mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-27 03:51:15 +08:00
dc6c21dabf
This updates gnulib to a relatively recent commit. Most of this was done by the gnulib import script; the only change I made was to update-gnulib.sh. Tested on x86-64 Fedora 34. I also did a mingw cross build.
190 lines
6.9 KiB
C
190 lines
6.9 KiB
C
/* Test for NaN that does not need libm.
|
|
Copyright (C) 2007-2022 Free Software Foundation, Inc.
|
|
|
|
This file is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as
|
|
published by the Free Software Foundation; either version 2.1 of the
|
|
License, or (at your option) any later version.
|
|
|
|
This file is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program. If not, see <https://www.gnu.org/licenses/>. */
|
|
|
|
/* Written by Bruno Haible <bruno@clisp.org>, 2007. */
|
|
|
|
#include <config.h>
|
|
|
|
/* Specification. */
|
|
#ifdef USE_LONG_DOUBLE
|
|
/* Specification found in math.h or isnanl-nolibm.h. */
|
|
extern int rpl_isnanl (long double x) _GL_ATTRIBUTE_CONST;
|
|
#elif ! defined USE_FLOAT
|
|
/* Specification found in math.h or isnand-nolibm.h. */
|
|
extern int rpl_isnand (double x);
|
|
#else /* defined USE_FLOAT */
|
|
/* Specification found in math.h or isnanf-nolibm.h. */
|
|
extern int rpl_isnanf (float x);
|
|
#endif
|
|
|
|
#include <float.h>
|
|
#include <string.h>
|
|
|
|
#include "float+.h"
|
|
|
|
#ifdef USE_LONG_DOUBLE
|
|
# define FUNC rpl_isnanl
|
|
# define DOUBLE long double
|
|
# define MAX_EXP LDBL_MAX_EXP
|
|
# define MIN_EXP LDBL_MIN_EXP
|
|
# if defined LDBL_EXPBIT0_WORD && defined LDBL_EXPBIT0_BIT
|
|
# define KNOWN_EXPBIT0_LOCATION
|
|
# define EXPBIT0_WORD LDBL_EXPBIT0_WORD
|
|
# define EXPBIT0_BIT LDBL_EXPBIT0_BIT
|
|
# endif
|
|
# define SIZE SIZEOF_LDBL
|
|
# define L_(literal) literal##L
|
|
#elif ! defined USE_FLOAT
|
|
# define FUNC rpl_isnand
|
|
# define DOUBLE double
|
|
# define MAX_EXP DBL_MAX_EXP
|
|
# define MIN_EXP DBL_MIN_EXP
|
|
# if defined DBL_EXPBIT0_WORD && defined DBL_EXPBIT0_BIT
|
|
# define KNOWN_EXPBIT0_LOCATION
|
|
# define EXPBIT0_WORD DBL_EXPBIT0_WORD
|
|
# define EXPBIT0_BIT DBL_EXPBIT0_BIT
|
|
# endif
|
|
# define SIZE SIZEOF_DBL
|
|
# define L_(literal) literal
|
|
#else /* defined USE_FLOAT */
|
|
# define FUNC rpl_isnanf
|
|
# define DOUBLE float
|
|
# define MAX_EXP FLT_MAX_EXP
|
|
# define MIN_EXP FLT_MIN_EXP
|
|
# if defined FLT_EXPBIT0_WORD && defined FLT_EXPBIT0_BIT
|
|
# define KNOWN_EXPBIT0_LOCATION
|
|
# define EXPBIT0_WORD FLT_EXPBIT0_WORD
|
|
# define EXPBIT0_BIT FLT_EXPBIT0_BIT
|
|
# endif
|
|
# define SIZE SIZEOF_FLT
|
|
# define L_(literal) literal##f
|
|
#endif
|
|
|
|
#define EXP_MASK ((MAX_EXP - MIN_EXP) | 7)
|
|
|
|
#define NWORDS \
|
|
((sizeof (DOUBLE) + sizeof (unsigned int) - 1) / sizeof (unsigned int))
|
|
typedef union { DOUBLE value; unsigned int word[NWORDS]; } memory_double;
|
|
|
|
/* Most hosts nowadays use IEEE floating point, so they use IEC 60559
|
|
representations, have infinities and NaNs, and do not trap on
|
|
exceptions. Define IEEE_FLOATING_POINT if this host is one of the
|
|
typical ones. The C11 macro __STDC_IEC_559__ is close to what is
|
|
wanted here, but is not quite right because this file does not require
|
|
all the features of C11 Annex F (and does not require C11 at all,
|
|
for that matter). */
|
|
|
|
#define IEEE_FLOATING_POINT (FLT_RADIX == 2 && FLT_MANT_DIG == 24 \
|
|
&& FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
|
|
|
|
int
|
|
FUNC (DOUBLE x)
|
|
{
|
|
#if defined KNOWN_EXPBIT0_LOCATION && IEEE_FLOATING_POINT
|
|
# if defined USE_LONG_DOUBLE && ((defined __ia64 && LDBL_MANT_DIG == 64) || (defined __x86_64__ || defined __amd64__) || (defined __i386 || defined __i386__ || defined _I386 || defined _M_IX86 || defined _X86_)) && !HAVE_SAME_LONG_DOUBLE_AS_DOUBLE
|
|
/* Special CPU dependent code is needed to treat bit patterns outside the
|
|
IEEE 754 specification (such as Pseudo-NaNs, Pseudo-Infinities,
|
|
Pseudo-Zeroes, Unnormalized Numbers, and Pseudo-Denormals) as NaNs.
