mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-15 04:31:49 +08:00
97f4695394
* gdbarch.sh (INIT_FRAME_PC_FIRST, INIT_FRAME_PC_DEFAULT): Convert to pure functions. * gdbarch.h, gdbarch.c: Re-generate. * frame.c (get_prev_frame): Explictly assign prev's pc with value returned by INIT_FRAME_PC_FIRST and INIT_EXTRA_FRAME_INFO. * arch-utils.h (init_frame_pc_default, init_frame_pc_noop): Change declaration to a function returning a CORE_ADDR. * x86-64-tdep.h (x86_64_init_frame_pc): Ditto. * arch-utils.c (init_frame_pc_noop): Return the PC value. (init_frame_pc_default): Ditto. * x86-64-linux-tdep.c (x86_64_init_frame_pc): Ditto. * s390-tdep.c (s390_init_frame_pc_first): Ditto. * mips-tdep.c (mips_init_frame_pc_first): Ditto. * dwarf2cfi.h (cfi_init_frame_pc): Ditto. * dwarf2cfi.c (cfi_init_frame_pc): Ditto. * alpha-tdep.c (alpha_init_frame_pc_first): Ditto. * i386-interix-tdep.c (i386_interix_init_abi): Set init_frame_pc to init_frame_pc_noop. (i386_interix_init_frame_pc): Delete function. * z8k-tdep.c (init_frame_pc): Delete function. * config/z8k/tm-z8k.h (INIT_FRAME_PC): Define as init_frame_pc_noop. (INIT_FRAME_PC_FIRST): Ditto. * config/mn10200/tm-mn10200.h (INIT_FRAME_PC): Ditto. (INIT_FRAME_PC_FIRST): Ditto. * config/sparc/tm-sparc.h (INIT_FRAME_PC): Ditto. * config/rs6000/tm-rs6000.h (INIT_FRAME_PC): Redefine as init_frame_pc_noop. (INIT_FRAME_PC_FIRST): Convert to an expression. * config/sparc/tm-sparc.h (INIT_FRAME_PC_FIRST): Ditto.
934 lines
24 KiB
C
934 lines
24 KiB
C
/* Dynamic architecture support for GDB, the GNU debugger.
|
||
|
||
Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation,
|
||
Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
|
||
#if GDB_MULTI_ARCH
|
||
#include "arch-utils.h"
|
||
#include "gdbcmd.h"
|
||
#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
|
||
#else
|
||
/* Just include everything in sight so that the every old definition
|
||
of macro is visible. */
|
||
#include "symtab.h"
|
||
#include "frame.h"
|
||
#include "inferior.h"
|
||
#include "breakpoint.h"
|
||
#include "gdb_wait.h"
|
||
#include "gdbcore.h"
|
||
#include "gdbcmd.h"
|
||
#include "target.h"
|
||
#include "annotate.h"
|
||
#endif
|
||
#include "gdb_string.h"
|
||
#include "regcache.h"
|
||
#include "gdb_assert.h"
|
||
#include "sim-regno.h"
|
||
|
||
#include "version.h"
|
||
|
||
#include "floatformat.h"
|
||
|
||
/* Use the program counter to determine the contents and size
|
||
of a breakpoint instruction. If no target-dependent macro
|
||
BREAKPOINT_FROM_PC has been defined to implement this function,
|
||
assume that the breakpoint doesn't depend on the PC, and
|
||
use the values of the BIG_BREAKPOINT and LITTLE_BREAKPOINT macros.
