mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-27 03:51:15 +08:00
4793 lines
136 KiB
C
4793 lines
136 KiB
C
/* Alpha specific support for 64-bit ELF
|
||
Copyright 1996, 1997, 1998, 1999, 2000, 2001
|
||
Free Software Foundation, Inc.
|
||
Contributed by Richard Henderson <rth@tamu.edu>.
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||
|
||
/* We need a published ABI spec for this. Until one comes out, don't
|
||
assume this'll remain unchanged forever. */
|
||
|
||
#include "bfd.h"
|
||
#include "sysdep.h"
|
||
#include "libbfd.h"
|
||
#include "elf-bfd.h"
|
||
|
||
#include "elf/alpha.h"
|
||
|
||
#define ALPHAECOFF
|
||
|
||
#define NO_COFF_RELOCS
|
||
#define NO_COFF_SYMBOLS
|
||
#define NO_COFF_LINENOS
|
||
|
||
/* Get the ECOFF swapping routines. Needed for the debug information. */
|
||
#include "coff/internal.h"
|
||
#include "coff/sym.h"
|
||
#include "coff/symconst.h"
|
||
#include "coff/ecoff.h"
|
||
#include "coff/alpha.h"
|
||
#include "aout/ar.h"
|
||
#include "libcoff.h"
|
||
#include "libecoff.h"
|
||
#define ECOFF_64
|
||
#include "ecoffswap.h"
|
||
|
||
static int alpha_elf_dynamic_symbol_p
|
||
PARAMS((struct elf_link_hash_entry *, struct bfd_link_info *));
|
||
static struct bfd_hash_entry * elf64_alpha_link_hash_newfunc
|
||
PARAMS((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
|
||
static struct bfd_link_hash_table * elf64_alpha_bfd_link_hash_table_create
|
||
PARAMS((bfd *));
|
||
|
||
static bfd_reloc_status_type elf64_alpha_reloc_nil
|
||
PARAMS((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
|
||
static bfd_reloc_status_type elf64_alpha_reloc_bad
|
||
PARAMS((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
|
||
static bfd_reloc_status_type elf64_alpha_do_reloc_gpdisp
|
||
PARAMS((bfd *, bfd_vma, bfd_byte *, bfd_byte *));
|
||
static bfd_reloc_status_type elf64_alpha_reloc_gpdisp
|
||
PARAMS((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
|
||
|
||
static reloc_howto_type * elf64_alpha_bfd_reloc_type_lookup
|
||
PARAMS((bfd *, bfd_reloc_code_real_type));
|
||
static void elf64_alpha_info_to_howto
|
||
PARAMS((bfd *, arelent *, Elf64_Internal_Rela *));
|
||
|
||
static boolean elf64_alpha_mkobject
|
||
PARAMS((bfd *));
|
||
static boolean elf64_alpha_object_p
|
||
PARAMS((bfd *));
|
||
static boolean elf64_alpha_section_from_shdr
|
||
PARAMS((bfd *, Elf64_Internal_Shdr *, char *));
|
||
static boolean elf64_alpha_fake_sections
|
||
PARAMS((bfd *, Elf64_Internal_Shdr *, asection *));
|
||
static boolean elf64_alpha_create_got_section
|
||
PARAMS((bfd *, struct bfd_link_info *));
|
||
static boolean elf64_alpha_create_dynamic_sections
|
||
PARAMS((bfd *, struct bfd_link_info *));
|
||
|
||
static boolean elf64_alpha_read_ecoff_info
|
||
PARAMS((bfd *, asection *, struct ecoff_debug_info *));
|
||
static boolean elf64_alpha_is_local_label_name
|
||
PARAMS((bfd *, const char *));
|
||
static boolean elf64_alpha_find_nearest_line
|
||
PARAMS((bfd *, asection *, asymbol **, bfd_vma, const char **,
|
||
const char **, unsigned int *));
|
||
|
||
#if defined(__STDC__) || defined(ALMOST_STDC)
|
||
struct alpha_elf_link_hash_entry;
|
||
#endif
|
||
|
||
static boolean elf64_alpha_output_extsym
|
||
PARAMS((struct alpha_elf_link_hash_entry *, PTR));
|
||
|
||
static boolean elf64_alpha_can_merge_gots
|
||
PARAMS((bfd *, bfd *));
|
||
static void elf64_alpha_merge_gots
|
||
PARAMS((bfd *, bfd *));
|
||
static boolean elf64_alpha_calc_got_offsets_for_symbol
|
||
PARAMS ((struct alpha_elf_link_hash_entry *, PTR));
|
||
static void elf64_alpha_calc_got_offsets PARAMS ((struct bfd_link_info *));
|
||
static boolean elf64_alpha_size_got_sections
|
||
PARAMS ((bfd *, struct bfd_link_info *));
|
||
static boolean elf64_alpha_always_size_sections
|
||
PARAMS ((bfd *, struct bfd_link_info *));
|
||
static boolean elf64_alpha_calc_dynrel_sizes
|
||
PARAMS ((struct alpha_elf_link_hash_entry *, struct bfd_link_info *));
|
||
static boolean elf64_alpha_add_symbol_hook
|
||
PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
|
||
const char **, flagword *, asection **, bfd_vma *));
|
||
static boolean elf64_alpha_check_relocs
|
||
PARAMS((bfd *, struct bfd_link_info *, asection *sec,
|
||
const Elf_Internal_Rela *));
|
||
static boolean elf64_alpha_adjust_dynamic_symbol
|
||
PARAMS((struct bfd_link_info *, struct elf_link_hash_entry *));
|
||
static boolean elf64_alpha_size_dynamic_sections
|
||
PARAMS((bfd *, struct bfd_link_info *));
|
||
static boolean elf64_alpha_relocate_section
|
||
PARAMS((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
|
||
Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
|
||
static boolean elf64_alpha_finish_dynamic_symbol
|
||
PARAMS((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
|
||
Elf_Internal_Sym *));
|
||
static boolean elf64_alpha_finish_dynamic_sections
|
||
PARAMS((bfd *, struct bfd_link_info *));
|
||
static boolean elf64_alpha_final_link
|
||
PARAMS((bfd *, struct bfd_link_info *));
|
||
static boolean elf64_alpha_merge_ind_symbols
|
||
PARAMS((struct alpha_elf_link_hash_entry *, PTR));
|
||
static Elf_Internal_Rela * elf64_alpha_find_reloc_at_ofs
|
||
PARAMS ((Elf_Internal_Rela *, Elf_Internal_Rela *, bfd_vma, int));
|
||
|
||
struct alpha_elf_link_hash_entry
|
||
{
|
||
struct elf_link_hash_entry root;
|
||
|
||
/* External symbol information. */
|
||
EXTR esym;
|
||
|
||
/* Cumulative flags for all the .got entries. */
|
||
int flags;
|
||
|
||
/* Contexts (LITUSE) in which a literal was referenced. */
|
||
#define ALPHA_ELF_LINK_HASH_LU_ADDR 0x01
|
||
#define ALPHA_ELF_LINK_HASH_LU_MEM 0x02
|
||
#define ALPHA_ELF_LINK_HASH_LU_BYTE 0x04
|
||
#define ALPHA_ELF_LINK_HASH_LU_FUNC 0x08
|
||
|
||
/* Used to implement multiple .got subsections. */
|
||
struct alpha_elf_got_entry
|
||
{
|
||
struct alpha_elf_got_entry *next;
|
||
|
||
/* which .got subsection? */
|
||
bfd *gotobj;
|
||
|
||
/* the addend in effect for this entry. */
|
||
bfd_vma addend;
|
||
|
||
/* the .got offset for this entry. */
|
||
int got_offset;
|
||
|
||
int flags;
|
||
|
||
/* An additional flag. */
|
||
#define ALPHA_ELF_GOT_ENTRY_RELOCS_DONE 0x10
|
||
|
||
int use_count;
|
||
} *got_entries;
|
||
|
||
/* used to count non-got, non-plt relocations for delayed sizing
|
||
of relocation sections. */
|
||
struct alpha_elf_reloc_entry
|
||
{
|
||
struct alpha_elf_reloc_entry *next;
|
||
|
||
/* which .reloc section? */
|
||
asection *srel;
|
||
|
||
/* what kind of relocation? */
|
||
unsigned long rtype;
|
||
|
||
/* how many did we find? */
|
||
unsigned long count;
|
||
} *reloc_entries;
|
||
};
|
||
|
||
/* Alpha ELF linker hash table. */
|
||
|
||
struct alpha_elf_link_hash_table
|
||
{
|
||
struct elf_link_hash_table root;
|
||
|
||
/* The head of a list of .got subsections linked through
|
||
alpha_elf_tdata(abfd)->got_link_next. */
|
||
bfd *got_list;
|
||
};
|
||
|
||
/* Look up an entry in a Alpha ELF linker hash table. */
|
||
|
||
#define alpha_elf_link_hash_lookup(table, string, create, copy, follow) \
|
||
((struct alpha_elf_link_hash_entry *) \
|
||
elf_link_hash_lookup (&(table)->root, (string), (create), \
|
||
(copy), (follow)))
|
||
|
||
/* Traverse a Alpha ELF linker hash table. */
|
||
|
||
#define alpha_elf_link_hash_traverse(table, func, info) \
|
||
(elf_link_hash_traverse \
|
||
(&(table)->root, \
|
||
(boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
|
||
(info)))
|
||
|
||
/* Get the Alpha ELF linker hash table from a link_info structure. */
|
||
|
||
#define alpha_elf_hash_table(p) \
|
||
((struct alpha_elf_link_hash_table *) ((p)->hash))
|
||
|
||
/* Get the object's symbols as our own entry type. */
|
||
|
||
#define alpha_elf_sym_hashes(abfd) \
|
||
((struct alpha_elf_link_hash_entry **)elf_sym_hashes(abfd))
|
||
|
||
/* Should we do dynamic things to this symbol? */
|
||
|
||
static int
|
||
alpha_elf_dynamic_symbol_p (h, info)
|
||
struct elf_link_hash_entry *h;
|
||
struct bfd_link_info *info;
|
||
{
|
||
if (h == NULL)
|
||
return false;
|
||
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
|
||
if (h->dynindx == -1)
|
||
return false;
|
||
|
||
if (h->root.type == bfd_link_hash_undefweak
|
||
|| h->root.type == bfd_link_hash_defweak)
|
||
return true;
|
||
|
||
switch (ELF_ST_VISIBILITY (h->other))
|
||
{
|
||
case STV_DEFAULT:
|
||
break;
|
||
case STV_HIDDEN:
|
||
case STV_INTERNAL:
|
||
return false;
|
||
case STV_PROTECTED:
|
||
if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
|
||
return false;
|
||
break;
|
||
}
|
||
|
||
if ((info->shared && !info->symbolic)
|
||
|| ((h->elf_link_hash_flags
|
||
& (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR))
|
||
== (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR)))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Create an entry in a Alpha ELF linker hash table. */
|
||
|
||
static struct bfd_hash_entry *
|
||
elf64_alpha_link_hash_newfunc (entry, table, string)
|
||
struct bfd_hash_entry *entry;
|
||
struct bfd_hash_table *table;
|
||
const char *string;
|
||
{
|
||
struct alpha_elf_link_hash_entry *ret =
|
||
(struct alpha_elf_link_hash_entry *) entry;
|
||
|
||
