binutils-gdb/gas/itbl-parse.y
Dawn Perchik 8e5c905e99 * itbl-ops.c: New file. Add support for dynamically read
instruction registers, opcodes and formats.  Build internal table
	for new instructions and provide callbacks for assembler and
	disassembler.
	* itbl-lex.l, itbl-parse.y: Lex and yacc parsers for instruction
	spec table.
	* itbl-ops.h: New file.  Header file for itbl support.
	* config/itbl-mips.h: New file.  Mips specific definitions for
	itbl support.
1997-02-11 02:07:57 +00:00

414 lines
9.3 KiB
Plaintext

%{
/*
Yacc grammar for instruction table entries.
=======================================================================
Original Instruction table specification document:
MIPS Coprocessor Table Specification
====================================
This document describes the format of the MIPS coprocessor table. The
table specifies a list of valid functions, data registers and control
registers that can be used in coprocessor instructions. This list,
together with the coprocessor instruction classes listed below,
specifies the complete list of coprocessor instructions that will
be recognized and assembled by the GNU assembler. In effect,
this makes the GNU assembler table-driven, where the table is
specified by the programmer.
The table is an ordinary text file that the GNU assembler reads when
it starts. Using the information in the table, the assembler
generates an internal list of valid coprocessor registers and
functions. The assembler uses this internal list in addition to the
standard MIPS registers and instructions which are built-in to the
assembler during code generation.
To specify the coprocessor table when invoking the GNU assembler, use
the command line option "--itbl file", where file is the
complete name of the table, including path and extension.
Examples:
gas -t cop.tbl test.s -o test.o
gas -t /usr/local/lib/cop.tbl test.s -o test.o
gas --itbl d:\gnu\data\cop.tbl test.s -o test.o
Only one table may be supplied during a single invocation of
the assembler.
Instruction classes
===================
Below is a list of the valid coprocessor instruction classes for
any given coprocessor "z". These instructions are already recognized
by the assembler, and are listed here only for reference.
Class format instructions
-------------------------------------------------
Class1: op base rt offset
LWCz rt,offset(base)
SWCz rt,offset(base)
Class2: COPz sub rt rd 0
MTCz rt,rd
MFCz rt,rd
CTCz rt,rd
CFCz rt,rd
Class3: COPz CO cofun
COPz cofun
Class4: COPz BC br offset
BCzT offset
BCzF offset
Class5: COPz sub rt rd 0
DMFCz rt,rd
DMTCz rt,rd
Class6: op base rt offset
LDCz rt,offset(base)
SDCz rt,offset(base)
Class7: COPz BC br offset
BCzTL offset
BCzFL offset
The coprocessor table defines coprocessor-specific registers that can
be used with all of the above classes of instructions, where
appropriate. It also defines additional coprocessor-specific
functions for Class3 (COPz cofun) instructions, Thus, the table allows
the programmer to use convenient mnemonics and operands for these
functions, instead of the COPz mmenmonic and cofun operand.
The names of the MIPS general registers and their aliases are defined
by the assembler and will be recognized as valid register names by the
assembler when used (where allowed) in coprocessor instructions.
However, the names and values of all coprocessor data and control
register mnemonics must be specified in the coprocessor table.
Table Grammar
=============
Here is the grammar for the coprocessor table:
table -> entry*
entry -> [z entrydef] [comment] '\n'
entrydef -> type name val
entrydef -> 'insn' name val funcdef ; type of entry (instruction)
z -> 'p'['0'..'3'] ; processor number
type -> ['dreg' | 'creg' | 'greg' ] ; type of entry (register)
; 'dreg', 'creg' or 'greg' specifies a data, control, or general
; register mnemonic, respectively
name -> [ltr|dec]* ; mnemonic of register/function
val -> [dec|hex] ; register/function number (integer constant)
funcdef -> frange flags fields
; bitfield range for opcode
; list of fields' formats
fields -> field*
field -> [','] ftype frange flags
flags -> ['*' flagexpr]
flagexpr -> '[' flagexpr ']'
flagexpr -> val '|' flagexpr
ftype -> [ type | 'immed' | 'addr' ]
; 'immed' specifies an immediate value; see grammar for "val" above
; 'addr' specifies a C identifier; name of symbol to be resolved at
; link time
frange -> ':' val '-' val ; starting to ending bit positions, where
; where 0 is least significant bit
frange -> (null) ; default range of 31-0 will be assumed
comment -> [';'|'#'] [char]*
char -> any printable character
ltr -> ['a'..'z'|'A'..'Z']
dec -> ['0'..'9']* ; value in decimal
hex -> '0x'['0'..'9' | 'a'..'f' | 'A'..'F']* ; value in hexidecimal
Examples
========
Example 1:
The table:
p1 dreg d1 1 ; data register "d1" for COP1 has value 1
p1 creg c3 3 ; ctrl register "c3" for COP1 has value 3
p3 func fill 0x1f:24-20 ; function "fill" for COP3 has value 31 and
; no fields
will allow the assembler to accept the following coprocessor instructions:
LWC1 d1,0x100($2)
fill
Here, the general purpose register "$2", and instruction "LWC1", are standard
mnemonics built-in to the MIPS assembler.
