mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-15 04:31:49 +08:00
8517f62b16
o Provide poll_quit callback to simulators so that they can poll for SIGINT on clueless OS's. o Add sim_stop to simulators so that clients can request a halt (eg gdbtk's STOP button) Works for PPC! o Re-arange remote-sim.c so that the hard work is moved from gdbsim_resume() to gdbsim_wait() (where it should be).
1045 lines
20 KiB
C
1045 lines
20 KiB
C
#include <signal.h>
|
|
#include "sysdep.h"
|
|
#include "bfd.h"
|
|
|
|
#include "v850_sim.h"
|
|
|
|
enum interrupt_type
|
|
{
|
|
int_none,
|
|
int_reset,
|
|
int_nmi,
|
|
int_intov1,
|
|
int_intp10,
|
|
int_intp11,
|
|
int_intp12,
|
|
int_intp13,
|
|
int_intcm4,
|
|
num_int_types
|
|
};
|
|
|
|
enum interrupt_cond_type
|
|
{
|
|
int_cond_none,
|
|
int_cond_pc,
|
|
int_cond_time
|
|
};
|
|
|
|
struct interrupt_generator
|
|
{
|
|
enum interrupt_type type;
|
|
enum interrupt_cond_type cond_type;
|
|
int number;
|
|
int address;
|
|
int time;
|
|
int enabled;
|
|
struct interrupt_generator *next;
|
|
};
|
|
|
|
char *interrupt_names[] = {
|
|
"",
|
|
"reset",
|
|
"nmi",
|
|
"intov1",
|
|
"intp10",
|
|
"intp11",
|
|
"intp12",
|
|
"intp13",
|
|
"intcm4",
|
|
NULL
|
|
};
|
|
|
|
struct interrupt_generator *intgen_list;
|
|
|
|
/* True if a non-maskable (such as NMI or reset) interrupt generator
|
|
is present. */
|
|
|
|
static int have_nm_generator;
|
|
|
|
#ifndef INLINE
|
|
#ifdef __GNUC__
|
|
#define INLINE inline
|
|
#else
|
|
#define INLINE
|
|
#endif
|
|
#endif
|
|
|
|
/* These default values correspond to expected usage for the chip. */
|
|
|
|
SIM_ADDR rom_size = 0x8000;
|
|
SIM_ADDR low_end = 0x200000;
|
|
SIM_ADDR high_start = 0xffe000;
|
|
|
|
SIM_ADDR high_base;
|
|
|
|
host_callback *v850_callback;
|
|
|
|
int v850_debug;
|
|
|
|
static SIM_OPEN_KIND sim_kind;
|
|
static char *myname;
|
|
|
|
uint32 OP[4];
|
|
|
|
static struct hash_entry *lookup_hash PARAMS ((uint32 ins));
|
|
static long hash PARAMS ((long));
|
|
static void do_format_1_2 PARAMS ((uint32));
|
|
static void do_format_3 PARAMS ((uint32));
|
|
static void do_format_4 PARAMS ((uint32));
|
|
static void do_format_5 PARAMS ((uint32));
|
|
static void do_format_6 PARAMS ((uint32));
|
|
static void do_format_7 PARAMS ((uint32));
|
|
static void do_format_8 PARAMS ((uint32));
|
|
static void do_format_9_10 PARAMS ((uint32));
|
|
static void init_system PARAMS ((void));
|
|
|
|
#define MAX_HASH 63
|
|
|
|
struct hash_entry
|
|
{
|
|
struct hash_entry *next;
|
|
long opcode;
|
|
long mask;
|
|
struct simops *ops;
|
|
};
|
|
|
|
struct hash_entry hash_table[MAX_HASH+1];
|
|
|
|
|
|
static INLINE long
|
|
hash(insn)
|
|
long insn;
|
|
{
|
|
if ((insn & 0x0600) == 0
