binutils-gdb/gdb/mep-tdep.c

2510 lines
84 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.
Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
Free Software Foundation, Inc.
Contributed by Red Hat, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "frame.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "gdb_string.h"
#include "value.h"
#include "inferior.h"
#include "dis-asm.h"
#include "symfile.h"
#include "objfiles.h"
#include "language.h"
#include "arch-utils.h"
#include "regcache.h"
#include "remote.h"
#include "floatformat.h"
#include "sim-regno.h"
#include "disasm.h"
#include "trad-frame.h"
#include "reggroups.h"
#include "elf-bfd.h"
#include "elf/mep.h"
#include "prologue-value.h"
#include "opcode/cgen-bitset.h"
#include "infcall.h"
#include "gdb_assert.h"
/* Get the user's customized MeP coprocessor register names from
libopcodes. */
#include "opcodes/mep-desc.h"
#include "opcodes/mep-opc.h"
/* The gdbarch_tdep structure. */
/* A quick recap for GDB hackers not familiar with the whole Toshiba
Media Processor story:
The MeP media engine is a configureable processor: users can design
their own coprocessors, implement custom instructions, adjust cache
sizes, select optional standard facilities like add-and-saturate
instructions, and so on. Then, they can build custom versions of
the GNU toolchain to support their customized chips. The
MeP-Integrator program (see utils/mep) takes a GNU toolchain source
tree, and a config file pointing to various files provided by the
user describing their customizations, and edits the source tree to
produce a compiler that can generate their custom instructions, an
assembler that can assemble them and recognize their custom
register names, and so on.
Furthermore, the user can actually specify several of these custom
configurations, called 'me_modules', and get a toolchain which can
produce code for any of them, given a compiler/assembler switch;
you say something like 'gcc -mconfig=mm_max' to generate code for
the me_module named 'mm_max'.
GDB, in particular, needs to:
- use the coprocessor control register names provided by the user
in their hardware description, in expressions, 'info register'
output, and disassembly,
- know the number, names, and types of the coprocessor's
general-purpose registers, adjust the 'info all-registers' output
accordingly, and print error messages if the user refers to one
that doesn't exist
- allow access to the control bus space only when the configuration
actually has a control bus, and recognize which regions of the
control bus space are actually populated,
- disassemble using the user's provided mnemonics for their custom
instructions, and
- recognize whether the $hi and $lo registers are present, and
allow access to them only when they are actually there.
There are three sources of information about what sort of me_module
we're actually dealing with:
- A MeP executable file indicates which me_module it was compiled
for, and libopcodes has tables describing each module. So, given
an executable file, we can find out about the processor it was
compiled for.
- There are SID command-line options to select a particular
me_module, overriding the one specified in the ELF file. SID
provides GDB with a fake read-only register, 'module', which
indicates which me_module GDB is communicating with an instance
of.
- There are SID command-line options to enable or disable certain
optional processor features, overriding the defaults for the
selected me_module. The MeP $OPT register indicates which
options are present on the current processor. */
struct gdbarch_tdep
{
/* A CGEN cpu descriptor for this BFD architecture and machine.
Note: this is *not* customized for any particular me_module; the
MeP libopcodes machinery actually puts off module-specific
customization until the last minute. So this contains
information about all supported me_modules. */
CGEN_CPU_DESC cpu_desc;
/* The me_module index from the ELF file we used to select this
architecture, or CONFIG_NONE if there was none.
Note that we should prefer to use the me_module number available
via the 'module' register, whenever we're actually talking to a
real target.
In the absence of live information, we'd like to get the
me_module number from the ELF file. But which ELF file: the
executable file, the core file, ... ? The answer is, "the last
ELF file we used to set the current architecture". Thus, we
create a separate instance of the gdbarch structure for each
me_module value mep_gdbarch_init sees, and store the me_module
value from the ELF file here. */
CONFIG_ATTR me_module;
};
/* Getting me_module information from the CGEN tables. */
/* Find an entry in the DESC's hardware table whose name begins with
PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
intersect with GENERIC_ISA_MASK. If there is no matching entry,
return zero. */
static const CGEN_HW_ENTRY *
find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc,
const char *prefix,
CGEN_BITSET *copro_isa_mask,
CGEN_BITSET *generic_isa_mask)
{
int prefix_len = strlen (prefix);
int i;
for (i = 0; i < desc->hw_table.num_entries; i++)
{
const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
if (strncmp (prefix, hw->name, prefix_len) == 0)
{
CGEN_BITSET *hw_isa_mask
= ((CGEN_BITSET *)
&CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw)));
if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask)
&& ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask))
return hw;
}
}
return 0;
}
/* Find an entry in DESC's hardware table whose type is TYPE. Return
zero if there is none. */
static const CGEN_HW_ENTRY *
find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type)
{
int i;
for (i = 0; i < desc->hw_table.num_entries; i++)
{
const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
if (hw->type == type)
return hw;
}
return 0;
}
/* Return the CGEN hardware table entry for the coprocessor register
set for ME_MODULE, whose name prefix is PREFIX. If ME_MODULE has
no such register set, return zero. If ME_MODULE is the generic
me_module CONFIG_NONE, return the table entry for the register set
whose hardware type is GENERIC_TYPE. */
static const CGEN_HW_ENTRY *
me_module_register_set (CONFIG_ATTR me_module,
const char *prefix,
CGEN_HW_TYPE generic_type)
{
/* This is kind of tricky, because the hardware table is constructed
in a way that isn't very helpful. Perhaps we can fix that, but
here's how it works at the moment:
The configuration map, `mep_config_map', is indexed by me_module
number, and indicates which coprocessor and core ISAs that
me_module supports. The 'core_isa' mask includes all the core
ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
The entry for the generic me_module, CONFIG_NONE, has an empty
'cop_isa', and its 'core_isa' selects only the standard MeP
instruction set.
The CGEN CPU descriptor's hardware table, desc->hw_table, has
entries for all the register sets, for all me_modules. Each
entry has a mask indicating which ISAs use that register set.
So, if an me_module supports some coprocessor ISA, we can find
applicable register sets by scanning the hardware table for
register sets whose masks include (at least some of) those ISAs.
Each hardware table entry also has a name, whose prefix says
whether it's a general-purpose ("h-cr") or control ("h-ccr")
coprocessor register set. It might be nicer to have an attribute
indicating what sort of register set it was, that we could use
instead of pattern-matching on the name.
When there is no hardware table entry whose mask includes a
particular coprocessor ISA and whose name starts with a given
prefix, then that means that that coprocessor doesn't have any
registers of that type. In such cases, this function must return
a null pointer.
Coprocessor register sets' masks may or may not include the core
ISA for the me_module they belong to. Those generated by a2cgen
do, but the sample me_module included in the unconfigured tree,
'ccfx', does not.
There are generic coprocessor register sets, intended only for
use with the generic me_module. Unfortunately, their masks
include *all* ISAs --- even those for coprocessors that don't
have such register sets. This makes detecting the case where a
coprocessor lacks a particular register set more complicated.
So, here's the approach we take:
- For CONFIG_NONE, we return the generic coprocessor register set.
- For any other me_module, we search for a register set whose
mask contains any of the me_module's coprocessor ISAs,
specifically excluding the generic coprocessor register sets. */
CGEN_CPU_DESC desc = gdbarch_tdep (current_gdbarch)->cpu_desc;
const CGEN_HW_ENTRY *hw;
if (me_module == CONFIG_NONE)
hw = find_hw_entry_by_type (desc, generic_type);
else
{
CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa;
CGEN_BITSET *core = &mep_config_map[me_module].core_isa;
CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa;
CGEN_BITSET *cop_and_core;
/* The coprocessor ISAs include the ISA for the specific core which
has that coprocessor. */
cop_and_core = cgen_bitset_copy (cop);
cgen_bitset_union (cop, core, cop_and_core);
hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic);
}
return hw;
}
/* Given a hardware table entry HW representing a register set, return
a pointer to the keyword table with all the register names. If HW
is NULL, return NULL, to propage the "no such register set" info
along. */
static CGEN_KEYWORD *
register_set_keyword_table (const CGEN_HW_ENTRY *hw)
{
if (! hw)
return NULL;
/* Check that HW is actually a keyword table. */
gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD);
/* The 'asm_data' field of a register set's hardware table entry
refers to a keyword table. */
return (CGEN_KEYWORD *) hw->asm_data;
}
/* Given a keyword table KEYWORD and a register number REGNUM, return
the name of the register, or "" if KEYWORD contains no register
whose number is REGNUM. */
static char *
register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum)
{
const CGEN_KEYWORD_ENTRY *entry
= cgen_keyword_lookup_value (keyword_table, regnum);
if (entry)
{
char *name = entry->name;
/* The CGEN keyword entries for register names include the
leading $, which appears in MeP assembly as well as in GDB.
