mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-24 12:35:55 +08:00
1edb66d856
A following patch will want to take some action when a pending wait status is set on or removed from a thread. Add a getter and a setter on thread_info for the pending waitstatus, so that we can add some code in the setter later. The thing is, the pending wait status field is in the thread_suspend_state, along with other fields that we need to backup before and restore after the thread does an inferior function call. Therefore, make the thread_suspend_state member private (thread_info::suspend becomes thread_info::m_suspend), and add getters / setters for all of its fields: - pending wait status - stop signal - stop reason - stop pc For the pending wait status, add the additional has_pending_waitstatus and clear_pending_waitstatus methods. I think this makes the thread_info interface a bit nicer, because we now access the fields as: thread->stop_pc () rather than thread->suspend.stop_pc The stop_pc field being in the `suspend` structure is an implementation detail of thread_info that callers don't need to be aware of. For the backup / restore of the thread_suspend_state structure, add save_suspend_to and restore_suspend_from methods. You might wonder why `save_suspend_to`, as opposed to a simple getter like thread_suspend_state &suspend (); I want to make it clear that this is to be used only for backing up and restoring the suspend state, _not_ to access fields like: thread->suspend ()->stop_pc Adding some getters / setters allows adding some assertions. I find that this helps understand how things are supposed to work. Add: - When getting the pending status (pending_waitstatus method), ensure that there is a pending status. - When setting a pending status (set_pending_waitstatus method), ensure there is no pending status. There is one case I found where this wasn't true - in remote_target::process_initial_stop_replies - which needed adjustments to respect that contract. I think it's because process_initial_stop_replies is kind of (ab)using the thread_info::suspend::waitstatus to store some statuses temporarily, for its internal use (statuses it doesn't intent on leaving pending). process_initial_stop_replies pulls out stop replies received during the initial connection using target_wait. It always stores the received event in `evthread->suspend.waitstatus`. But it only sets waitstatus_pending_p, if it deems the event interesting enough to leave pending, to be reported to the core: if (ws.kind != TARGET_WAITKIND_STOPPED || ws.value.sig != GDB_SIGNAL_0) evthread->suspend.waitstatus_pending_p = 1; It later uses this flag a bit below, to choose which thread to make the "selected" one: if (selected == NULL && thread->suspend.waitstatus_pending_p) selected = thread; And ultimately that's used if the user-visible mode is all-stop, so that we print the stop for that interesting thread: /* In all-stop, we only print the status of one thread, and leave others with their status pending. */ if (!non_stop) { thread_info *thread = selected; if (thread == NULL) thread = lowest_stopped; if (thread == NULL) thread = first; print_one_stopped_thread (thread); } But in any case (all-stop or non-stop), print_one_stopped_thread needs to access the waitstatus value of these threads that don't have a pending waitstatus (those that had TARGET_WAITKIND_STOPPED + GDB_SIGNAL_0). This doesn't work with the assertions I've put. So, change the code to only set the thread's wait status if it is an interesting one that we are going to leave pending. If the thread stopped due to a non-interesting event (TARGET_WAITKIND_STOPPED + GDB_SIGNAL_0), don't store it. Adjust print_one_stopped_thread to understand that if a thread has no pending waitstatus, it's because it stopped with TARGET_WAITKIND_STOPPED + GDB_SIGNAL_0. The call to set_last_target_status also uses the pending waitstatus. However, given that the pending waitstatus for the thread may have been cleared in print_one_stopped_thread (and that there might not even be a pending waitstatus in the first place, as explained above), it is no longer possible to do it at this point. To fix that, move the call to set_last_target_status in print_one_stopped_thread. I think this will preserve the existing behavior, because set_last_target_status is currently using the current thread's wait status. And the current thread is the last one for which print_one_stopped_thread is called. So by calling set_last_target_status in print_one_stopped_thread, we'll get the same result. set_last_target_status will possibly be called multiple times, but only the last call will matter. It just means possibly more calls to set_last_target_status, but those are cheap. Change-Id: Iedab9653238eaf8231abcf0baa20145acc8b77a7
968 lines
27 KiB
C
968 lines
27 KiB
C
/* Low level interface to ptrace, for GDB when running under Unix.