|
||
Return a pointer to a string of bytes that encode a breakpoint
|
||
instruction, stores the length of the string to *lenptr,
|
||
and optionally adjust the pc to point to the correct memory location
|
||
for inserting the breakpoint. */
|
||
|
||
const unsigned char *
|
||
legacy_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
|
||
{
|
||
/* {BIG_,LITTLE_}BREAKPOINT is the sequence of bytes we insert for a
|
||
breakpoint. On some machines, breakpoints are handled by the
|
||
target environment and we don't have to worry about them here. */
|
||
#ifdef BIG_BREAKPOINT
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||
{
|
||
static unsigned char big_break_insn[] = BIG_BREAKPOINT;
|
||
*lenptr = sizeof (big_break_insn);
|
||
return big_break_insn;
|
||
}
|
||
#endif
|
||
#ifdef LITTLE_BREAKPOINT
|
||
if (TARGET_BYTE_ORDER != BFD_ENDIAN_BIG)
|
||
{
|
||
static unsigned char little_break_insn[] = LITTLE_BREAKPOINT;
|
||
*lenptr = sizeof (little_break_insn);
|
||
return little_break_insn;
|
||
}
|
||
#endif
|
||
#ifdef BREAKPOINT
|
||
{
|
||
static unsigned char break_insn[] = BREAKPOINT;
|
||
*lenptr = sizeof (break_insn);
|
||
return break_insn;
|
||
}
|
||
#endif
|
||
*lenptr = 0;
|
||
return NULL;
|
||
}
|
||
|
||
/* Implementation of extract return value that grubs around in the
|
||
register cache. */
|
||
void
|
||
legacy_extract_return_value (struct type *type, struct regcache *regcache,
|
||
void *valbuf)
|
||
{
|
||
char *registers = deprecated_grub_regcache_for_registers (regcache);
|
||
bfd_byte *buf = valbuf;
|
||
DEPRECATED_EXTRACT_RETURN_VALUE (type, registers, buf); /* OK */
|
||
}
|
||
|
||
/* Implementation of store return value that grubs the register cache.
|
||
Takes a local copy of the buffer to avoid const problems. */
|
||
void
|
||
legacy_store_return_value (struct type *type, struct regcache *regcache,
|
||
const void *buf)
|
||
{
|
||
bfd_byte *b = alloca (TYPE_LENGTH (type));
|
||
gdb_assert (regcache == current_regcache);
|
||
memcpy (b, buf, TYPE_LENGTH (type));
|
||
DEPRECATED_STORE_RETURN_VALUE (type, b);
|
||
}
|
||
|
||
|
||
int
|
||
legacy_register_sim_regno (int regnum)
|
||
{
|
||
/* Only makes sense to supply raw registers. */
|
||
gdb_assert (regnum >= 0 && regnum < NUM_REGS);
|
||
/* NOTE: cagney/2002-05-13: The old code did it this way and it is
|
||
suspected that some GDB/SIM combinations may rely on this
|
||
behavour. The default should be one2one_register_sim_regno
|
||
(below). */
|
||
if (REGISTER_NAME (regnum) != NULL
|
||
&& REGISTER_NAME (regnum)[0] != '\0')
|
||
return regnum;
|
||
else
|
||
return LEGACY_SIM_REGNO_IGNORE;
|
||
}
|
||
|
||
int
|
||
generic_frameless_function_invocation_not (struct frame_info *fi)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
generic_return_value_on_stack_not (struct type *type)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
CORE_ADDR
|
||
generic_skip_trampoline_code (CORE_ADDR pc)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
generic_in_solib_call_trampoline (CORE_ADDR pc, char *name)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
generic_in_solib_return_trampoline (CORE_ADDR pc, char *name)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
generic_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
const char *
|
||
legacy_register_name (int i)
|
||
{
|
||
#ifdef REGISTER_NAMES
|
||
static char *names[] = REGISTER_NAMES;
|
||
if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
|
||
return NULL;
|
||
else
|
||
return names[i];
|
||
#else
|
||
internal_error (__FILE__, __LINE__,
|
||
"legacy_register_name: called.");
|
||
return NULL;
|
||
#endif
|
||
}
|
||
|
||
#if defined (CALL_DUMMY)
|
||
LONGEST legacy_call_dummy_words[] = CALL_DUMMY;
|
||
#else
|
||
LONGEST legacy_call_dummy_words[1];
|
||
#endif
|
||
int legacy_sizeof_call_dummy_words = sizeof (legacy_call_dummy_words);
|
||
|
||
void
|
||
generic_remote_translate_xfer_address (CORE_ADDR gdb_addr, int gdb_len,
|
||
CORE_ADDR * rem_addr, int *rem_len)