|
|
|| (insn & 0x0700) == 0x0200
|
|
|| (insn & 0x0700) == 0x0600
|
|
|| (insn & 0x0780) == 0x0700)
|
|
return (insn & 0x07e0) >> 5;
|
|
|
|
if ((insn & 0x0700) == 0x0300
|
|
|| (insn & 0x0700) == 0x0400
|
|
|| (insn & 0x0700) == 0x0500)
|
|
return (insn & 0x0780) >> 7;
|
|
|
|
if ((insn & 0x07c0) == 0x0780)
|
|
return (insn & 0x07c0) >> 6;
|
|
|
|
return (insn & 0x07e0) >> 5;
|
|
}
|
|
|
|
static struct hash_entry *
|
|
lookup_hash (ins)
|
|
uint32 ins;
|
|
{
|
|
struct hash_entry *h;
|
|
|
|
h = &hash_table[hash(ins)];
|
|
|
|
while ((ins & h->mask) != h->opcode)
|
|
{
|
|
if (h->next == NULL)
|
|
{
|
|
(*v850_callback->printf_filtered) (v850_callback, "ERROR looking up hash for 0x%x, PC=0x%x\n", ins, PC);
|
|
exit(1);
|
|
}
|
|
h = h->next;
|
|
}
|
|
return (h);
|
|
}
|
|
|
|
/* FIXME These would more efficient to use than load_mem/store_mem,
|
|
but need to be changed to use the memory map. */
|
|
|
|
uint8
|
|
get_byte (x)
|
|
uint8 *x;
|
|
{
|
|
return *x;
|
|
}
|
|
|
|
uint16
|
|
get_half (x)
|
|
uint8 *x;
|
|
{
|
|
uint8 *a = x;
|
|
return (a[1] << 8) + (a[0]);
|
|
}
|
|
|
|
uint32
|
|
get_word (x)
|
|
uint8 *x;
|
|
{
|
|
uint8 *a = x;
|
|
return (a[3]<<24) + (a[2]<<16) + (a[1]<<8) + (a[0]);
|
|
}
|
|
|
|
void
|
|
put_byte (addr, data)
|
|
uint8 *addr;
|
|
uint8 data;
|
|
{
|
|
uint8 *a = addr;
|
|
a[0] = data;
|
|
}
|
|
|
|
void
|
|
put_half (addr, data)
|
|
uint8 *addr;
|
|
uint16 data;
|
|
{
|
|
uint8 *a = addr;
|
|
a[0] = data & 0xff;
|
|
a[1] = (data >> 8) & 0xff;
|
|
}
|
|
|
|
void
|
|
put_word (addr, data)
|
|
uint8 *addr;
|
|
uint32 data;
|
|
{
|
|
uint8 *a = addr;
|
|
a[0] = data & 0xff;
|
|
a[1] = (data >> 8) & 0xff;
|
|
a[2] = (data >> 16) & 0xff;
|
|
a[3] = (data >> 24) & 0xff;
|
|
}
|
|
|
|
uint8 *
|
|
map (addr)
|
|
SIM_ADDR addr;
|
|
{
|
|
uint8 *p;
|
|
|
|
/* Mask down to 24 bits. */
|
|
addr &= 0xffffff;
|
|
|
|
if (addr < low_end)
|
|
{
|
|
/* "Mirror" the addresses below 1MB. */
|
|
if (addr < 0x100000)
|
|
addr &= (rom_size - 1);
|
|
else
|
|
addr += (rom_size - 0x100000);
|
|
return (uint8 *) (addr + State.mem);
|
|
}
|
|
else if (addr >= high_start)
|
|
{
|
|
/* If in the peripheral I/O region, mirror 1K region across 4K,
|
|
and similarly if in the internal RAM region. */
|
|
if (addr >= 0xfff000)
|
|
addr &= 0xfff3ff;
|
|
else if (addr >= 0xffe000)
|
|
addr &= 0xffe3ff;
|
|
return (uint8 *) (addr - high_start + high_base + State.mem);
|
|
}
|
|
else
|
|
{
|
|
/* Signal a memory error. */
|
|
State.exception = SIGSEGV;
|
|
/* Point to a location not in main memory - renders invalid
|
|
addresses harmless until we get back to main insn loop. */
|
|
return (uint8 *) &(State.dummy_mem);
|
|
}
|
|
}
|
|
|
|
uint32
|
|
load_mem (addr, len)
