does not call
|
|
`delete'. */
|
|
complete_object_dtor,
|
|
|
|
/* A destructor which finalizes a subobject of some larger
|
|
object. */
|
|
base_object_dtor
|
|
};
|
|
|
|
/* Return non-zero iff NAME is the mangled name of a destructor.
|
|
Actually, return an `enum dtor_kind' value describing what *kind*
|
|
of destructor it is. */
|
|
extern enum dtor_kinds is_destructor_name (const char *name);
|
|
|
|
|
|
/* Return non-zero iff NAME is the mangled name of a vtable. */
|
|
extern int is_vtable_name (const char *name);
|
|
|
|
|
|
/* Return non-zero iff NAME is the un-mangled name of an operator,
|
|
perhaps scoped within some class. */
|
|
extern int is_operator_name (const char *name);
|
|
|
|
|
|
/* Return an object's virtual function as a value.
|
|
|
|
VALUEP is a pointer to a pointer to a value, holding the object
|
|
whose virtual function we want to invoke. If the ABI requires a
|
|
virtual function's caller to adjust the `this' pointer by an amount
|
|
retrieved from the vtable before invoking the function (i.e., we're
|
|
not using "vtable thunks" to do the adjustment automatically), then
|
|
this function may set *VALUEP to point to a new object with an
|
|
appropriately tweaked address.
|
|
|
|
The J'th element of the overload set F is the virtual function of
|
|
*VALUEP we want to invoke.
|
|
|
|
TYPE is the base type of *VALUEP whose method we're invoking ---
|
|
this is the type containing F. OFFSET is the offset of that base
|
|
type within *VALUEP. */
|
|
extern struct value *value_virtual_fn_field (struct value **valuep,
|
|
struct fn_field *f,
|
|
int j,
|
|
struct type *type,
|
|
int offset);
|
|
|
|
|
|
/* Try to find the run-time type of VALUE, using C++ run-time type
|
|
information. Return the run-time type, or zero if we can't figure
|
|
it out.
|
|
|
|
If we do find the run-time type:
|
|
- Set *FULL to non-zero if VALUE already contains the complete
|
|
run-time object, not just some embedded base class of the object.
|
|
- Set *TOP and *USING_ENC to indicate where the enclosing object
|
|
starts relative to VALUE:
|
|
- If *USING_ENC is zero, then *TOP is the offset from the start
|
|
of the complete object to the start of the embedded subobject
|
|
VALUE represents. In other words, the enclosing object starts
|
|
at VALUE_ADDR (VALUE) + VALUE_OFFSET (VALUE) +
|
|
value_embedded_offset (VALUE) + *TOP
|
|
- If *USING_ENC is non-zero, then *TOP is the offset from the
|
|
address of the complete object to the enclosing object stored
|
|
in VALUE. In other words, the enclosing object starts at
|
|
VALUE_ADDR (VALUE) + VALUE_OFFSET (VALUE) + *TOP.
|
|
If VALUE's type and enclosing type are the same, then these two
|
|
cases are equivalent.
|
|
|
|
FULL, TOP, and USING_ENC can each be zero, in which case we don't
|
|
provide the corresponding piece of information. */
|
|
extern struct type *value_rtti_type (struct value *value,
|
|
int *full, LONGEST *top,
|
|
int *using_enc);
|
|
|
|
/* Compute the offset of the baseclass which is the INDEXth baseclass
|
|
of class TYPE, for value at VALADDR (in host) at ADDRESS (in
|
|
target), offset by EMBEDDED_OFFSET. VALADDR points to the raw
|
|
contents of VAL. The result is the offset of the baseclass value
|
|
relative to (the address of)(ARG) + OFFSET. */
|
|
|
|
extern int baseclass_offset (struct type *type,
|
|
int index, const gdb_byte *valaddr,
|
|
LONGEST embedded_offset,
|
|
CORE_ADDR address,
|
|
const struct value *val);
|
|
|
|
/* Describe the target of a pointer to method. CONTENTS is the byte
|
|
pattern representing the pointer to method. TYPE is the pointer to
|
|
method type. STREAM is the stream to print it to. */
|
|
void cplus_print_method_ptr (const gdb_byte *contents,
|
|
struct type *type,
|
|
struct ui_file *stream);
|
|
|
|
/* Return the size of a pointer to member function of type