But we don't want to return that; GDB core code adds that
itself. */
if (name[0] == '$')
name++;
return name;
}
else
return "";
}
/* Masks for option bits in the OPT special-purpose register. */
enum {
MEP_OPT_DIV = 1 << 25, /* 32-bit divide instruction option */
MEP_OPT_MUL = 1 << 24, /* 32-bit multiply instruction option */
MEP_OPT_BIT = 1 << 23, /* bit manipulation instruction option */
MEP_OPT_SAT = 1 << 22, /* saturation instruction option */
MEP_OPT_CLP = 1 << 21, /* clip instruction option */
MEP_OPT_MIN = 1 << 20, /* min/max instruction option */
MEP_OPT_AVE = 1 << 19, /* average instruction option */
MEP_OPT_ABS = 1 << 18, /* absolute difference instruction option */
MEP_OPT_LDZ = 1 << 16, /* leading zero instruction option */
MEP_OPT_VL64 = 1 << 6, /* 64-bit VLIW operation mode option */
MEP_OPT_VL32 = 1 << 5, /* 32-bit VLIW operation mode option */
MEP_OPT_COP = 1 << 4, /* coprocessor option */
MEP_OPT_DSP = 1 << 2, /* DSP option */
MEP_OPT_UCI = 1 << 1, /* UCI option */
MEP_OPT_DBG = 1 << 0, /* DBG function option */
};
/* Given the option_mask value for a particular entry in
mep_config_map, produce the value the processor's OPT register
would use to represent the same set of options. */
static unsigned int
opt_from_option_mask (unsigned int option_mask)
{
/* A table mapping OPT register bits onto CGEN config map option
bits. */
struct {
unsigned int opt_bit, option_mask_bit;
} bits[] = {
{ MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
{ MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN },
{ MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
{ MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN },
{ MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN },
{ MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN },
{ MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN },
{ MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN },
{ MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN },
{ MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN },
{ MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN },
{ MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN },
{ MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN },
};
int i;
unsigned int opt = 0;
for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++)
if (option_mask & bits[i].option_mask_bit)
opt |= bits[i].opt_bit;
return opt;
}
/* Return the value the $OPT register would use to represent the set
of options for ME_MODULE. */
static unsigned int
me_module_opt (CONFIG_ATTR me_module)
{
return opt_from_option_mask (mep_config_map[me_module].option_mask);
}
/* Return the width of ME_MODULE's coprocessor data bus, in bits.
This is either 32 or 64. */
static int
me_module_cop_data_bus_width (CONFIG_ATTR me_module)
{
if (mep_config_map[me_module].option_mask
& (1 << CGEN_INSN_OPTIONAL_CP64_INSN))
return 64;
else
return 32;
}
/* Return true if ME_MODULE is big-endian, false otherwise. */
static int
me_module_big_endian (CONFIG_ATTR me_module)
{
return mep_config_map[me_module].big_endian;
}
/* Return the name of ME_MODULE, or NULL if it has no name. */
static const char *
me_module_name (CONFIG_ATTR me_module)
{
/* The default me_module has "" as its name, but it's easier for our
callers to test for NULL. */
if (! mep_config_map[me_module].name
|| mep_config_map[me_module].name[0] == '\0')
return NULL;
else
return mep_config_map[me_module].name;
}
/* Register set. */
/* The MeP spec defines the following registers:
16 general purpose registers (r0-r15)
32 control/special registers (csr0-csr31)
32 coprocessor general-purpose registers (c0 -- c31)
64 coprocessor control registers (ccr0 -- ccr63)
For the raw registers, we assign numbers here explicitly, instead
of letting the enum assign them for us; the numbers are a matter of
external protocol, and shouldn't shift around as things are edited.
We access the control/special registers via pseudoregisters, to
enforce read-only portions that some registers have.
We access the coprocessor general purpose and control registers via
pseudoregisters, to make sure they appear in the proper order in
the 'info all-registers' command (which uses the register number
ordering), and also to allow them to be renamed and resized
depending on the me_module in use.
The MeP allows coprocessor general-purpose registers to be either
32 or 64 bits long, depending on the configuration. Since we don't
want the format of the 'g' packet to vary from one core to another,
the raw coprocessor GPRs are always 64 bits. GDB doesn't allow the
types of registers to change (see the implementation of
register_type), so we have four banks of pseudoregisters for the
coprocessor gprs --- 32-bit vs. 64-bit, and integer
vs. floating-point --- and we show or hide them depending on the
configuration. */
enum
{
MEP_FIRST_RAW_REGNUM = 0,
MEP_FIRST_GPR_REGNUM = 0,
MEP_R0_REGNUM = 0,
MEP_R1_REGNUM = 1,
MEP_R2_REGNUM = 2,
MEP_R3_REGNUM = 3,
MEP_R4_REGNUM = 4,
MEP_R5_REGNUM = 5,
MEP_R6_REGNUM = 6,
MEP_R7_REGNUM = 7,
MEP_R8_REGNUM = 8,
MEP_R9_REGNUM = 9,
MEP_R10_REGNUM = 10,
MEP_R11_REGNUM = 11,
MEP_R12_REGNUM = 12,
MEP_FP_REGNUM = MEP_R8_REGNUM,
MEP_R13_REGNUM = 13,
MEP_TP_REGNUM = MEP_R13_REGNUM, /* (r13) Tiny data pointer */
MEP_R14_REGNUM = 14,
MEP_GP_REGNUM = MEP_R14_REGNUM, /* (r14) Global pointer */
MEP_R15_REGNUM = 15,
MEP_SP_REGNUM = MEP_R15_REGNUM, /* (r15) Stack pointer */
MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM,
/* The raw control registers. These are the values as received via
the remote protocol, directly from the target; we only let user
code touch the via the pseudoregisters, which enforce read-only
bits. */
MEP_FIRST_RAW_CSR_REGNUM = 16,
MEP_RAW_PC_REGNUM = 16, /* Program counter */
MEP_RAW_LP_REGNUM = 17, /* Link pointer */
MEP_RAW_SAR_REGNUM = 18, /* Raw shift amount */
MEP_RAW_CSR3_REGNUM = 19, /* csr3: reserved */
MEP_RAW_RPB_REGNUM = 20, /* Raw repeat begin address */
MEP_RAW_RPE_REGNUM = 21, /* Repeat end address */
MEP_RAW_RPC_REGNUM = 22, /* Repeat count */
MEP_RAW_HI_REGNUM = 23, /* Upper 32 bits of result of 64 bit mult/div */
MEP_RAW_LO_REGNUM = 24, /* Lower 32 bits of result of 64 bit mult/div */
MEP_RAW_CSR9_REGNUM = 25, /* csr3: reserved */
MEP_RAW_CSR10_REGNUM = 26, /* csr3: reserved */
MEP_RAW_CSR11_REGNUM = 27, /* csr3: reserved */
MEP_RAW_MB0_REGNUM = 28, /* Raw modulo begin address 0 */
MEP_RAW_ME0_REGNUM = 29, /* Raw modulo end address 0 */
MEP_RAW_MB1_REGNUM = 30, /* Raw modulo begin address 1 */
MEP_RAW_ME1_REGNUM = 31, /* Raw modulo end address 1 */
MEP_RAW_PSW_REGNUM = 32, /* Raw program status word */
MEP_RAW_ID_REGNUM = 33, /* Raw processor ID/revision */
MEP_RAW_TMP_REGNUM = 34, /* Temporary */
MEP_RAW_EPC_REGNUM = 35, /* Exception program counter */
MEP_RAW_EXC_REGNUM = 36, /* Raw exception cause */
MEP_RAW_CFG_REGNUM = 37, /* Raw processor configuration*/
MEP_RAW_CSR22_REGNUM = 38, /* csr3: reserved */
MEP_RAW_NPC_REGNUM = 39, /* Nonmaskable interrupt PC */
MEP_RAW_DBG_REGNUM = 40, /* Raw debug */
MEP_RAW_DEPC_REGNUM = 41, /* Debug exception PC */
MEP_RAW_OPT_REGNUM = 42, /* Raw options */
MEP_RAW_RCFG_REGNUM = 43, /* Raw local ram config */
MEP_RAW_CCFG_REGNUM = 44, /* Raw cache config */
MEP_RAW_CSR29_REGNUM = 45, /* csr3: reserved */
MEP_RAW_CSR30_REGNUM = 46, /* csr3: reserved */
MEP_RAW_CSR31_REGNUM = 47, /* csr3: reserved */
MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM,
/* The raw coprocessor general-purpose registers. These are all 64
bits wide. */
MEP_FIRST_RAW_CR_REGNUM = 48,
MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31,
MEP_FIRST_RAW_CCR_REGNUM = 80,
MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63,
/* The module number register. This is the index of the me_module
of which the current target is an instance. (This is not a real
MeP-specified register; it's provided by SID.) */
MEP_MODULE_REGNUM,
MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM,
MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1,
/* Pseudoregisters. See mep_pseudo_register_read and
mep_pseudo_register_write. */
MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS,
/* We have a pseudoregister for every control/special register, to
implement registers with read-only bits. */
MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM,
MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */
MEP_LP_REGNUM, /* Link pointer */
MEP_SAR_REGNUM, /* shift amount */
MEP_CSR3_REGNUM, /* csr3: reserved */
MEP_RPB_REGNUM, /* repeat begin address */
MEP_RPE_REGNUM, /* Repeat end address */
MEP_RPC_REGNUM, /* Repeat count */
MEP_HI_REGNUM, /* Upper 32 bits of the result of 64 bit mult/div */
MEP_LO_REGNUM, /* Lower 32 bits of the result of 64 bit mult/div */
MEP_CSR9_REGNUM, /* csr3: reserved */
MEP_CSR10_REGNUM, /* csr3: reserved */
MEP_CSR11_REGNUM, /* csr3: reserved */
MEP_MB0_REGNUM, /* modulo begin address 0 */
MEP_ME0_REGNUM, /* modulo end address 0 */
MEP_MB1_REGNUM, /* modulo begin address 1 */
MEP_ME1_REGNUM, /* modulo end address 1 */
MEP_PSW_REGNUM, /* program status word */
MEP_ID_REGNUM, /* processor ID/revision */
MEP_TMP_REGNUM, /* Temporary */
MEP_EPC_REGNUM, /* Exception program counter */
MEP_EXC_REGNUM, /* exception cause */
MEP_CFG_REGNUM, /* processor configuration*/
MEP_CSR22_REGNUM, /* csr3: reserved */
MEP_NPC_REGNUM, /* Nonmaskable interrupt PC */
MEP_DBG_REGNUM, /* debug */
MEP_DEPC_REGNUM, /* Debug exception PC */
MEP_OPT_REGNUM, /* options */
MEP_RCFG_REGNUM, /* local ram config */
MEP_CCFG_REGNUM, /* cache config */
MEP_CSR29_REGNUM, /* csr3: reserved */
MEP_CSR30_REGNUM, /* csr3: reserved */
MEP_CSR31_REGNUM, /* csr3: reserved */
MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM,
/* The 32-bit integer view of the coprocessor GPR's. */
MEP_FIRST_CR32_REGNUM,
MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31,
/* The 32-bit floating-point view of the coprocessor GPR's. */
MEP_FIRST_FP_CR32_REGNUM,
MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31,
/* The 64-bit integer view of the coprocessor GPR's. */
MEP_FIRST_CR64_REGNUM,
MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31,
/* The 64-bit floating-point view of the coprocessor GPR's. */
MEP_FIRST_FP_CR64_REGNUM,
MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31,
MEP_FIRST_CCR_REGNUM,
MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63,
MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM,
MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM),
MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS
};
#define IN_SET(set, n) \
(MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)
#define IS_GPR_REGNUM(n) (IN_SET (GPR, (n)))
#define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
#define IS_RAW_CR_REGNUM(n) (IN_SET (RAW_CR, (n)))
#define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))
#define IS_CSR_REGNUM(n) (IN_SET (CSR, (n)))
#define IS_CR32_REGNUM(n) (IN_SET (CR32, (n)))
#define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
#define IS_CR64_REGNUM(n) (IN_SET (CR64, (n)))
#define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
#define IS_CR_REGNUM(n) (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
|| IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
#define IS_CCR_REGNUM(n) (IN_SET (CCR, (n)))
#define IS_RAW_REGNUM(n) (IN_SET (RAW, (n)))
#define IS_PSEUDO_REGNUM(n) (IN_SET (PSEUDO, (n)))
#define NUM_REGS_IN_SET(set) \
(MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)
#define MEP_GPR_SIZE (4) /* Size of a MeP general-purpose register. */
#define MEP_PSW_SIZE (4) /* Size of the PSW register. */
#define MEP_LP_SIZE (4) /* Size of the LP register. */
/* Many of the control/special registers contain bits that cannot be
written to; some are entirely read-only. So we present them all as
pseudoregisters.