|
||
{
|
||
*rem_addr = gdb_addr;
|
||
*rem_len = gdb_len;
|
||
}
|
||
|
||
int
|
||
generic_prologue_frameless_p (CORE_ADDR ip)
|
||
{
|
||
return ip == SKIP_PROLOGUE (ip);
|
||
}
|
||
|
||
/* New/multi-arched targets should use the correct gdbarch field
|
||
instead of using this global pointer. */
|
||
int
|
||
legacy_print_insn (bfd_vma vma, disassemble_info *info)
|
||
{
|
||
return (*tm_print_insn) (vma, info);
|
||
}
|
||
|
||
/* Helper functions for INNER_THAN */
|
||
|
||
int
|
||
core_addr_lessthan (CORE_ADDR lhs, CORE_ADDR rhs)
|
||
{
|
||
return (lhs < rhs);
|
||
}
|
||
|
||
int
|
||
core_addr_greaterthan (CORE_ADDR lhs, CORE_ADDR rhs)
|
||
{
|
||
return (lhs > rhs);
|
||
}
|
||
|
||
|
||
/* Helper functions for TARGET_{FLOAT,DOUBLE}_FORMAT */
|
||
|
||
const struct floatformat *
|
||
default_float_format (struct gdbarch *gdbarch)
|
||
{
|
||
#if GDB_MULTI_ARCH
|
||
int byte_order = gdbarch_byte_order (gdbarch);
|
||
#else
|
||
int byte_order = TARGET_BYTE_ORDER;
|
||
#endif
|
||
switch (byte_order)
|
||
{
|
||
case BFD_ENDIAN_BIG:
|
||
return &floatformat_ieee_single_big;
|
||
case BFD_ENDIAN_LITTLE:
|
||
return &floatformat_ieee_single_little;
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
"default_float_format: bad byte order");
|
||
}
|
||
}
|
||
|
||
|
||
const struct floatformat *
|
||
default_double_format (struct gdbarch *gdbarch)
|
||
{
|
||
#if GDB_MULTI_ARCH
|
||
int byte_order = gdbarch_byte_order (gdbarch);
|
||
#else
|
||
int byte_order = TARGET_BYTE_ORDER;
|
||
#endif
|
||
switch (byte_order)
|
||
{
|
||
case BFD_ENDIAN_BIG:
|
||
return &floatformat_ieee_double_big;
|
||
case BFD_ENDIAN_LITTLE:
|
||
return &floatformat_ieee_double_little;
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
"default_double_format: bad byte order");
|
||
}
|
||
}
|
||
|
||
/* Misc helper functions for targets. */
|
||
|
||
int
|
||
frame_num_args_unknown (struct frame_info *fi)
|
||
{
|
||
return -1;
|
||
}
|
||
|
||
|
||
int
|
||
generic_register_convertible_not (int num)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Under some ABI's that specify the `struct convention' for returning
|
||
structures by value, by the time we've returned from the function,
|
||
the return value is sitting there in the caller's buffer, but GDB
|
||
has no way to find the address of that buffer.
|
||
|
||
On such architectures, use this function as your
|
||
extract_struct_value_address method. When asked to a struct
|
||
returned by value in this fashion, GDB will print a nice error
|
||
message, instead of garbage. */
|
||
CORE_ADDR
|
||
generic_cannot_extract_struct_value_address (char *dummy)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
CORE_ADDR
|
||
core_addr_identity (CORE_ADDR addr)
|
||
{
|
||
return addr;
|
||
}
|
||
|
||
int
|
||
no_op_reg_to_regnum (int reg)
|
||
{
|
||
return reg;
|
||
}
|
||
|
||
/* Default prepare_to_procced(). */
|
||
int
|
||
default_prepare_to_proceed (int select_it)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
/* Generic prepare_to_proceed(). This one should be suitable for most
|
||
targets that support threads. */
|
||
int
|
||
generic_prepare_to_proceed (int select_it)
|
||
{
|
||
ptid_t wait_ptid;
|
||
struct target_waitstatus wait_status;
|
||
|
||
/* Get the last target status returned by target_wait(). */
|
||
get_last_target_status (&wait_ptid, &wait_status);
|
||
|
||
/* Make sure we were stopped either at a breakpoint, or because
|
||
of a Ctrl-C. */
|
||
if (wait_status.kind != TARGET_WAITKIND_STOPPED
|
||
|| (wait_status.value.sig != TARGET_SIGNAL_TRAP &&
|
||
wait_status.value.sig != TARGET_SIGNAL_INT))
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
if (!ptid_equal (wait_ptid, minus_one_ptid)
|
||
&& !ptid_equal (inferior_ptid, wait_ptid))
|
||
{
|
||
/* Switched over from WAIT_PID. */
|
||
CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
|
||
|
||
if (wait_pc != read_pc ())
|
||
{
|
||
if (select_it)
|
||
{
|
||
/* Switch back to WAIT_PID thread. */
|
||