/* Allocate the structure if it has not already been allocated by a
|
||
subclass. */
|
||
if (ret == (struct alpha_elf_link_hash_entry *) NULL)
|
||
ret = ((struct alpha_elf_link_hash_entry *)
|
||
bfd_hash_allocate (table,
|
||
sizeof (struct alpha_elf_link_hash_entry)));
|
||
if (ret == (struct alpha_elf_link_hash_entry *) NULL)
|
||
return (struct bfd_hash_entry *) ret;
|
||
|
||
/* Call the allocation method of the superclass. */
|
||
ret = ((struct alpha_elf_link_hash_entry *)
|
||
_bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
|
||
table, string));
|
||
if (ret != (struct alpha_elf_link_hash_entry *) NULL)
|
||
{
|
||
/* Set local fields. */
|
||
memset (&ret->esym, 0, sizeof (EXTR));
|
||
/* We use -2 as a marker to indicate that the information has
|
||
not been set. -1 means there is no associated ifd. */
|
||
ret->esym.ifd = -2;
|
||
ret->flags = 0;
|
||
ret->got_entries = NULL;
|
||
ret->reloc_entries = NULL;
|
||
}
|
||
|
||
return (struct bfd_hash_entry *) ret;
|
||
}
|
||
|
||
/* Create a Alpha ELF linker hash table. */
|
||
|
||
static struct bfd_link_hash_table *
|
||
elf64_alpha_bfd_link_hash_table_create (abfd)
|
||
bfd *abfd;
|
||
{
|
||
struct alpha_elf_link_hash_table *ret;
|
||
|
||
ret = ((struct alpha_elf_link_hash_table *)
|
||
bfd_zalloc (abfd, sizeof (struct alpha_elf_link_hash_table)));
|
||
if (ret == (struct alpha_elf_link_hash_table *) NULL)
|
||
return NULL;
|
||
|
||
if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
|
||
elf64_alpha_link_hash_newfunc))
|
||
{
|
||
bfd_release (abfd, ret);
|
||
return NULL;
|
||
}
|
||
|
||
return &ret->root.root;
|
||
}
|
||
|
||
/* We have some private fields hanging off of the elf_tdata structure. */
|
||
|
||
struct alpha_elf_obj_tdata
|
||
{
|
||
struct elf_obj_tdata root;
|
||
|
||
/* For every input file, these are the got entries for that object's
|
||
local symbols. */
|
||
struct alpha_elf_got_entry ** local_got_entries;
|
||
|
||
/* For every input file, this is the object that owns the got that
|
||
this input file uses. */
|
||
bfd *gotobj;
|
||
|
||
/* For every got, this is a linked list through the objects using this got */
|
||
bfd *in_got_link_next;
|
||
|
||
/* For every got, this is a link to the next got subsegment. */
|
||
bfd *got_link_next;
|
||
|
||
/* For every got, this is the section. */
|
||
asection *got;
|
||
|
||
/* For every got, this is it's total number of *entries*. */
|
||
int total_got_entries;
|
||
|
||
/* For every got, this is the sum of the number of *entries* required
|
||
to hold all of the member object's local got. */
|
||
int n_local_got_entries;
|
||
};
|
||
|
||
#define alpha_elf_tdata(abfd) \
|
||
((struct alpha_elf_obj_tdata *) (abfd)->tdata.any)
|
||
|
||
static boolean
|
||
elf64_alpha_mkobject (abfd)
|
||
bfd *abfd;
|
||
{
|
||
abfd->tdata.any = bfd_zalloc (abfd, sizeof (struct alpha_elf_obj_tdata));
|
||
if (abfd->tdata.any == NULL)
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
static boolean
|
||
elf64_alpha_object_p (abfd)
|
||
bfd *abfd;
|
||
{
|
||
/* Allocate our special target data. */
|
||
struct alpha_elf_obj_tdata *new_tdata;
|
||
new_tdata = bfd_zalloc (abfd, sizeof (struct alpha_elf_obj_tdata));
|
||
if (new_tdata == NULL)
|
||
return false;
|
||
new_tdata->root = *abfd->tdata.elf_obj_data;
|
||
abfd->tdata.any = new_tdata;
|
||
|
||
/* Set the right machine number for an Alpha ELF file. */
|
||
return bfd_default_set_arch_mach (abfd, bfd_arch_alpha, 0);
|
||
}
|
||
|
||
/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
|
||
from smaller values. Start with zero, widen, *then* decrement. */
|
||
#define MINUS_ONE (((bfd_vma)0) - 1)
|
||
|
||
static reloc_howto_type elf64_alpha_howto_table[] =
|
||
{
|
||
HOWTO (R_ALPHA_NONE, /* type */
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
true, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
elf64_alpha_reloc_nil, /* special_function */
|
||
"NONE", /* name */
|
||
false, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0, /* dst_mask */
|
||
true), /* pcrel_offset */
|
||
|
||
/* A 32 bit reference to a symbol. */
|
||
HOWTO (R_ALPHA_REFLONG, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
false, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
0, /* special_function */
|
||
"REFLONG", /* name */
|
||
false, /* partial_inplace */
|
||
0xffffffff, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
false), /* pcrel_offset */
|
||
|
||
/* A 64 bit reference to a symbol. */
|
||
HOWTO (R_ALPHA_REFQUAD, /* type */
|
||
0, /* rightshift */
|
||
4, /* size (0 = byte, 1 = short, 2 = long) */
|
||
64, /* bitsize */
|
||
false, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
0, /* special_function */
|
||
"REFQUAD", /* name */
|
||
false, /* partial_inplace */
|
||
MINUS_ONE, /* src_mask */
|
||
MINUS_ONE, /* dst_mask */
|
||
false), /* pcrel_offset */
|
||
|
||
/* A 32 bit GP relative offset. This is just like REFLONG except
|
||
that when the value is used the value of the gp register will be
|
||
added in. */
|
||
HOWTO (R_ALPHA_GPREL32, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
false, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
0, /* special_function */
|
||
"GPREL32", /* name */
|
||
false, /* partial_inplace */
|
||
0xffffffff, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
false), /* pcrel_offset */
|
||
|
||
/* Used for an instruction that refers to memory off the GP register. */
|
||
HOWTO (R_ALPHA_LITERAL, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
16, /* bitsize */
|
||
false, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
0, /* special_function */
|
||
"ELF_LITERAL", /* name */
|
||
false, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
false), /* pcrel_offset */
|
||
|
||
/* This reloc only appears immediately following an ELF_LITERAL reloc.
|
||
It identifies a use of the literal. The symbol index is special:
|
||
1 means the literal address is in the base register of a memory
|
||
format instruction; 2 means the literal address is in the byte
|
||
offset register of a byte-manipulation instruction; 3 means the
|
||
literal address is in the target register of a jsr instruction.
|
||
This does not actually do any relocation. */
|
||
HOWTO (R_ALPHA_LITUSE, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
false, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
elf64_alpha_reloc_nil, /* special_function */
|
||
"LITUSE", /* name */
|
||
false, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0, /* dst_mask */
|
||
false), /* pcrel_offset */
|
||
|
||
/* Load the gp register. This is always used for a ldah instruction
|
||
which loads the upper 16 bits of the gp register. The symbol
|
||
index of the GPDISP instruction is an offset in bytes to the lda
|
||
instruction that loads the lower 16 bits. The value to use for
|
||
the relocation is the difference between the GP value and the
|
||
current location; the load will always be done against a register
|
||
holding the current address.
|
||
|
||
NOTE: Unlike ECOFF, partial in-place relocation is not done. If
|
||
any offset is present in the instructions, it is an offset from
|
||
the register to the ldah instruction. This lets us avoid any
|
||
stupid hackery like inventing a gp value to do partial relocation
|
||
against. Also unlike ECOFF, we do the whole relocation off of
|
||
the GPDISP rather than a GPDISP_HI16/GPDISP_LO16 pair. An odd,
|
||
space consuming bit, that, since all the information was present
|
||
in the GPDISP_HI16 reloc. */
|
||
HOWTO (R_ALPHA_GPDISP, /* type */
|
||
16, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
16, /* bitsize */
|
||
false, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
elf64_alpha_reloc_gpdisp, /* special_function */
|
||
"GPDISP", /* name */
|
||
false, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
true), /* pcrel_offset */
|
||
|
||
/* A 21 bit branch. */
|
||
HOWTO (R_ALPHA_BRADDR, /* type */
|
||
2, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
21, /* bitsize */
|
||
true, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
0, /* special_function */
|
||
"BRADDR", /* name */
|
||
false, /* partial_inplace */
|
||
0x1fffff, /* src_mask */
|
||
0x1fffff, /* dst_mask */
|
||
true), /* pcrel_offset */
|
||
|
||
/* A hint for a jump to a register. */
|
||
HOWTO (R_ALPHA_HINT, /* type */
|
||
2, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
14, /* bitsize */
|
||
true, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
0, /* special_function */
|
||
"HINT", /* name */
|
||
false, /* partial_inplace */
|
||
0x3fff, /* src_mask */
|
||
0x3fff, /* dst_mask */
|
||
true), /* pcrel_offset */
|
||
|
||
/* 16 bit PC relative offset. */
|
||
HOWTO (R_ALPHA_SREL16, /* type */
|
||
0, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
16, /* bitsize */
|
||
true, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
0, /* special_function */
|
||
"SREL16", /* name */
|
||
false, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
true), /* pcrel_offset */
|
||
|
||
/* 32 bit PC relative offset. */
|
||
HOWTO (R_ALPHA_SREL32, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
true, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
