mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-18 12:24:38 +08:00
1105 lines
31 KiB
C
1105 lines
31 KiB
C
/* Target-dependent code for Motorola 68HC11
|
|
Copyright (C) 1999, 2000 Free Software Foundation, Inc.
|
|
Contributed by Stephane Carrez, stcarrez@worldnet.fr
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
|
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "obstack.h"
|
|
#include "symtab.h"
|
|
#include "gdbtypes.h"
|
|
#include "gdbcmd.h"
|
|
#include "gdbcore.h"
|
|
#include "gdb_string.h"
|
|
#include "value.h"
|
|
#include "inferior.h"
|
|
#include "dis-asm.h"
|
|
#include "symfile.h"
|
|
#include "objfiles.h"
|
|
#include "arch-utils.h"
|
|
|
|
#include "target.h"
|
|
#include "opcode/m68hc11.h"
|
|
|
|
/* Register numbers of various important registers.
|
|
Note that some of these values are "real" register numbers,
|
|
and correspond to the general registers of the machine,
|
|
and some are "phony" register numbers which are too large
|
|
to be actual register numbers as far as the user is concerned
|
|
but do serve to get the desired values when passed to read_register. */
|
|
|
|
#define HARD_X_REGNUM 0
|
|
#define HARD_D_REGNUM 1
|
|
#define HARD_Y_REGNUM 2
|
|
#define HARD_SP_REGNUM 3
|
|
#define HARD_PC_REGNUM 4
|
|
|
|
#define HARD_A_REGNUM 5
|
|
#define HARD_B_REGNUM 6
|
|
#define HARD_CCR_REGNUM 7
|
|
#define M68HC11_LAST_HARD_REG (HARD_CCR_REGNUM)
|
|
|
|
/* Z is replaced by X or Y by gcc during machine reorg.
|
|
??? There is no way to get it and even know whether
|
|
it's in X or Y or in ZS. */
|
|
#define SOFT_Z_REGNUM 8
|
|
|
|
/* Soft registers. These registers are special. There are treated
|
|
like normal hard registers by gcc and gdb (ie, within dwarf2 info).
|
|
They are physically located in memory. */
|
|
#define SOFT_FP_REGNUM 9
|
|
#define SOFT_TMP_REGNUM 10
|
|
#define SOFT_ZS_REGNUM 11
|
|
#define SOFT_XY_REGNUM 12
|
|
#define SOFT_D1_REGNUM 13
|
|
#define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
|
|
#define M68HC11_MAX_SOFT_REGS 32
|
|
|
|
#define M68HC11_NUM_REGS (8)
|
|
#define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
|
|
#define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
|
|
|
|
#define M68HC11_REG_SIZE (2)
|
|
|
|
struct gdbarch_tdep
|
|
{
|
|
/* from the elf header */
|
|
int elf_flags;
|
|
};
|
|
|
|
struct frame_extra_info
|
|
{
|
|
int frame_reg;
|
|
CORE_ADDR return_pc;
|
|
CORE_ADDR dummy;
|
|
int frameless;
|
|
int size;
|
|
};
|
|
|
|
/* Table of registers for 68HC11. This includes the hard registers
|
|
and the soft registers used by GCC. */
|
|
static char *
|
|
m68hc11_register_names[] =
|
|
{
|
|
"x", "d", "y", "sp", "pc", "a", "b",
|
|
"ccr", "z", "frame","tmp", "zs", "xy",
|
|
"d1", "d2", "d3", "d4", "d5", "d6", "d7",
|
|
"d8", "d9", "d10", "d11", "d12", "d13", "d14",
|
|
"d15", "d16", "d17", "d18", "d19", "d20", "d21",
|
|
"d22", "d23", "d24", "d25", "d26", "d27", "d28",
|
|
"d29", "d30", "d31", "d32"
|
|
};
|
|
|
|
struct m68hc11_soft_reg
|
|
{
|
|
const char *name;
|
|
CORE_ADDR addr;
|
|
};
|
|
|
|
static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
|
|
|
|
#define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
|
|
|
|
static int soft_min_addr;
|
|
static int soft_max_addr;
|
|
static int soft_reg_initialized = 0;
|
|
|
|
/* Stack pointer correction value. For 68hc11, the stack pointer points
|
|
to the next push location. An offset of 1 must be applied to obtain
|
|
the address where the last value is saved. For 68hc12, the stack
|
|
pointer points to the last value pushed. No offset is necessary. */
|
|
static int stack_correction = 1;
|
|
|
|
/* Look in the symbol table for the address of a pseudo register
|
|
in memory. If we don't find it, pretend the register is not used
|
|
and not available. */
|
|
static void
|
|
m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
|
|
{
|
|
struct minimal_symbol *msymbol;
|
|
|
|