|
|
SIM_ADDR addr;
|
|
int len;
|
|
{
|
|
uint8 *p = map (addr);
|
|
|
|
switch (len)
|
|
{
|
|
case 1:
|
|
return p[0];
|
|
case 2:
|
|
return p[1] << 8 | p[0];
|
|
case 4:
|
|
return p[3] << 24 | p[2] << 16 | p[1] << 8 | p[0];
|
|
default:
|
|
abort ();
|
|
}
|
|
}
|
|
|
|
void
|
|
store_mem (addr, len, data)
|
|
SIM_ADDR addr;
|
|
int len;
|
|
uint32 data;
|
|
{
|
|
uint8 *p = map (addr);
|
|
|
|
switch (len)
|
|
{
|
|
case 1:
|
|
p[0] = data;
|
|
return;
|
|
case 2:
|
|
p[0] = data;
|
|
p[1] = data >> 8;
|
|
return;
|
|
case 4:
|
|
p[0] = data;
|
|
p[1] = data >> 8;
|
|
p[2] = data >> 16;
|
|
p[3] = data >> 24;
|
|
return;
|
|
default:
|
|
abort ();
|
|
}
|
|
}
|
|
|
|
static void
|
|
do_format_1_2 (insn)
|
|
uint32 insn;
|
|
{
|
|
struct hash_entry *h;
|
|
|
|
h = lookup_hash (insn);
|
|
OP[0] = insn & 0x1f;
|
|
OP[1] = (insn >> 11) & 0x1f;
|
|
(h->ops->func) ();
|
|
}
|
|
|
|
static void
|
|
do_format_3 (insn)
|
|
uint32 insn;
|
|
{
|
|
struct hash_entry *h;
|
|
|
|
h = lookup_hash (insn);
|
|
OP[0] = (((insn & 0x70) >> 4) | ((insn & 0xf800) >> 8)) << 1;
|
|
(h->ops->func) ();
|
|
}
|
|
|
|
static void
|
|
do_format_4 (insn)
|
|
uint32 insn;
|
|
{
|
|
struct hash_entry *h;
|
|
|
|
h = lookup_hash (insn);
|
|
OP[0] = (insn >> 11) & 0x1f;
|
|
OP[1] = (insn & 0x7f);
|
|
(h->ops->func) ();
|
|
}
|
|
|
|
static void
|
|
do_format_5 (insn)
|
|
uint32 insn;
|
|
{
|
|
struct hash_entry *h;
|
|
|
|
h = lookup_hash (insn);
|
|
OP[0] = (((insn & 0x3f) << 15) | ((insn >> 17) & 0x7fff)) << 1;
|
|
OP[1] = (insn >> 11) & 0x1f;
|
|
(h->ops->func) ();
|
|
}
|
|
|
|
static void
|
|
do_format_6 (insn)
|
|
uint32 insn;
|
|
{
|
|
struct hash_entry *h;
|
|
|
|
h = lookup_hash (insn);
|
|
OP[0] = (insn >> 16) & 0xffff;
|
|
OP[1] = insn & 0x1f;
|
|
OP[2] = (insn >> 11) & 0x1f;
|
|
(h->ops->func) ();
|
|
}
|
|
|
|
static void
|
|
do_format_7 (insn)
|
|
uint32 insn;
|
|
{
|
|
struct hash_entry *h;
|
|
|
|
h = lookup_hash (insn);
|
|
OP[0] = insn & 0x1f;
|
|
OP[1] = (insn >> 11) & 0x1f;
|
|
OP[2] = (insn >> 16) & 0xffff;
|
|
(h->ops->func) ();
|
|
}
|
|
|
|
static void
|
|
do_format_8 (insn)
|
|
uint32 insn;
|
|
{
|
|
struct hash_entry *h;
|
|
|
|
h = lookup_hash (insn);
|
|
OP[0] = insn & 0x1f;
|
|
OP[1] = (insn >> 11) & 0x7;
|
|
OP[2] = (insn >> 16) & 0xffff;
|
|
(h->ops->func) ();
|
|
}
|
|
|
|
static void
|
|
do_format_9_10 (insn)
|
|
uint32 insn;
|
|
{
|
|
struct hash_entry *h;
|
|
|
|
h = lookup_hash (insn);
|
|
OP[0] = insn & 0x1f;
|
|
OP[1] = (insn >> 11) & 0x1f;
|
|
(h->ops->func) ();
|
|
}
|
|
|
|
void
|
|
sim_size (power)
|
|
int power;
|
|
|
|
{
|
|
int totsize;
|
|
|
|
if (State.mem)
|
|
free (State.mem);
|
|
|
|
totsize = rom_size + (low_end - 0x100000) + (0x1000000 - high_start);