The following table describes the special properties of each CSR. */
struct mep_csr_register
{
/* The number of this CSR's raw register. */
int raw;
/* The number of this CSR's pseudoregister. */
int pseudo;
/* A mask of the bits that are writeable: if a bit is set here, then
it can be modified; if the bit is clear, then it cannot. */
LONGEST writeable_bits;
};
/* mep_csr_registers[i] describes the i'th CSR.
We just list the register numbers here explicitly to help catch
typos. */
#define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
struct mep_csr_register mep_csr_registers[] = {
{ CSR(PC), 0xffffffff }, /* manual says r/o, but we can write it */
{ CSR(LP), 0xffffffff },
{ CSR(SAR), 0x0000003f },
{ CSR(CSR3), 0xffffffff },
{ CSR(RPB), 0xfffffffe },
{ CSR(RPE), 0xffffffff },
{ CSR(RPC), 0xffffffff },
{ CSR(HI), 0xffffffff },
{ CSR(LO), 0xffffffff },
{ CSR(CSR9), 0xffffffff },
{ CSR(CSR10), 0xffffffff },
{ CSR(CSR11), 0xffffffff },
{ CSR(MB0), 0x0000ffff },
{ CSR(ME0), 0x0000ffff },
{ CSR(MB1), 0x0000ffff },
{ CSR(ME1), 0x0000ffff },
{ CSR(PSW), 0x000003ff },
{ CSR(ID), 0x00000000 },
{ CSR(TMP), 0xffffffff },
{ CSR(EPC), 0xffffffff },
{ CSR(EXC), 0x000030f0 },
{ CSR(CFG), 0x00c0001b },
{ CSR(CSR22), 0xffffffff },
{ CSR(NPC), 0xffffffff },
{ CSR(DBG), 0x00000580 },
{ CSR(DEPC), 0xffffffff },
{ CSR(OPT), 0x00000000 },
{ CSR(RCFG), 0x00000000 },
{ CSR(CCFG), 0x00000000 },
{ CSR(CSR29), 0xffffffff },
{ CSR(CSR30), 0xffffffff },
{ CSR(CSR31), 0xffffffff },
};
/* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
the number of the corresponding pseudoregister. Otherwise,
mep_raw_to_pseudo[R] == R. */
static int mep_raw_to_pseudo[MEP_NUM_REGS];
/* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
is the number of the underlying raw register. Otherwise
mep_pseudo_to_raw[R] == R. */
static int mep_pseudo_to_raw[MEP_NUM_REGS];
static void
mep_init_pseudoregister_maps (void)
{
int i;
/* Verify that mep_csr_registers covers all the CSRs, in order. */
gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR));
gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR));
/* Verify that the raw and pseudo ranges have matching sizes. */
gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR));
gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR32));
gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR64));
gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR));
for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
{
struct mep_csr_register *r = &mep_csr_registers[i];
gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i);
gdb_assert (r->raw == MEP_FIRST_RAW_CSR_REGNUM + i);
}
/* Set up the initial raw<->pseudo mappings. */
for (i = 0; i < MEP_NUM_REGS; i++)
{
mep_raw_to_pseudo[i] = i;
mep_pseudo_to_raw[i] = i;
}
/* Add the CSR raw<->pseudo mappings. */
for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
{
struct mep_csr_register *r = &mep_csr_registers[i];
mep_raw_to_pseudo[r->raw] = r->pseudo;
mep_pseudo_to_raw[r->pseudo] = r->raw;
}
/* Add the CR raw<->pseudo mappings. */
for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++)
{
int raw = MEP_FIRST_RAW_CR_REGNUM + i;
int pseudo32 = MEP_FIRST_CR32_REGNUM + i;
int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i;
int pseudo64 = MEP_FIRST_CR64_REGNUM + i;
int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i;
/* Truly, the raw->pseudo mapping depends on the current module.
But we use the raw->pseudo mapping when we read the debugging
info; at that point, we don't know what module we'll actually
be running yet. So, we always supply the 64-bit register
numbers; GDB knows how to pick a smaller value out of a
larger register properly. */
mep_raw_to_pseudo[raw] = pseudo64;
mep_pseudo_to_raw[pseudo32] = raw;
mep_pseudo_to_raw[pseudofp32] = raw;
mep_pseudo_to_raw[pseudo64] = raw;
mep_pseudo_to_raw[pseudofp64] = raw;
}
/* Add the CCR raw<->pseudo mappings. */
for (i = 0; i < NUM_REGS_IN_SET (CCR); i++)
{
int raw = MEP_FIRST_RAW_CCR_REGNUM + i;
int pseudo = MEP_FIRST_CCR_REGNUM + i;
mep_raw_to_pseudo[raw] = pseudo;
mep_pseudo_to_raw[pseudo] = raw;
}
}
static int
mep_debug_reg_to_regnum (int debug_reg)
{
/* The debug info uses the raw register numbers. */
return mep_raw_to_pseudo[debug_reg];
}
/* Return the size, in bits, of the coprocessor pseudoregister
numbered PSEUDO. */
static int
mep_pseudo_cr_size (int pseudo)
{
if (IS_CR32_REGNUM (pseudo)
|| IS_FP_CR32_REGNUM (pseudo))
return 32;
else if (IS_CR64_REGNUM (pseudo)
|| IS_FP_CR64_REGNUM (pseudo))
return 64;
else
gdb_assert (0);
}
/* If the coprocessor pseudoregister numbered PSEUDO is a
floating-point register, return non-zero; if it is an integer
register, return zero. */
static int
mep_pseudo_cr_is_float (int pseudo)
{
return (IS_FP_CR32_REGNUM (pseudo)
|| IS_FP_CR64_REGNUM (pseudo));
}
/* Given a coprocessor GPR pseudoregister number, return its index
within that register bank. */
static int
mep_pseudo_cr_index (int pseudo)
{
if (IS_CR32_REGNUM (pseudo))
return pseudo - MEP_FIRST_CR32_REGNUM;
else if (IS_FP_CR32_REGNUM (pseudo))
return pseudo - MEP_FIRST_FP_CR32_REGNUM;
else if (IS_CR64_REGNUM (pseudo))
return pseudo - MEP_FIRST_CR64_REGNUM;
else if (IS_FP_CR64_REGNUM (pseudo))
return pseudo - MEP_FIRST_FP_CR64_REGNUM;
else
gdb_assert (0);
}
/* Return the me_module index describing the current target.
If the current target has registers (e.g., simulator, remote
target), then this uses the value of the 'module' register, raw
register MEP_MODULE_REGNUM. Otherwise, this retrieves the value
from the ELF header's e_flags field of the current executable
file. */
static CONFIG_ATTR
current_me_module ()
{
if (target_has_registers)
return read_register (MEP_MODULE_REGNUM);
else
return gdbarch_tdep (current_gdbarch)->me_module;
}
/* Return the set of options for the current target, in the form that
the OPT register would use.