msymbol = lookup_minimal_symbol (name, NULL, NULL);
|
|
if (msymbol)
|
|
{
|
|
reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
|
|
reg->name = xstrdup (name);
|
|
|
|
/* Keep track of the address range for soft registers. */
|
|
if (reg->addr < (CORE_ADDR) soft_min_addr)
|
|
soft_min_addr = reg->addr;
|
|
if (reg->addr > (CORE_ADDR) soft_max_addr)
|
|
soft_max_addr = reg->addr;
|
|
}
|
|
else
|
|
{
|
|
reg->name = 0;
|
|
reg->addr = 0;
|
|
}
|
|
}
|
|
|
|
/* Initialize the table of soft register addresses according
|
|
to the symbol table. */
|
|
static void
|
|
m68hc11_initialize_register_info (void)
|
|
{
|
|
int i;
|
|
|
|
if (soft_reg_initialized)
|
|
return;
|
|
|
|
soft_min_addr = INT_MAX;
|
|
soft_max_addr = 0;
|
|
for (i = 0; i < M68HC11_ALL_REGS; i++)
|
|
{
|
|
soft_regs[i].name = 0;
|
|
}
|
|
|
|
m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
|
|
m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
|
|
m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
|
|
soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
|
|
m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
|
|
|
|
for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
|
|
{
|
|
char buf[10];
|
|
|
|
sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
|
|
m68hc11_get_register_info (&soft_regs[i], buf);
|
|
}
|
|
|
|
if (soft_regs[SOFT_FP_REGNUM].name == 0)
|
|
{
|
|
warning ("No frame soft register found in the symbol table.\n");
|
|
warning ("Stack backtrace will not work.\n");
|
|
}
|
|
soft_reg_initialized = 1;
|
|
}
|
|
|
|
/* Given an address in memory, return the soft register number if
|
|
that address corresponds to a soft register. Returns -1 if not. */
|
|
static int
|
|
m68hc11_which_soft_register (CORE_ADDR addr)
|
|
{
|
|
int i;
|
|
|
|
if (addr < soft_min_addr || addr > soft_max_addr)
|
|
return -1;
|
|
|
|
for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
|
|
{
|
|
if (soft_regs[i].name && soft_regs[i].addr == addr)
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* Fetch a pseudo register. The 68hc11 soft registers are treated like
|
|
pseudo registers. They are located in memory. Translate the register
|
|
fetch into a memory read. */
|
|
void
|
|
m68hc11_fetch_pseudo_register (int regno)
|
|
{
|
|
char buf[MAX_REGISTER_RAW_SIZE];
|
|
|
|
m68hc11_initialize_register_info ();
|
|
|
|
/* Fetch a soft register: translate into a memory read. */
|
|
if (soft_regs[regno].name)
|
|
{
|
|
target_read_memory (soft_regs[regno].addr, buf, 2);
|
|
}
|
|
else
|
|
{
|
|
memset (buf, 0, 2);
|
|
}
|
|
supply_register (regno, buf);
|
|
}
|
|
|
|
/* Store a pseudo register. Translate the register store
|
|
into a memory write. */
|
|
static void
|
|
m68hc11_store_pseudo_register (int regno)
|
|
{
|
|
m68hc11_initialize_register_info ();
|
|
|
|
/* Store a soft register: translate into a memory write. */
|
|
if (soft_regs[regno].name)
|
|
{
|
|
char buf[MAX_REGISTER_RAW_SIZE];
|
|
|
|
read_register_gen (regno, buf);
|
|
target_write_memory (soft_regs[regno].addr, buf, 2);
|
|
}
|
|
}
|
|
|
|
static char *
|
|
m68hc11_register_name (int reg_nr)
|
|
{
|
|
if (reg_nr < 0)
|
|
return NULL;
|
|
if (reg_nr >= M68HC11_ALL_REGS)
|
|
return NULL;
|
|
|
|
/* If we don't know the address of a soft register, pretend it
|
|
does not exist. */
|
|
if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
|
|
return NULL;
|
|
return m68hc11_register_names[reg_nr];
|
|
}
|
|
|
|
static unsigned char *
|
|
m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
|
|
{
|
|
static unsigned char breakpoint[] = {0x0};
|
|
|
|
*lenptr = sizeof (breakpoint);
|
|
return breakpoint;
|
|
}
|
|
|
|
/* Immediately after a function call, return the saved pc before the frame
|
|
is setup. */
|
|
|
|
static CORE_ADDR
|
|
m68hc11_saved_pc_after_call (struct frame_info *frame)
|
|
{
|
|
CORE_ADDR addr;
|
|
|
|
addr = read_register (HARD_SP_REGNUM) + stack_correction;
|
|
addr &= 0x0ffff;