|
|
|
|
high_base = rom_size + (low_end - 0x100000);
|
|
|
|
State.mem = (uint8 *) calloc (1, totsize);
|
|
if (!State.mem)
|
|
{
|
|
(*v850_callback->printf_filtered) (v850_callback, "Allocation of main memory failed.\n");
|
|
exit (1);
|
|
}
|
|
}
|
|
|
|
void
|
|
sim_set_memory_map (spec)
|
|
char *spec;
|
|
{
|
|
char *reststr, *nreststr;
|
|
SIM_ADDR new_low_end, new_high_start;
|
|
|
|
new_low_end = low_end;
|
|
new_high_start = high_start;
|
|
if (! strncmp (spec, "hole=", 5))
|
|
{
|
|
new_low_end = sim_parse_number (spec + 5, &reststr);
|
|
if (new_low_end < 0x100000)
|
|
{
|
|
(*v850_callback->printf_filtered) (v850_callback,
|
|
"Low end must be at least 0x100000\n");
|
|
return;
|
|
}
|
|
if (*reststr == ',')
|
|
{
|
|
++reststr;
|
|
new_high_start = sim_parse_number (reststr, &nreststr);
|
|
/* FIXME Check high_start also */
|
|
}
|
|
(*v850_callback->printf_filtered) (v850_callback,
|
|
"Hole goes from 0x%x to 0x%x\n",
|
|
new_low_end, new_high_start);
|
|
}
|
|
else
|
|
{
|
|
(*v850_callback->printf_filtered) (v850_callback, "Invalid specification for memory map, must be `hole=<m>[,<n>]'\n");
|
|
}
|
|
|
|
if (new_low_end != low_end || new_high_start != high_start)
|
|
{
|
|
low_end = new_low_end;
|
|
high_start = new_high_start;
|
|
if (State.mem)
|
|
{
|
|
(*v850_callback->printf_filtered) (v850_callback, "Reconfiguring memory (old contents will be lost)\n");
|
|
sim_size (1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Parse a number in hex, octal, or decimal form. */
|
|
|
|
int
|
|
sim_parse_number (str, rest)
|
|
char *str, **rest;
|
|
{
|
|
if (str[0] == '0' && str[1] == 'x')
|
|
return strtol (str, rest, 16);
|
|
else if (str[0] == '0')
|
|
return strtol (str, rest, 16);
|
|
else
|
|
return strtol (str, rest, 10);
|
|
}
|
|
|
|
static void
|
|
init_system ()
|
|
{
|
|
if (!State.mem)
|
|
sim_size(1);
|
|
}
|
|
|
|
int
|
|
sim_write (sd, addr, buffer, size)
|
|
SIM_DESC sd;
|
|
SIM_ADDR addr;
|
|
unsigned char *buffer;
|
|
int size;
|
|
{
|
|
int i;
|
|
|
|
init_system ();
|
|
|
|
for (i = 0; i < size; i++)
|
|
store_mem (addr + i, 1, buffer[i]);
|
|
|
|
return size;
|
|
}
|
|
|
|
SIM_DESC
|
|
sim_open (kind,argv)
|
|
SIM_OPEN_KIND kind;
|
|
char **argv;
|
|
{
|
|
struct simops *s;
|
|
struct hash_entry *h;
|
|
char **p;
|
|
|
|
sim_kind = kind;
|
|
myname = argv[0];
|
|
|
|
for (p = argv + 1; *p; ++p)
|
|
{
|
|
if (strcmp (*p, "-E") == 0)
|
|
++p; /* ignore endian spec */
|
|
else
|
|
#ifdef DEBUG
|
|
if (strcmp (*p, "-t") == 0)
|
|
v850_debug = DEBUG;
|
|
else
|
|
#endif
|
|
(*v850_callback->printf_filtered) (v850_callback, "ERROR: unsupported option(s): %s\n",*p);
|
|
}
|
|
|
|
/* put all the opcodes in the hash table */