0, /* special_function */
|
||
"SREL32", /* name */
|
||
false, /* partial_inplace */
|
||
0xffffffff, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
true), /* pcrel_offset */
|
||
|
||
/* A 64 bit PC relative offset. */
|
||
HOWTO (R_ALPHA_SREL64, /* type */
|
||
0, /* rightshift */
|
||
4, /* size (0 = byte, 1 = short, 2 = long) */
|
||
64, /* bitsize */
|
||
true, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
0, /* special_function */
|
||
"SREL64", /* name */
|
||
false, /* partial_inplace */
|
||
MINUS_ONE, /* src_mask */
|
||
MINUS_ONE, /* dst_mask */
|
||
true), /* pcrel_offset */
|
||
|
||
/* Push a value on the reloc evaluation stack. */
|
||
/* Not implemented -- it's dumb. */
|
||
HOWTO (R_ALPHA_OP_PUSH, /* type */
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
0, /* bitsize */
|
||
false, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
elf64_alpha_reloc_bad, /* special_function */
|
||
"OP_PUSH", /* name */
|
||
false, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0, /* dst_mask */
|
||
false), /* pcrel_offset */
|
||
|
||
/* Store the value from the stack at the given address. Store it in
|
||
a bitfield of size r_size starting at bit position r_offset. */
|
||
/* Not implemented -- it's dumb. */
|
||
HOWTO (R_ALPHA_OP_STORE, /* type */
|
||
0, /* rightshift */
|
||
4, /* size (0 = byte, 1 = short, 2 = long) */
|
||
64, /* bitsize */
|
||
false, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
elf64_alpha_reloc_bad, /* special_function */
|
||
"OP_STORE", /* name */
|
||
false, /* partial_inplace */
|
||
0, /* src_mask */
|
||
MINUS_ONE, /* dst_mask */
|
||
false), /* pcrel_offset */
|
||
|
||
/* Subtract the reloc address from the value on the top of the
|
||
relocation stack. */
|
||
/* Not implemented -- it's dumb. */
|
||
HOWTO (R_ALPHA_OP_PSUB, /* type */
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
0, /* bitsize */
|
||
false, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
elf64_alpha_reloc_bad, /* special_function */
|
||
"OP_PSUB", /* name */
|
||
false, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0, /* dst_mask */
|
||
false), /* pcrel_offset */
|
||
|
||
/* Shift the value on the top of the relocation stack right by the
|
||
given value. */
|
||
/* Not implemented -- it's dumb. */
|
||
HOWTO (R_ALPHA_OP_PRSHIFT, /* type */
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
0, /* bitsize */
|
||
false, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
elf64_alpha_reloc_bad, /* special_function */
|
||
"OP_PRSHIFT", /* name */
|
||
false, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0, /* dst_mask */
|
||
false), /* pcrel_offset */
|
||
|
||
/* Change the value of GP used by +r_addend until the next GPVALUE or the
|
||
end of the input bfd. */
|
||
/* Not implemented -- it's dumb. */
|
||
HOWTO (R_ALPHA_GPVALUE,
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
0, /* bitsize */
|
||
false, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
elf64_alpha_reloc_bad, /* special_function */
|
||
"GPVALUE", /* name */
|
||
false, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0, /* dst_mask */
|
||
false), /* pcrel_offset */
|
||
|
||
/* The high 16 bits of the displacement from GP to the target. */
|
||
HOWTO (R_ALPHA_GPRELHIGH,
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
16, /* bitsize */
|
||
false, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
elf64_alpha_reloc_bad, /* special_function */
|
||
"GPRELHIGH", /* name */
|
||
false, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
false), /* pcrel_offset */
|
||
|
||
/* The low 16 bits of the displacement from GP to the target. */
|
||
HOWTO (R_ALPHA_GPRELLOW,
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
16, /* bitsize */
|
||
false, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
elf64_alpha_reloc_bad, /* special_function */
|
||
"GPRELLOW", /* name */
|
||
false, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
false), /* pcrel_offset */
|
||
|
||
/* A 16-bit displacement from the GP to the target. */
|
||
/* XXX: Not implemented. */
|
||
HOWTO (R_ALPHA_IMMED_GP_16,
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
16, /* bitsize */
|
||
false, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
0, /* special_function */
|
||
"IMMED_GP_16", /* name */
|
||
false, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
false), /* pcrel_offset */
|
||
|
||
/* The high bits of a 32-bit displacement from the GP to the target; the
|
||
low bits are supplied in the subsequent R_ALPHA_IMMED_LO32 relocs. */
|
||
/* XXX: Not implemented. */
|
||
HOWTO (R_ALPHA_IMMED_GP_HI32,
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
0, /* bitsize */
|
||
false, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
elf64_alpha_reloc_bad, /* special_function */
|
||
"IMMED_GP_HI32", /* name */
|
||
false, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0, /* dst_mask */
|
||
false), /* pcrel_offset */
|
||
|
||
/* The high bits of a 32-bit displacement to the starting address of the
|
||
current section (the relocation target is ignored); the low bits are
|
||
supplied in the subsequent R_ALPHA_IMMED_LO32 relocs. */
|
||
/* XXX: Not implemented. */
|
||
HOWTO (R_ALPHA_IMMED_SCN_HI32,
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
0, /* bitsize */
|
||
false, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
elf64_alpha_reloc_bad, /* special_function */
|
||
"IMMED_SCN_HI32", /* name */
|
||
false, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0, /* dst_mask */
|
||
false), /* pcrel_offset */
|
||
|
||
/* The high bits of a 32-bit displacement from the previous br, bsr, jsr
|
||
or jmp insn (as tagged by a BRADDR or HINT reloc) to the target; the
|
||
low bits are supplied by subsequent R_ALPHA_IMMED_LO32 relocs. */
|
||
/* XXX: Not implemented. */
|
||
HOWTO (R_ALPHA_IMMED_BR_HI32,
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
0, /* bitsize */
|
||
false, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
elf64_alpha_reloc_bad, /* special_function */
|
||
"IMMED_BR_HI32", /* name */
|
||
false, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0, /* dst_mask */
|
||
false), /* pcrel_offset */
|
||
|
||
/* The low 16 bits of a displacement calculated in a previous HI32 reloc. */
|
||
/* XXX: Not implemented. */
|
||
HOWTO (R_ALPHA_IMMED_LO32,
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
0, /* bitsize */
|
||
false, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
elf64_alpha_reloc_bad, /* special_function */
|
||
"IMMED_LO32", /* name */
|
||
false, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0, /* dst_mask */
|
||
false), /* pcrel_offset */
|
||
|
||
/* Misc ELF relocations. */
|
||
|
||
/* A dynamic relocation to copy the target into our .dynbss section. */
|
||
/* Not generated, as all Alpha objects use PIC, so it is not needed. It
|
||
is present because every other ELF has one, but should not be used
|
||
because .dynbss is an ugly thing. */
|
||
HOWTO (R_ALPHA_COPY,
|
||
0,
|
||
0,
|
||
0,
|
||
false,
|
||
0,
|
||
complain_overflow_dont,
|
||
bfd_elf_generic_reloc,
|
||
"COPY",
|
||
false,
|
||
0,
|
||
0,
|
||
true),
|
||
|
||
/* A dynamic relocation for a .got entry. */
|
||
HOWTO (R_ALPHA_GLOB_DAT,
|
||
0,
|
||
0,
|
||
0,
|
||
false,
|
||
0,
|
||
complain_overflow_dont,
|
||
bfd_elf_generic_reloc,
|
||
"GLOB_DAT",
|
||
false,
|
||
0,
|
||
0,
|
||
true),
|
||
|
||
/* A dynamic relocation for a .plt entry. */
|
||
HOWTO (R_ALPHA_JMP_SLOT,
|
||
0,
|
||
0,
|
||
0,
|
||
false,
|
||
0,
|
||
complain_overflow_dont,
|
||
bfd_elf_generic_reloc,
|
||
"JMP_SLOT",
|
||
false,
|
||
0,
|
||
0,
|
||
true),
|
||
|
||
/* A dynamic relocation to add the base of the DSO to a 64-bit field. */
|
||
HOWTO (R_ALPHA_RELATIVE,
|
||
0,
|
||
0,
|
||
0,
|
||
false,
|
||
0,
|
||
complain_overflow_dont,
|
||
bfd_elf_generic_reloc,
|
||
"RELATIVE",
|
||
false,
|
||
0,
|
||
0,
|
||
true)
|
||
};
|
||
|
||
/* A relocation function which doesn't do anything. */
|
||
|
||
static bfd_reloc_status_type
|
||
elf64_alpha_reloc_nil (abfd, reloc, sym, data, sec, output_bfd, error_message)
|
||
bfd *abfd ATTRIBUTE_UNUSED;
|
||
arelent *reloc;
|
||
asymbol *sym ATTRIBUTE_UNUSED;
|
||
PTR data ATTRIBUTE_UNUSED;
|
||
asection *sec;
|
||
bfd *output_bfd;
|
||
char **error_message ATTRIBUTE_UNUSED;
|
||
{
|
||
if (output_bfd)
|
||
reloc->address += sec->output_offset;
|
||
return bfd_reloc_ok;
|
||
}
|
||
|
||
/* A relocation function used for an unsupported reloc. */
|
||
|
||
static bfd_reloc_status_type
|
||
elf64_alpha_reloc_bad (abfd, reloc, sym, data, sec, output_bfd, error_message)
|
||
bfd *abfd ATTRIBUTE_UNUSED;
|
||
arelent *reloc;
|
||
asymbol *sym ATTRIBUTE_UNUSED;
|
||
PTR data ATTRIBUTE_UNUSED;
|
||
asection *sec;
|
||
bfd *output_bfd;
|
||
char **error_message ATTRIBUTE_UNUSED;
|
||
{
|
||
if (output_bfd)
|
||
reloc->address += sec->output_offset;
|
||
return bfd_reloc_notsupported;
|
||
}
|
||
|
||
/* Do the work of the GPDISP relocation. */
|
||
|
||
static bfd_reloc_status_type
|
||
elf64_alpha_do_reloc_gpdisp (abfd, gpdisp, p_ldah, p_lda)
|
||
bfd *abfd;
|
||