|
|
return read_memory_integer (addr, 2) & 0x0FFFF;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
m68hc11_frame_saved_pc (struct frame_info *frame)
|
|
{
|
|
return frame->extra_info->return_pc;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
m68hc11_frame_args_address (struct frame_info *frame)
|
|
{
|
|
return frame->frame;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
m68hc11_frame_locals_address (struct frame_info *frame)
|
|
{
|
|
return frame->frame;
|
|
}
|
|
|
|
/* Discard from the stack the innermost frame, restoring all saved
|
|
registers. */
|
|
|
|
static void
|
|
m68hc11_pop_frame (void)
|
|
{
|
|
register struct frame_info *frame = get_current_frame ();
|
|
register CORE_ADDR fp, sp;
|
|
register int regnum;
|
|
|
|
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
|
|
generic_pop_dummy_frame ();
|
|
else
|
|
{
|
|
fp = FRAME_FP (frame);
|
|
FRAME_INIT_SAVED_REGS (frame);
|
|
|
|
/* Copy regs from where they were saved in the frame. */
|
|
for (regnum = 0; regnum < M68HC11_ALL_REGS; regnum++)
|
|
if (frame->saved_regs[regnum])
|
|
write_register (regnum,
|
|
read_memory_integer (frame->saved_regs[regnum], 2));
|
|
|
|
write_register (HARD_PC_REGNUM, frame->extra_info->return_pc);
|
|
sp = fp + frame->extra_info->size;
|
|
write_register (HARD_SP_REGNUM, sp);
|
|
}
|
|
flush_cached_frames ();
|
|
}
|
|
|
|
/* Analyze the function prologue to find some information
|
|
about the function:
|
|
- the PC of the first line (for m68hc11_skip_prologue)
|
|
- the offset of the previous frame saved address (from current frame)
|
|
- the soft registers which are pushed. */
|
|
static void
|
|
m68hc11_guess_from_prologue (CORE_ADDR pc, CORE_ADDR fp,
|
|
CORE_ADDR *first_line,
|
|
int *frame_offset, CORE_ADDR *pushed_regs)
|
|
{
|
|
CORE_ADDR save_addr;
|
|
CORE_ADDR func_end;
|
|
unsigned char op0, op1, op2;
|
|
int add_sp_mode;
|
|
int sp_adjust = 0;
|
|
int size;
|
|
int found_frame_point;
|
|
int saved_reg;
|
|
CORE_ADDR first_pc;
|
|
|
|
first_pc = get_pc_function_start (pc);
|
|
size = 0;
|
|
|
|
m68hc11_initialize_register_info ();
|
|
if (first_pc == 0)
|
|
{
|
|
*frame_offset = 0;
|
|
*first_line = pc;
|
|
return;
|
|
}
|
|
|
|
#define OP_PAGE2 (0x18)
|
|
#define OP_LDX (0xde)
|
|
#define OP_LDY (0xde)
|
|
#define OP_PSHX (0x3c)
|
|
#define OP_PSHY (0x3c)
|
|
#define OP_STS (0x9f)
|
|
#define OP_TSX (0x30)
|
|
#define OP_TSY (0x30)
|
|
#define OP_XGDX (0x8f)
|
|
#define OP_XGDY (0x8f)
|
|
#define OP_ADDD (0xc3)
|
|
#define OP_TXS (0x35)
|
|
#define OP_TYS (0x35)
|
|
#define OP_DES (0x34)
|
|
|
|
/* The 68hc11 stack is as follows:
|
|
|
|
|
|
| |
|
|
+-----------+
|
|
| |
|
|
| args |
|
|
| |
|
|
+-----------+
|
|
| PC-return |
|
|
+-----------+
|
|
| Old frame |
|
|
+-----------+
|
|
| |
|
|
| Locals |
|
|
| |
|
|
+-----------+ <--- current frame
|
|
| |
|
|
|
|
With most processors (like 68K) the previous frame can be computed
|
|
easily because it is always at a fixed offset (see link/unlink).
|
|
That is, locals are accessed with negative offsets, arguments are
|
|
accessed with positive ones. Since 68hc11 only supports offsets
|
|
in the range [0..255], the frame is defined at the bottom of
|
|
locals (see picture).
|
|
|
|
The purpose of the analysis made here is to find out the size
|
|
of locals in this function. An alternative to this is to use
|
|
DWARF2 info. This would be better but I don't know how to
|
|
access dwarf2 debug from this function.
|
|
|
|
Walk from the function entry point to the point where we save
|
|
the frame. While walking instructions, compute the size of bytes
|
|
which are pushed. This gives us the index to access the previous
|
|
frame.
|
|
|
|
We limit the search to 128 bytes so that the algorithm is bounded
|
|
in case of random and wrong code. We also stop and abort if
|
|
we find an instruction which is not supposed to appear in the
|
|
prologue (as generated by gcc 2.95, 2.96).