|
|
for (s = Simops; s->func; s++)
|
|
{
|
|
h = &hash_table[hash(s->opcode)];
|
|
|
|
/* go to the last entry in the chain */
|
|
while (h->next)
|
|
h = h->next;
|
|
|
|
if (h->ops)
|
|
{
|
|
h->next = (struct hash_entry *) calloc(1,sizeof(struct hash_entry));
|
|
h = h->next;
|
|
}
|
|
h->ops = s;
|
|
h->mask = s->mask;
|
|
h->opcode = s->opcode;
|
|
}
|
|
|
|
/* fudge our descriptor for now */
|
|
return (SIM_DESC) 1;
|
|
}
|
|
|
|
|
|
void
|
|
sim_close (sd, quitting)
|
|
SIM_DESC sd;
|
|
int quitting;
|
|
{
|
|
/* nothing to do */
|
|
}
|
|
|
|
void
|
|
sim_set_profile (n)
|
|
int n;
|
|
{
|
|
(*v850_callback->printf_filtered) (v850_callback, "sim_set_profile %d\n", n);
|
|
}
|
|
|
|
void
|
|
sim_set_profile_size (n)
|
|
int n;
|
|
{
|
|
(*v850_callback->printf_filtered) (v850_callback, "sim_set_profile_size %d\n", n);
|
|
}
|
|
|
|
time_t start_time;
|
|
|
|
static void do_interrupt PARAMS ((enum interrupt_type));
|
|
|
|
int
|
|
sim_stop (sd)
|
|
SIM_DESC sd;
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
sim_resume (sd, step, siggnal)
|
|
SIM_DESC sd;
|
|
int step, siggnal;
|
|
{
|
|
uint32 inst, opcode;
|
|
reg_t oldpc;
|
|
struct interrupt_generator *intgen;
|
|
time_t now;
|
|
|
|
if (step)
|
|
State.exception = SIGTRAP;
|
|
else
|
|
State.exception = 0;
|
|
|
|
time (&start_time);
|
|
|
|
do
|
|
{
|
|
/* Fetch the current instruction. */
|
|
inst = RLW (PC);
|
|
oldpc = PC;
|
|
opcode = (inst & 0x07e0) >> 5;
|
|
|
|
/* Decode the opcode field. */
|
|
if ((opcode & 0x30) == 0
|
|
|| (opcode & 0x38) == 0x10)
|
|
{
|
|
do_format_1_2 (inst & 0xffff);
|
|
PC += 2;
|
|
}
|
|
else if ((opcode & 0x3C) == 0x18
|
|
|| (opcode & 0x3C) == 0x1C
|
|
|| (opcode & 0x3C) == 0x20
|
|
|| (opcode & 0x3C) == 0x24
|
|
|| (opcode & 0x3C) == 0x28)
|
|
{
|
|
do_format_4 (inst & 0xffff);
|
|
PC += 2;
|
|
}
|
|
else if ((opcode & 0x3C) == 0x2C)
|
|
{
|
|
do_format_3 (inst & 0xffff);
|
|
/* No PC update, it's done in the instruction. */
|
|
}
|
|
else if ((opcode & 0x38) == 0x30)
|
|
{
|
|
do_format_6 (inst);
|
|
PC += 4;
|
|
}
|
|
else if ((opcode & 0x3C) == 0x38)
|
|
{
|
|
do_format_7 (inst);
|
|
PC += 4;
|
|
}
|
|
else if ((opcode & 0x3E) == 0x3C)
|
|
{
|
|
do_format_5 (inst);
|
|
/* No PC update, it's done in the instruction. */
|
|
}
|
|
else if ((opcode & 0x3F) == 0x3E)
|
|
{
|
|
do_format_8 (inst);
|
|
PC += 4;
|
|
}
|
|
else
|
|
{
|
|
do_format_9_10 (inst);
|
|
PC += 4;
|
|
}
|
|
|
|
/* Check for and handle pending interrupts. */
|
|
if (intgen_list && (have_nm_generator || !(PSW & PSW_ID)))
|
|
{
|
|
intgen = NULL;
|
|
for (intgen = intgen_list; intgen != NULL; intgen = intgen->next)
|
|
{
|
|
if (intgen->cond_type == int_cond_pc
|
|
&& oldpc == intgen->address