|
||
Copyright (C) 1986-2021 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "frame.h"
|
||
#include "inferior.h"
|
||
#include "command.h"
|
||
#include "serial.h"
|
||
#include "terminal.h"
|
||
#include "target.h"
|
||
#include "gdbthread.h"
|
||
#include "observable.h"
|
||
#include <signal.h>
|
||
#include <fcntl.h>
|
||
#include "gdbsupport/gdb_select.h"
|
||
|
||
#include "gdbcmd.h"
|
||
#ifdef HAVE_TERMIOS_H
|
||
#include <termios.h>
|
||
#endif
|
||
#include "gdbsupport/job-control.h"
|
||
#include "gdbsupport/scoped_ignore_sigttou.h"
|
||
|
||
#ifdef HAVE_SYS_IOCTL_H
|
||
#include <sys/ioctl.h>
|
||
#endif
|
||
|
||
#ifndef O_NOCTTY
|
||
#define O_NOCTTY 0
|
||
#endif
|
||
|
||
static void pass_signal (int);
|
||
|
||
static void child_terminal_ours_1 (target_terminal_state);
|
||
|
||
/* Record terminal status separately for debugger and inferior. */
|
||
|
||
static struct serial *stdin_serial;
|
||
|
||
/* Terminal related info we need to keep track of. Each inferior
|
||
holds an instance of this structure --- we save it whenever the
|
||
corresponding inferior stops, and restore it to the terminal when
|
||
the inferior is resumed in the foreground. */
|
||
struct terminal_info
|
||
{
|
||
terminal_info () = default;
|
||
~terminal_info ();
|
||
|
||
terminal_info &operator= (const terminal_info &) = default;
|
||
|
||
/* The name of the tty (from the `tty' command) that we gave to the
|
||
inferior when it was started. */
|
||
char *run_terminal = nullptr;
|
||
|
||
/* TTY state. We save it whenever the inferior stops, and restore
|
||
it when it resumes in the foreground. */
|
||
serial_ttystate ttystate {};
|
||
|
||
#ifdef HAVE_TERMIOS_H
|
||
/* The terminal's foreground process group. Saved whenever the
|
||
inferior stops. This is the pgrp displayed by "info terminal".
|
||
Note that this may be not the inferior's actual process group,
|
||
since each inferior that we spawn has its own process group, and
|
||
only one can be in the foreground at a time. When the inferior
|
||
resumes, if we can determine the inferior's actual pgrp, then we
|
||
make that the foreground pgrp instead of what was saved here.
|
||
While it's a bit arbitrary which inferior's pgrp ends up in the
|
||
foreground when we resume several inferiors, this at least makes
|
||
'resume inf1+inf2' + 'stop all' + 'resume inf2' end up with
|
||
inf2's pgrp in the foreground instead of inf1's (which would be
|
||
problematic since it would be left stopped: Ctrl-C wouldn't work,
|
||
for example). */
|
||
pid_t process_group = 0;
|
||
#endif
|
||
|
||
/* fcntl flags. Saved and restored just like ttystate. */
|
||
int tflags = 0;
|
||
};
|
||
|
||
/* Our own tty state, which we restore every time we need to deal with
|
||
the terminal. This is set once, when GDB first starts, and then
|
||
whenever we enter/leave TUI mode (gdb_save_tty_state). The
|
||
settings of flags which readline saves and restores are
|
||
unimportant. */
|
||
static struct terminal_info our_terminal_info;
|
||
|
||
/* Snapshot of the initial tty state taken during initialization of
|
||
GDB, before readline/ncurses have had a chance to change it. This
|
||
is used as the initial tty state given to each new spawned
|
||
inferior. Unlike our_terminal_info, this is only ever set
|
||
once. */
|
||
static serial_ttystate initial_gdb_ttystate;
|
||
|
||
static struct terminal_info *get_inflow_inferior_data (struct inferior *);
|
||
|
||
/* While the inferior is running, we want SIGINT and SIGQUIT to go to the
|
||
inferior only. If we have job control, that takes care of it. If not,
|
||
we save our handlers in these two variables and set SIGINT and SIGQUIT
|
||
to SIG_IGN. */
|
||
|
||
static sighandler_t sigint_ours;
|
||
#ifdef SIGQUIT
|
||
static sighandler_t sigquit_ours;
|
||
#endif
|
||
|
||
/* The name of the tty (from the `tty' command) that we're giving to
|
||
the inferior when starting it up. This is only (and should only
|
||
be) used as a transient global by new_tty_prefork,
|
||
create_tty_session, new_tty and new_tty_postfork, all called from
|
||
fork_inferior, while forking a new child. */
|
||
static const char *inferior_thisrun_terminal;
|
||
|
||
/* Track who owns GDB's terminal (is it GDB or some inferior?). While
|
||
target_terminal::is_ours() etc. tracks the core's intention and is
|
||
independent of the target backend, this tracks the actual state of
|
||
GDB's own tty. So for example,
|
||
|
||
(target_terminal::is_inferior () && gdb_tty_state == terminal_is_ours)
|
||
|
||
is true when the (native) inferior is not sharing a terminal with