Example 2:
The table:
p3 dreg d3 3 ; data register "d3" for COP3 has value 3
p3 creg c2 22 ; control register "c2" for COP3 has value 22
p3 func fee 0x1f:24-20 dreg:17-13 creg:12-8 immed:7-0
; function "fee" for COP3 has value 31, and 3 fields
; consisting of a data register, a control register,
; and an immediate value.
will allow the assembler to accept the following coprocessor instruction:
fee d3,c2,0x1
and will emit the object code:
31-26 25 24-20 19-18 17-13 12-8 7-0
COPz CO fun dreg creg immed
010011 1 11111 00 00011 10110 00000001
0x4ff07601
Example 3:
The table:
p3 dreg d3 3 ; data register "d3" for COP3 has value 3
p3 creg c2 22 ; control register "c2" for COP3 has value 22
p3 func fuu 0x01f00001 dreg:17-13 creg:12-8
will allow the assembler to accept the following coprocessor
instruction:
fuu d3,c2
and will emit the object code:
31-26 25 24-20 19-18 17-13 12-8 7-0
COPz CO fun dreg creg
010011 1 11111 00 00011 10110 00000001
0x4ff07601
In this way, the programmer can force arbitrary bits of an instruction
to have predefined values.
=======================================================================
Additional notes:
Encoding of ranges:
To handle more than one bit position range within an instruction,
use 0s to mask out the ranges which don't apply.
May decide to modify the syntax to allow commas separate multiple
ranges within an instruction (range','range).
Changes in grammar: The number of parms argument to the function entry
was deleted from the original format such that we now count the fields.
----
FIXME! should really change lexical analyzer
to recognize 'dreg' etc. in context sensative way.
Currently function names or mnemonics may be incorrectly parsed as keywords
FIXME! hex is ambiguous with any digit
*/
#include <stdio.h>
#include "itbl-ops.h"
/* #define DEBUG */
#ifdef DEBUG
#ifndef DBG_LVL
#define DBG_LVL 1
#endif
#else
#define DBG_LVL 0
#endif
#if DBG_LVL >= 1
#define DBG(x) printf x
#else
#define DBG(x)
#endif
#if DBG_LVL >= 2
#define DBGL2(x) printf x
#else
#define DBGL2(x)
#endif
static int sbit, ebit;
static struct itbl_entry *insn=0;
extern int insntbl_line;
int yyparse(void);
int yylex(void);
%}
%union {
char *str;
int num;
int processor;
unsigned long val;
}
%token DREG CREG GREG IMMED ADDR INSN NUM ID NL PNUM
%type <val> value flags flagexpr
%type <num> number NUM ftype regtype pnum PNUM
%type <str> ID name
%start insntbl
%%
insntbl: entrys
;
entrys: entry entrys
|
;
entry: pnum regtype name value NL
{
DBG(("line %d: entry pnum=%d type=%d name=%s value=x%x\n",
insntbl_line, $1, $2, $3, $4));
itbl_add_reg($1, $2, $3, $4);
}
| pnum INSN name value range flags
{
DBG(("line %d: entry pnum=%d type=INSN name=%s value=x%x",
insntbl_line, $1, $3, $4));
DBG((" sbit=%d ebit=%d flags=0x%x\n", sbit, ebit, $6));
insn=itbl_add_insn($1, $3, $4, sbit, ebit, $6);
}
fieldspecs NL
| NL
| error NL
;
fieldspecs: ',' fieldspec fieldspecs
| fieldspec fieldspecs
|
;
ftype: regtype
{
DBGL2(("ftype\n"));
$$ = $1;
}
| ADDR
{
DBGL2(("addr\n"));
$$ = ADDR;
}
| IMMED
{
DBGL2(("immed\n"));
$$ = IMMED;
}
;
fieldspec: ftype range flags
{
DBG(("line %d: field type=%d sbit=%d ebit=%d, flags=0x%x\n",
insntbl_line, $1, sbit, ebit, $3));
itbl_add_operand(insn, $1, sbit, ebit, $3);
}
;
flagexpr: NUM '|' flagexpr
{
$$ = $1 | $3;
}
| '[' flagexpr ']'
{
$$ = $2;
}
| NUM
{
$$ = $1;
}
;
flags: '*' flagexpr
{
DBGL2(("flags=%d\n", $2));
$$ = $2;
}
|
{
$$ = 0;
}
;
range: ':' NUM '-' NUM
{
DBGL2(("range %d %d\n", $2, $4));
sbit = $2;
ebit = $4;
}
|
{
sbit = 31;
ebit = 0;
}
;
pnum: PNUM
{
DBGL2(("pnum=%d\n",$1));
$$ = $1;
}
;
regtype: DREG
{
DBGL2(("dreg\n"));
$$ = DREG;
}
| CREG
{
DBGL2(("creg\n"));
$$ = CREG;
}
| GREG
{
DBGL2(("greg\n"));
$$ = GREG;
}
;
name: ID
{
DBGL2(("name=%s\n",$1));
$$ = $1;
}
;
number: NUM
{
DBGL2(("num=%d\n",$1));
$$ = $1;
}
;
value: NUM
{
DBGL2(("val=x%x\n",$1));
$$ = $1;
}
;
%%
void yyerror(char *msg)
{
printf("line %d: %s\n", insntbl_line, msg);
}