|
|
&& intgen->enabled)
|
|
{
|
|
break;
|
|
}
|
|
else if (intgen->cond_type == int_cond_time
|
|
&& intgen->enabled)
|
|
{
|
|
time (&now);
|
|
if (((long) now - (long) start_time) > intgen->time)
|
|
{
|
|
intgen->enabled = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (intgen)
|
|
do_interrupt (intgen->type);
|
|
}
|
|
else if (State.pending_nmi)
|
|
{
|
|
State.pending_nmi = 0;
|
|
do_interrupt (int_nmi);
|
|
}
|
|
}
|
|
while (!State.exception);
|
|
}
|
|
|
|
static void
|
|
do_interrupt (inttype)
|
|
enum interrupt_type inttype;
|
|
{
|
|
/* Disable further interrupts. */
|
|
PSW |= PSW_ID;
|
|
/* Indicate that we're doing interrupt not exception processing. */
|
|
PSW &= ~PSW_EP;
|
|
if (inttype == int_reset)
|
|
{
|
|
PC = 0;
|
|
PSW = 0x20;
|
|
ECR = 0;
|
|
/* (Might be useful to init other regs with random values.) */
|
|
}
|
|
else if (inttype == int_nmi)
|
|
{
|
|
if (PSW & PSW_NP)
|
|
{
|
|
/* We're already working on an NMI, so this one must wait
|
|
around until the previous one is done. The processor
|
|
ignores subsequent NMIs, so we don't need to count them. */
|
|
State.pending_nmi = 1;
|
|
}
|
|
else
|
|
{
|
|
FEPC = PC;
|
|
FEPSW = PSW;
|
|
/* Set the FECC part of the ECR. */
|
|
ECR &= 0x0000ffff;
|
|
ECR |= 0x10;
|
|
PSW |= PSW_NP;
|
|
PC = 0x10;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
EIPC = PC;
|
|
EIPSW = PSW;
|
|
/* Clear the EICC part of the ECR, will set below. */
|
|
ECR &= 0xffff0000;
|
|
switch (inttype)
|
|
{
|
|
case int_intov1:
|
|
PC = 0x80;
|
|
ECR |= 0x80;
|
|
break;
|
|
case int_intp10:
|
|
PC = 0x90;
|
|
ECR |= 0x90;
|
|
break;
|
|
case int_intp11:
|
|
PC = 0xa0;
|
|
ECR |= 0xa0;
|
|
break;
|
|
case int_intp12:
|
|
PC = 0xb0;
|
|
ECR |= 0xb0;
|
|
break;
|
|
case int_intp13:
|
|
PC = 0xc0;
|
|
ECR |= 0xc0;
|
|
break;
|
|
case int_intcm4:
|
|
PC = 0xd0;
|
|
ECR |= 0xd0;
|
|
break;
|
|
default:
|
|
/* Should never be possible. */
|
|
abort ();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
sim_trace (sd)
|
|
SIM_DESC sd;
|
|
{
|
|
#ifdef DEBUG
|
|
v850_debug = DEBUG;
|
|
#endif
|
|
sim_resume (sd, 0, 0);
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
sim_info (sd, verbose)
|
|
SIM_DESC sd;
|
|
int verbose;
|
|
{
|
|
(*v850_callback->printf_filtered) (v850_callback, "sim_info\n");
|
|
}
|
|
|
|
SIM_RC
|
|
sim_create_inferior (sd, argv, env)
|
|
SIM_DESC sd;
|
|
char **argv;
|
|
char **env;
|
|
{
|
|
return SIM_RC_OK;
|
|
}
|
|
|
|
void
|
|
sim_kill (sd)
|
|
SIM_DESC sd;
|
|
{
|
|
/* nothing to do */
|
|
}
|
|
|
|
void
|
|
sim_set_callbacks (sd, p)
|
|
SIM_DESC sd;
|
|
host_callback *p;
|
|
{
|
|
v850_callback = p;
|
|
}
|
|
|
|
/* All the code for exiting, signals, etc needs to be revamped.