|
||
GDB (e.g., because we attached to an inferior that is running on a
|
||
different terminal). */
|
||
static target_terminal_state gdb_tty_state = target_terminal_state::is_ours;
|
||
|
||
/* See terminal.h. */
|
||
|
||
void
|
||
set_initial_gdb_ttystate (void)
|
||
{
|
||
/* Note we can't do any of this in _initialize_inflow because at
|
||
that point stdin_serial has not been created yet. */
|
||
|
||
initial_gdb_ttystate = serial_get_tty_state (stdin_serial);
|
||
|
||
if (initial_gdb_ttystate != NULL)
|
||
{
|
||
our_terminal_info.ttystate
|
||
= serial_copy_tty_state (stdin_serial, initial_gdb_ttystate);
|
||
#ifdef F_GETFL
|
||
our_terminal_info.tflags = fcntl (0, F_GETFL, 0);
|
||
#endif
|
||
#ifdef HAVE_TERMIOS_H
|
||
our_terminal_info.process_group = tcgetpgrp (0);
|
||
#endif
|
||
}
|
||
}
|
||
|
||
/* Does GDB have a terminal (on stdin)? */
|
||
|
||
static int
|
||
gdb_has_a_terminal (void)
|
||
{
|
||
return initial_gdb_ttystate != NULL;
|
||
}
|
||
|
||
/* Macro for printing errors from ioctl operations */
|
||
|
||
#define OOPSY(what) \
|
||
if (result == -1) \
|
||
fprintf_unfiltered(gdb_stderr, "[%s failed in terminal_inferior: %s]\n", \
|
||
what, safe_strerror (errno))
|
||
|
||
/* Initialize the terminal settings we record for the inferior,
|
||
before we actually run the inferior. */
|
||
|
||
void
|
||
child_terminal_init (struct target_ops *self)
|
||
{
|
||
if (!gdb_has_a_terminal ())
|
||
return;
|
||
|
||
inferior *inf = current_inferior ();
|
||
terminal_info *tinfo = get_inflow_inferior_data (inf);
|
||
|
||
#ifdef HAVE_TERMIOS_H
|
||
/* A child we spawn should be a process group leader (PGID==PID) at
|
||
this point, though that may not be true if we're attaching to an
|
||
existing process. */
|
||
tinfo->process_group = inf->pid;
|
||
#endif
|
||
|
||
xfree (tinfo->ttystate);
|
||
tinfo->ttystate = serial_copy_tty_state (stdin_serial, initial_gdb_ttystate);
|
||
}
|
||
|
||
/* Save the terminal settings again. This is necessary for the TUI
|
||
when it switches to TUI or non-TUI mode; curses changes the terminal
|
||
and gdb must be able to restore it correctly. */
|
||
|
||
void
|
||
gdb_save_tty_state (void)
|
||
{
|
||
if (gdb_has_a_terminal ())
|
||
{
|
||
xfree (our_terminal_info.ttystate);
|
||
our_terminal_info.ttystate = serial_get_tty_state (stdin_serial);
|
||
}
|
||
}
|
||
|
||
/* Try to determine whether TTY is GDB's input terminal. Returns
|
||
TRIBOOL_UNKNOWN if we can't tell. */
|
||
|
||
static tribool
|
||
is_gdb_terminal (const char *tty)
|
||
{
|
||
struct stat gdb_tty;
|
||
struct stat other_tty;
|
||
int res;
|
||
|
||
res = stat (tty, &other_tty);
|
||
if (res == -1)
|
||
return TRIBOOL_UNKNOWN;
|
||
|
||
res = fstat (STDIN_FILENO, &gdb_tty);
|
||
if (res == -1)
|
||
return TRIBOOL_UNKNOWN;
|
||
|
||
return ((gdb_tty.st_dev == other_tty.st_dev
|
||
&& gdb_tty.st_ino == other_tty.st_ino)
|
||
? TRIBOOL_TRUE
|
||
: TRIBOOL_FALSE);
|
||
}
|
||
|
||
/* Helper for sharing_input_terminal. Try to determine whether
|
||
inferior INF is using the same TTY for input as GDB is. Returns
|
||
TRIBOOL_UNKNOWN if we can't tell. */
|
||
|
||
static tribool
|
||
sharing_input_terminal_1 (inferior *inf)
|
||
{
|
||
/* Using host-dependent code here is fine, because the
|
||
child_terminal_foo functions are meant to be used by child/native
|
||
targets. */
|
||
#if defined (__linux__) || defined (__sun__)
|
||
char buf[100];
|
||
|
||
xsnprintf (buf, sizeof (buf), "/proc/%d/fd/0", inf->pid);
|
||
return is_gdb_terminal (buf);
|
||
#else
|
||
return TRIBOOL_UNKNOWN;
|
||
#endif
|
||
}
|
||
|
||
/* Return true if the inferior is using the same TTY for input as GDB
|
||
is. If this is true, then we save/restore terminal flags/state.
|
||
|
||
This is necessary because if inf->attach_flag is set, we don't
|
||
offhand know whether we are sharing a terminal with the inferior or
|
||
not. Attaching a process without a terminal is one case where we
|
||
do not; attaching a process which we ran from the same shell as GDB
|
||
via `&' is one case where we do.
|
||
|
||
If we can't determine, we assume the TTY is being shared. This
|
||
works OK if you're only debugging one inferior. However, if you're
|
||
debugging more than one inferior, and e.g., one is spawned by GDB
|
||
with "run" (sharing terminal with GDB), and another is attached to
|
||
(and running on a different terminal, as is most common), then it
|
||
matters, because we can only restore the terminal settings of one
|
||
of the inferiors, and in that scenario, we want to restore the
|
||
settings of the "run"'ed inferior.