inferior_ptid = wait_ptid;
|
||
|
||
/* FIXME: This stuff came from switch_to_thread() in
|
||
thread.c (which should probably be a public function). */
|
||
flush_cached_frames ();
|
||
registers_changed ();
|
||
stop_pc = wait_pc;
|
||
select_frame (get_current_frame ());
|
||
}
|
||
/* We return 1 to indicate that there is a breakpoint here,
|
||
so we need to step over it before continuing to avoid
|
||
hitting it straight away. */
|
||
if (breakpoint_here_p (wait_pc))
|
||
{
|
||
return 1;
|
||
}
|
||
}
|
||
}
|
||
return 0;
|
||
|
||
}
|
||
|
||
CORE_ADDR
|
||
init_frame_pc_noop (int fromleaf, struct frame_info *prev)
|
||
{
|
||
/* Do nothing, implies return the same PC value. */
|
||
return get_frame_pc (prev);
|
||
}
|
||
|
||
CORE_ADDR
|
||
init_frame_pc_default (int fromleaf, struct frame_info *prev)
|
||
{
|
||
if (fromleaf)
|
||
return SAVED_PC_AFTER_CALL (get_next_frame (prev));
|
||
else if (get_next_frame (prev) != NULL)
|
||
return FRAME_SAVED_PC (get_next_frame (prev));
|
||
else
|
||
return read_pc ();
|
||
}
|
||
|
||
void
|
||
default_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
|
||
{
|
||
return;
|
||
}
|
||
|
||
void
|
||
default_coff_make_msymbol_special (int val, struct minimal_symbol *msym)
|
||
{
|
||
return;
|
||
}
|
||
|
||
int
|
||
cannot_register_not (int regnum)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
/* Legacy version of target_virtual_frame_pointer(). Assumes that
|
||
there is an FP_REGNUM and that it is the same, cooked or raw. */
|
||
|
||
void
|
||
legacy_virtual_frame_pointer (CORE_ADDR pc,
|
||
int *frame_regnum,
|
||
LONGEST *frame_offset)
|
||
{
|
||
/* FIXME: cagney/2002-09-13: This code is used when identifying the
|
||
frame pointer of the current PC. It is assuming that a single
|
||
register and an offset can determine this. I think it should
|
||
instead generate a byte code expression as that would work better
|
||
with things like Dwarf2's CFI. */
|
||
if (FP_REGNUM >= 0 && FP_REGNUM < NUM_REGS)
|
||
*frame_regnum = FP_REGNUM;
|
||
else if (SP_REGNUM >= 0 && SP_REGNUM < NUM_REGS)
|
||
*frame_regnum = SP_REGNUM;
|
||
else
|
||
/* Should this be an internal error? I guess so, it is reflecting
|
||
an architectural limitation in the current design. */
|
||
internal_error (__FILE__, __LINE__, "No virtual frame pointer available");
|
||
*frame_offset = 0;
|
||
}
|
||
|
||
/* Assume the world is sane, every register's virtual and real size
|
||
is identical. */
|
||
|
||
int
|
||
generic_register_size (int regnum)
|
||
{
|
||
gdb_assert (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS);
|
||
return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (regnum));
|
||
}
|
||
|
||
/* Assume all registers are adjacent. */
|
||
|
||
int
|
||
generic_register_byte (int regnum)
|
||
{
|
||
int byte;
|
||
int i;
|
||
gdb_assert (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS);
|
||
byte = 0;
|
||
for (i = 0; i < regnum; i++)
|
||
{
|
||
byte += TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (i));
|
||
}
|
||
return byte;
|
||
}
|
||
|
||
|
||
int
|
||
legacy_pc_in_sigtramp (CORE_ADDR pc, char *name)
|
||
{
|
||
#if !defined (IN_SIGTRAMP)
|
||
if (SIGTRAMP_START_P ())
|
||
return (pc) >= SIGTRAMP_START (pc) && (pc) < SIGTRAMP_END (pc);
|
||
else
|
||
return name && strcmp ("_sigtramp", name) == 0;
|
||
#else
|
||
return IN_SIGTRAMP (pc, name);
|
||
#endif
|
||
}
|
||
|
||
int
|
||
legacy_convert_register_p (int regnum)
|
||
{
|
||
return REGISTER_CONVERTIBLE (regnum);
|
||
}
|
||
|
||
void
|
||
legacy_register_to_value (int regnum, struct type *type,
|
||
char *from, char *to)
|
||
{
|
||
REGISTER_CONVERT_TO_VIRTUAL (regnum, type, from, to);
|
||
}
|
||
|
||
void
|
||
legacy_value_to_register (struct type *type, int regnum,
|
||
char *from, char *to)
|
||
{
|
||
REGISTER_CONVERT_TO_RAW (type, regnum, from, to);
|
||
}
|
||
|
||
|
||
/* Functions to manipulate the endianness of the target. */
|
||
|
||
/* ``target_byte_order'' is only used when non- multi-arch.