bfd_vma gpdisp;
|
||
bfd_byte *p_ldah;
|
||
bfd_byte *p_lda;
|
||
{
|
||
bfd_reloc_status_type ret = bfd_reloc_ok;
|
||
bfd_vma addend;
|
||
unsigned long i_ldah, i_lda;
|
||
|
||
i_ldah = bfd_get_32 (abfd, p_ldah);
|
||
i_lda = bfd_get_32 (abfd, p_lda);
|
||
|
||
/* Complain if the instructions are not correct. */
|
||
if (((i_ldah >> 26) & 0x3f) != 0x09
|
||
|| ((i_lda >> 26) & 0x3f) != 0x08)
|
||
ret = bfd_reloc_dangerous;
|
||
|
||
/* Extract the user-supplied offset, mirroring the sign extensions
|
||
that the instructions perform. */
|
||
addend = ((i_ldah & 0xffff) << 16) | (i_lda & 0xffff);
|
||
addend = (addend ^ 0x80008000) - 0x80008000;
|
||
|
||
gpdisp += addend;
|
||
|
||
if ((bfd_signed_vma) gpdisp < -(bfd_signed_vma) 0x80000000
|
||
|| (bfd_signed_vma) gpdisp >= (bfd_signed_vma) 0x7fff8000)
|
||
ret = bfd_reloc_overflow;
|
||
|
||
/* compensate for the sign extension again. */
|
||
i_ldah = ((i_ldah & 0xffff0000)
|
||
| (((gpdisp >> 16) + ((gpdisp >> 15) & 1)) & 0xffff));
|
||
i_lda = (i_lda & 0xffff0000) | (gpdisp & 0xffff);
|
||
|
||
bfd_put_32 (abfd, i_ldah, p_ldah);
|
||
bfd_put_32 (abfd, i_lda, p_lda);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* The special function for the GPDISP reloc. */
|
||
|
||
static bfd_reloc_status_type
|
||
elf64_alpha_reloc_gpdisp (abfd, reloc_entry, sym, data, input_section,
|
||
output_bfd, err_msg)
|
||
bfd *abfd;
|
||
arelent *reloc_entry;
|
||
asymbol *sym ATTRIBUTE_UNUSED;
|
||
PTR data;
|
||
asection *input_section;
|
||
bfd *output_bfd;
|
||
char **err_msg;
|
||
{
|
||
bfd_reloc_status_type ret;
|
||
bfd_vma gp, relocation;
|
||
bfd_byte *p_ldah, *p_lda;
|
||
|
||
/* Don't do anything if we're not doing a final link. */
|
||
if (output_bfd)
|
||
{
|
||
reloc_entry->address += input_section->output_offset;
|
||
return bfd_reloc_ok;
|
||
}
|
||
|
||
if (reloc_entry->address > input_section->_cooked_size ||
|
||
reloc_entry->address + reloc_entry->addend > input_section->_cooked_size)
|
||
return bfd_reloc_outofrange;
|
||
|
||
/* The gp used in the portion of the output object to which this
|
||
input object belongs is cached on the input bfd. */
|
||
gp = _bfd_get_gp_value (abfd);
|
||
|
||
relocation = (input_section->output_section->vma
|
||
+ input_section->output_offset
|
||
+ reloc_entry->address);
|
||
|
||
p_ldah = (bfd_byte *) data + reloc_entry->address;
|
||
p_lda = p_ldah + reloc_entry->addend;
|
||
|
||
ret = elf64_alpha_do_reloc_gpdisp (abfd, gp - relocation, p_ldah, p_lda);
|
||
|
||
/* Complain if the instructions are not correct. */
|
||
if (ret == bfd_reloc_dangerous)
|
||
*err_msg = _("GPDISP relocation did not find ldah and lda instructions");
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* A mapping from BFD reloc types to Alpha ELF reloc types. */
|
||
|
||
struct elf_reloc_map
|
||
{
|
||
bfd_reloc_code_real_type bfd_reloc_val;
|
||
int elf_reloc_val;
|
||
};
|
||
|
||
static const struct elf_reloc_map elf64_alpha_reloc_map[] =
|
||
{
|
||
{BFD_RELOC_NONE, R_ALPHA_NONE},
|
||
{BFD_RELOC_32, R_ALPHA_REFLONG},
|
||
{BFD_RELOC_64, R_ALPHA_REFQUAD},
|
||
{BFD_RELOC_CTOR, R_ALPHA_REFQUAD},
|
||
{BFD_RELOC_GPREL32, R_ALPHA_GPREL32},
|
||
{BFD_RELOC_ALPHA_ELF_LITERAL, R_ALPHA_LITERAL},
|
||
{BFD_RELOC_ALPHA_LITUSE, R_ALPHA_LITUSE},
|
||
{BFD_RELOC_ALPHA_GPDISP, R_ALPHA_GPDISP},
|
||
{BFD_RELOC_23_PCREL_S2, R_ALPHA_BRADDR},
|
||
{BFD_RELOC_ALPHA_HINT, R_ALPHA_HINT},
|
||
{BFD_RELOC_16_PCREL, R_ALPHA_SREL16},
|
||
{BFD_RELOC_32_PCREL, R_ALPHA_SREL32},
|
||
{BFD_RELOC_64_PCREL, R_ALPHA_SREL64},
|
||
|
||
/* The BFD_RELOC_ALPHA_USER_* relocations are used by the assembler to process
|
||
the explicit !<reloc>!sequence relocations, and are mapped into the normal
|
||
relocations at the end of processing. */
|
||
{BFD_RELOC_ALPHA_USER_LITERAL, R_ALPHA_LITERAL},
|
||
{BFD_RELOC_ALPHA_USER_LITUSE_BASE, R_ALPHA_LITUSE},
|
||
{BFD_RELOC_ALPHA_USER_LITUSE_BYTOFF, R_ALPHA_LITUSE},
|
||
{BFD_RELOC_ALPHA_USER_LITUSE_JSR, R_ALPHA_LITUSE},
|
||
{BFD_RELOC_ALPHA_USER_GPDISP, R_ALPHA_GPDISP},
|
||
{BFD_RELOC_ALPHA_USER_GPRELHIGH, R_ALPHA_GPRELHIGH},
|
||
{BFD_RELOC_ALPHA_USER_GPRELLOW, R_ALPHA_GPRELLOW},
|
||
};
|
||
|
||
/* Given a BFD reloc type, return a HOWTO structure. */
|
||
|
||
static reloc_howto_type *
|
||
elf64_alpha_bfd_reloc_type_lookup (abfd, code)
|
||
bfd *abfd ATTRIBUTE_UNUSED;
|
||
bfd_reloc_code_real_type code;
|
||
{
|
||
const struct elf_reloc_map *i, *e;
|
||
i = e = elf64_alpha_reloc_map;
|
||
e += sizeof (elf64_alpha_reloc_map) / sizeof (struct elf_reloc_map);
|
||
for (; i != e; ++i)
|
||
{
|
||
if (i->bfd_reloc_val == code)
|
||
return &elf64_alpha_howto_table[i->elf_reloc_val];
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Given an Alpha ELF reloc type, fill in an arelent structure. */
|
||
|
||
static void
|
||
elf64_alpha_info_to_howto (abfd, cache_ptr, dst)
|
||
bfd *abfd ATTRIBUTE_UNUSED;
|
||
arelent *cache_ptr;
|
||
Elf64_Internal_Rela *dst;
|
||
{
|
||
unsigned r_type;
|
||
|
||
r_type = ELF64_R_TYPE(dst->r_info);
|
||
BFD_ASSERT (r_type < (unsigned int) R_ALPHA_max);
|
||
cache_ptr->howto = &elf64_alpha_howto_table[r_type];
|
||
}
|
||
|
||
/* These functions do relaxation for Alpha ELF.
|
||
|
||
Currently I'm only handling what I can do with existing compiler
|
||
and assembler support, which means no instructions are removed,
|
||
though some may be nopped. At this time GCC does not emit enough
|
||
information to do all of the relaxing that is possible. It will
|
||
take some not small amount of work for that to happen.
|
||
|
||
There are a couple of interesting papers that I once read on this
|
||
subject, that I cannot find references to at the moment, that
|
||
related to Alpha in particular. They are by David Wall, then of
|
||
DEC WRL. */
|
||
|
||
#define OP_LDA 0x08
|
||
#define OP_LDAH 0x09
|
||
#define INSN_JSR 0x68004000
|
||
#define INSN_JSR_MASK 0xfc00c000
|
||
#define OP_LDQ 0x29
|
||
#define OP_BR 0x30
|
||
#define OP_BSR 0x34
|
||
#define INSN_UNOP 0x2fe00000
|
||
|
||
struct alpha_relax_info
|
||
{
|
||
bfd *abfd;
|
||
asection *sec;
|
||
bfd_byte *contents;
|
||
Elf_Internal_Rela *relocs, *relend;
|
||
struct bfd_link_info *link_info;
|
||
boolean changed_contents;
|
||
boolean changed_relocs;
|
||
bfd_vma gp;
|
||
bfd *gotobj;
|
||
asection *tsec;
|
||
struct alpha_elf_link_hash_entry *h;
|
||
struct alpha_elf_got_entry *gotent;
|
||
unsigned char other;
|
||
};
|
||
|
||
static Elf_Internal_Rela * elf64_alpha_relax_with_lituse
|
||
PARAMS((struct alpha_relax_info *info, bfd_vma symval,
|
||
Elf_Internal_Rela *irel, Elf_Internal_Rela *irelend));
|
||
|
||
static boolean elf64_alpha_relax_without_lituse
|
||
PARAMS((struct alpha_relax_info *info, bfd_vma symval,
|
||
Elf_Internal_Rela *irel));
|
||
|
||
static bfd_vma elf64_alpha_relax_opt_call
|
||
PARAMS((struct alpha_relax_info *info, bfd_vma symval));
|
||
|
||
static boolean elf64_alpha_relax_section
|
||
PARAMS((bfd *abfd, asection *sec, struct bfd_link_info *link_info,
|
||
boolean *again));
|
||
|
||
static Elf_Internal_Rela *
|
||
elf64_alpha_find_reloc_at_ofs (rel, relend, offset, type)
|
||
Elf_Internal_Rela *rel, *relend;
|
||
bfd_vma offset;
|
||
int type;
|
||
{
|
||
while (rel < relend)
|
||
{
|
||
if (rel->r_offset == offset && ELF64_R_TYPE (rel->r_info) == type)
|
||
return rel;
|
||
++rel;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
static Elf_Internal_Rela *
|
||
elf64_alpha_relax_with_lituse (info, symval, irel, irelend)
|
||
struct alpha_relax_info *info;
|
||
bfd_vma symval;
|
||
Elf_Internal_Rela *irel, *irelend;
|
||
{
|
||
Elf_Internal_Rela *urel;
|
||
int flags, count, i;
|
||
bfd_signed_vma disp;
|
||
boolean fits16;
|
||
boolean fits32;
|
||
boolean lit_reused = false;
|
||
boolean all_optimized = true;
|
||
unsigned int lit_insn;
|
||
|
||
lit_insn = bfd_get_32 (info->abfd, info->contents + irel->r_offset);
|
||
if (lit_insn >> 26 != OP_LDQ)
|
||
{
|
||
((*_bfd_error_handler)
|
||
("%s: %s+0x%lx: warning: LITERAL relocation against unexpected insn",
|
||
bfd_get_filename (info->abfd), info->sec->name,
|
||
(unsigned long)irel->r_offset));
|
||
return irel;
|
||
}
|
||
|
||
/* Summarize how this particular LITERAL is used. */
|
||
for (urel = irel+1, flags = count = 0; urel < irelend; ++urel, ++count)
|
||
{
|
||
if (ELF64_R_TYPE (urel->r_info) != R_ALPHA_LITUSE)
|
||
break;
|
||
if (urel->r_addend >= 0 && urel->r_addend <= 3)
|
||
flags |= 1 << urel->r_addend;
|
||
}
|
||
|
||
/* A little preparation for the loop... */
|
||
disp = symval - info->gp;
|
||
|
||
for (urel = irel+1, i = 0; i < count; ++i, ++urel)
|
||
{
|
||
unsigned int insn;
|
||
int insn_disp;
|
||
bfd_signed_vma xdisp;
|
||
|
||
insn = bfd_get_32 (info->abfd, info->contents + urel->r_offset);
|
||
|
||
switch (urel->r_addend)
|
||
{
|
||
default: /* 0 = ADDRESS FORMAT */
|
||
/* This type is really just a placeholder to note that all
|
||
uses cannot be optimized, but to still allow some. */
|
||
all_optimized = false;
|
||
break;
|
||
|
||
case 1: /* MEM FORMAT */
|
||
/* We can always optimize 16-bit displacements. */
|
||
|
||
/* Extract the displacement from the instruction, sign-extending
|
||