|
|
*/
|
|
pc = first_pc;
|
|
func_end = pc + 128;
|
|
add_sp_mode = 0;
|
|
found_frame_point = 0;
|
|
while (pc + 2 < func_end)
|
|
{
|
|
op0 = read_memory_unsigned_integer (pc, 1);
|
|
op1 = read_memory_unsigned_integer (pc + 1, 1);
|
|
op2 = read_memory_unsigned_integer (pc + 2, 1);
|
|
|
|
/* ldx *frame */
|
|
if (op0 == OP_LDX && op1 == M68HC11_FP_ADDR)
|
|
{
|
|
pc += 2;
|
|
}
|
|
|
|
/* ldy *frame */
|
|
else if (op0 == OP_PAGE2 && op1 == OP_LDY
|
|
&& op2 == M68HC11_FP_ADDR)
|
|
{
|
|
pc += 3;
|
|
}
|
|
|
|
/* pshx */
|
|
else if (op0 == OP_PSHX)
|
|
{
|
|
pc += 1;
|
|
size += 2;
|
|
}
|
|
|
|
/* pshy */
|
|
else if (op0 == OP_PAGE2 && op1 == OP_PSHX)
|
|
{
|
|
pc += 2;
|
|
size += 2;
|
|
}
|
|
|
|
/* sts *frame */
|
|
else if (op0 == OP_STS && op1 == M68HC11_FP_ADDR)
|
|
{
|
|
found_frame_point = 1;
|
|
pc += 2;
|
|
break;
|
|
}
|
|
else if (op0 == OP_TSX && op1 == OP_XGDX)
|
|
{
|
|
add_sp_mode = 1;
|
|
pc += 2;
|
|
}
|
|
/* des to allocate 1 byte on the stack */
|
|
else if (op0 == OP_DES)
|
|
{
|
|
pc += 1;
|
|
size += 1;
|
|
}
|
|
else if (op0 == OP_PAGE2 && op1 == OP_TSY && op2 == OP_PAGE2)
|
|
{
|
|
op0 = read_memory_unsigned_integer (pc + 3, 1);
|
|
if (op0 != OP_XGDY)
|
|
break;
|
|
|
|
add_sp_mode = 2;
|
|
pc += 4;
|
|
}
|
|
else if (add_sp_mode && op0 == OP_ADDD)
|
|
{
|
|
sp_adjust = read_memory_unsigned_integer (pc + 1, 2);
|
|
if (sp_adjust & 0x8000)
|
|
sp_adjust |= 0xffff0000L;
|
|
|
|
sp_adjust = -sp_adjust;
|
|
add_sp_mode |= 4;
|
|
pc += 3;
|
|
}
|
|
else if (add_sp_mode == (1 | 4) && op0 == OP_XGDX
|
|
&& op1 == OP_TXS)
|
|
{
|
|
size += sp_adjust;
|
|
pc += 2;
|
|
add_sp_mode = 0;
|
|
}
|
|
else if (add_sp_mode == (2 | 4) && op0 == OP_PAGE2
|
|
&& op1 == OP_XGDY && op2 == OP_PAGE2)
|
|
{
|
|
op0 = read_memory_unsigned_integer (pc + 3, 1);
|
|
if (op0 != OP_TYS)
|
|
break;
|
|
|
|
size += sp_adjust;
|
|
pc += 4;
|
|
add_sp_mode = 0;
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (found_frame_point == 0)
|
|
{
|
|
*frame_offset = 0;
|
|
}
|
|
else
|
|
{
|
|
*frame_offset = size;
|
|
}
|
|
|
|
/* Now, look forward to see how many registers are pushed on the stack.
|
|
We look only for soft registers so there must be a first LDX *REG
|
|
before a PSHX. */
|
|
saved_reg = -1;
|
|
save_addr = fp;
|
|
while (pc + 2 < func_end)
|
|
{
|
|
op0 = read_memory_unsigned_integer (pc, 1);
|
|
op1 = read_memory_unsigned_integer (pc + 1, 1);
|
|
op2 = read_memory_unsigned_integer (pc + 2, 1);
|
|
if (op0 == OP_LDX)
|
|
{
|
|
saved_reg = m68hc11_which_soft_register (op1);
|
|
if (saved_reg < 0 || saved_reg == SOFT_FP_REGNUM)
|
|
break;
|
|
|
|
pc += 2;
|
|
}
|
|
else if (op0 == OP_PAGE2 && op1 == OP_LDY)
|
|
{
|
|
saved_reg = m68hc11_which_soft_register (op2);
|
|
if (saved_reg < 0 || saved_reg == SOFT_FP_REGNUM)
|
|
break;
|
|
|
|
pc += 3;
|
|
}
|
|
else if (op0 == OP_PSHX)
|
|
{
|
|
/* If there was no load, this is a push for a function call. */
|
|
if (saved_reg < 0 || saved_reg >= M68HC11_ALL_REGS)
|
|
break;
|
|
|
|
/* Keep track of the address where that register is saved
|
|
on the stack. */
|
|
save_addr -= 2;
|
|
if (pushed_regs)
|
|
pushed_regs[saved_reg] = save_addr;
|
|
|
|
pc += 1;
|
|
saved_reg = -1;
|
|
}
|
|
else if (op0 == OP_PAGE2 && op1 == OP_PSHY)
|
|
{
|
|
if (saved_reg < 0 || saved_reg >= M68HC11_ALL_REGS)
|
|
break;
|
|
|
|
/* Keep track of the address where that register is saved
|
|
on the stack. */
|
|
save_addr -= 2;
|
|
if (pushed_regs)
|
|
pushed_regs[saved_reg] = save_addr;
|
|
|
|
pc += 2;
|
|
saved_reg = -1;
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
*first_line = pc;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
m68hc11_skip_prologue (CORE_ADDR pc)
|
|
{
|
|
CORE_ADDR func_addr, func_end;
|
|
struct symtab_and_line sal;
|
|
int frame_offset;
|
|
|
|
/* If we have line debugging information, then the end of the
|
|
prologue should be the first assembly instruction of the
|
|
first source line. */
|
|
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
|
{
|
|
sal = find_pc_line (func_addr, 0);
|
|
if (sal.end && sal.end < func_end)
|
|
return sal.end;
|
|
}
|
|
|
|
m68hc11_guess_from_prologue (pc, 0, &pc, &frame_offset, 0);
|
|
return pc;
|
|
}
|
|
|
|
/* Given a GDB frame, determine the address of the calling function's frame.