|
|
These bit patterns are:
|
|
- exponent = 0x0001..0x7FFF, mantissa bit 63 = 0,
|
|
- exponent = 0x0000, mantissa bit 63 = 1.
|
|
The NaN bit pattern is:
|
|
- exponent = 0x7FFF, mantissa >= 0x8000000000000001. */
|
|
memory_double m;
|
|
unsigned int exponent;
|
|
|
|
m.value = x;
|
|
exponent = (m.word[EXPBIT0_WORD] >> EXPBIT0_BIT) & EXP_MASK;
|
|
# ifdef WORDS_BIGENDIAN
|
|
/* Big endian: EXPBIT0_WORD = 0, EXPBIT0_BIT = 16. */
|
|
if (exponent == 0)
|
|
return 1 & (m.word[0] >> 15);
|
|
else if (exponent == EXP_MASK)
|
|
return (((m.word[0] ^ 0x8000U) << 16) | m.word[1] | (m.word[2] >> 16)) != 0;
|
|
else
|
|
return 1 & ~(m.word[0] >> 15);
|
|
# else
|
|
/* Little endian: EXPBIT0_WORD = 2, EXPBIT0_BIT = 0. */
|
|
if (exponent == 0)
|
|
return (m.word[1] >> 31);
|
|
else if (exponent == EXP_MASK)
|
|
return ((m.word[1] ^ 0x80000000U) | m.word[0]) != 0;
|
|
else
|
|
return (m.word[1] >> 31) ^ 1;
|
|
# endif
|
|
# else
|
|
/* Be careful to not do any floating-point operation on x, such as x == x,
|
|
because x may be a signaling NaN. */
|
|
# if defined __SUNPRO_C || defined __ICC || defined _MSC_VER \
|
|
|| defined __DECC || defined __TINYC__ \
|
|
|| (defined __sgi && !defined __GNUC__)
|
|
/* The Sun C 5.0, Intel ICC 10.0, Microsoft Visual C/C++ 9.0, Compaq (ex-DEC)
|
|
6.4, and TinyCC compilers don't recognize the initializers as constant
|
|
expressions. The Compaq compiler also fails when constant-folding
|
|
0.0 / 0.0 even when constant-folding is not required. The Microsoft
|
|
Visual C/C++ compiler also fails when constant-folding 1.0 / 0.0 even
|
|
when constant-folding is not required. The SGI MIPSpro C compiler
|
|
complains about "floating-point operation result is out of range". */
|
|
static DOUBLE zero = L_(0.0);
|
|
memory_double nan;
|
|
DOUBLE plus_inf = L_(1.0) / zero;
|
|
DOUBLE minus_inf = -L_(1.0) / zero;
|
|
nan.value = zero / zero;
|
|
# else
|
|
static memory_double nan = { L_(0.0) / L_(0.0) };
|
|
static DOUBLE plus_inf = L_(1.0) / L_(0.0);
|
|
static DOUBLE minus_inf = -L_(1.0) / L_(0.0);
|
|
# endif
|
|
{
|
|
memory_double m;
|
|
|
|
/* A NaN can be recognized through its exponent. But exclude +Infinity and
|
|
-Infinity, which have the same exponent. */
|
|
m.value = x;
|
|
if (((m.word[EXPBIT0_WORD] ^ nan.word[EXPBIT0_WORD])
|
|
& (EXP_MASK << EXPBIT0_BIT))
|
|
== 0)
|
|
return (memcmp (&m.value, &plus_inf, SIZE) != 0
|
|
&& memcmp (&m.value, &minus_inf, SIZE) != 0);
|
|
else
|
|
return 0;
|
|
}
|
|
# endif
|
|
#else
|
|
/* The configuration did not find sufficient information, or does
|
|
not use IEEE floating point. Give up about the signaling NaNs;
|
|
handle only the quiet NaNs. */
|
|
if (x == x)
|
|
{
|
|
# if defined USE_LONG_DOUBLE && ((defined __ia64 && LDBL_MANT_DIG == 64) || (defined __x86_64__ || defined __amd64__) || (defined __i386 || defined __i386__ || defined _I386 || defined _M_IX86 || defined _X86_)) && !HAVE_SAME_LONG_DOUBLE_AS_DOUBLE
|
|
/* Detect any special bit patterns that pass ==; see comment above. */
|
|
memory_double m1;
|
|
memory_double m2;
|
|
|
|
memset (&m1.value, 0, SIZE);
|
|
memset (&m2.value, 0, SIZE);
|
|
m1.value = x;
|
|
m2.value = x + (x ? 0.0L : -0.0L);
|
|
if (memcmp (&m1.value, &m2.value, SIZE) != 0)
|
|
return 1;
|
|
# endif
|
|
return 0;
|
|
}
|
|
else
|
|
return 1;
|
|
#endif
|
|
}
|