it if necessary, then test whether it is within 16 or 32 bits
|
||
displacement from GP. */
|
||
insn_disp = insn & 0x0000ffff;
|
||
if (insn_disp & 0x00008000)
|
||
insn_disp |= 0xffff0000; /* Negative: sign-extend. */
|
||
|
||
xdisp = disp + insn_disp;
|
||
fits16 = (xdisp >= - (bfd_signed_vma) 0x00008000 && xdisp < 0x00008000);
|
||
fits32 = (xdisp >= - (bfd_signed_vma) 0x80000000 && xdisp < 0x7fff8000);
|
||
|
||
if (fits16)
|
||
{
|
||
/* Take the op code and dest from this insn, take the base
|
||
register from the literal insn. Leave the offset alone. */
|
||
insn = (insn & 0xffe0ffff) | (lit_insn & 0x001f0000);
|
||
urel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info),
|
||
R_ALPHA_GPRELLOW);
|
||
urel->r_addend = irel->r_addend;
|
||
info->changed_relocs = true;
|
||
|
||
bfd_put_32 (info->abfd, insn, info->contents + urel->r_offset);
|
||
info->changed_contents = true;
|
||
}
|
||
|
||
/* If all mem+byte, we can optimize 32-bit mem displacements. */
|
||
else if (fits32 && !(flags & ~6))
|
||
{
|
||
/* FIXME: sanity check that lit insn Ra is mem insn Rb. */
|
||
|
||
irel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info),
|
||
R_ALPHA_GPRELHIGH);
|
||
lit_insn = (OP_LDAH << 26) | (lit_insn & 0x03ff0000);
|
||
bfd_put_32 (info->abfd, lit_insn,
|
||
info->contents + irel->r_offset);
|
||
lit_reused = true;
|
||
info->changed_contents = true;
|
||
|
||
urel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info),
|
||
R_ALPHA_GPRELLOW);
|
||
urel->r_addend = irel->r_addend;
|
||
info->changed_relocs = true;
|
||
}
|
||
else
|
||
all_optimized = false;
|
||
break;
|
||
|
||
case 2: /* BYTE OFFSET FORMAT */
|
||
/* We can always optimize byte instructions. */
|
||
|
||
/* FIXME: sanity check the insn for byte op. Check that the
|
||
literal dest reg is indeed Rb in the byte insn. */
|
||
|
||
insn = (insn & ~0x001ff000) | ((symval & 7) << 13) | 0x1000;
|
||
|
||
urel->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
|
||
urel->r_addend = 0;
|
||
info->changed_relocs = true;
|
||
|
||
bfd_put_32 (info->abfd, insn, info->contents + urel->r_offset);
|
||
info->changed_contents = true;
|
||
break;
|
||
|
||
case 3: /* CALL FORMAT */
|
||
{
|
||
/* If not zero, place to jump without needing pv. */
|
||
bfd_vma optdest = elf64_alpha_relax_opt_call (info, symval);
|
||
bfd_vma org = (info->sec->output_section->vma
|
||
+ info->sec->output_offset
|
||
+ urel->r_offset + 4);
|
||
bfd_signed_vma odisp;
|
||
|
||
odisp = (optdest ? optdest : symval) - org;
|
||
if (odisp >= -0x400000 && odisp < 0x400000)
|
||
{
|
||
Elf_Internal_Rela *xrel;
|
||
|
||
/* Preserve branch prediction call stack when possible. */
|
||
if ((insn & INSN_JSR_MASK) == INSN_JSR)
|
||
insn = (OP_BSR << 26) | (insn & 0x03e00000);
|
||
else
|
||
insn = (OP_BR << 26) | (insn & 0x03e00000);
|
||
|
||
urel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info),
|
||
R_ALPHA_BRADDR);
|
||
urel->r_addend = irel->r_addend;
|
||
|
||
if (optdest)
|
||
urel->r_addend += optdest - symval;
|
||
else
|
||
all_optimized = false;
|
||
|
||
bfd_put_32 (info->abfd, insn, info->contents + urel->r_offset);
|
||
|
||
/* Kill any HINT reloc that might exist for this insn. */
|
||
xrel = (elf64_alpha_find_reloc_at_ofs
|
||
(info->relocs, info->relend, urel->r_offset,
|
||
R_ALPHA_HINT));
|
||
if (xrel)
|
||
xrel->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
|
||
|
||
info->changed_contents = true;
|
||
info->changed_relocs = true;
|
||
}
|
||
else
|
||
all_optimized = false;
|
||
|
||
/* ??? If target gp == current gp we can eliminate the gp reload.
|
||
This does depend on every place a gp could be reloaded will
|
||
be, which currently happens for all code produced by gcc, but
|
||
not necessarily by hand-coded assembly, or if sibling calls
|
||
are enabled in gcc.
|
||
|
||
Perhaps conditionalize this on a flag being set in the target
|
||
object file's header, and have gcc set it? */
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* If all cases were optimized, we can reduce the use count on this
|
||
got entry by one, possibly eliminating it. */
|
||
if (all_optimized)
|
||
{
|
||
info->gotent->use_count -= 1;
|
||
alpha_elf_tdata (info->gotent->gotobj)->total_got_entries -= 1;
|
||
if (!info->h)
|
||
alpha_elf_tdata (info->gotent->gotobj)->n_local_got_entries -= 1;
|
||
|
||
/* If the literal instruction is no longer needed (it may have been
|
||
reused. We can eliminate it.
|
||
??? For now, I don't want to deal with compacting the section,
|
||
so just nop it out. */
|
||
if (!lit_reused)
|
||
{
|
||
irel->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
|
||
info->changed_relocs = true;
|
||
|
||
bfd_put_32 (info->abfd, INSN_UNOP, info->contents + irel->r_offset);
|
||
info->changed_contents = true;
|
||
}
|
||
}
|
||
|
||
return irel + count;
|
||
}
|
||
|
||
static bfd_vma
|
||
elf64_alpha_relax_opt_call (info, symval)
|
||
struct alpha_relax_info *info;
|
||
bfd_vma symval;
|
||
{
|
||
/* If the function has the same gp, and we can identify that the
|
||
function does not use its function pointer, we can eliminate the
|
||
address load. */
|
||
|
||
/* If the symbol is marked NOPV, we are being told the function never
|
||
needs its procedure value. */
|
||
if ((info->other & STO_ALPHA_STD_GPLOAD) == STO_ALPHA_NOPV)
|
||
return symval;
|
||
|
||
/* If the symbol is marked STD_GP, we are being told the function does
|
||
a normal ldgp in the first two words. */
|
||
else if ((info->other & STO_ALPHA_STD_GPLOAD) == STO_ALPHA_STD_GPLOAD)
|
||
;
|
||
|
||
/* Otherwise, we may be able to identify a GP load in the first two
|
||
words, which we can then skip. */
|
||
else
|
||
{
|
||
Elf_Internal_Rela *tsec_relocs, *tsec_relend, *tsec_free, *gpdisp;
|
||
bfd_vma ofs;
|
||
|
||
/* Load the relocations from the section that the target symbol is in. */
|
||
if (info->sec == info->tsec)
|
||
{
|
||
tsec_relocs = info->relocs;
|
||
tsec_relend = info->relend;
|
||
tsec_free = NULL;
|
||
}
|
||
else
|
||
{
|
||
tsec_relocs = (_bfd_elf64_link_read_relocs
|
||
(info->abfd, info->tsec, (PTR) NULL,
|
||
(Elf_Internal_Rela *) NULL,
|
||
info->link_info->keep_memory));
|
||
if (tsec_relocs == NULL)
|
||
return 0;
|
||
tsec_relend = tsec_relocs + info->tsec->reloc_count;
|
||
tsec_free = (info->link_info->keep_memory ? NULL : tsec_relocs);
|
||
}
|
||
|
||
/* Recover the symbol's offset within the section. */
|
||
ofs = (symval - info->tsec->output_section->vma
|
||
- info->tsec->output_offset);
|
||
|
||
/* Look for a GPDISP reloc. */
|
||
gpdisp = (elf64_alpha_find_reloc_at_ofs
|
||
(tsec_relocs, tsec_relend, ofs, R_ALPHA_GPDISP));
|
||
|
||
if (!gpdisp || gpdisp->r_addend != 4)
|
||
{
|
||
if (tsec_free)
|
||
free (tsec_free);
|
||
return 0;
|
||
}
|
||
if (tsec_free)
|
||
free (tsec_free);
|
||
}
|
||
|
||
/* We've now determined that we can skip an initial gp load. Verify
|
||
that the call and the target use the same gp. */
|
||
if (info->link_info->hash->creator != info->tsec->owner->xvec
|
||
|| info->gotobj != alpha_elf_tdata (info->tsec->owner)->gotobj)
|
||
return 0;
|
||
|
||
return symval + 8;
|
||
}
|
||
|
||
static boolean
|
||
elf64_alpha_relax_without_lituse (info, symval, irel)
|
||
struct alpha_relax_info *info;
|
||
bfd_vma symval;
|
||
Elf_Internal_Rela *irel;
|
||
{
|
||
unsigned int insn;
|
||
bfd_signed_vma disp;
|
||
|
||
/* Get the instruction. */
|
||
insn = bfd_get_32 (info->abfd, info->contents + irel->r_offset);
|
||
|
||
if (insn >> 26 != OP_LDQ)
|
||
{
|
||
((*_bfd_error_handler)
|
||
("%s: %s+0x%lx: warning: LITERAL relocation against unexpected insn",
|
||
bfd_get_filename (info->abfd), info->sec->name,
|
||
(unsigned long) irel->r_offset));
|
||
return true;
|
||
}
|
||
|
||
/* So we aren't told much. Do what we can with the address load and
|
||
fake the rest. All of the optimizations here require that the
|
||
offset from the GP fit in 16 bits. */
|
||
|
||
disp = symval - info->gp;
|
||
if (disp < -0x8000 || disp >= 0x8000)
|
||
return true;
|
||
|
||
/* On the LITERAL instruction itself, consider exchanging
|
||
`ldq R,X(gp)' for `lda R,Y(gp)'. */
|
||
|
||
insn = (OP_LDA << 26) | (insn & 0x03ff0000);
|
||
bfd_put_32 (info->abfd, insn, info->contents + irel->r_offset);
|
||
info->changed_contents = true;
|
||
|
||
irel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info), R_ALPHA_GPRELLOW);
|
||
info->changed_relocs = true;
|
||
|
||
/* Reduce the use count on this got entry by one, possibly
|
||
eliminating it. */
|
||
info->gotent->use_count -= 1;
|
||
alpha_elf_tdata (info->gotent->gotobj)->total_got_entries -= 1;
|
||
if (!info->h)
|
||
alpha_elf_tdata (info->gotent->gotobj)->n_local_got_entries -= 1;
|
||
|
||
/* ??? Search forward through this basic block looking for insns
|
||
that use the target register. Stop after an insn modifying the
|
||
register is seen, or after a branch or call.
|
||
|
||
Any such memory load insn may be substituted by a load directly
|
||
off the GP. This allows the memory load insn to be issued before
|
||
the calculated GP register would otherwise be ready.
|
||
|
||
Any such jsr insn can be replaced by a bsr if it is in range.