|
|
This will be used to create a new GDB frame struct, and then
|
|
INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
|
|
*/
|
|
|
|
static CORE_ADDR
|
|
m68hc11_frame_chain (struct frame_info *frame)
|
|
{
|
|
CORE_ADDR addr;
|
|
|
|
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
|
|
return frame->frame; /* dummy frame same as caller's frame */
|
|
|
|
if (frame->extra_info->return_pc == 0
|
|
|| inside_entry_file (frame->extra_info->return_pc))
|
|
return (CORE_ADDR) 0;
|
|
|
|
if (frame->frame == 0)
|
|
{
|
|
return (CORE_ADDR) 0;
|
|
}
|
|
|
|
addr = frame->frame + frame->extra_info->size + stack_correction - 2;
|
|
addr = read_memory_unsigned_integer (addr, 2) & 0x0FFFF;
|
|
if (addr == 0)
|
|
{
|
|
return (CORE_ADDR) 0;
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
/* Put here the code to store, into a struct frame_saved_regs, the
|
|
addresses of the saved registers of frame described by FRAME_INFO.
|
|
This includes special registers such as pc and fp saved in special
|
|
ways in the stack frame. sp is even more special: the address we
|
|
return for it IS the sp for the next frame. */
|
|
static void
|
|
m68hc11_frame_init_saved_regs (struct frame_info *fi)
|
|
{
|
|
CORE_ADDR pc;
|
|
CORE_ADDR addr;
|
|
|
|
if (fi->saved_regs == NULL)
|
|
frame_saved_regs_zalloc (fi);
|
|
else
|
|
memset (fi->saved_regs, 0, sizeof (fi->saved_regs));
|
|
|
|
pc = fi->pc;
|
|
m68hc11_guess_from_prologue (pc, fi->frame, &pc, &fi->extra_info->size,
|
|
fi->saved_regs);
|
|
|
|
addr = fi->frame + fi->extra_info->size + stack_correction;
|
|
fi->saved_regs[SOFT_FP_REGNUM] = addr - 2;
|
|
fi->saved_regs[HARD_SP_REGNUM] = addr;
|
|
fi->saved_regs[HARD_PC_REGNUM] = fi->saved_regs[HARD_SP_REGNUM];
|
|
}
|
|
|
|
static void
|
|
m68hc11_init_extra_frame_info (int fromleaf, struct frame_info *fi)
|
|
{
|
|
CORE_ADDR addr;
|
|
|
|
fi->extra_info = (struct frame_extra_info *)
|
|
frame_obstack_alloc (sizeof (struct frame_extra_info));
|
|
|
|
if (fi->next)
|
|
fi->pc = FRAME_SAVED_PC (fi->next);
|
|
|
|
m68hc11_frame_init_saved_regs (fi);
|
|
|
|
if (fromleaf)
|
|
{
|
|
fi->extra_info->return_pc = m68hc11_saved_pc_after_call (fi);
|
|
}
|
|
else
|
|
{
|
|
addr = fi->frame + fi->extra_info->size + stack_correction;
|
|
addr = read_memory_unsigned_integer (addr, 2) & 0x0ffff;
|
|
fi->extra_info->return_pc = addr;
|
|
#if 0
|
|
printf ("Pc@0x%04x, FR 0x%04x, size %d, read ret @0x%04x -> 0x%04x\n",
|
|
fi->pc,
|
|
fi->frame, fi->size,
|
|
addr & 0x0ffff,
|
|
fi->return_pc);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* Same as 'info reg' but prints the registers in a different way. */
|
|
static void
|
|
show_regs (char *args, int from_tty)
|
|
{
|
|
int ccr = read_register (HARD_CCR_REGNUM);
|
|
int i;
|
|
int nr;
|
|
|
|
printf_filtered ("PC=%04x SP=%04x FP=%04x CCR=%02x %c%c%c%c%c%c%c%c\n",
|
|
(int) read_register (HARD_PC_REGNUM),
|
|
(int) read_register (HARD_SP_REGNUM),
|
|
(int) read_register (SOFT_FP_REGNUM),
|
|
ccr,
|
|
ccr & M6811_S_BIT ? 'S' : '-',
|
|
ccr & M6811_X_BIT ? 'X' : '-',
|
|
ccr & M6811_H_BIT ? 'H' : '-',
|
|