|
||
|
||
Note, this is not the same as determining whether GDB and the
|
||
inferior are in the same session / connected to the same
|
||
controlling tty. An inferior (fork child) may call setsid,
|
||
disconnecting itself from the ctty, while still leaving
|
||
stdin/stdout/stderr associated with the original terminal. If
|
||
we're debugging that process, we should also save/restore terminal
|
||
settings. */
|
||
|
||
static bool
|
||
sharing_input_terminal (inferior *inf)
|
||
{
|
||
terminal_info *tinfo = get_inflow_inferior_data (inf);
|
||
|
||
tribool res = sharing_input_terminal_1 (inf);
|
||
|
||
if (res == TRIBOOL_UNKNOWN)
|
||
{
|
||
/* As fallback, if we can't determine by stat'ing the inferior's
|
||
tty directly (because it's not supported on this host) and
|
||
the child was spawned, check whether run_terminal is our tty.
|
||
This isn't ideal, since this is checking the child's
|
||
controlling terminal, not the input terminal (which may have
|
||
been redirected), but is still better than nothing. A false
|
||
positive ("set inferior-tty" points to our terminal, but I/O
|
||
was redirected) is much more likely than a false negative
|
||
("set inferior-tty" points to some other terminal, and then
|
||
output was redirected to our terminal), and with a false
|
||
positive we just end up trying to save/restore terminal
|
||
settings when we didn't need to or we actually can't. */
|
||
if (tinfo->run_terminal != NULL)
|
||
res = is_gdb_terminal (tinfo->run_terminal);
|
||
|
||
/* If we still can't determine, assume yes. */
|
||
if (res == TRIBOOL_UNKNOWN)
|
||
return true;
|
||
}
|
||
|
||
return res == TRIBOOL_TRUE;
|
||
}
|
||
|
||
/* Put the inferior's terminal settings into effect. This is
|
||
preparation for starting or resuming the inferior. */
|
||
|
||
void
|
||
child_terminal_inferior (struct target_ops *self)
|
||
{
|
||
/* If we resume more than one inferior in the foreground on GDB's
|
||
terminal, then the first inferior's terminal settings "win".
|
||
Note that every child process is put in its own process group, so
|
||
the first process that ends up resumed ends up determining which
|
||
process group the kernel forwards Ctrl-C/Ctrl-Z (SIGINT/SIGTTOU)
|
||
to. */
|
||
if (gdb_tty_state == target_terminal_state::is_inferior)
|
||
return;
|
||
|
||
inferior *inf = current_inferior ();
|
||
terminal_info *tinfo = get_inflow_inferior_data (inf);
|
||
|
||
if (gdb_has_a_terminal ()
|
||
&& tinfo->ttystate != NULL
|
||
&& sharing_input_terminal (inf))
|
||
{
|
||
int result;
|
||
|
||
/* Ignore SIGTTOU since it will happen when we try to set the
|
||
terminal's state (if gdb_tty_state is currently
|
||
ours_for_output). */
|
||
scoped_ignore_sigttou ignore_sigttou;
|
||
|
||
#ifdef F_GETFL
|
||
result = fcntl (0, F_SETFL, tinfo->tflags);
|
||
OOPSY ("fcntl F_SETFL");
|
||
#endif
|
||
|
||
result = serial_set_tty_state (stdin_serial, tinfo->ttystate);
|
||
OOPSY ("setting tty state");
|
||
|
||
if (!job_control)
|
||
{
|
||
sigint_ours = signal (SIGINT, SIG_IGN);
|
||
#ifdef SIGQUIT
|
||
sigquit_ours = signal (SIGQUIT, SIG_IGN);
|
||
#endif
|
||
}
|
||
|
||
if (job_control)
|
||
{
|
||
#ifdef HAVE_TERMIOS_H
|
||
/* If we can't tell the inferior's actual process group,
|
||
then restore whatever was the foreground pgrp the last
|
||
time the inferior was running. See also comments
|
||
describing terminal_state::process_group. */
|
||
#ifdef HAVE_GETPGID
|
||
result = tcsetpgrp (0, getpgid (inf->pid));
|
||
#else
|
||
result = tcsetpgrp (0, tinfo->process_group);
|
||
#endif
|
||
if (result == -1)
|
||
{
|
||
#if 0
|
||
/* This fails if either GDB has no controlling terminal,
|
||
e.g., running under 'setsid(1)', or if the inferior
|
||
is not attached to GDB's controlling terminal. E.g.,
|
||
if it called setsid to create a new session or used
|
||
the TIOCNOTTY ioctl, or simply if we've attached to a
|
||
process running on another terminal and we couldn't
|
||
tell whether it was sharing GDB's terminal (and so
|
||
assumed yes). */
|
||
fprintf_unfiltered
|
||
(gdb_stderr,
|
||
"[tcsetpgrp failed in child_terminal_inferior: %s]\n",
|
||
safe_strerror (errno));
|
||
#endif
|
||
}
|
||
#endif
|
||
}
|
||
|
||
gdb_tty_state = target_terminal_state::is_inferior;
|
||
}
|
||
}
|
||
|
||
/* Put some of our terminal settings into effect,
|
||
enough to get proper results from our output,
|
||
but do not change into or out of RAW mode
|
||
so that no input is discarded.
|
||
|
||
After doing this, either terminal_ours or terminal_inferior
|
||
should be called to get back to a normal state of affairs.