|
|
|
|
This is enough to get c-torture limping though. */
|
|
|
|
void
|
|
sim_stop_reason (sd, reason, sigrc)
|
|
SIM_DESC sd;
|
|
enum sim_stop *reason;
|
|
int *sigrc;
|
|
{
|
|
if (State.exception == SIG_V850_EXIT)
|
|
{
|
|
*reason = sim_exited;
|
|
*sigrc = State.regs[7];
|
|
}
|
|
else
|
|
{
|
|
*reason = sim_stopped;
|
|
*sigrc = State.exception;
|
|
}
|
|
}
|
|
|
|
void
|
|
sim_fetch_register (sd, rn, memory)
|
|
SIM_DESC sd;
|
|
int rn;
|
|
unsigned char *memory;
|
|
{
|
|
put_word (memory, State.regs[rn]);
|
|
}
|
|
|
|
void
|
|
sim_store_register (sd, rn, memory)
|
|
SIM_DESC sd;
|
|
int rn;
|
|
unsigned char *memory;
|
|
{
|
|
State.regs[rn] = get_word (memory);
|
|
}
|
|
|
|
int
|
|
sim_read (sd, addr, buffer, size)
|
|
SIM_DESC sd;
|
|
SIM_ADDR addr;
|
|
unsigned char *buffer;
|
|
int size;
|
|
{
|
|
int i;
|
|
for (i = 0; i < size; i++)
|
|
buffer[i] = load_mem (addr + i, 1);
|
|
|
|
return size;
|
|
}
|
|
|
|
int current_intgen_number = 1;
|
|
|
|
void
|
|
sim_set_interrupt (spec)
|
|
char *spec;
|
|
{
|
|
int i, num;
|
|
char **argv;
|
|
struct interrupt_generator *intgen, *tmpgen;
|
|
extern char **buildargv ();
|
|
|
|
argv = buildargv (spec);
|
|
|
|
if (*argv && ! strcmp (*argv, "add"))
|
|
{
|
|
/* Create a new interrupt generator object. */
|
|
intgen = (struct interrupt_generator *)
|
|
malloc (sizeof(struct interrupt_generator));
|
|
intgen->type = int_none;
|
|
intgen->cond_type = int_cond_none;
|
|
intgen->address = 0;
|
|
intgen->time = 0;
|
|
intgen->enabled = 0;
|
|
++argv;
|
|
/* Match on interrupt type name. */
|
|
for (i = 0; i < num_int_types; ++i)
|
|
{
|
|
if (*argv && ! strcmp (*argv, interrupt_names[i]))
|
|
{
|
|
intgen->type = i;
|
|
break;
|
|
}
|
|
}
|
|
if (intgen->type == int_none)
|
|
{
|
|
(*v850_callback->printf_filtered) (v850_callback, "Interrupt type unknown; known types are\n");
|
|
for (i = 0; i < num_int_types; ++i)
|
|
{
|
|
(*v850_callback->printf_filtered) (v850_callback, " %s", interrupt_names[i]);
|
|
}
|
|
(*v850_callback->printf_filtered) (v850_callback, "\n");
|
|
free (intgen);
|
|
return;
|
|
}
|
|
++argv;
|
|
intgen->address = 0;
|
|
intgen->time = 0;
|
|
if (*argv && ! strcmp (*argv, "pc"))
|
|
{
|
|
intgen->cond_type = int_cond_pc;
|
|
++argv;
|
|
intgen->address = sim_parse_number (*argv, NULL);
|
|
}
|
|
else if (*argv && ! strcmp (*argv, "time"))
|
|
{
|
|
intgen->cond_type = int_cond_time;
|
|
++argv;
|
|
intgen->time = sim_parse_number (*argv, NULL);
|
|
}
|
|
else
|
|
{
|
|
(*v850_callback->printf_filtered) (v850_callback, "Condition type must be `pc' or `time'.\n");
|
|
free (intgen);
|
|
return;
|
|
}
|
|
/* We now have a valid interrupt generator. Number it and add
|
|
to the list of generators. */
|
|
intgen->number = current_intgen_number++;
|
|
intgen->enabled = 1;
|
|
intgen->next = intgen_list;
|
|
intgen_list = intgen;
|
|
(*v850_callback->printf_filtered) (v850_callback, "Interrupt generator %d (NMI) at pc=0x%x, time=%d.\n", intgen_list->number, intgen_list->address, intgen_list->time);
|
|
}
|
|
else if (*argv && !strcmp (*argv, "remove"))
|
|
{
|
|
++argv;
|
|
num = sim_parse_number (*argv, NULL);
|
|
tmpgen = NULL;
|
|
if (intgen_list)
|
|
{
|
|
if (intgen_list->number == num)
|
|
{
|
|
tmpgen = intgen_list;
|
|