If the current target has registers (e.g., simulator, remote
target), then this is the actual value of the OPT register. If the
current target does not have registers (e.g., an executable file),
then use the 'module_opt' field we computed when we build the
gdbarch object for this module. */
static unsigned int
current_options ()
{
if (target_has_registers)
return read_register (MEP_OPT_REGNUM);
else
return me_module_opt (current_me_module ());
}
/* Return the width of the current me_module's coprocessor data bus,
in bits. This is either 32 or 64. */
static int
current_cop_data_bus_width ()
{
return me_module_cop_data_bus_width (current_me_module ());
}
/* Return the keyword table of coprocessor general-purpose register
names appropriate for the me_module we're dealing with. */
static CGEN_KEYWORD *
current_cr_names ()
{
const CGEN_HW_ENTRY *hw
= me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
return register_set_keyword_table (hw);
}
/* Return non-zero if the coprocessor general-purpose registers are
floating-point values, zero otherwise. */
static int
current_cr_is_float ()
{
const CGEN_HW_ENTRY *hw
= me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw));
}
/* Return the keyword table of coprocessor control register names
appropriate for the me_module we're dealing with. */
static CGEN_KEYWORD *
current_ccr_names ()
{
const CGEN_HW_ENTRY *hw
= me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR);
return register_set_keyword_table (hw);
}
static const char *
mep_register_name (int regnr)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
/* General-purpose registers. */
static const char *gpr_names[] = {
"r0", "r1", "r2", "r3", /* 0 */
"r4", "r5", "r6", "r7", /* 4 */
"fp", "r9", "r10", "r11", /* 8 */
"r12", "tp", "gp", "sp" /* 12 */
};
/* Special-purpose registers. */
static const char *csr_names[] = {
"pc", "lp", "sar", "", /* 0 csr3: reserved */
"rpb", "rpe", "rpc", "hi", /* 4 */
"lo", "", "", "", /* 8 csr9-csr11: reserved */
"mb0", "me0", "mb1", "me1", /* 12 */
"psw", "id", "tmp", "epc", /* 16 */
"exc", "cfg", "", "npc", /* 20 csr22: reserved */
"dbg", "depc", "opt", "rcfg", /* 24 */
"ccfg", "", "", "" /* 28 csr29-csr31: reserved */
};
if (IS_GPR_REGNUM (regnr))
return gpr_names[regnr - MEP_R0_REGNUM];
else if (IS_CSR_REGNUM (regnr))
{
/* The 'hi' and 'lo' registers are only present on processors
that have the 'MUL' or 'DIV' instructions enabled. */
if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM)
&& (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV))))
return "";
return csr_names[regnr - MEP_FIRST_CSR_REGNUM];
}
else if (IS_CR_REGNUM (regnr))
{
CGEN_KEYWORD *names;
int cr_size;
int cr_is_float;
/* Does this module have a coprocessor at all? */
if (! (current_options () & MEP_OPT_COP))
return "";
names = current_cr_names ();
if (! names)
/* This module's coprocessor has no general-purpose registers. */
return "";
cr_size = current_cop_data_bus_width ();
if (cr_size != mep_pseudo_cr_size (regnr))
/* This module's coprocessor's GPR's are of a different size. */
return "";
cr_is_float = current_cr_is_float ();
/* The extra ! operators ensure we get boolean equality, not
numeric equality. */
if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr))
/* This module's coprocessor's GPR's are of a different type. */
return "";
return register_name_from_keyword (names, mep_pseudo_cr_index (regnr));
}
else if (IS_CCR_REGNUM (regnr))
{
/* Does this module have a coprocessor at all? */
if (! (current_options () & MEP_OPT_COP))
return "";
{
CGEN_KEYWORD *names = current_ccr_names ();
if (! names)
/* This me_module's coprocessor has no control registers. */
return "";
return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM);
}
}
/* It might be nice to give the 'module' register a name, but that
would affect the output of 'info all-registers', which would
disturb the test suites. So we leave it invisible. */
else
return NULL;
}
/* Custom register groups for the MeP. */
static struct reggroup *mep_csr_reggroup; /* control/special */
static struct reggroup *mep_cr_reggroup; /* coprocessor general-purpose */
static struct reggroup *mep_ccr_reggroup; /* coprocessor control */
static int
mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
struct reggroup *group)
{
/* Filter reserved or unused register numbers. */
{
const char *name = mep_register_name (regnum);
if (! name || name[0] == '\0')
return 0;
}
/* We could separate the GPRs and the CSRs. Toshiba has approved of
the existing behavior, so we'd want to run that by them. */
if (group == general_reggroup)
return (IS_GPR_REGNUM (regnum)
|| IS_CSR_REGNUM (regnum));
/* Everything is in the 'all' reggroup, except for the raw CSR's. */
else if (group == all_reggroup)
return (IS_GPR_REGNUM (regnum)
|| IS_CSR_REGNUM (regnum)
|| IS_CR_REGNUM (regnum)
|| IS_CCR_REGNUM (regnum));
/* All registers should be saved and restored, except for the raw
CSR's.
This is probably right if the coprocessor is something like a
floating-point unit, but would be wrong if the coprocessor is
something that does I/O, where register accesses actually cause
externally-visible actions. But I get the impression that the
coprocessor isn't supposed to do things like that --- you'd use a
hardware engine, perhaps. */
else if (group == save_reggroup || group == restore_reggroup)
return (IS_GPR_REGNUM (regnum)
|| IS_CSR_REGNUM (regnum)
|| IS_CR_REGNUM (regnum)
|| IS_CCR_REGNUM (regnum));
else if (group == mep_csr_reggroup)
return IS_CSR_REGNUM (regnum);
else if (group == mep_cr_reggroup)
return IS_CR_REGNUM (regnum);
else if (group == mep_ccr_reggroup)
return IS_CCR_REGNUM (regnum);
else
return 0;
}
static struct type *
mep_register_type (struct gdbarch *gdbarch, int reg_nr)
{
/* Coprocessor general-purpose registers may be either 32 or 64 bits
long. So for them, the raw registers are always 64 bits long (to
keep the 'g' packet format fixed), and the pseudoregisters vary
in length. */
if (IS_RAW_CR_REGNUM (reg_nr))
return builtin_type_uint64;
/* Since GDB doesn't allow registers to change type, we have two
banks of pseudoregisters for the coprocessor general-purpose
registers: one that gives a 32-bit view, and one that gives a
64-bit view. We hide or show one or the other depending on the
current module. */
if (IS_CR_REGNUM (reg_nr))
{
int size = mep_pseudo_cr_size (reg_nr);
if (size == 32)
{
if (mep_pseudo_cr_is_float (reg_nr))
return builtin_type_float;
else
return builtin_type_uint32;
}
else if (size == 64)
{
if (mep_pseudo_cr_is_float (reg_nr))
return builtin_type_double;
else
return builtin_type_uint64;
}
else
gdb_assert (0);
}
/* All other registers are 32 bits long. */
else
return builtin_type_uint32;
}
static CORE_ADDR
mep_read_pc (ptid_t ptid)
{
ptid_t saved_ptid;
CORE_ADDR pc;
saved_ptid = inferior_ptid;
inferior_ptid = ptid;
pc = read_register (MEP_PC_REGNUM);
inferior_ptid = saved_ptid;
return pc;
}
static void
mep_write_pc (CORE_ADDR pc, ptid_t ptid)
{
ptid_t saved_ptid;
saved_ptid = inferior_ptid;
inferior_ptid = ptid;
write_register (MEP_PC_REGNUM, pc);
inferior_ptid = saved_ptid;
}
static void
mep_pseudo_cr32_read (struct gdbarch *gdbarch,
struct regcache *regcache,
int cookednum,
void *buf)
{
/* Read the raw register into a 64-bit buffer, and then return the
appropriate end of that buffer. */
int rawnum = mep_pseudo_to_raw[cookednum];
char buf64[8];
gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
regcache_raw_read (regcache, rawnum, buf64);
/* Slow, but legible. */
store_unsigned_integer (buf, 4, extract_unsigned_integer (buf64, 8));
}
static void
mep_pseudo_cr64_read (struct gdbarch *gdbarch,
struct regcache *regcache,
int cookednum,
void *buf)
{
regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
}
static void
mep_pseudo_register_read (struct gdbarch *gdbarch,
struct regcache *regcache,
int cookednum,
gdb_byte *buf)
{
if (IS_CSR_REGNUM (cookednum)
|| IS_CCR_REGNUM (cookednum))
regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
else if (IS_CR32_REGNUM (cookednum)
|| IS_FP_CR32_REGNUM (cookednum))
mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf);
else if (IS_CR64_REGNUM (cookednum)
|| IS_FP_CR64_REGNUM (cookednum))
mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf);
else
gdb_assert (0);
}
static void
mep_pseudo_csr_write (struct gdbarch *gdbarch,
struct regcache *regcache,
int cookednum,
const void *buf)
{
int size = register_size (gdbarch, cookednum);
struct mep_csr_register *r
= &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM];
if (r->writeable_bits == 0)
/* A completely read-only register; avoid the read-modify-
write cycle, and juts ignore the entire write. */
;
else
{
/* A partially writeable register; do a read-modify-write cycle. */
ULONGEST old_bits;
ULONGEST new_bits;
ULONGEST mixed_bits;
regcache_raw_read_unsigned (regcache, r->raw, &old_bits);
new_bits = extract_unsigned_integer (buf, size);
mixed_bits = ((r->writeable_bits & new_bits)
| (~r->writeable_bits & old_bits));
regcache_raw_write_unsigned (regcache, r->raw, mixed_bits);
}
}
static void
mep_pseudo_cr32_write (struct gdbarch *gdbarch,
struct regcache *regcache,
int cookednum,
const void *buf)
{
/* Expand the 32-bit value into a 64-bit value, and write that to
the pseudoregister. */
int rawnum = mep_pseudo_to_raw[cookednum];
char buf64[8];
gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
/* Slow, but legible. */
store_unsigned_integer (buf64, 8, extract_unsigned_integer (buf, 4));
regcache_raw_write (regcache, rawnum, buf64);
}
static void
mep_pseudo_cr64_write (struct gdbarch *gdbarch,
struct regcache *regcache,
int cookednum,
const void *buf)
{
regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
}
static void
mep_pseudo_register_write (struct gdbarch *gdbarch,
struct regcache *regcache,
int cookednum,
const gdb_byte *buf)
{
if (IS_CSR_REGNUM (cookednum))
mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf);
else if (IS_CR32_REGNUM (cookednum)
|| IS_FP_CR32_REGNUM (cookednum))
mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf);
else if (IS_CR64_REGNUM (cookednum)
|| IS_FP_CR64_REGNUM (cookednum))
mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf);
else if (IS_CCR_REGNUM (cookednum))
regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
else
gdb_assert (0);
}
/* Disassembly. */
/* The mep disassembler needs to know about the section in order to
work correctly. */
int
mep_gdb_print_insn (bfd_vma pc, disassemble_info * info)
{
struct obj_section * s = find_pc_section (pc);
if (s)
{
/* The libopcodes disassembly code uses the section to find the
BFD, the BFD to find the ELF header, the ELF header to find
the me_module index, and the me_module index to select the
right instructions to print. */
info->section = s->the_bfd_section;
info->arch = bfd_arch_mep;
return print_insn_mep (pc, info);
}
return 0;
}
/* Prologue analysis. */
/* The MeP has two classes of instructions: "core" instructions, which
are pretty normal RISC chip stuff, and "coprocessor" instructions,
which are mostly concerned with moving data in and out of
coprocessor registers, and branching on coprocessor condition
codes. There's space in the instruction set for custom coprocessor
instructions, too.