|
||
|
||
N.B. The implementation is (currently) no different than
|
||
child_terminal_ours. See child_terminal_ours_1. */
|
||
|
||
void
|
||
child_terminal_ours_for_output (struct target_ops *self)
|
||
{
|
||
child_terminal_ours_1 (target_terminal_state::is_ours_for_output);
|
||
}
|
||
|
||
/* Put our terminal settings into effect.
|
||
First record the inferior's terminal settings
|
||
so they can be restored properly later.
|
||
|
||
N.B. Targets that want to use this with async support must build that
|
||
support on top of this (e.g., the caller still needs to add stdin to the
|
||
event loop). E.g., see linux_nat_terminal_ours. */
|
||
|
||
void
|
||
child_terminal_ours (struct target_ops *self)
|
||
{
|
||
child_terminal_ours_1 (target_terminal_state::is_ours);
|
||
}
|
||
|
||
/* Save the current terminal settings in the inferior's terminal_info
|
||
cache. */
|
||
|
||
void
|
||
child_terminal_save_inferior (struct target_ops *self)
|
||
{
|
||
/* Avoid attempting all the ioctl's when running in batch. */
|
||
if (!gdb_has_a_terminal ())
|
||
return;
|
||
|
||
inferior *inf = current_inferior ();
|
||
terminal_info *tinfo = get_inflow_inferior_data (inf);
|
||
|
||
/* No need to save/restore if the inferior is not sharing GDB's
|
||
tty. */
|
||
if (!sharing_input_terminal (inf))
|
||
return;
|
||
|
||
xfree (tinfo->ttystate);
|
||
tinfo->ttystate = serial_get_tty_state (stdin_serial);
|
||
|
||
#ifdef HAVE_TERMIOS_H
|
||
tinfo->process_group = tcgetpgrp (0);
|
||
#endif
|
||
|
||
#ifdef F_GETFL
|
||
tinfo->tflags = fcntl (0, F_GETFL, 0);
|
||
#endif
|
||
}
|
||
|
||
/* Switch terminal state to DESIRED_STATE, either is_ours, or
|
||
is_ours_for_output. */
|
||
|
||
static void
|
||
child_terminal_ours_1 (target_terminal_state desired_state)
|
||
{
|
||
gdb_assert (desired_state != target_terminal_state::is_inferior);
|
||
|
||
/* Avoid attempting all the ioctl's when running in batch. */
|
||
if (!gdb_has_a_terminal ())
|
||
return;
|
||
|
||
if (gdb_tty_state != desired_state)
|
||
{
|
||
int result ATTRIBUTE_UNUSED;
|
||
|
||
/* Ignore SIGTTOU since it will happen when we try to set the
|
||
terminal's pgrp. */
|
||
scoped_ignore_sigttou ignore_sigttou;
|
||
|
||
/* Set tty state to our_ttystate. */
|
||
serial_set_tty_state (stdin_serial, our_terminal_info.ttystate);
|
||
|
||
/* If we only want output, then leave the inferior's pgrp in the
|
||
foreground, so that Ctrl-C/Ctrl-Z reach the inferior
|
||
directly. */
|
||
if (job_control && desired_state == target_terminal_state::is_ours)
|
||
{
|
||
#ifdef HAVE_TERMIOS_H
|
||
result = tcsetpgrp (0, our_terminal_info.process_group);
|
||
#if 0
|
||
/* This fails on Ultrix with EINVAL if you run the testsuite
|
||
in the background with nohup, and then log out. GDB never
|
||
used to check for an error here, so perhaps there are other
|
||
such situations as well. */
|
||
if (result == -1)
|
||
fprintf_unfiltered (gdb_stderr,
|
||
"[tcsetpgrp failed in child_terminal_ours: %s]\n",
|
||
safe_strerror (errno));
|
||
#endif
|
||
#endif /* termios */
|
||
}
|
||
|
||
if (!job_control && desired_state == target_terminal_state::is_ours)
|
||
{
|
||
signal (SIGINT, sigint_ours);
|
||
#ifdef SIGQUIT
|
||
signal (SIGQUIT, sigquit_ours);
|
||
#endif
|
||
}
|
||
|
||
#ifdef F_GETFL
|
||
result = fcntl (0, F_SETFL, our_terminal_info.tflags);
|
||
#endif
|
||
|
||
gdb_tty_state = desired_state;
|
||
}
|
||
}
|
||
|
||
/* Interrupt the inferior. Implementation of target_interrupt for
|
||
child/native targets. */
|
||
|
||
void
|
||
child_interrupt (struct target_ops *self)
|
||
{
|
||
/* Interrupt the first inferior that has a resumed thread. */
|
||
thread_info *resumed = NULL;
|
||
for (thread_info *thr : all_non_exited_threads ())