|
||
Multi-arch targets obtain the current byte order using the
|
||
TARGET_BYTE_ORDER gdbarch method.
|
||
|
||
The choice of initial value is entirely arbitrary. During startup,
|
||
the function initialize_current_architecture() updates this value
|
||
based on default byte-order information extracted from BFD. */
|
||
int target_byte_order = BFD_ENDIAN_BIG;
|
||
int target_byte_order_auto = 1;
|
||
|
||
static const char endian_big[] = "big";
|
||
static const char endian_little[] = "little";
|
||
static const char endian_auto[] = "auto";
|
||
static const char *endian_enum[] =
|
||
{
|
||
endian_big,
|
||
endian_little,
|
||
endian_auto,
|
||
NULL,
|
||
};
|
||
static const char *set_endian_string;
|
||
|
||
/* Called by ``show endian''. */
|
||
|
||
static void
|
||
show_endian (char *args, int from_tty)
|
||
{
|
||
if (TARGET_BYTE_ORDER_AUTO)
|
||
printf_unfiltered ("The target endianness is set automatically (currently %s endian)\n",
|
||
(TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little"));
|
||
else
|
||
printf_unfiltered ("The target is assumed to be %s endian\n",
|
||
(TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little"));
|
||
}
|
||
|
||
static void
|
||
set_endian (char *ignore_args, int from_tty, struct cmd_list_element *c)
|
||
{
|
||
if (set_endian_string == endian_auto)
|
||
{
|
||
target_byte_order_auto = 1;
|
||
}
|
||
else if (set_endian_string == endian_little)
|
||
{
|
||
target_byte_order_auto = 0;
|
||
if (GDB_MULTI_ARCH)
|
||
{
|
||
struct gdbarch_info info;
|
||
gdbarch_info_init (&info);
|
||
info.byte_order = BFD_ENDIAN_LITTLE;
|
||
if (! gdbarch_update_p (info))
|
||
{
|
||
printf_unfiltered ("Little endian target not supported by GDB\n");
|
||
}
|
||
}
|
||
else
|
||
{
|
||
target_byte_order = BFD_ENDIAN_LITTLE;
|
||
}
|
||
}
|
||
else if (set_endian_string == endian_big)
|
||
{
|
||
target_byte_order_auto = 0;
|
||
if (GDB_MULTI_ARCH)
|
||
{
|
||
struct gdbarch_info info;
|
||
gdbarch_info_init (&info);
|
||
info.byte_order = BFD_ENDIAN_BIG;
|
||
if (! gdbarch_update_p (info))
|
||
{
|
||
printf_unfiltered ("Big endian target not supported by GDB\n");
|
||
}
|
||
}
|
||
else
|
||
{
|
||
target_byte_order = BFD_ENDIAN_BIG;
|
||
}
|
||
}
|
||
else
|
||
internal_error (__FILE__, __LINE__,
|
||
"set_endian: bad value");
|
||
show_endian (NULL, from_tty);
|
||
}
|
||
|
||
/* Set the endianness from a BFD. */
|
||
|
||
static void
|
||
set_endian_from_file (bfd *abfd)
|
||
{
|
||
int want;
|
||
if (GDB_MULTI_ARCH)
|
||
internal_error (__FILE__, __LINE__,
|
||
"set_endian_from_file: not for multi-arch");
|
||
if (bfd_big_endian (abfd))
|
||
want = BFD_ENDIAN_BIG;
|
||
else
|
||
want = BFD_ENDIAN_LITTLE;
|
||
if (TARGET_BYTE_ORDER_AUTO)
|
||
target_byte_order = want;
|
||
else if (TARGET_BYTE_ORDER != want)
|
||
warning ("%s endian file does not match %s endian target.",
|
||
want == BFD_ENDIAN_BIG ? "big" : "little",
|
||
TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little");
|
||
}
|
||
|
||
|
||
/* Functions to manipulate the architecture of the target */
|
||
|
||
enum set_arch { set_arch_auto, set_arch_manual };
|
||
|
||
int target_architecture_auto = 1;
|
||
|
||
const char *set_architecture_string;
|
||
|
||
/* Old way of changing the current architecture. */