Instructions can be 16 or 32 bits long; the top two bits of the
first byte indicate the length. The coprocessor instructions are
mixed in with the core instructions, and there's no easy way to
distinguish them; you have to completely decode them to tell one
from the other.
The MeP also supports a "VLIW" operation mode, where instructions
always occur in fixed-width bundles. The bundles are either 32
bits or 64 bits long, depending on a fixed configuration flag. You
decode the first part of the bundle as normal; if it's a core
instruction, and there's any space left in the bundle, the
remainder of the bundle is a coprocessor instruction, which will
execute in parallel with the core instruction. If the first part
of the bundle is a coprocessor instruction, it occupies the entire
bundle.
So, here are all the cases:
- 32-bit VLIW mode:
Every bundle is four bytes long, and naturally aligned, and can hold
one or two instructions:
- 16-bit core instruction; 16-bit coprocessor instruction
These execute in parallel.
- 32-bit core instruction
- 32-bit coprocessor instruction
- 64-bit VLIW mode:
Every bundle is eight bytes long, and naturally aligned, and can hold
one or two instructions:
- 16-bit core instruction; 48-bit (!) coprocessor instruction
These execute in parallel.
- 32-bit core instruction; 32-bit coprocessor instruction
These execute in parallel.
- 64-bit coprocessor instruction
Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
instruction, so I don't really know what's up there; perhaps these
are always the user-defined coprocessor instructions. */
/* Return non-zero if PC is in a VLIW code section, zero
otherwise. */
static int
mep_pc_in_vliw_section (CORE_ADDR pc)
{
struct obj_section *s = find_pc_section (pc);
if (s)
return (s->the_bfd_section->flags & SEC_MEP_VLIW);
return 0;
}
/* Set *INSN to the next core instruction at PC, and return the
address of the next instruction.
The MeP instruction encoding is endian-dependent. 16- and 32-bit
instructions are encoded as one or two two-byte parts, and each
part is byte-swapped independently. Thus:
void
foo (void)
{
asm ("movu $1, 0x123456");
asm ("sb $1,0x5678($2)");
asm ("clip $1, 19");
}
compiles to this big-endian code:
0: d1 56 12 34 movu $1,0x123456
4: c1 28 56 78 sb $1,22136($2)
8: f1 01 10 98 clip $1,0x13
c: 70 02 ret
and this little-endian code:
0: 56 d1 34 12 movu $1,0x123456
4: 28 c1 78 56 sb $1,22136($2)
8: 01 f1 98 10 clip $1,0x13
c: 02 70 ret
Instructions are returned in *INSN in an endian-independent form: a
given instruction always appears in *INSN the same way, regardless
of whether the instruction stream is big-endian or little-endian.
*INSN's most significant 16 bits are the first (i.e., at lower
addresses) 16 bit part of the instruction. Its least significant
16 bits are the second (i.e., higher-addressed) 16 bit part of the
instruction, or zero for a 16-bit instruction. Both 16-bit parts
are fetched using the current endianness.
So, the *INSN values for the instruction sequence above would be
the following, in either endianness:
0xd1561234 movu $1,0x123456
0xc1285678 sb $1,22136($2)
0xf1011098 clip $1,0x13
0x70020000 ret
(In a sense, it would be more natural to return 16-bit instructions
in the least significant 16 bits of *INSN, but that would be
ambiguous. In order to tell whether you're looking at a 16- or a
32-bit instruction, you have to consult the major opcode field ---
the most significant four bits of the instruction's first 16-bit
part. But if we put 16-bit instructions at the least significant
end of *INSN, then you don't know where to find the major opcode
field until you know if it's a 16- or a 32-bit instruction ---
which is where we started.)
If PC points to a core / coprocessor bundle in a VLIW section, set
*INSN to the core instruction, and return the address of the next
bundle. This has the effect of skipping the bundled coprocessor
instruction. That's okay, since coprocessor instructions aren't
significant to prologue analysis --- for the time being,
anyway. */
static CORE_ADDR
mep_get_insn (CORE_ADDR pc, long *insn)
{
int pc_in_vliw_section;
int vliw_mode;
int insn_len;
char buf[2];
*insn = 0;
/* Are we in a VLIW section? */
pc_in_vliw_section = mep_pc_in_vliw_section (pc);
if (pc_in_vliw_section)
{
/* Yes, find out which bundle size. */
vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64);
/* If PC is in a VLIW section, but the current core doesn't say
that it supports either VLIW mode, then we don't have enough
information to parse the instruction stream it contains.
Since the "undifferentiated" standard core doesn't have
either VLIW mode bit set, this could happen.
But it shouldn't be an error to (say) set a breakpoint in a
VLIW section, if you know you'll never reach it. (Perhaps
you have a script that sets a bunch of standard breakpoints.)
So we'll just return zero here, and hope for the best. */
if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64)))
return 0;
/* If both VL32 and VL64 are set, that's bogus, too. */
if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64))
return 0;
}
else
vliw_mode = 0;
read_memory (pc, buf, sizeof (buf));
*insn = extract_unsigned_integer (buf, 2) << 16;
/* The major opcode --- the top four bits of the first 16-bit
part --- indicates whether this instruction is 16 or 32 bits
long. All 32-bit instructions have a major opcode whose top
two bits are 11; all the rest are 16-bit instructions. */
if ((*insn & 0xc0000000) == 0xc0000000)
{
/* Fetch the second 16-bit part of the instruction. */
read_memory (pc + 2, buf, sizeof (buf));
*insn = *insn | extract_unsigned_integer (buf, 2);
}
/* If we're in VLIW code, then the VLIW width determines the address
of the next instruction. */
if (vliw_mode)
{
/* In 32-bit VLIW code, all bundles are 32 bits long. We ignore the
coprocessor half of a core / copro bundle. */
if (vliw_mode == MEP_OPT_VL32)
insn_len = 4;
/* In 64-bit VLIW code, all bundles are 64 bits long. We ignore the
coprocessor half of a core / copro bundle. */
else if (vliw_mode == MEP_OPT_VL64)
insn_len = 8;
/* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode. */
else
gdb_assert (0);
}
/* Otherwise, the top two bits of the major opcode are (again) what
we need to check. */
else if ((*insn & 0xc0000000) == 0xc0000000)
insn_len = 4;
else
insn_len = 2;
return pc + insn_len;
}
/* Sign-extend the LEN-bit value N. */
#define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))
/* Return the LEN-bit field at POS from I. */
#define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))
/* Like FIELD, but sign-extend the field's value. */
#define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))
/* Macros for decoding instructions.