|
||
{
|
||
if (thr->executing)
|
||
{
|
||
resumed = thr;
|
||
break;
|
||
}
|
||
if (thr->has_pending_waitstatus ())
|
||
resumed = thr;
|
||
}
|
||
|
||
if (resumed != NULL)
|
||
{
|
||
/* Note that unlike pressing Ctrl-C on the controlling terminal,
|
||
here we only interrupt one process, not the whole process
|
||
group. This is because interrupting a process group (with
|
||
either Ctrl-C or with kill(3) with negative PID) sends a
|
||
SIGINT to each process in the process group, and we may not
|
||
be debugging all processes in the process group. */
|
||
#ifndef _WIN32
|
||
kill (resumed->inf->pid, SIGINT);
|
||
#endif
|
||
}
|
||
}
|
||
|
||
/* Pass a Ctrl-C to the inferior as-if a Ctrl-C was pressed while the
|
||
inferior was in the foreground. Implementation of
|
||
target_pass_ctrlc for child/native targets. */
|
||
|
||
void
|
||
child_pass_ctrlc (struct target_ops *self)
|
||
{
|
||
gdb_assert (!target_terminal::is_ours ());
|
||
|
||
#ifdef HAVE_TERMIOS_H
|
||
if (job_control)
|
||
{
|
||
pid_t term_pgrp = tcgetpgrp (0);
|
||
|
||
/* If there's any inferior sharing our terminal, pass the SIGINT
|
||
to the terminal's foreground process group. This acts just
|
||
like the user typed a ^C on the terminal while the inferior
|
||
was in the foreground. Note that using a negative process
|
||
number in kill() is a System V-ism. The proper BSD interface
|
||
is killpg(). However, all modern BSDs support the System V
|
||
interface too. */
|
||
|
||
if (term_pgrp != -1 && term_pgrp != our_terminal_info.process_group)
|
||
{
|
||
kill (-term_pgrp, SIGINT);
|
||
return;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Otherwise, pass the Ctrl-C to the first inferior that was resumed
|
||
in the foreground. */
|
||
for (inferior *inf : all_inferiors ())
|
||
{
|
||
if (inf->terminal_state != target_terminal_state::is_ours)
|
||
{
|
||
gdb_assert (inf->pid != 0);
|
||
|
||
#ifndef _WIN32
|
||
kill (inf->pid, SIGINT);
|
||
#endif
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* If no inferior was resumed in the foreground, then how did the
|
||
!is_ours assert above pass? */
|
||
gdb_assert_not_reached ("no inferior resumed in the fg found");
|
||
}
|
||
|
||
/* Per-inferior data key. */
|
||
static const struct inferior_key<terminal_info> inflow_inferior_data;
|
||
|
||
terminal_info::~terminal_info ()
|
||
{
|
||
xfree (run_terminal);
|
||
xfree (ttystate);
|
||
}
|
||
|
||
/* Get the current svr4 data. If none is found yet, add it now. This
|
||
function always returns a valid object. */
|
||
|
||
static struct terminal_info *
|
||
get_inflow_inferior_data (struct inferior *inf)
|
||
{
|
||
struct terminal_info *info;
|
||
|
||
info = inflow_inferior_data.get (inf);
|
||
if (info == NULL)
|
||
info = inflow_inferior_data.emplace (inf);
|
||
|
||
return info;
|
||
}
|
||
|
||
/* This is a "inferior_exit" observer. Releases the TERMINAL_INFO member
|
||
of the inferior structure. This field is private to inflow.c, and
|
||
its type is opaque to the rest of GDB. PID is the target pid of
|
||
the inferior that is about to be removed from the inferior
|
||
list. */
|
||
|
||
static void
|
||
inflow_inferior_exit (struct inferior *inf)
|
||
{
|
||
inf->terminal_state = target_terminal_state::is_ours;
|
||
inflow_inferior_data.clear (inf);
|
||
}
|
||
|
||
void
|
||
copy_terminal_info (struct inferior *to, struct inferior *from)
|
||
{
|
||
struct terminal_info *tinfo_to, *tinfo_from;
|
||
|
||
tinfo_to = get_inflow_inferior_data (to);
|
||
tinfo_from = get_inflow_inferior_data (from);
|
||
|
||
xfree (tinfo_to->run_terminal);
|
||
xfree (tinfo_to->ttystate);
|
||
|
||
*tinfo_to = *tinfo_from;
|
||
|
||
if (tinfo_from->run_terminal)
|
||
tinfo_to->run_terminal
|
||