intgen_list = intgen_list->next;
|
|
}
|
|
else
|
|
{
|
|
for (intgen = intgen_list; intgen != NULL; intgen = intgen->next)
|
|
{
|
|
if (intgen->next != NULL && intgen->next->number == num)
|
|
{
|
|
tmpgen = intgen->next;
|
|
intgen->next = intgen->next->next;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (tmpgen)
|
|
free (tmpgen);
|
|
else
|
|
(*v850_callback->printf_filtered) (v850_callback,
|
|
"No interrupt generator numbered %d, ignoring.\n", num);
|
|
}
|
|
}
|
|
else if (*argv && !strcmp (*argv, "info"))
|
|
{
|
|
if (intgen_list)
|
|
{
|
|
for (intgen = intgen_list; intgen != NULL; intgen = intgen->next)
|
|
(*v850_callback->printf_filtered) (v850_callback,
|
|
"Interrupt generator %d (%s) at pc=0x%x/time=%d%s.\n",
|
|
intgen->number,
|
|
interrupt_names[intgen->type],
|
|
intgen->address,
|
|
intgen->time,
|
|
(intgen->enabled ? "" : " (disabled)"));
|
|
}
|
|
else
|
|
{
|
|
(*v850_callback->printf_filtered) (v850_callback, "No interrupt generators defined.\n");
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
(*v850_callback->printf_filtered) (v850_callback,
|
|
"Invalid interrupt command, must be one of `add', `remove', or `info'.\n");
|
|
}
|
|
/* Cache the presence of a non-maskable generator. */
|
|
have_nm_generator = 0;
|
|
for (intgen = intgen_list; intgen != NULL; intgen = intgen->next)
|
|
{
|
|
if (intgen->type == int_nmi || intgen->type == int_reset)
|
|
{
|
|
have_nm_generator = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
sim_do_command (sd, cmd)
|
|
SIM_DESC sd;
|
|
char *cmd;
|
|
{
|
|
char *mm_cmd = "memory-map";
|
|
char *int_cmd = "interrupt";
|
|
|
|
if (! strncmp (cmd, mm_cmd, strlen (mm_cmd))
|
|
&& strchr (" ", cmd[strlen(mm_cmd)]))
|
|
sim_set_memory_map (cmd + strlen(mm_cmd) + 1);
|
|
|
|
else if (! strncmp (cmd, int_cmd, strlen (int_cmd))
|
|
&& strchr (" ", cmd[strlen(int_cmd)]))
|
|
sim_set_interrupt (cmd + strlen(int_cmd) + 1);
|
|
|
|
else if (! strcmp (cmd, "help"))
|
|
{
|
|
(*v850_callback->printf_filtered) (v850_callback, "V850 simulator commands:\n\n");
|
|
(*v850_callback->printf_filtered) (v850_callback, "interrupt add <inttype> { pc | time } <value> -- Set up an interrupt generator\n");
|
|
(*v850_callback->printf_filtered) (v850_callback, "interrupt remove <n> -- Remove an existing interrupt generator\n");
|
|
(*v850_callback->printf_filtered) (v850_callback, "interrupt info -- List all the interrupt generators\n");
|
|
(*v850_callback->printf_filtered) (v850_callback, "memory-map hole=<m>,<n> -- Set the memory map to have a hole between <m> and <n>\n");
|
|
(*v850_callback->printf_filtered) (v850_callback, "\n");
|
|
}
|
|
else
|
|
(*v850_callback->printf_filtered) (v850_callback, "\"%s\" is not a valid V850 simulator command.\n",
|
|
cmd);
|
|
}
|
|
|
|
SIM_RC
|
|
sim_load (sd, prog, abfd, from_tty)
|
|
SIM_DESC sd;
|
|
char *prog;
|
|
bfd *abfd;
|
|
int from_tty;
|
|
{
|
|
extern bfd *sim_load_file (); /* ??? Don't know where this should live. */
|
|
bfd *prog_bfd;
|
|
|
|
prog_bfd = sim_load_file (sd, myname, v850_callback, prog, abfd,
|
|
sim_kind == SIM_OPEN_DEBUG);
|
|
if (prog_bfd == NULL)
|
|
return SIM_RC_FAIL;
|
|
PC = bfd_get_start_address (prog_bfd);
|
|
if (abfd == NULL)
|
|
bfd_close (prog_bfd);
|
|
return SIM_RC_OK;
|
|
}
|