Remember that 16-bit instructions are placed in bits 16..31 of i,
not at the least significant end; this means that the major opcode
field is always in the same place, regardless of the width of the
instruction. As a reminder of this, we show the lower 16 bits of a
16-bit instruction as xxxx_xxxx_xxxx_xxxx. */
/* SB Rn,(Rm) 0000_nnnn_mmmm_1000 */
/* SH Rn,(Rm) 0000_nnnn_mmmm_1001 */
/* SW Rn,(Rm) 0000_nnnn_mmmm_1010 */
/* SW Rn,disp16(Rm) 1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
#define IS_SW(i) (((i) & 0xf00f0000) == 0xc00a0000)
/* SB Rn,disp16(Rm) 1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
#define IS_SB(i) (((i) & 0xf00f0000) == 0xc0080000)
/* SH Rn,disp16(Rm) 1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
#define IS_SH(i) (((i) & 0xf00f0000) == 0xc0090000)
#define SWBH_32_BASE(i) (FIELD (i, 20, 4))
#define SWBH_32_SOURCE(i) (FIELD (i, 24, 4))
#define SWBH_32_OFFSET(i) (SFIELD (i, 0, 16))
/* SW Rn,disp7.align4(SP) 0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
#define IS_SW_IMMD(i) (((i) & 0xf0830000) == 0x40020000)
#define SW_IMMD_SOURCE(i) (FIELD (i, 24, 4))
#define SW_IMMD_OFFSET(i) (FIELD (i, 18, 5) << 2)
/* SW Rn,(Rm) 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
#define IS_SW_REG(i) (((i) & 0xf00f0000) == 0x000a0000)
#define SW_REG_SOURCE(i) (FIELD (i, 24, 4))
#define SW_REG_BASE(i) (FIELD (i, 20, 4))
/* ADD3 Rl,Rn,Rm 1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
#define IS_ADD3_16_REG(i) (((i) & 0xf0000000) == 0x90000000)
#define ADD3_16_REG_SRC1(i) (FIELD (i, 20, 4)) /* n */
#define ADD3_16_REG_SRC2(i) (FIELD (i, 24, 4)) /* m */
/* ADD3 Rn,Rm,imm16 1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
#define IS_ADD3_32(i) (((i) & 0xf00f0000) == 0xc0000000)
#define ADD3_32_TARGET(i) (FIELD (i, 24, 4))
#define ADD3_32_SOURCE(i) (FIELD (i, 20, 4))
#define ADD3_32_OFFSET(i) (SFIELD (i, 0, 16))
/* ADD3 Rn,SP,imm7.align4 0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
#define IS_ADD3_16(i) (((i) & 0xf0830000) == 0x40000000)
#define ADD3_16_TARGET(i) (FIELD (i, 24, 4))
#define ADD3_16_OFFSET(i) (FIELD (i, 18, 5) << 2)
/* ADD Rn,imm6 0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
#define IS_ADD(i) (((i) & 0xf0030000) == 0x60000000)
#define ADD_TARGET(i) (FIELD (i, 24, 4))
#define ADD_OFFSET(i) (SFIELD (i, 18, 6))
/* LDC Rn,imm5 0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
imm5 = I||i[7:4] */
#define IS_LDC(i) (((i) & 0xf00e0000) == 0x700a0000)
#define LDC_IMM(i) ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
#define LDC_TARGET(i) (FIELD (i, 24, 4))
/* LW Rn,disp16(Rm) 1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd */
#define IS_LW(i) (((i) & 0xf00f0000) == 0xc00e0000)
#define LW_TARGET(i) (FIELD (i, 24, 4))
#define LW_BASE(i) (FIELD (i, 20, 4))
#define LW_OFFSET(i) (SFIELD (i, 0, 16))
/* MOV Rn,Rm 0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
#define IS_MOV(i) (((i) & 0xf00f0000) == 0x00000000)
#define MOV_TARGET(i) (FIELD (i, 24, 4))
#define MOV_SOURCE(i) (FIELD (i, 20, 4))
/* This structure holds the results of a prologue analysis. */
struct mep_prologue
{
/* The offset from the frame base to the stack pointer --- always
zero or negative.
Calling this a "size" is a bit misleading, but given that the
stack grows downwards, using offsets for everything keeps one
from going completely sign-crazy: you never change anything's
sign for an ADD instruction; always change the second operand's
sign for a SUB instruction; and everything takes care of
itself. */
int frame_size;
/* Non-zero if this function has initialized the frame pointer from
the stack pointer, zero otherwise. */
int has_frame_ptr;
/* If has_frame_ptr is non-zero, this is the offset from the frame
base to where the frame pointer points. This is always zero or
negative. */
int frame_ptr_offset;
/* The address of the first instruction at which the frame has been
set up and the arguments are where the debug info says they are
--- as best as we can tell. */
CORE_ADDR prologue_end;
/* reg_offset[R] is the offset from the CFA at which register R is
saved, or 1 if register R has not been saved. (Real values are
always zero or negative.) */
int reg_offset[MEP_NUM_REGS];
};
/* Return non-zero if VALUE is an incoming argument register. */
static int
is_arg_reg (pv_t value)
{
return (value.kind == pvk_register
&& MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM
&& value.k == 0);
}
/* Return non-zero if a store of REG's current value VALUE to ADDR is
probably spilling an argument register to its stack slot in STACK.
Such instructions should be included in the prologue, if possible.
The store is a spill if:
- the value being stored is REG's original value;
- the value has not already been stored somewhere in STACK; and
- ADDR is a stack slot's address (e.g., relative to the original
value of the SP). */
static int
is_arg_spill (pv_t value, pv_t addr, struct pv_area *stack)
{
return (is_arg_reg (value)
&& pv_is_register (addr, MEP_SP_REGNUM)
&& ! pv_area_find_reg (stack, current_gdbarch, value.reg, 0));
}
/* Function for finding saved registers in a 'struct pv_area'; we pass
this to pv_area_scan.
If VALUE is a saved register, ADDR says it was saved at a constant
offset from the frame base, and SIZE indicates that the whole
register was saved, record its offset in RESULT_UNTYPED. */
static void
check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
{
struct mep_prologue *result = (struct mep_prologue *) result_untyped;
if (value.kind == pvk_register
&& value.k == 0
&& pv_is_register (addr, MEP_SP_REGNUM)
&& size == register_size (current_gdbarch, value.reg))
result->reg_offset[value.reg] = addr.k;
}
/* Analyze a prologue starting at START_PC, going no further than
LIMIT_PC. Fill in RESULT as appropriate. */
static void
mep_analyze_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
struct mep_prologue *result)
{
CORE_ADDR pc;
unsigned long insn;
int rn;
int found_lp = 0;
pv_t reg[MEP_NUM_REGS];
struct pv_area *stack;
struct cleanup *back_to;
CORE_ADDR after_last_frame_setup_insn = start_pc;
memset (result, 0, sizeof (*result));
for (rn = 0; rn < MEP_NUM_REGS; rn++)
{
reg[rn] = pv_register (rn, 0);
result->reg_offset[rn] = 1;
}
stack = make_pv_area (MEP_SP_REGNUM);
back_to = make_cleanup_free_pv_area (stack);
pc = start_pc;
while (pc < limit_pc)
{
CORE_ADDR next_pc;
pv_t pre_insn_fp, pre_insn_sp;
next_pc = mep_get_insn (pc, &insn);
/* A zero return from mep_get_insn means that either we weren't
able to read the instruction from memory, or that we don't
have enough information to be able to reliably decode it. So
we'll store here and hope for the best. */
if (! next_pc)
break;
/* Note the current values of the SP and FP, so we can tell if
this instruction changed them, below. */
pre_insn_fp = reg[MEP_FP_REGNUM];
pre_insn_sp = reg[MEP_SP_REGNUM];
if (IS_ADD (insn))
{
int rn = ADD_TARGET (insn);
CORE_ADDR imm6 = ADD_OFFSET (insn);
reg[rn] = pv_add_constant (reg[rn], imm6);
}
else if (IS_ADD3_16 (insn))
{
int rn = ADD3_16_TARGET (insn);
int imm7 = ADD3_16_OFFSET (insn);
reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7);
}
else if (IS_ADD3_32 (insn))
{
int rn = ADD3_32_TARGET (insn);
int rm = ADD3_32_SOURCE (insn);
int imm16 = ADD3_32_OFFSET (insn);
reg[rn] = pv_add_constant (reg[rm], imm16);
}
else if (IS_SW_REG (insn))
{
int rn = SW_REG_SOURCE (insn);
int rm = SW_REG_BASE (insn);
/* If simulating this store would require us to forget
everything we know about the stack frame in the name of
accuracy, it would be better to just quit now. */
if (pv_area_store_would_trash (stack, reg[rm]))
break;
if (is_arg_spill (reg[rn], reg[rm], stack))
after_last_frame_setup_insn = next_pc;
pv_area_store (stack, reg[rm], 4, reg[rn]);
}
else if (IS_SW_IMMD (insn))
{
int rn = SW_IMMD_SOURCE (insn);
int offset = SW_IMMD_OFFSET (insn);
pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset);
/* If simulating this store would require us to forget
everything we know about the stack frame in the name of
accuracy, it would be better to just quit now. */
if (pv_area_store_would_trash (stack, addr))
break;
if (is_arg_spill (reg[rn], addr, stack))
after_last_frame_setup_insn = next_pc;
pv_area_store (stack, addr, 4, reg[rn]);
}
else if (IS_MOV (insn))
{
int rn = MOV_TARGET (insn);
int rm = MOV_SOURCE (insn);
reg[rn] = reg[rm];
if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm]))
after_last_frame_setup_insn = next_pc;
}
else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn))
{
int rn = SWBH_32_SOURCE (insn);
int rm = SWBH_32_BASE (insn);
int disp = SWBH_32_OFFSET (insn);
int size = (IS_SB (insn) ? 1
: IS_SH (insn) ? 2
: IS_SW (insn) ? 4
: (gdb_assert (0), 1));
pv_t addr = pv_add_constant (reg[rm], disp);
if (pv_area_store_would_trash (stack, addr))
break;
if (is_arg_spill (reg[rn], addr, stack))
after_last_frame_setup_insn = next_pc;
pv_area_store (stack, addr, size, reg[rn]);
}
else if (IS_LDC (insn))
{
int rn = LDC_TARGET (insn);
int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM;
reg[rn] = reg[cr];
}
else if (IS_LW (insn))
{
int rn = LW_TARGET (insn);
int rm = LW_BASE (insn);
int offset = LW_OFFSET (insn);
pv_t addr = pv_add_constant (reg[rm], offset);
reg[rn] = pv_area_fetch (stack, addr, 4);
}
else
/* We've hit some instruction we don't know how to simulate.