ccr & M6811_I_BIT ? 'I' : '-',
|
|
ccr & M6811_N_BIT ? 'N' : '-',
|
|
ccr & M6811_Z_BIT ? 'Z' : '-',
|
|
ccr & M6811_V_BIT ? 'V' : '-',
|
|
ccr & M6811_C_BIT ? 'C' : '-');
|
|
|
|
printf_filtered ("D=%04x IX=%04x IY=%04x\n",
|
|
(int) read_register (HARD_D_REGNUM),
|
|
(int) read_register (HARD_X_REGNUM),
|
|
(int) read_register (HARD_Y_REGNUM));
|
|
|
|
nr = 0;
|
|
for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
|
|
{
|
|
/* Skip registers which are not defined in the symbol table. */
|
|
if (soft_regs[i].name == 0)
|
|
continue;
|
|
|
|
printf_filtered ("D%d=%04x",
|
|
i - SOFT_D1_REGNUM + 1,
|
|
(int) read_register (i));
|
|
nr++;
|
|
if ((nr % 8) == 7)
|
|
printf_filtered ("\n");
|
|
else
|
|
printf_filtered (" ");
|
|
}
|
|
if (nr && (nr % 8) != 7)
|
|
printf_filtered ("\n");
|
|
}
|
|
|
|
static CORE_ADDR
|
|
m68hc11_stack_align (CORE_ADDR addr)
|
|
{
|
|
return ((addr + 1) & -2);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
m68hc11_push_arguments (int nargs,
|
|
value_ptr *args,
|
|
CORE_ADDR sp,
|
|
int struct_return,
|
|
CORE_ADDR struct_addr)
|
|
{
|
|
int stack_alloc;
|
|
int argnum;
|
|
int first_stack_argnum;
|
|
int stack_offset;
|
|
struct type *type;
|
|
char *val;
|
|
int len;
|
|
|
|
stack_alloc = 0;
|
|
first_stack_argnum = 0;
|
|
if (struct_return)
|
|
{
|
|
/* The struct is allocated on the stack and gdb used the stack
|
|
pointer for the address of that struct. We must apply the
|
|
stack offset on the address. */
|
|
write_register (HARD_D_REGNUM, struct_addr + stack_correction);
|
|
}
|
|
else if (nargs > 0)
|
|
{
|
|
type = VALUE_TYPE (args[0]);
|
|
len = TYPE_LENGTH (type);
|
|
|
|
/* First argument is passed in D and X registers. */
|
|
if (len <= 4)
|
|
{
|
|
LONGEST v = extract_unsigned_integer (VALUE_CONTENTS (args[0]), len);
|
|
first_stack_argnum = 1;
|
|
write_register (HARD_D_REGNUM, v);
|
|
if (len > 2)
|
|
{
|
|
v >>= 16;
|
|
write_register (HARD_X_REGNUM, v);
|
|
}
|
|
}
|
|
}
|
|
for (argnum = first_stack_argnum; argnum < nargs; argnum++)
|
|
{
|
|
type = VALUE_TYPE (args[argnum]);
|
|
stack_alloc += (TYPE_LENGTH (type) + 1) & -2;
|
|
}
|
|
sp -= stack_alloc;
|
|
|
|
stack_offset = stack_correction;
|
|
for (argnum = first_stack_argnum; argnum < nargs; argnum++)
|
|
{
|
|
type = VALUE_TYPE (args[argnum]);
|
|
len = TYPE_LENGTH (type);
|
|
|
|
val = (char*) VALUE_CONTENTS (args[argnum]);
|
|
write_memory (sp + stack_offset, val, len);
|
|
stack_offset += len;
|
|
if (len & 1)
|
|
{
|
|
static char zero = 0;
|
|
|
|
write_memory (sp + stack_offset, &zero, 1);
|
|
stack_offset++;
|
|
}
|
|
}
|
|
return sp;
|
|
}
|
|
|
|
|
|
/* Return a location where we can set a breakpoint that will be hit
|
|
when an inferior function call returns. */
|
|
CORE_ADDR
|
|
m68hc11_call_dummy_address (void)
|
|
{
|
|
return entry_point_address ();
|
|
}
|
|
|
|
static struct type *
|
|
m68hc11_register_virtual_type (int reg_nr)
|
|
{
|
|
return builtin_type_uint16;
|
|
}
|
|
|
|
static void
|
|
m68hc11_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
|
|
{
|
|
/* The struct address computed by gdb is on the stack.