|
|
TO_TYPE. */
|
|
int cplus_method_ptr_size (struct type *to_type);
|
|
|
|
/* Return the method which should be called by applying METHOD_PTR to
|
|
*THIS_P, and adjust *THIS_P if necessary. */
|
|
struct value *cplus_method_ptr_to_value (struct value **this_p,
|
|
struct value *method_ptr);
|
|
|
|
/* Create the byte pattern in CONTENTS representing a pointer of type
|
|
TYPE to member function at ADDRESS (if IS_VIRTUAL is 0) or with
|
|
virtual table offset ADDRESS (if IS_VIRTUAL is 1). This is the
|
|
opposite of cplus_method_ptr_to_value. */
|
|
void cplus_make_method_ptr (struct type *type, gdb_byte *CONTENTS,
|
|
CORE_ADDR address, int is_virtual);
|
|
|
|
/* Print the vtable for VALUE, if there is one. If there is no
|
|
vtable, print a message, but do not throw. */
|
|
|
|
void cplus_print_vtable (struct value *value);
|
|
|
|
/* Implement 'typeid': find the type info for VALUE, if possible. If
|
|
the type info cannot be found, throw an exception. */
|
|
|
|
extern struct value *cplus_typeid (struct value *value);
|
|
|
|
/* Return the type of 'typeid' for the current C++ ABI on the given
|
|
architecture. */
|
|
|
|
extern struct type *cplus_typeid_type (struct gdbarch *gdbarch);
|
|
|
|
/* Given a value which holds a pointer to a std::type_info, return the
|
|
type which that type_info represents. Throw an exception if the
|
|
type cannot be found. */
|
|
|
|
extern struct type *cplus_type_from_type_info (struct value *value);
|
|
|
|
/* Given a value which holds a pointer to a std::type_info, return the
|
|
name of the type which that type_info represents. Throw an
|
|
exception if the type name cannot be found. */
|
|
|
|
extern std::string cplus_typename_from_type_info (struct value *value);
|
|
|
|
/* Determine if we are currently in a C++ thunk. If so, get the
|
|
address of the routine we are thunking to and continue to there
|
|
instead. */
|
|
|
|
CORE_ADDR cplus_skip_trampoline (struct frame_info *frame,
|
|
CORE_ADDR stop_pc);
|
|
|
|
/* Return non-zero if an argument of type TYPE should be passed by
|
|
reference instead of value. */
|
|
extern int cp_pass_by_reference (struct type *type);
|
|
|
|
struct cp_abi_ops
|
|
{
|
|
const char *shortname;
|
|
const char *longname;
|
|
const char *doc;
|
|
|
|
/* ABI-specific implementations for the functions declared
|
|
above. */
|
|
enum ctor_kinds (*is_constructor_name) (const char *name);
|
|
enum dtor_kinds (*is_destructor_name) (const char *name);
|
|
int (*is_vtable_name) (const char *name);
|
|
int (*is_operator_name) (const char *name);
|
|
struct value *(*virtual_fn_field) (struct value **arg1p,
|
|
struct fn_field * f,
|
|
int j, struct type * type,
|
|
int offset);
|
|
struct type *(*rtti_type) (struct value *v, int *full,
|
|
LONGEST *top, int *using_enc);
|
|
int (*baseclass_offset) (struct type *type, int index,
|
|
const bfd_byte *valaddr, LONGEST embedded_offset,
|
|
CORE_ADDR address, const struct value *val);
|
|
void (*print_method_ptr) (const gdb_byte *contents,
|
|
struct type *type,
|
|
struct ui_file *stream);
|
|
int (*method_ptr_size) (struct type *);
|
|
void (*make_method_ptr) (struct type *, gdb_byte *,
|
|
CORE_ADDR, int);
|
|
struct value * (*method_ptr_to_value) (struct value **,
|
|
struct value *);
|
|
void (*print_vtable) (struct value *);
|
|
struct value *(*get_typeid) (struct value *value);
|
|
struct type *(*get_typeid_type) (struct gdbarch *gdbarch);
|
|
struct type *(*get_type_from_type_info) (struct value *value);
|
|
std::string (*get_typename_from_type_info) (struct value *value);
|
|
CORE_ADDR (*skip_trampoline) (struct frame_info *, CORE_ADDR);
|
|
int (*pass_by_reference) (struct type *type);
|
|
};
|
|
|
|
|
|
extern int register_cp_abi (struct cp_abi_ops *abi);
|
|
extern void set_cp_abi_as_auto_default (const char *short_name);
|
|
|
|
#endif
|
|
|