|
||
|
||
This would mean that we'd have to _add_ relocations, the pain of
|
||
which gives one pause. */
|
||
|
||
return true;
|
||
}
|
||
|
||
static boolean
|
||
elf64_alpha_relax_section (abfd, sec, link_info, again)
|
||
bfd *abfd;
|
||
asection *sec;
|
||
struct bfd_link_info *link_info;
|
||
boolean *again;
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
Elf_Internal_Rela *internal_relocs;
|
||
Elf_Internal_Rela *free_relocs = NULL;
|
||
Elf_Internal_Rela *irel, *irelend;
|
||
bfd_byte *free_contents = NULL;
|
||
Elf64_External_Sym *extsyms = NULL;
|
||
Elf64_External_Sym *free_extsyms = NULL;
|
||
struct alpha_elf_got_entry **local_got_entries;
|
||
struct alpha_relax_info info;
|
||
|
||
/* We are not currently changing any sizes, so only one pass. */
|
||
*again = false;
|
||
|
||
if (link_info->relocateable
|
||
|| (sec->flags & SEC_RELOC) == 0
|
||
|| sec->reloc_count == 0)
|
||
return true;
|
||
|
||
/* If this is the first time we have been called for this section,
|
||
initialize the cooked size. */
|
||
if (sec->_cooked_size == 0)
|
||
sec->_cooked_size = sec->_raw_size;
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
local_got_entries = alpha_elf_tdata(abfd)->local_got_entries;
|
||
|
||
/* Load the relocations for this section. */
|
||
internal_relocs = (_bfd_elf64_link_read_relocs
|
||
(abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
|
||
link_info->keep_memory));
|
||
if (internal_relocs == NULL)
|
||
goto error_return;
|
||
if (! link_info->keep_memory)
|
||
free_relocs = internal_relocs;
|
||
|
||
memset(&info, 0, sizeof (info));
|
||
info.abfd = abfd;
|
||
info.sec = sec;
|
||
info.link_info = link_info;
|
||
info.relocs = internal_relocs;
|
||
info.relend = irelend = internal_relocs + sec->reloc_count;
|
||
|
||
/* Find the GP for this object. */
|
||
info.gotobj = alpha_elf_tdata (abfd)->gotobj;
|
||
if (info.gotobj)
|
||
{
|
||
asection *sgot = alpha_elf_tdata (info.gotobj)->got;
|
||
info.gp = _bfd_get_gp_value (info.gotobj);
|
||
if (info.gp == 0)
|
||
{
|
||
info.gp = (sgot->output_section->vma
|
||
+ sgot->output_offset
|
||
+ 0x8000);
|
||
_bfd_set_gp_value (info.gotobj, info.gp);
|
||
}
|
||
}
|
||
|
||
for (irel = internal_relocs; irel < irelend; irel++)
|
||
{
|
||
bfd_vma symval;
|
||
Elf_Internal_Sym isym;
|
||
struct alpha_elf_got_entry *gotent;
|
||
|
||
if (ELF64_R_TYPE (irel->r_info) != (int) R_ALPHA_LITERAL)
|
||
continue;
|
||
|
||
/* Get the section contents. */
|
||
if (info.contents == NULL)
|
||
{
|
||
if (elf_section_data (sec)->this_hdr.contents != NULL)
|
||
info.contents = elf_section_data (sec)->this_hdr.contents;
|
||
else
|
||
{
|
||
info.contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
|
||
if (info.contents == NULL)
|
||
goto error_return;
|
||
free_contents = info.contents;
|
||
|
||
if (! bfd_get_section_contents (abfd, sec, info.contents,
|
||
(file_ptr) 0, sec->_raw_size))
|
||
goto error_return;
|
||
}
|
||
}
|
||
|
||
/* Read this BFD's symbols if we haven't done so already. */
|
||
if (extsyms == NULL)
|
||
{
|
||
if (symtab_hdr->contents != NULL)
|
||
extsyms = (Elf64_External_Sym *) symtab_hdr->contents;
|
||
else
|
||
{
|
||
extsyms = ((Elf64_External_Sym *)
|
||
bfd_malloc (symtab_hdr->sh_size));
|
||
if (extsyms == NULL)
|
||
goto error_return;
|
||
free_extsyms = extsyms;
|
||
if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
|
||
|| (bfd_read (extsyms, 1, symtab_hdr->sh_size, abfd)
|
||
!= symtab_hdr->sh_size))
|
||
goto error_return;
|
||
}
|
||
}
|
||
|
||
/* Get the value of the symbol referred to by the reloc. */
|
||
if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
|
||
{
|
||
/* A local symbol. */
|
||
bfd_elf64_swap_symbol_in (abfd,
|
||
extsyms + ELF64_R_SYM (irel->r_info),
|
||
&isym);
|
||
if (isym.st_shndx == SHN_UNDEF)
|
||
info.tsec = bfd_und_section_ptr;
|
||
else if (isym.st_shndx > 0 && isym.st_shndx < SHN_LORESERVE)
|
||
info.tsec = bfd_section_from_elf_index (abfd, isym.st_shndx);
|
||
else if (isym.st_shndx == SHN_ABS)
|
||
info.tsec = bfd_abs_section_ptr;
|
||
else if (isym.st_shndx == SHN_COMMON)
|
||
info.tsec = bfd_com_section_ptr;
|
||
else
|
||
continue; /* who knows. */
|
||
|
||
info.h = NULL;
|
||
info.other = isym.st_other;
|
||
gotent = local_got_entries[ELF64_R_SYM(irel->r_info)];
|
||
symval = isym.st_value;
|
||
}
|
||
else
|
||
{
|
||
unsigned long indx;
|
||
struct alpha_elf_link_hash_entry *h;
|
||
|
||
indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
|
||
h = alpha_elf_sym_hashes (abfd)[indx];
|
||
BFD_ASSERT (h != NULL);
|
||
|
||
while (h->root.root.type == bfd_link_hash_indirect
|
||
|| h->root.root.type == bfd_link_hash_warning)
|
||
h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;
|
||
|
||
/* We can't do anthing with undefined or dynamic symbols. */
|
||
if (h->root.root.type == bfd_link_hash_undefined
|
||
|| h->root.root.type == bfd_link_hash_undefweak
|
||
|| alpha_elf_dynamic_symbol_p (&h->root, link_info))
|
||
continue;
|
||
|
||
info.h = h;
|
||
info.gotent = gotent;
|
||
info.tsec = h->root.root.u.def.section;
|
||
info.other = h->root.other;
|
||
gotent = h->got_entries;
|
||
symval = h->root.root.u.def.value;
|
||
}
|
||
|
||
/* Search for the got entry to be used by this relocation. */
|
||
while (gotent->gotobj != info.gotobj || gotent->addend != irel->r_addend)
|
||
gotent = gotent->next;
|
||
info.gotent = gotent;
|
||
|
||
symval += info.tsec->output_section->vma + info.tsec->output_offset;
|
||
symval += irel->r_addend;
|
||
|
||
BFD_ASSERT(info.gotent != NULL);
|
||
|
||
/* If there exist LITUSE relocations immediately following, this
|
||
opens up all sorts of interesting optimizations, because we
|
||
now know every location that this address load is used. */
|
||
|
||
if (irel+1 < irelend && ELF64_R_TYPE (irel[1].r_info) == R_ALPHA_LITUSE)
|
||
{
|
||
irel = elf64_alpha_relax_with_lituse (&info, symval, irel, irelend);
|
||
if (irel == NULL)
|
||
goto error_return;
|
||
}
|
||
else
|
||
{
|
||
if (!elf64_alpha_relax_without_lituse (&info, symval, irel))
|
||
goto error_return;
|
||
}
|
||
}
|
||
|
||
if (!elf64_alpha_size_got_sections (abfd, link_info))
|
||
return false;
|
||
|
||
if (info.changed_relocs)
|
||
{
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
}
|
||
else if (free_relocs != NULL)
|
||
{
|
||
free (free_relocs);
|
||
}
|
||
|
||
if (info.changed_contents)
|
||
{
|
||
elf_section_data (sec)->this_hdr.contents = info.contents;
|
||
}
|
||
else if (free_contents != NULL)
|
||
{
|
||
if (! link_info->keep_memory)
|
||
free (free_contents);
|
||
else
|
||
{
|
||
/* Cache the section contents for elf_link_input_bfd. */
|
||
elf_section_data (sec)->this_hdr.contents = info.contents;
|
||
}
|
||
}
|
||
|
||
if (free_extsyms != NULL)
|
||
{
|
||
if (! link_info->keep_memory)
|
||
free (free_extsyms);
|
||
else
|
||
{
|
||
/* Cache the symbols for elf_link_input_bfd. */
|
||
symtab_hdr->contents = extsyms;
|
||
}
|
||
}
|
||
|
||
*again = info.changed_contents || info.changed_relocs;
|
||
|
||
return true;
|
||
|
||
error_return:
|
||
if (free_relocs != NULL)
|
||
free (free_relocs);
|
||
if (free_contents != NULL)
|
||
free (free_contents);
|
||
if (free_extsyms != NULL)
|
||
free (free_extsyms);
|
||
return false;
|
||
}
|
||
|
||
/* PLT/GOT Stuff */
|
||
#define PLT_HEADER_SIZE 32
|
||
#define PLT_HEADER_WORD1 0xc3600000 /* br $27,.+4 */
|
||
#define PLT_HEADER_WORD2 0xa77b000c /* ldq $27,12($27) */
|
||
#define PLT_HEADER_WORD3 0x47ff041f /* nop */
|
||
#define PLT_HEADER_WORD4 0x6b7b0000 /* jmp $27,($27) */
|
||
|
||
#define PLT_ENTRY_SIZE 12
|
||
#define PLT_ENTRY_WORD1 0xc3800000 /* br $28, plt0 */
|
||
#define PLT_ENTRY_WORD2 0
|
||
#define PLT_ENTRY_WORD3 0
|
||
|
||
#define MAX_GOT_ENTRIES (64*1024 / 8)
|
||
|
||
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so"
|
||
|
||
/* Handle an Alpha specific section when reading an object file. This
|
||
is called when elfcode.h finds a section with an unknown type.