|
|
It uses the stack pointer so we must apply the stack
|
|
correction offset. */
|
|
write_register (HARD_D_REGNUM, addr + stack_correction);
|
|
}
|
|
|
|
static void
|
|
m68hc11_store_return_value (struct type *type, char *valbuf)
|
|
{
|
|
int len;
|
|
|
|
len = TYPE_LENGTH (type);
|
|
|
|
/* First argument is passed in D and X registers. */
|
|
if (len <= 4)
|
|
{
|
|
LONGEST v = extract_unsigned_integer (valbuf, len);
|
|
|
|
write_register (HARD_D_REGNUM, v);
|
|
if (len > 2)
|
|
{
|
|
v >>= 16;
|
|
write_register (HARD_X_REGNUM, v);
|
|
}
|
|
}
|
|
else
|
|
error ("return of value > 4 is not supported.");
|
|
}
|
|
|
|
|
|
/* Given a return value in `regbuf' with a type `type',
|
|
extract and copy its value into `valbuf'. */
|
|
|
|
static void
|
|
m68hc11_extract_return_value (struct type *type,
|
|
char *regbuf,
|
|
char *valbuf)
|
|
{
|
|
int len = TYPE_LENGTH (type);
|
|
|
|
switch (len)
|
|
{
|
|
case 1:
|
|
memcpy (valbuf, ®buf[HARD_D_REGNUM * 2 + 1], len);
|
|
break;
|
|
|
|
case 2:
|
|
memcpy (valbuf, ®buf[HARD_D_REGNUM * 2], len);
|
|
break;
|
|
|
|
case 3:
|
|
memcpy (&valbuf[0], ®buf[HARD_X_REGNUM * 2 + 1], 1);
|
|
memcpy (&valbuf[1], ®buf[HARD_D_REGNUM * 2], 2);
|
|
break;
|
|
|
|
case 4:
|
|
memcpy (&valbuf[0], ®buf[HARD_X_REGNUM * 2], 2);
|
|
memcpy (&valbuf[2], ®buf[HARD_D_REGNUM * 2], 2);
|
|
break;
|
|
|
|
default:
|
|
error ("bad size for return value");
|
|
}
|
|
}
|
|
|
|
/* Should call_function allocate stack space for a struct return? */
|
|
static int
|
|
m68hc11_use_struct_convention (int gcc_p, struct type *type)
|
|
{
|
|
return (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
|
|| TYPE_CODE (type) == TYPE_CODE_UNION
|
|
|| TYPE_LENGTH (type) > 4);
|
|
}
|
|
|
|
static int
|
|
m68hc11_return_value_on_stack (struct type *type)
|
|
{
|
|
return TYPE_LENGTH (type) > 4;
|
|
}
|
|
|
|
/* Extract from an array REGBUF containing the (raw) register state
|
|
the address in which a function should return its structure value,
|
|
as a CORE_ADDR (or an expression that can be used as one). */
|
|
static CORE_ADDR
|
|
m68hc11_extract_struct_value_address (char *regbuf)
|
|
{
|
|
return extract_address (®buf[HARD_D_REGNUM * 2],
|
|
REGISTER_RAW_SIZE (HARD_D_REGNUM));
|
|
}
|
|
|
|
/* Function: push_return_address (pc)
|
|
Set up the return address for the inferior function call.
|
|
Needed for targets where we don't actually execute a JSR/BSR instruction */
|
|
|
|
static CORE_ADDR
|
|
m68hc11_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
|
|
{
|
|
char valbuf[2];
|
|
|
|
pc = CALL_DUMMY_ADDRESS ();
|
|
sp -= 2;
|
|
store_unsigned_integer (valbuf, 2, pc);
|
|
write_memory (sp + stack_correction, valbuf, 2);
|
|
return sp;
|
|
}
|
|
|
|
/* Index within `registers' of the first byte of the space for
|
|
register N. */
|
|
static int
|
|
m68hc11_register_byte (int reg_nr)
|
|
{
|
|
return (reg_nr * M68HC11_REG_SIZE);
|
|
}
|
|
|
|
static int
|
|
m68hc11_register_raw_size (int reg_nr)
|
|
{
|
|
return M68HC11_REG_SIZE;
|
|
}
|
|
|
|
static struct gdbarch *
|
|
m68hc11_gdbarch_init (struct gdbarch_info info,
|
|
struct gdbarch_list *arches)
|
|
{
|
|
static LONGEST m68hc11_call_dummy_words[] =
|
|
{0};
|
|
struct gdbarch *gdbarch;
|
|
struct gdbarch_tdep *tdep;
|
|
int elf_flags;
|
|
|
|
/* Extract the elf_flags if available */
|
|
elf_flags = 0;
|
|
|
|
soft_reg_initialized = 0;
|
|
|
|
/* try to find a pre-existing architecture */
|
|
for (arches = gdbarch_list_lookup_by_info (arches, &info);
|
|
arches != NULL;
|
|
arches = gdbarch_list_lookup_by_info (arches->next, &info))
|
|
{
|
|
/* MIPS needs to be pedantic about which ABI the object is
|
|
using. */
|
|
if (gdbarch_tdep (current_gdbarch)->elf_flags != elf_flags)
|
|
continue;
|
|
return arches->gdbarch;
|
|
}
|
|
|
|
/* Need a new architecture. Fill in a target specific vector. */
|
|
tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
|
tdep->elf_flags = elf_flags;
|
|
|
|
/* Initially set everything according to the ABI. */
|
|
set_gdbarch_short_bit (gdbarch, 16);
|
|
set_gdbarch_int_bit (gdbarch, 32);
|
|
set_gdbarch_float_bit (gdbarch, 32);
|
|
set_gdbarch_double_bit (gdbarch, 64);
|
|
set_gdbarch_long_double_bit (gdbarch, 64);
|
|
set_gdbarch_long_bit (gdbarch, 32);
|
|
set_gdbarch_ptr_bit (gdbarch, 16);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
|
|
/* Set register info. */
|
|
set_gdbarch_fp0_regnum (gdbarch, -1);
|
|
set_gdbarch_max_register_raw_size (gdbarch, 2);
|
|
set_gdbarch_max_register_virtual_size (gdbarch, 2);
|
|
set_gdbarch_register_raw_size (gdbarch, m68hc11_register_raw_size);
|
|