Strictly speaking, we should set every value we're
tracking to "unknown". But we'll be optimistic, assume
that we have enough information already, and stop
analysis here. */
break;
/* If this instruction changed the FP or decreased the SP (i.e.,
allocated more stack space), then this may be a good place to
declare the prologue finished. However, there are some
exceptions:
- If the instruction just changed the FP back to its original
value, then that's probably a restore instruction. The
prologue should definitely end before that.
- If the instruction increased the value of the SP (that is,
shrunk the frame), then it's probably part of a frame
teardown sequence, and the prologue should end before that. */
if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp))
{
if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0))
after_last_frame_setup_insn = next_pc;
}
else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp))
{
/* The comparison of constants looks odd, there, because .k
is unsigned. All it really means is that the new value
is lower than it was before the instruction. */
if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM)
&& pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)
&& ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k)
< (reg[MEP_SP_REGNUM].k - pre_insn_sp.k)))
after_last_frame_setup_insn = next_pc;
}
pc = next_pc;
}
/* Is the frame size (offset, really) a known constant? */
if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM))
result->frame_size = reg[MEP_SP_REGNUM].k;
/* Was the frame pointer initialized? */
if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM))
{
result->has_frame_ptr = 1;
result->frame_ptr_offset = reg[MEP_FP_REGNUM].k;
}
/* Record where all the registers were saved. */
pv_area_scan (stack, check_for_saved, (void *) result);
result->prologue_end = after_last_frame_setup_insn;
do_cleanups (back_to);
}
static CORE_ADDR
mep_skip_prologue (CORE_ADDR pc)
{
char *name;
CORE_ADDR func_addr, func_end;
struct mep_prologue p;
/* Try to find the extent of the function that contains PC. */
if (! find_pc_partial_function (pc, &name, &func_addr, &func_end))
return pc;
mep_analyze_prologue (pc, func_end, &p);
return p.prologue_end;
}
/* Breakpoints. */
static const unsigned char *
mep_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
{
static unsigned char breakpoint[] = { 0x70, 0x32 };
*lenptr = sizeof (breakpoint);
return breakpoint;
}
/* Frames and frame unwinding. */
static struct mep_prologue *
mep_analyze_frame_prologue (struct frame_info *next_frame,
void **this_prologue_cache)
{
if (! *this_prologue_cache)
{
CORE_ADDR func_start, stop_addr;
*this_prologue_cache
= FRAME_OBSTACK_ZALLOC (struct mep_prologue);
func_start = frame_func_unwind (next_frame);
stop_addr = frame_pc_unwind (next_frame);
/* If we couldn't find any function containing the PC, then
just initialize the prologue cache, but don't do anything. */
if (! func_start)
stop_addr = func_start;
mep_analyze_prologue (func_start, stop_addr, *this_prologue_cache);
}
return *this_prologue_cache;
}
/* Given the next frame and a prologue cache, return this frame's
base. */
static CORE_ADDR
mep_frame_base (struct frame_info *next_frame,
void **this_prologue_cache)
{
struct mep_prologue *p
= mep_analyze_frame_prologue (next_frame, this_prologue_cache);
/* In functions that use alloca, the distance between the stack
pointer and the frame base varies dynamically, so we can't use
the SP plus static information like prologue analysis to find the
frame base. However, such functions must have a frame pointer,
to be able to restore the SP on exit. So whenever we do have a
frame pointer, use that to find the base. */
if (p->has_frame_ptr)
{
CORE_ADDR fp
= frame_unwind_register_unsigned (next_frame, MEP_FP_REGNUM);
return fp - p->frame_ptr_offset;
}
else
{
CORE_ADDR sp
= frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
return sp - p->frame_size;
}
}
static void
mep_frame_this_id (struct frame_info *next_frame,
void **this_prologue_cache,
struct frame_id *this_id)
{
*this_id = frame_id_build (mep_frame_base (next_frame, this_prologue_cache),
frame_func_unwind (next_frame));
}
static void
mep_frame_prev_register (struct frame_info *next_frame,
void **this_prologue_cache,
int regnum, int *optimizedp,
enum lval_type *lvalp, CORE_ADDR *addrp,
int *realnump, gdb_byte *bufferp)
{
struct mep_prologue *p
= mep_analyze_frame_prologue (next_frame, this_prologue_cache);
/* There are a number of complications in unwinding registers on the
MeP, having to do with core functions calling VLIW functions and
vice versa.
The least significant bit of the link register, LP.LTOM, is the
VLIW mode toggle bit: it's set if a core function called a VLIW
function, or vice versa, and clear when the caller and callee
were both in the same mode.
So, if we're asked to unwind the PC, then we really want to
unwind the LP and clear the least significant bit. (Real return
addresses are always even.) And if we want to unwind the program
status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.
Tweaking the register values we return in this way means that the
bits in BUFFERP[] are not the same as the bits you'd find at
ADDRP in the inferior, so we make sure lvalp is not_lval when we
do this. */
if (regnum == MEP_PC_REGNUM)
{
mep_frame_prev_register (next_frame, this_prologue_cache, MEP_LP_REGNUM,
optimizedp, lvalp, addrp, realnump, bufferp);
store_unsigned_integer (bufferp, MEP_LP_SIZE,
(extract_unsigned_integer (bufferp, MEP_LP_SIZE)
& ~1));
*lvalp = not_lval;
}
else
{
CORE_ADDR frame_base = mep_frame_base (next_frame, this_prologue_cache);
int reg_size = register_size (get_frame_arch (next_frame), regnum);
/* Our caller's SP is our frame base. */
if (regnum == MEP_SP_REGNUM)
{
*optimizedp = 0;
*lvalp = not_lval;
*addrp = 0;
*realnump = -1;
if (bufferp)
store_unsigned_integer (bufferp, reg_size, frame_base);
}
/* If prologue analysis says we saved this register somewhere,
return a description of the stack slot holding it. */
else if (p->reg_offset[regnum] != 1)
{
*optimizedp = 0;
*lvalp = lval_memory;
*addrp = frame_base + p->reg_offset[regnum];
*realnump = -1;
if (bufferp)
get_frame_memory (next_frame, *addrp, bufferp, reg_size);
}
/* Otherwise, presume we haven't changed the value of this
register, and get it from the next frame. */
else
frame_register_unwind (next_frame, regnum,
optimizedp, lvalp, addrp, realnump, bufferp);
/* If we need to toggle the operating mode, do so. */
if (regnum == MEP_PSW_REGNUM)
{
int lp_optimized;
enum lval_type lp_lval;
CORE_ADDR lp_addr;
int lp_realnum;
char lp_buffer[MEP_LP_SIZE];
/* Get the LP's value, too. */
frame_register_unwind (next_frame, MEP_LP_REGNUM,
&lp_optimized, &lp_lval, &lp_addr,
&lp_realnum, lp_buffer);
/* If LP.LTOM is set, then toggle PSW.OM. */
if (extract_unsigned_integer (lp_buffer, MEP_LP_SIZE) & 0x1)
store_unsigned_integer
(bufferp, MEP_PSW_SIZE,
(extract_unsigned_integer (bufferp, MEP_PSW_SIZE) ^ 0x1000));
*lvalp = not_lval;
}
}
}
static const struct frame_unwind mep_frame_unwind = {
NORMAL_FRAME,
mep_frame_this_id,
mep_frame_prev_register
};
static const struct frame_unwind *
mep_frame_sniffer (struct frame_info *next_frame)
{
return &mep_frame_unwind;
}
/* Our general unwinding function can handle unwinding the PC. */
static CORE_ADDR
mep_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
return frame_unwind_register_unsigned (next_frame, MEP_PC_REGNUM);
}
/* Our general unwinding function can handle unwinding the SP. */
static CORE_ADDR
mep_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
return frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
}
/* Return values. */
static int
mep_use_struct_convention (struct type *type)
{
return (TYPE_LENGTH (type) > MEP_GPR_SIZE);
}
static void
mep_extract_return_value (struct gdbarch *arch,
struct type *type,
struct regcache *regcache,
gdb_byte *valbuf)
{
int byte_order = gdbarch_byte_order (arch);
/* Values that don't occupy a full register appear at the less
significant end of the value. This is the offset to where the
value starts. */
int offset;
/* Return values > MEP_GPR_SIZE bytes are returned in memory,
pointed to by R0. */
gdb_assert (TYPE_LENGTH (type) <= MEP_GPR_SIZE);
if (byte_order == BFD_ENDIAN_BIG)
offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
else
offset = 0;
/* Return values that do fit in a single register are returned in R0. */
regcache_cooked_read_part (regcache, MEP_R0_REGNUM,
offset, TYPE_LENGTH (type),
valbuf);
}
static void
mep_store_return_value (struct gdbarch *arch,
struct type *type,
struct regcache *regcache,
const gdb_byte *valbuf)
{
int byte_order = gdbarch_byte_order (arch);
/* Values that fit in a single register go in R0. */
if (TYPE_LENGTH (type) <= MEP_GPR_SIZE)
{
/* Values that don't occupy a full register appear at the least
significant end of the value. This is the offset to where the
value starts. */
int offset;
if (byte_order == BFD_ENDIAN_BIG)
offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
else
offset = 0;
regcache_cooked_write_part (regcache, MEP_R0_REGNUM,
offset, TYPE_LENGTH (type),
valbuf);
}
/* Return values larger than a single register are returned in
memory, pointed to by R0. Unfortunately, we can't count on R0
pointing to the return buffer, so we raise an error here. */
else
error ("GDB cannot set return values larger than four bytes; "
"the Media Processor's\n"
"calling conventions do not provide enough information "
"to do this.\n"
"Try using the 'return' command with no argument.");
}
enum return_value_convention
mep_return_value (struct gdbarch *gdbarch, struct type *type,
struct regcache *regcache, gdb_byte *readbuf,
const gdb_byte *writebuf)
{
if (mep_use_struct_convention (type))
{
if (readbuf)
{
ULONGEST addr;
/* Although the address of the struct buffer gets passed in R1, it's
returned in R0. Fetch R0's value and then read the memory
at that address. */
regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr);
read_memory (addr, readbuf, TYPE_LENGTH (type));
}
if (writebuf)
{
/* Return values larger than a single register are returned in
memory, pointed to by R0. Unfortunately, we can't count on R0
pointing to the return buffer, so we raise an error here. */
error ("GDB cannot set return values larger than four bytes; "
"the Media Processor's\n"
"calling conventions do not provide enough information "
"to do this.\n"
"Try using the 'return' command with no argument.");
}
return RETURN_VALUE_ABI_RETURNS_ADDRESS;
}
if (readbuf)
mep_extract_return_value (gdbarch, type, regcache, readbuf);
if (writebuf)
mep_store_return_value (gdbarch, type, regcache, writebuf);
return RETURN_VALUE_REGISTER_CONVENTION;
}
/* Inferior calls. */
static CORE_ADDR
mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
{
/* Require word alignment. */
return sp & -4;
}
/* From "lang_spec2.txt":
4.2 Calling conventions
4.2.1 Core register conventions
- Parameters should be evaluated from left to right, and they
should be held in $1,$2,$3,$4 in order. The fifth parameter or
after should be held in the stack. If the size is larger than 4
bytes in the first four parameters, the pointer should be held in
the registers instead. If the size is larger than 4 bytes in the
fifth parameter or after, the pointer should be held in the stack.