|
||
FIXME: We need to handle the SHF_ALPHA_GPREL flag, but I'm not sure
|
||
how to. */
|
||
|
||
static boolean
|
||
elf64_alpha_section_from_shdr (abfd, hdr, name)
|
||
bfd *abfd;
|
||
Elf64_Internal_Shdr *hdr;
|
||
char *name;
|
||
{
|
||
asection *newsect;
|
||
|
||
/* There ought to be a place to keep ELF backend specific flags, but
|
||
at the moment there isn't one. We just keep track of the
|
||
sections by their name, instead. Fortunately, the ABI gives
|
||
suggested names for all the MIPS specific sections, so we will
|
||
probably get away with this. */
|
||
switch (hdr->sh_type)
|
||
{
|
||
case SHT_ALPHA_DEBUG:
|
||
if (strcmp (name, ".mdebug") != 0)
|
||
return false;
|
||
break;
|
||
#ifdef ERIC_neverdef
|
||
case SHT_ALPHA_REGINFO:
|
||
if (strcmp (name, ".reginfo") != 0
|
||
|| hdr->sh_size != sizeof (Elf64_External_RegInfo))
|
||
return false;
|
||
break;
|
||
#endif
|
||
default:
|
||
return false;
|
||
}
|
||
|
||
if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
|
||
return false;
|
||
newsect = hdr->bfd_section;
|
||
|
||
if (hdr->sh_type == SHT_ALPHA_DEBUG)
|
||
{
|
||
if (! bfd_set_section_flags (abfd, newsect,
|
||
(bfd_get_section_flags (abfd, newsect)
|
||
| SEC_DEBUGGING)))
|
||
return false;
|
||
}
|
||
|
||
#ifdef ERIC_neverdef
|
||
/* For a .reginfo section, set the gp value in the tdata information
|
||
from the contents of this section. We need the gp value while
|
||
processing relocs, so we just get it now. */
|
||
if (hdr->sh_type == SHT_ALPHA_REGINFO)
|
||
{
|
||
Elf64_External_RegInfo ext;
|
||
Elf64_RegInfo s;
|
||
|
||
if (! bfd_get_section_contents (abfd, newsect, (PTR) &ext,
|
||
(file_ptr) 0, sizeof ext))
|
||
return false;
|
||
bfd_alpha_elf64_swap_reginfo_in (abfd, &ext, &s);
|
||
elf_gp (abfd) = s.ri_gp_value;
|
||
}
|
||
#endif
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Set the correct type for an Alpha ELF section. We do this by the
|
||
section name, which is a hack, but ought to work. */
|
||
|
||
static boolean
|
||
elf64_alpha_fake_sections (abfd, hdr, sec)
|
||
bfd *abfd;
|
||
Elf64_Internal_Shdr *hdr;
|
||
asection *sec;
|
||
{
|
||
register const char *name;
|
||
|
||
name = bfd_get_section_name (abfd, sec);
|
||
|
||
if (strcmp (name, ".mdebug") == 0)
|
||
{
|
||
hdr->sh_type = SHT_ALPHA_DEBUG;
|
||
/* In a shared object on Irix 5.3, the .mdebug section has an
|
||
entsize of 0. FIXME: Does this matter? */
|
||
if ((abfd->flags & DYNAMIC) != 0 )
|
||
hdr->sh_entsize = 0;
|
||
else
|
||
hdr->sh_entsize = 1;
|
||
}
|
||
#ifdef ERIC_neverdef
|
||
else if (strcmp (name, ".reginfo") == 0)
|
||
{
|
||
hdr->sh_type = SHT_ALPHA_REGINFO;
|
||
/* In a shared object on Irix 5.3, the .reginfo section has an
|
||
entsize of 0x18. FIXME: Does this matter? */
|
||
if ((abfd->flags & DYNAMIC) != 0)
|
||
hdr->sh_entsize = sizeof (Elf64_External_RegInfo);
|
||
else
|
||
hdr->sh_entsize = 1;
|
||
|
||
/* Force the section size to the correct value, even if the
|
||
linker thinks it is larger. The link routine below will only
|
||
write out this much data for .reginfo. */
|
||
hdr->sh_size = sec->_raw_size = sizeof (Elf64_External_RegInfo);
|
||
}
|
||
else if (strcmp (name, ".hash") == 0
|
||
|| strcmp (name, ".dynamic") == 0
|
||
|| strcmp (name, ".dynstr") == 0)
|
||
{
|
||
hdr->sh_entsize = 0;
|
||
hdr->sh_info = SIZEOF_ALPHA_DYNSYM_SECNAMES;
|
||
}
|
||
#endif
|
||
else if (strcmp (name, ".sdata") == 0
|
||
|| strcmp (name, ".sbss") == 0
|
||
|| strcmp (name, ".lit4") == 0
|
||
|| strcmp (name, ".lit8") == 0)
|
||
hdr->sh_flags |= SHF_ALPHA_GPREL;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Hook called by the linker routine which adds symbols from an object
|
||
file. We use it to put .comm items in .sbss, and not .bss. */
|
||
|
||
static boolean
|
||
elf64_alpha_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
const Elf_Internal_Sym *sym;
|
||
const char **namep ATTRIBUTE_UNUSED;
|
||
flagword *flagsp ATTRIBUTE_UNUSED;
|
||
asection **secp;
|
||
bfd_vma *valp;
|
||
{
|
||
if (sym->st_shndx == SHN_COMMON
|
||
&& !info->relocateable
|
||
&& sym->st_size <= bfd_get_gp_size (abfd))
|
||
{
|
||
/* Common symbols less than or equal to -G nn bytes are
|
||
automatically put into .sbss. */
|
||
|
||
asection *scomm = bfd_get_section_by_name (abfd, ".scommon");
|
||
|
||
if (scomm == NULL)
|
||
{
|
||
scomm = bfd_make_section (abfd, ".scommon");
|
||
if (scomm == NULL
|
||
|| !bfd_set_section_flags (abfd, scomm, (SEC_ALLOC
|
||
| SEC_IS_COMMON
|
||
| SEC_LINKER_CREATED)))
|
||
return false;
|
||
}
|
||
|
||
*secp = scomm;
|
||
*valp = sym->st_size;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Create the .got section. */
|
||
|
||
static boolean
|
||
elf64_alpha_create_got_section(abfd, info)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
||
{
|
||
asection *s;
|
||
|
||
if (bfd_get_section_by_name (abfd, ".got"))
|
||
return true;
|
||
|
||
s = bfd_make_section (abfd, ".got");
|
||
if (s == NULL
|
||
|| !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
|
||
| SEC_HAS_CONTENTS
|
||
| SEC_IN_MEMORY
|
||
| SEC_LINKER_CREATED))
|
||
|| !bfd_set_section_alignment (abfd, s, 3))
|
||
return false;
|
||
|
||
alpha_elf_tdata (abfd)->got = s;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Create all the dynamic sections. */
|
||
|
||
static boolean
|
||
elf64_alpha_create_dynamic_sections (abfd, info)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
{
|
||
asection *s;
|
||
struct elf_link_hash_entry *h;
|
||
|
||
/* We need to create .plt, .rela.plt, .got, and .rela.got sections. */
|
||
|
||
s = bfd_make_section (abfd, ".plt");
|
||
if (s == NULL
|
||
|| ! bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
|
||
| SEC_HAS_CONTENTS
|
||
| SEC_IN_MEMORY
|
||
| SEC_LINKER_CREATED
|
||
| SEC_CODE))
|
||
|| ! bfd_set_section_alignment (abfd, s, 3))
|
||
return false;
|
||
|
||
/* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
|
||
.plt section. */
|
||
h = NULL;
|
||
if (! (_bfd_generic_link_add_one_symbol
|
||
(info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s,
|
||
(bfd_vma) 0, (const char *) NULL, false,
|
||
get_elf_backend_data (abfd)->collect,
|
||
(struct bfd_link_hash_entry **) &h)))
|
||
return false;
|
||
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
|
||
h->type = STT_OBJECT;
|
||
|
||
if (info->shared
|
||
&& ! _bfd_elf_link_record_dynamic_symbol (info, h))
|
||
return false;
|
||
|
||
s = bfd_make_section (abfd, ".rela.plt");
|
||
if (s == NULL
|
||
|| !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
|
||
| SEC_HAS_CONTENTS
|
||
| SEC_IN_MEMORY
|
||
| SEC_LINKER_CREATED
|
||
| SEC_READONLY))
|
||
|| ! bfd_set_section_alignment (abfd, s, 3))
|
||
return false;
|
||
|
||
/* We may or may not have created a .got section for this object, but
|
||
we definitely havn't done the rest of the work. */
|
||
|
||
if (!elf64_alpha_create_got_section (abfd, info))
|
||
return false;
|
||
|
||
s = bfd_make_section(abfd, ".rela.got");
|
||
if (s == NULL
|
||
|| !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
|
||
| SEC_HAS_CONTENTS
|
||
| SEC_IN_MEMORY
|
||
| SEC_LINKER_CREATED
|
||
| SEC_READONLY))
|
||
|| !bfd_set_section_alignment (abfd, s, 3))
|
||
return false;
|
||
|
||
/* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the
|
||
dynobj's .got section. We don't do this in the linker script
|
||
because we don't want to define the symbol if we are not creating
|
||
a global offset table. */
|
||
h = NULL;
|
||
if (!(_bfd_generic_link_add_one_symbol
|
||
(info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL,
|
||
alpha_elf_tdata(abfd)->got, (bfd_vma) 0, (const char *) NULL,
|
||
false, get_elf_backend_data (abfd)->collect,
|
||
(struct bfd_link_hash_entry **) &h)))
|
||
return false;
|
||
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
|
||
h->type = STT_OBJECT;
|
||
|
||
if (info->shared
|
||
&& ! _bfd_elf_link_record_dynamic_symbol (info, h))
|
||
return false;
|
||
|
||
elf_hash_table (info)->hgot = h;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Read ECOFF debugging information from a .mdebug section into a
|
||
ecoff_debug_info structure. */
|
||
|
||
static boolean
|
||
elf64_alpha_read_ecoff_info (abfd, section, debug)
|
||
bfd *abfd;
|
||
asection *section;
|
||
struct ecoff_debug_info *debug;
|
||
{
|
||
HDRR *symhdr;
|
||
const struct ecoff_debug_swap *swap;
|
||
char *ext_hdr = NULL;
|
||
|
||
swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
|
||
memset (debug, 0, sizeof (*debug));
|
||
|
||
ext_hdr = (char *) bfd_malloc ((size_t) swap->external_hdr_size);
|
||
if (ext_hdr == NULL && swap->external_hdr_size != 0)
|
||
goto error_return;
|
||
|
||
if (bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
|
||
swap->external_hdr_size)
|
||
== false)
|
||
goto error_return;
|
||
|
||
symhdr = &debug->symbolic_header;
|
||
(*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
|
||
|
||
/* The symbolic header contains absolute file offsets and sizes to
|
||
read. */
|
||
#define READ(ptr, offset, count, size, type) \
|
||
if (symhdr->count == 0) \
|
||
debug->ptr = NULL; \
|
||
else \
|
||
{ \
|
||
debug->ptr = (type) bfd_malloc ((size_t) (size * symhdr->count)); \
|
||
if (debug->ptr == NULL) \
|
||
goto error_return; \
|
||
if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
|
||
|| (bfd_read (debug->ptr, size, symhdr->count, \
|
||
abfd) != size * symhdr->count)) \
|
||
goto error_return; \
|
||
}
|
||
|
||
READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
|
||
READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
|
||
READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
|
||
READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
|
||
READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
|
||
READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
|
||
union aux_ext *);
|
||
READ (ss, cbSsOffset, issMax, sizeof (char), char *);
|
||
READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
|
||
READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
|
||
READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