= xstrdup (tinfo_from->run_terminal);
|
||
|
||
if (tinfo_from->ttystate)
|
||
tinfo_to->ttystate
|
||
= serial_copy_tty_state (stdin_serial, tinfo_from->ttystate);
|
||
|
||
to->terminal_state = from->terminal_state;
|
||
}
|
||
|
||
/* See terminal.h. */
|
||
|
||
void
|
||
swap_terminal_info (inferior *a, inferior *b)
|
||
{
|
||
terminal_info *info_a = inflow_inferior_data.get (a);
|
||
terminal_info *info_b = inflow_inferior_data.get (b);
|
||
|
||
inflow_inferior_data.set (a, info_b);
|
||
inflow_inferior_data.set (b, info_a);
|
||
|
||
std::swap (a->terminal_state, b->terminal_state);
|
||
}
|
||
|
||
static void
|
||
info_terminal_command (const char *arg, int from_tty)
|
||
{
|
||
target_terminal::info (arg, from_tty);
|
||
}
|
||
|
||
void
|
||
child_terminal_info (struct target_ops *self, const char *args, int from_tty)
|
||
{
|
||
struct inferior *inf;
|
||
struct terminal_info *tinfo;
|
||
|
||
if (!gdb_has_a_terminal ())
|
||
{
|
||
printf_filtered (_("This GDB does not control a terminal.\n"));
|
||
return;
|
||
}
|
||
|
||
if (inferior_ptid == null_ptid)
|
||
return;
|
||
|
||
inf = current_inferior ();
|
||
tinfo = get_inflow_inferior_data (inf);
|
||
|
||
printf_filtered (_("Inferior's terminal status "
|
||
"(currently saved by GDB):\n"));
|
||
|
||
/* First the fcntl flags. */
|
||
{
|
||
int flags;
|
||
|
||
flags = tinfo->tflags;
|
||
|
||
printf_filtered ("File descriptor flags = ");
|
||
|
||
#ifndef O_ACCMODE
|
||
#define O_ACCMODE (O_RDONLY | O_WRONLY | O_RDWR)
|
||
#endif
|
||
/* (O_ACCMODE) parens are to avoid Ultrix header file bug. */
|
||
switch (flags & (O_ACCMODE))
|
||
{
|
||
case O_RDONLY:
|
||
printf_filtered ("O_RDONLY");
|
||
break;
|
||
case O_WRONLY:
|
||
printf_filtered ("O_WRONLY");
|
||
break;
|
||
case O_RDWR:
|
||
printf_filtered ("O_RDWR");
|
||
break;
|
||
}
|
||
flags &= ~(O_ACCMODE);
|
||
|
||
#ifdef O_NONBLOCK
|
||
if (flags & O_NONBLOCK)
|
||
printf_filtered (" | O_NONBLOCK");
|
||
flags &= ~O_NONBLOCK;
|
||
#endif
|
||
|
||
#if defined (O_NDELAY)
|
||
/* If O_NDELAY and O_NONBLOCK are defined to the same thing, we will
|
||
print it as O_NONBLOCK, which is good cause that is what POSIX
|
||
has, and the flag will already be cleared by the time we get here. */
|
||
if (flags & O_NDELAY)
|
||
printf_filtered (" | O_NDELAY");
|
||
flags &= ~O_NDELAY;
|
||
#endif
|
||
|
||
if (flags & O_APPEND)
|
||
printf_filtered (" | O_APPEND");
|
||
flags &= ~O_APPEND;
|
||
|
||
#if defined (O_BINARY)
|
||
if (flags & O_BINARY)
|
||
printf_filtered (" | O_BINARY");
|
||
flags &= ~O_BINARY;
|
||
#endif
|
||
|
||
if (flags)
|
||
printf_filtered (" | 0x%x", flags);
|
||
printf_filtered ("\n");
|
||
}
|
||
|
||
#ifdef HAVE_TERMIOS_H
|
||
printf_filtered ("Process group = %d\n", (int) tinfo->process_group);
|
||
#endif
|
||
|
||
serial_print_tty_state (stdin_serial, tinfo->ttystate, gdb_stdout);
|
||
}
|
||
|
||
/* NEW_TTY_PREFORK is called before forking a new child process,
|
||
so we can record the state of ttys in the child to be formed.
|
||
TTYNAME is null if we are to share the terminal with gdb;
|
||
or points to a string containing the name of the desired tty.
|
||
|
||
NEW_TTY is called in new child processes under Unix, which will
|
||
become debugger target processes. This actually switches to
|
||
the terminal specified in the NEW_TTY_PREFORK call. */
|
||
|
||
void
|
||
new_tty_prefork (const char *ttyname)
|
||
{
|
||
/* Save the name for later, for determining whether we and the child
|
||
are sharing a tty. */
|
||
inferior_thisrun_terminal = ttyname;
|
||
}
|
||
|
||
#if !defined(__GO32__) && !defined(_WIN32)
|
||
/* If RESULT, assumed to be the return value from a system call, is
|
||
negative, print the error message indicated by errno and exit.