set_gdbarch_register_virtual_size (gdbarch, m68hc11_register_raw_size);
|
|
set_gdbarch_register_byte (gdbarch, m68hc11_register_byte);
|
|
set_gdbarch_frame_init_saved_regs (gdbarch, m68hc11_frame_init_saved_regs);
|
|
set_gdbarch_frame_args_skip (gdbarch, 0);
|
|
|
|
set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
|
|
set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
|
|
set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
|
|
set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
|
|
set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
|
|
set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
|
|
|
|
set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
|
|
set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
|
|
set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
|
|
set_gdbarch_fp_regnum (gdbarch, SOFT_FP_REGNUM);
|
|
set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
|
|
set_gdbarch_register_name (gdbarch, m68hc11_register_name);
|
|
set_gdbarch_register_size (gdbarch, 2);
|
|
set_gdbarch_register_bytes (gdbarch, M68HC11_ALL_REGS * 2);
|
|
set_gdbarch_register_virtual_type (gdbarch, m68hc11_register_virtual_type);
|
|
set_gdbarch_fetch_pseudo_register (gdbarch, m68hc11_fetch_pseudo_register);
|
|
set_gdbarch_store_pseudo_register (gdbarch, m68hc11_store_pseudo_register);
|
|
|
|
set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
|
|
set_gdbarch_call_dummy_length (gdbarch, 0);
|
|
set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
|
|
set_gdbarch_call_dummy_address (gdbarch, m68hc11_call_dummy_address);
|
|
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); /*???*/
|
|
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
|
|
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
|
|
set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
|
|
set_gdbarch_call_dummy_words (gdbarch, m68hc11_call_dummy_words);
|
|
set_gdbarch_sizeof_call_dummy_words (gdbarch,
|
|
sizeof (m68hc11_call_dummy_words));
|
|
set_gdbarch_call_dummy_p (gdbarch, 1);
|
|
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
|
|
set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
|
|
set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
|
|
set_gdbarch_extract_return_value (gdbarch, m68hc11_extract_return_value);
|
|
set_gdbarch_push_arguments (gdbarch, m68hc11_push_arguments);
|
|
set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
|
|
set_gdbarch_push_return_address (gdbarch, m68hc11_push_return_address);
|
|
set_gdbarch_return_value_on_stack (gdbarch, m68hc11_return_value_on_stack);
|
|
|
|
set_gdbarch_store_struct_return (gdbarch, m68hc11_store_struct_return);
|
|
set_gdbarch_store_return_value (gdbarch, m68hc11_store_return_value);
|
|
set_gdbarch_extract_struct_value_address (gdbarch,
|
|
m68hc11_extract_struct_value_address);
|
|
set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
|
|
|
|
|
|
set_gdbarch_frame_chain (gdbarch, m68hc11_frame_chain);
|
|
set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
|
|
set_gdbarch_frame_saved_pc (gdbarch, m68hc11_frame_saved_pc);
|
|
set_gdbarch_frame_args_address (gdbarch, m68hc11_frame_args_address);
|
|
set_gdbarch_frame_locals_address (gdbarch, m68hc11_frame_locals_address);
|
|
set_gdbarch_saved_pc_after_call (gdbarch, m68hc11_saved_pc_after_call);
|
|
set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
|
|
|
|
set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
|
|
set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
|
|
|
|
set_gdbarch_store_struct_return (gdbarch, m68hc11_store_struct_return);
|
|
set_gdbarch_store_return_value (gdbarch, m68hc11_store_return_value);
|
|
set_gdbarch_extract_struct_value_address
|
|
(gdbarch, m68hc11_extract_struct_value_address);
|
|
set_gdbarch_use_struct_convention (gdbarch, m68hc11_use_struct_convention);
|
|
set_gdbarch_init_extra_frame_info (gdbarch, m68hc11_init_extra_frame_info);
|
|
set_gdbarch_pop_frame (gdbarch, m68hc11_pop_frame);
|
|
set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 0);
|
|
set_gdbarch_function_start_offset (gdbarch, 0);
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
|
|
set_gdbarch_stack_align (gdbarch, m68hc11_stack_align);
|
|
|
|
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
|
|
set_gdbarch_ieee_float (gdbarch, 1);
|
|
|
|
return gdbarch;
|
|
}
|
|
|
|
void
|
|
_initialize_m68hc11_tdep (void)
|
|
{
|
|
register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
|
|
if (!tm_print_insn) /* Someone may have already set it */
|
|
tm_print_insn = print_insn_m68hc11;
|
|
|
|
add_com ("regs", class_vars, show_regs, "Print all registers");
|
|
}
|
|
|