|
||
|
||
extern const struct bfd_arch_info bfd_default_arch_struct;
|
||
const struct bfd_arch_info *target_architecture = &bfd_default_arch_struct;
|
||
int (*target_architecture_hook) (const struct bfd_arch_info *ap);
|
||
|
||
static int
|
||
arch_ok (const struct bfd_arch_info *arch)
|
||
{
|
||
if (GDB_MULTI_ARCH)
|
||
internal_error (__FILE__, __LINE__,
|
||
"arch_ok: not multi-arched");
|
||
/* Should be performing the more basic check that the binary is
|
||
compatible with GDB. */
|
||
/* Check with the target that the architecture is valid. */
|
||
return (target_architecture_hook == NULL
|
||
|| target_architecture_hook (arch));
|
||
}
|
||
|
||
static void
|
||
set_arch (const struct bfd_arch_info *arch,
|
||
enum set_arch type)
|
||
{
|
||
if (GDB_MULTI_ARCH)
|
||
internal_error (__FILE__, __LINE__,
|
||
"set_arch: not multi-arched");
|
||
switch (type)
|
||
{
|
||
case set_arch_auto:
|
||
if (!arch_ok (arch))
|
||
warning ("Target may not support %s architecture",
|
||
arch->printable_name);
|
||
target_architecture = arch;
|
||
break;
|
||
case set_arch_manual:
|
||
if (!arch_ok (arch))
|
||
{
|
||
printf_unfiltered ("Target does not support `%s' architecture.\n",
|
||
arch->printable_name);
|
||
}
|
||
else
|
||
{
|
||
target_architecture_auto = 0;
|
||
target_architecture = arch;
|
||
}
|
||
break;
|
||
}
|
||
if (gdbarch_debug)
|
||
gdbarch_dump (current_gdbarch, gdb_stdlog);
|
||
}
|
||
|
||
/* Set the architecture from arch/machine (deprecated) */
|
||
|
||
void
|
||
set_architecture_from_arch_mach (enum bfd_architecture arch,
|
||
unsigned long mach)
|
||
{
|
||
const struct bfd_arch_info *wanted = bfd_lookup_arch (arch, mach);
|
||
if (GDB_MULTI_ARCH)
|
||
internal_error (__FILE__, __LINE__,
|
||
"set_architecture_from_arch_mach: not multi-arched");
|
||
if (wanted != NULL)
|
||
set_arch (wanted, set_arch_manual);
|
||
else
|
||
internal_error (__FILE__, __LINE__,
|
||
"gdbarch: hardwired architecture/machine not recognized");
|
||
}
|
||
|
||
/* Set the architecture from a BFD (deprecated) */
|
||
|
||
static void
|
||
set_architecture_from_file (bfd *abfd)
|
||
{
|
||
const struct bfd_arch_info *wanted = bfd_get_arch_info (abfd);
|
||
if (GDB_MULTI_ARCH)
|
||
internal_error (__FILE__, __LINE__,
|
||
"set_architecture_from_file: not multi-arched");
|
||
if (target_architecture_auto)
|
||
{
|
||
set_arch (wanted, set_arch_auto);
|
||
}
|
||
else if (wanted != target_architecture)
|
||
{
|
||
warning ("%s architecture file may be incompatible with %s target.",
|
||
wanted->printable_name,
|
||
target_architecture->printable_name);
|
||
}
|
||
}
|
||
|
||
|
||
/* Called if the user enters ``show architecture'' without an
|
||
argument. */
|
||
|
||
static void
|
||
show_architecture (char *args, int from_tty)
|
||
{
|
||
const char *arch;
|
||
arch = TARGET_ARCHITECTURE->printable_name;
|
||
if (target_architecture_auto)
|
||
printf_filtered ("The target architecture is set automatically (currently %s)\n", arch);
|
||
else
|
||
printf_filtered ("The target architecture is assumed to be %s\n", arch);
|
||
}
|
||
|
||
|
||
/* Called if the user enters ``set architecture'' with or without an
|
||
argument. */
|
||
|
||
static void
|
||
set_architecture (char *ignore_args, int from_tty, struct cmd_list_element *c)