|
||
MSG should identify the operation that failed. */
|
||
static void
|
||
check_syscall (const char *msg, int result)
|
||
{
|
||
if (result < 0)
|
||
{
|
||
print_sys_errmsg (msg, errno);
|
||
_exit (1);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
void
|
||
new_tty (void)
|
||
{
|
||
if (inferior_thisrun_terminal == 0)
|
||
return;
|
||
#if !defined(__GO32__) && !defined(_WIN32)
|
||
int tty;
|
||
|
||
#ifdef TIOCNOTTY
|
||
/* Disconnect the child process from our controlling terminal. On some
|
||
systems (SVR4 for example), this may cause a SIGTTOU, so temporarily
|
||
ignore SIGTTOU. */
|
||
tty = open ("/dev/tty", O_RDWR);
|
||
if (tty >= 0)
|
||
{
|
||
scoped_ignore_sigttou ignore_sigttou;
|
||
|
||
ioctl (tty, TIOCNOTTY, 0);
|
||
close (tty);
|
||
}
|
||
#endif
|
||
|
||
/* Now open the specified new terminal. */
|
||
tty = open (inferior_thisrun_terminal, O_RDWR | O_NOCTTY);
|
||
check_syscall (inferior_thisrun_terminal, tty);
|
||
|
||
/* Avoid use of dup2; doesn't exist on all systems. */
|
||
if (tty != 0)
|
||
{
|
||
close (0);
|
||
check_syscall ("dup'ing tty into fd 0", dup (tty));
|
||
}
|
||
if (tty != 1)
|
||
{
|
||
close (1);
|
||
check_syscall ("dup'ing tty into fd 1", dup (tty));
|
||
}
|
||
if (tty != 2)
|
||
{
|
||
close (2);
|
||
check_syscall ("dup'ing tty into fd 2", dup (tty));
|
||
}
|
||
|
||
#ifdef TIOCSCTTY
|
||
/* Make tty our new controlling terminal. */
|
||
if (ioctl (tty, TIOCSCTTY, 0) == -1)
|
||
/* Mention GDB in warning because it will appear in the inferior's
|
||
terminal instead of GDB's. */
|
||
warning (_("GDB: Failed to set controlling terminal: %s"),
|
||
safe_strerror (errno));
|
||
#endif
|
||
|
||
if (tty > 2)
|
||
close (tty);
|
||
#endif /* !go32 && !win32 */
|
||
}
|
||
|
||
/* NEW_TTY_POSTFORK is called after forking a new child process, and
|
||
adding it to the inferior table, to store the TTYNAME being used by
|
||
the child, or null if it sharing the terminal with gdb. */
|
||
|
||
void
|
||
new_tty_postfork (void)
|
||
{
|
||
/* Save the name for later, for determining whether we and the child
|
||
are sharing a tty. */
|
||
|
||
if (inferior_thisrun_terminal)
|
||
{
|
||
struct inferior *inf = current_inferior ();
|
||
struct terminal_info *tinfo = get_inflow_inferior_data (inf);
|
||
|
||
tinfo->run_terminal = xstrdup (inferior_thisrun_terminal);
|
||
}
|
||
|
||
inferior_thisrun_terminal = NULL;
|
||
}
|
||
|
||
|
||
/* Call set_sigint_trap when you need to pass a signal on to an attached
|
||
process when handling SIGINT. */
|
||
|
||
static void
|
||
pass_signal (int signo)
|
||
{
|
||
#ifndef _WIN32
|
||
kill (inferior_ptid.pid (), SIGINT);
|
||
#endif
|
||
}
|
||
|
||
static sighandler_t osig;
|
||
static int osig_set;
|
||
|
||
void
|
||
set_sigint_trap (void)
|
||
{
|
||
struct inferior *inf = current_inferior ();
|
||
struct terminal_info *tinfo = get_inflow_inferior_data (inf);
|
||
|
||
if (inf->attach_flag || tinfo->run_terminal)
|
||
{
|
||
osig = signal (SIGINT, pass_signal);
|
||
osig_set = 1;
|
||
}
|
||
else
|
||
osig_set = 0;
|
||
}
|
||
|
||
void
|
||
clear_sigint_trap (void)
|
||
{
|
||
if (osig_set)
|
||
{
|
||
signal (SIGINT, osig);
|
||
osig_set = 0;
|
||
}
|
||
}
|
||
|
||
|
||
/* Create a new session if the inferior will run in a different tty.
|
||
A session is UNIX's way of grouping processes that share a controlling
|
||
terminal, so a new one is needed if the inferior terminal will be
|
||
different from GDB's.
|
||
|
||
Returns the session id of the new session, 0 if no session was created
|
||
or -1 if an error occurred. */
|
||
pid_t
|
||
create_tty_session (void)
|
||
{
|
||
#ifdef HAVE_SETSID
|
||
pid_t ret;
|
||
|
||
if (!job_control || inferior_thisrun_terminal == 0)
|
||
return 0;
|
||
|
||
ret = setsid ();
|
||
if (ret == -1)
|
||
warning (_("Failed to create new terminal session: setsid: %s"),
|
||
safe_strerror (errno));
|
||
|
||
return ret;
|
||
#else
|
||
return 0;
|
||
#endif /* HAVE_SETSID */
|
||
}
|
||
|
||
/* Get all the current tty settings (including whether we have a
|
||
tty at all!). We can't do this in _initialize_inflow because
|
||
serial_fdopen() won't work until the serial_ops_list is
|
||
initialized, but we don't want to do it lazily either, so
|
||
that we can guarantee stdin_serial is opened if there is
|
||
a terminal. */
|
||
void
|
||
initialize_stdin_serial (void)
|
||
{
|
||
stdin_serial = serial_fdopen (0);
|
||
}
|
||
|
||
void _initialize_inflow ();
|
||
void
|
||
_initialize_inflow ()
|
||
{
|
||
add_info ("terminal", info_terminal_command,
|
||
_("Print inferior's saved terminal status."));
|
||
|
||
/* OK, figure out whether we have job control. */
|
||
have_job_control ();
|
||
|
||
gdb::observers::inferior_exit.attach (inflow_inferior_exit, "inflow");
|
||
}
|