- Return value of a function should be held in register $0. If the
size of return value is larger than 4 bytes, $1 should hold the
pointer pointing memory that would hold the return value. In this
case, the first parameter should be held in $2, the second one in
$3, and the third one in $4, and the forth parameter or after
should be held in the stack.
[This doesn't say so, but arguments shorter than four bytes are
passed in the least significant end of a four-byte word when
they're passed on the stack.] */
/* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
large to fit in a register, save it on the stack, and place its
address in COPY[i]. SP is the initial stack pointer; return the
new stack pointer. */
static CORE_ADDR
push_large_arguments (CORE_ADDR sp, int argc, struct value **argv,
CORE_ADDR copy[])
{
int i;
for (i = 0; i < argc; i++)
{
unsigned arg_len = TYPE_LENGTH (value_type (argv[i]));
if (arg_len > MEP_GPR_SIZE)
{
/* Reserve space for the copy, and then round the SP down, to
make sure it's all aligned properly. */
sp = (sp - arg_len) & -4;
write_memory (sp, value_contents (argv[i]), arg_len);
copy[i] = sp;
}
}
return sp;
}
static CORE_ADDR
mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
struct regcache *regcache, CORE_ADDR bp_addr,
int argc, struct value **argv, CORE_ADDR sp,
int struct_return,
CORE_ADDR struct_addr)
{
CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0]));
CORE_ADDR func_addr = find_function_addr (function, NULL);
int i;
/* The number of the next register available to hold an argument. */
int arg_reg;
/* The address of the next stack slot available to hold an argument. */
CORE_ADDR arg_stack;
/* The address of the end of the stack area for arguments. This is
just for error checking. */
CORE_ADDR arg_stack_end;
sp = push_large_arguments (sp, argc, argv, copy);
/* Reserve space for the stack arguments, if any. */
arg_stack_end = sp;
if (argc + (struct_addr ? 1 : 0) > 4)
sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE;
arg_reg = MEP_R1_REGNUM;
arg_stack = sp;
/* If we're returning a structure by value, push the pointer to the
buffer as the first argument. */
if (struct_return)
{
regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
arg_reg++;
}
for (i = 0; i < argc; i++)
{
unsigned arg_size = TYPE_LENGTH (value_type (argv[i]));
ULONGEST value;
/* Arguments that fit in a GPR get expanded to fill the GPR. */
if (arg_size <= MEP_GPR_SIZE)
value = extract_unsigned_integer (value_contents (argv[i]),
TYPE_LENGTH (value_type (argv[i])));
/* Arguments too large to fit in a GPR get copied to the stack,
and we pass a pointer to the copy. */
else
value = copy[i];
/* We use $1 -- $4 for passing arguments, then use the stack. */
if (arg_reg <= MEP_R4_REGNUM)
{
regcache_cooked_write_unsigned (regcache, arg_reg, value);
arg_reg++;
}
else
{
char buf[MEP_GPR_SIZE];
store_unsigned_integer (buf, MEP_GPR_SIZE, value);
write_memory (arg_stack, buf, MEP_GPR_SIZE);
arg_stack += MEP_GPR_SIZE;
}
}
gdb_assert (arg_stack <= arg_stack_end);
/* Set the return address. */
regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr);
/* Update the stack pointer. */
regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp);
return sp;
}
static struct frame_id
mep_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
return frame_id_build (mep_unwind_sp (gdbarch, next_frame),
frame_pc_unwind (next_frame));
}
/* Initialization. */
static struct gdbarch *
mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
struct gdbarch *gdbarch;
struct gdbarch_tdep *tdep;
/* Which me_module are we building a gdbarch object for? */
CONFIG_ATTR me_module;
/* If we have a BFD in hand, figure out which me_module it was built
for. Otherwise, use the no-particular-me_module code. */
if (info.abfd)
{
/* The way to get the me_module code depends on the object file
format. At the moment, we only know how to handle ELF. */
if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
me_module = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK;
else
me_module = CONFIG_NONE;
}
else
me_module = CONFIG_NONE;
/* If we're setting the architecture from a file, check the
endianness of the file against that of the me_module. */
if (info.abfd)
{
/* The negations on either side make the comparison treat all
non-zero (true) values as equal. */
if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module))
{
const char *module_name = me_module_name (me_module);
const char *module_endianness
= me_module_big_endian (me_module) ? "big" : "little";
const char *file_name = bfd_get_filename (info.abfd);
const char *file_endianness
= bfd_big_endian (info.abfd) ? "big" : "little";
fputc_unfiltered ('\n', gdb_stderr);
if (module_name)
warning ("the MeP module '%s' is %s-endian, but the executable\n"
"%s is %s-endian.",
module_name, module_endianness,
file_name, file_endianness);
else
warning ("the selected MeP module is %s-endian, but the "
"executable\n"
"%s is %s-endian.",
module_endianness, file_name, file_endianness);
}
}
/* Find a candidate among the list of architectures we've created
already. info->bfd_arch_info needs to match, but we also want
the right me_module: the ELF header's e_flags field needs to
match as well. */
for (arches = gdbarch_list_lookup_by_info (arches, &info);
arches != NULL;
arches = gdbarch_list_lookup_by_info (arches->next, &info))
if (gdbarch_tdep (arches->gdbarch)->me_module == me_module)
return arches->gdbarch;
tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
gdbarch = gdbarch_alloc (&info, tdep);
/* Get a CGEN CPU descriptor for this architecture. */
{
const char *mach_name = info.bfd_arch_info->printable_name;
enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
? CGEN_ENDIAN_BIG
: CGEN_ENDIAN_LITTLE);
tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
CGEN_CPU_OPEN_ENDIAN, endian,
CGEN_CPU_OPEN_END);
}
tdep->me_module = me_module;
/* Register set. */
set_gdbarch_read_pc (gdbarch, mep_read_pc);
set_gdbarch_write_pc (gdbarch, mep_write_pc);
set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS);
set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM);
set_gdbarch_register_name (gdbarch, mep_register_name);
set_gdbarch_register_type (gdbarch, mep_register_type);
set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS);
set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read);
set_gdbarch_pseudo_register_write (gdbarch, mep_pseudo_register_write);
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p);
reggroup_add (gdbarch, all_reggroup);
reggroup_add (gdbarch, general_reggroup);
reggroup_add (gdbarch, save_reggroup);
reggroup_add (gdbarch, restore_reggroup);
reggroup_add (gdbarch, mep_csr_reggroup);
reggroup_add (gdbarch, mep_cr_reggroup);
reggroup_add (gdbarch, mep_ccr_reggroup);
/* Disassembly. */
set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn);
/* Breakpoints. */
set_gdbarch_breakpoint_from_pc (gdbarch, mep_breakpoint_from_pc);
set_gdbarch_decr_pc_after_break (gdbarch, 0);
set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue);
/* Frames and frame unwinding. */
frame_unwind_append_sniffer (gdbarch, mep_frame_sniffer);
set_gdbarch_unwind_pc (gdbarch, mep_unwind_pc);
set_gdbarch_unwind_sp (gdbarch, mep_unwind_sp);
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
set_gdbarch_frame_args_skip (gdbarch, 0);
/* Return values. */
set_gdbarch_return_value (gdbarch, mep_return_value);
/* Inferior function calls. */
set_gdbarch_frame_align (gdbarch, mep_frame_align);
set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call);
set_gdbarch_unwind_dummy_id (gdbarch, mep_unwind_dummy_id);
return gdbarch;
}
void
_initialize_mep_tdep (void)
{
mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
mep_cr_reggroup = reggroup_new ("cr", USER_REGGROUP);
mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP);
register_gdbarch_init (bfd_arch_mep, mep_gdbarch_init);
mep_init_pseudoregister_maps ();
}