|
||
{
|
||
if (strcmp (set_architecture_string, "auto") == 0)
|
||
{
|
||
target_architecture_auto = 1;
|
||
}
|
||
else if (GDB_MULTI_ARCH)
|
||
{
|
||
struct gdbarch_info info;
|
||
gdbarch_info_init (&info);
|
||
info.bfd_arch_info = bfd_scan_arch (set_architecture_string);
|
||
if (info.bfd_arch_info == NULL)
|
||
internal_error (__FILE__, __LINE__,
|
||
"set_architecture: bfd_scan_arch failed");
|
||
if (gdbarch_update_p (info))
|
||
target_architecture_auto = 0;
|
||
else
|
||
printf_unfiltered ("Architecture `%s' not recognized.\n",
|
||
set_architecture_string);
|
||
}
|
||
else
|
||
{
|
||
const struct bfd_arch_info *arch
|
||
= bfd_scan_arch (set_architecture_string);
|
||
if (arch == NULL)
|
||
internal_error (__FILE__, __LINE__,
|
||
"set_architecture: bfd_scan_arch failed");
|
||
set_arch (arch, set_arch_manual);
|
||
}
|
||
show_architecture (NULL, from_tty);
|
||
}
|
||
|
||
/* Set the dynamic target-system-dependent parameters (architecture,
|
||
byte-order) using information found in the BFD */
|
||
|
||
void
|
||
set_gdbarch_from_file (bfd *abfd)
|
||
{
|
||
if (GDB_MULTI_ARCH)
|
||
{
|
||
struct gdbarch_info info;
|
||
gdbarch_info_init (&info);
|
||
info.abfd = abfd;
|
||
if (! gdbarch_update_p (info))
|
||
error ("Architecture of file not recognized.\n");
|
||
}
|
||
else
|
||
{
|
||
set_architecture_from_file (abfd);
|
||
set_endian_from_file (abfd);
|
||
}
|
||
}
|
||
|
||
/* Initialize the current architecture. Update the ``set
|
||
architecture'' command so that it specifies a list of valid
|
||
architectures. */
|
||
|
||
#ifdef DEFAULT_BFD_ARCH
|
||
extern const bfd_arch_info_type DEFAULT_BFD_ARCH;
|
||
static const bfd_arch_info_type *default_bfd_arch = &DEFAULT_BFD_ARCH;
|
||
#else
|
||
static const bfd_arch_info_type *default_bfd_arch;
|
||
#endif
|
||
|
||
#ifdef DEFAULT_BFD_VEC
|
||
extern const bfd_target DEFAULT_BFD_VEC;
|
||
static const bfd_target *default_bfd_vec = &DEFAULT_BFD_VEC;
|
||
#else
|
||
static const bfd_target *default_bfd_vec;
|
||
#endif
|
||
|
||
void
|
||
initialize_current_architecture (void)
|
||
{
|
||
const char **arches = gdbarch_printable_names ();
|
||
|
||
/* determine a default architecture and byte order. */
|
||
struct gdbarch_info info;
|
||
gdbarch_info_init (&info);
|
||
|
||
/* Find a default architecture. */
|
||
if (info.bfd_arch_info == NULL
|
||
&& default_bfd_arch != NULL)
|
||
info.bfd_arch_info = default_bfd_arch;
|
||
if (info.bfd_arch_info == NULL)
|
||
{
|
||
/* Choose the architecture by taking the first one
|
||
alphabetically. */
|
||
const char *chosen = arches[0];
|
||
const char **arch;
|
||
for (arch = arches; *arch != NULL; arch++)
|
||
{
|
||
if (strcmp (*arch, chosen) < 0)
|
||
chosen = *arch;
|
||
}
|
||
if (chosen == NULL)
|
||
internal_error (__FILE__, __LINE__,
|
||
"initialize_current_architecture: No arch");
|
||
info.bfd_arch_info = bfd_scan_arch (chosen);
|
||
if (info.bfd_arch_info == NULL)
|
||
internal_error (__FILE__, __LINE__,
|
||
"initialize_current_architecture: Arch not found");
|
||
}
|
||
|
||
/* Take several guesses at a byte order. */
|
||
if (info.byte_order == BFD_ENDIAN_UNKNOWN
|
||
&& default_bfd_vec != NULL)
|
||
{
|
||
/* Extract BFD's default vector's byte order. */
|
||
switch (default_bfd_vec->byteorder)
|
||
{
|
||
case BFD_ENDIAN_BIG:
|
||
info.byte_order = BFD_ENDIAN_BIG;
|
||
break;
|
||
case BFD_ENDIAN_LITTLE:
|
||
info.byte_order = BFD_ENDIAN_LITTLE;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
if (info.byte_order == BFD_ENDIAN_UNKNOWN)
|
||
{
|
||
/* look for ``*el-*'' in the target name. */
|
||
const char *chp;
|
||
chp = strchr (target_name, '-');
|
||
if (chp != NULL
|
||
&& chp - 2 >= target_name
|
||
&& strncmp (chp - 2, "el", 2) == 0)
|
||
info.byte_order = BFD_ENDIAN_LITTLE;
|
||
}
|
||
if (info.byte_order == BFD_ENDIAN_UNKNOWN)
|
||
{
|
||
/* Wire it to big-endian!!! */
|
||
info.byte_order = BFD_ENDIAN_BIG;
|
||
}
|
||
|
||
if (GDB_MULTI_ARCH)
|
||
{
|
||
if (! gdbarch_update_p (info))
|
||
{
|
||
internal_error (__FILE__, __LINE__,
|
||
"initialize_current_architecture: Selection of initial architecture failed");
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* If the multi-arch logic comes up with a byte-order (from BFD)
|
||
use it for the non-multi-arch case. */
|
||
if (info.byte_order != BFD_ENDIAN_UNKNOWN)
|
||
target_byte_order = info.byte_order;
|
||
initialize_non_multiarch ();
|
||
}
|
||
|
||
/* Create the ``set architecture'' command appending ``auto'' to the
|
||
list of architectures. */
|
||
{
|
||
struct cmd_list_element *c;
|
||
/* Append ``auto''. */
|
||
int nr;
|
||
for (nr = 0; arches[nr] != NULL; nr++);
|
||
arches = xrealloc (arches, sizeof (char*) * (nr + 2));
|
||
arches[nr + 0] = "auto";
|
||
arches[nr + 1] = NULL;
|
||
/* FIXME: add_set_enum_cmd() uses an array of ``char *'' instead
|
||
of ``const char *''. We just happen to know that the casts are
|
||
safe. */
|
||
c = add_set_enum_cmd ("architecture", class_support,
|
||
arches, &set_architecture_string,
|
||
"Set architecture of target.",
|
||
&setlist);
|
||
set_cmd_sfunc (c, set_architecture);
|
||
add_alias_cmd ("processor", "architecture", class_support, 1, &setlist);
|
||
/* Don't use set_from_show - need to print both auto/manual and
|
||
current setting. */
|
||
add_cmd ("architecture", class_support, show_architecture,
|
||
"Show the current target architecture", &showlist);
|
||
}
|
||
}
|
||
|
||
|
||
/* Initialize a gdbarch info to values that will be automatically
|
||
overridden. Note: Originally, this ``struct info'' was initialized
|
||
using memset(0). Unfortunatly, that ran into problems, namely
|
||
BFD_ENDIAN_BIG is zero. An explicit initialization function that
|
||
can explicitly set each field to a well defined value is used. */
|
||
|
||
void
|
||
gdbarch_info_init (struct gdbarch_info *info)
|
||
{
|
||
memset (info, 0, sizeof (struct gdbarch_info));
|
||
info->byte_order = BFD_ENDIAN_UNKNOWN;
|
||
}
|
||
|
||
/* */
|
||
|
||
extern initialize_file_ftype _initialize_gdbarch_utils;
|
||
|
||
void
|
||
_initialize_gdbarch_utils (void)
|
||
{
|
||
struct cmd_list_element *c;
|
||
c = add_set_enum_cmd ("endian", class_support,
|
||
endian_enum, &set_endian_string,
|
||
"Set endianness of target.",
|
||
&setlist);
|
||
set_cmd_sfunc (c, set_endian);
|
||
/* Don't use set_from_show - need to print both auto/manual and
|
||
current setting. */
|
||
add_cmd ("endian", class_support, show_endian,
|
||
"Show the current byte-order", &showlist);
|
||
}
|