|
||
READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
|
||
#undef READ
|
||
|
||
debug->fdr = NULL;
|
||
debug->adjust = NULL;
|
||
|
||
return true;
|
||
|
||
error_return:
|
||
if (ext_hdr != NULL)
|
||
free (ext_hdr);
|
||
if (debug->line != NULL)
|
||
free (debug->line);
|
||
if (debug->external_dnr != NULL)
|
||
free (debug->external_dnr);
|
||
if (debug->external_pdr != NULL)
|
||
free (debug->external_pdr);
|
||
if (debug->external_sym != NULL)
|
||
free (debug->external_sym);
|
||
if (debug->external_opt != NULL)
|
||
free (debug->external_opt);
|
||
if (debug->external_aux != NULL)
|
||
free (debug->external_aux);
|
||
if (debug->ss != NULL)
|
||
free (debug->ss);
|
||
if (debug->ssext != NULL)
|
||
free (debug->ssext);
|
||
if (debug->external_fdr != NULL)
|
||
free (debug->external_fdr);
|
||
if (debug->external_rfd != NULL)
|
||
free (debug->external_rfd);
|
||
if (debug->external_ext != NULL)
|
||
free (debug->external_ext);
|
||
return false;
|
||
}
|
||
|
||
/* Alpha ELF local labels start with '$'. */
|
||
|
||
static boolean
|
||
elf64_alpha_is_local_label_name (abfd, name)
|
||
bfd *abfd ATTRIBUTE_UNUSED;
|
||
const char *name;
|
||
{
|
||
return name[0] == '$';
|
||
}
|
||
|
||
/* Alpha ELF follows MIPS ELF in using a special find_nearest_line
|
||
routine in order to handle the ECOFF debugging information. We
|
||
still call this mips_elf_find_line because of the slot
|
||
find_line_info in elf_obj_tdata is declared that way. */
|
||
|
||
struct mips_elf_find_line
|
||
{
|
||
struct ecoff_debug_info d;
|
||
struct ecoff_find_line i;
|
||
};
|
||
|
||
static boolean
|
||
elf64_alpha_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
|
||
functionname_ptr, line_ptr)
|
||
bfd *abfd;
|
||
asection *section;
|
||
asymbol **symbols;
|
||
bfd_vma offset;
|
||
const char **filename_ptr;
|
||
const char **functionname_ptr;
|
||
unsigned int *line_ptr;
|
||
{
|
||
asection *msec;
|
||
|
||
if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
|
||
filename_ptr, functionname_ptr,
|
||
line_ptr, 0,
|
||
&elf_tdata (abfd)->dwarf2_find_line_info))
|
||
return true;
|
||
|
||
msec = bfd_get_section_by_name (abfd, ".mdebug");
|
||
if (msec != NULL)
|
||
{
|
||
flagword origflags;
|
||
struct mips_elf_find_line *fi;
|
||
const struct ecoff_debug_swap * const swap =
|
||
get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
|
||
|
||
/* If we are called during a link, alpha_elf_final_link may have
|
||
cleared the SEC_HAS_CONTENTS field. We force it back on here
|
||
if appropriate (which it normally will be). */
|
||
origflags = msec->flags;
|
||
if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
|
||
msec->flags |= SEC_HAS_CONTENTS;
|
||
|
||
fi = elf_tdata (abfd)->find_line_info;
|
||
if (fi == NULL)
|
||
{
|
||
bfd_size_type external_fdr_size;
|
||
char *fraw_src;
|
||
char *fraw_end;
|
||
struct fdr *fdr_ptr;
|
||
|
||
fi = ((struct mips_elf_find_line *)
|
||
bfd_zalloc (abfd, sizeof (struct mips_elf_find_line)));
|
||
if (fi == NULL)
|
||
{
|
||
msec->flags = origflags;
|
||
return false;
|
||
}
|
||
|
||
if (!elf64_alpha_read_ecoff_info (abfd, msec, &fi->d))
|
||
{
|
||
msec->flags = origflags;
|
||
return false;
|
||
}
|
||
|
||
/* Swap in the FDR information. */
|
||
fi->d.fdr = ((struct fdr *)
|
||
bfd_alloc (abfd,
|
||
(fi->d.symbolic_header.ifdMax *
|
||
sizeof (struct fdr))));
|
||
if (fi->d.fdr == NULL)
|
||
{
|
||
msec->flags = origflags;
|
||
return false;
|
||
}
|
||
external_fdr_size = swap->external_fdr_size;
|
||
fdr_ptr = fi->d.fdr;
|
||
fraw_src = (char *) fi->d.external_fdr;
|
||
fraw_end = (fraw_src
|
||
+ fi->d.symbolic_header.ifdMax * external_fdr_size);
|
||
for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
|
||
(*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
|
||
|
||
elf_tdata (abfd)->find_line_info = fi;
|
||
|
||
/* Note that we don't bother to ever free this information.
|
||
find_nearest_line is either called all the time, as in
|
||
objdump -l, so the information should be saved, or it is
|
||
rarely called, as in ld error messages, so the memory
|
||
wasted is unimportant. Still, it would probably be a
|
||
good idea for free_cached_info to throw it away. */
|
||
}
|
||
|
||
if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
|
||
&fi->i, filename_ptr, functionname_ptr,
|
||
line_ptr))
|
||
{
|
||
msec->flags = origflags;
|
||
return true;
|
||
}
|
||
|
||
msec->flags = origflags;
|
||
}
|
||
|
||
/* Fall back on the generic ELF find_nearest_line routine. */
|
||
|
||
return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
|
||
filename_ptr, functionname_ptr,
|
||
line_ptr);
|
||
}
|
||
|
||
/* Structure used to pass information to alpha_elf_output_extsym. */
|
||
|
||
struct extsym_info
|
||
{
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
struct ecoff_debug_info *debug;
|
||
const struct ecoff_debug_swap *swap;
|
||
boolean failed;
|
||
};
|
||
|
||
static boolean
|
||
elf64_alpha_output_extsym (h, data)
|
||
struct alpha_elf_link_hash_entry *h;
|
||
PTR data;
|
||
{
|
||
struct extsym_info *einfo = (struct extsym_info *) data;
|
||
boolean strip;
|
||
asection *sec, *output_section;
|
||
|
||
if (h->root.indx == -2)
|
||
strip = false;
|
||
else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
|
||
|| (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
|
||
&& (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
|
||
&& (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
|
||
strip = true;
|
||
else if (einfo->info->strip == strip_all
|
||
|| (einfo->info->strip == strip_some
|
||
&& bfd_hash_lookup (einfo->info->keep_hash,
|
||
h->root.root.root.string,
|
||
false, false) == NULL))
|
||
strip = true;
|
||
else
|
||
strip = false;
|
||
|
||
if (strip)
|
||
return true;
|
||
|
||
if (h->esym.ifd == -2)
|
||
{
|
||
h->esym.jmptbl = 0;
|
||
h->esym.cobol_main = 0;
|
||
h->esym.weakext = 0;
|
||
h->esym.reserved = 0;
|
||
h->esym.ifd = ifdNil;
|
||
h->esym.asym.value = 0;
|
||
h->esym.asym.st = stGlobal;
|
||
|
||
if (h->root.root.type != bfd_link_hash_defined
|
||
&& h->root.root.type != bfd_link_hash_defweak)
|
||
h->esym.asym.sc = scAbs;
|
||
else
|
||
{
|
||
const char *name;
|
||
|
||
sec = h->root.root.u.def.section;
|
||
output_section = sec->output_section;
|
||
|
||
/* When making a shared library and symbol h is the one from
|
||
the another shared library, OUTPUT_SECTION may be null. */
|
||
if (output_section == NULL)
|
||
h->esym.asym.sc = scUndefined;
|
||
else
|
||
{
|
||
name = bfd_section_name (output_section->owner, output_section);
|
||
|
||
if (strcmp (name, ".text") == 0)
|
||
h->esym.asym.sc = scText;
|
||
else if (strcmp (name, ".data") == 0)
|
||
h->esym.asym.sc = scData;
|
||
else if (strcmp (name, ".sdata") == 0)
|
||
h->esym.asym.sc = scSData;
|
||
else if (strcmp (name, ".rodata") == 0
|
||
|| strcmp (name, ".rdata") == 0)
|
||
h->esym.asym.sc = scRData;
|
||
else if (strcmp (name, ".bss") == 0)
|
||
h->esym.asym.sc = scBss;
|
||
else if (strcmp (name, ".sbss") == 0)
|
||
h->esym.asym.sc = scSBss;
|
||
else if (strcmp (name, ".init") == 0)
|
||
h->esym.asym.sc = scInit;
|
||
else if (strcmp (name, ".fini") == 0)
|
||
h->esym.asym.sc = scFini;
|
||
else
|
||
h->esym.asym.sc = scAbs;
|
||
}
|
||
}
|
||
|
||
h->esym.asym.reserved = 0;
|
||
h->esym.asym.index = indexNil;
|
||
}
|
||
|
||
if (h->root.root.type == bfd_link_hash_common)
|
||
h->esym.asym.value = h->root.root.u.c.size;
|
||
else if (h->root.root.type == bfd_link_hash_defined
|
||
|| h->root.root.type == bfd_link_hash_defweak)
|
||
{
|
||
if (h->esym.asym.sc == scCommon)
|
||
h->esym.asym.sc = scBss;
|
||
else if (h->esym.asym.sc == scSCommon)
|
||
h->esym.asym.sc = scSBss;
|
||
|
||
sec = h->root.root.u.def.section;
|
||
output_section = sec->output_section;
|
||
if (output_section != NULL)
|
||
h->esym.asym.value = (h->root.root.u.def.value
|
||
+ sec->output_offset
|
||
+ output_section->vma);
|
||
else
|
||
h->esym.asym.value = 0;
|
||
}
|
||
else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
|
||
{
|
||
/* Set type and value for a symbol with a function stub. */
|
||
h->esym.asym.st = stProc;
|
||
sec = bfd_get_section_by_name (einfo->abfd, ".plt");
|
||
if (sec == NULL)
|
||
h->esym.asym.value = 0;
|
||
else
|
||
{
|
||
output_section = sec->output_section;
|
||
if (output_section != NULL)
|
||
h->esym.asym.value = (h->root.plt.offset
|
||
+ sec->output_offset
|
||
+ output_section->vma);
|
||
else
|
||
h->esym.asym.value = 0;
|
||
}
|
||
#if 0 /* FIXME? */
|
||
h->esym.ifd = 0;
|
||
#endif
|
||
}
|
||
|
||
if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
|
||
h->root.root.root.string,
|
||
&h->esym))
|
||
{
|
||
einfo->failed = true;
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* FIXME: Create a runtime procedure table from the .mdebug section.
|
||
|
||
static boolean
|
||
mips_elf_create_procedure_table (handle, abfd, info, s, debug)
|
||
PTR handle;
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
asection *s;
|
||
struct ecoff_debug_info *debug;
|
||
*/
|
||
|
||
/* Handle dynamic relocations when doing an Alpha ELF link. */
|
||
|
||
static boolean
|
||
elf64_alpha_check_relocs (abfd, info, sec, relocs)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
asection *sec;
|
||
const Elf_Internal_Rela *relocs;
|
||
{
|
||
bfd *dynobj;
|
||
asection *sreloc;
|
||
const char *rel_sec_name;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
struct alpha_elf_link_hash_entry **sym_hashes;
|
||
struct alpha_elf_got_entry **local_got_entries;
|
||
const Elf_Internal_Rela *rel, *relend;
|
||
int got_created;
|
||
|
||
if (info->relocateable)
|
||
return true;
|
||
|
||
dynobj = elf_hash_table(info)->dynobj;
|
||
if (dynobj == NULL)
|
||
elf_hash_table(info)->dynobj = dynobj = abfd;
|
||
|
||
sreloc = NULL;
|
||
rel_sec_name = NULL;
|
||
symtab_hdr = &elf_tdata(abfd)->symtab_hdr;
|
||
sym_hashes = alpha_elf_sym_hashes(abfd);
|
||
local_got_entries = alpha_elf_tdata(abfd)->local_got_entries;
|
||
got_created = 0;
|
||
|
||
relend = relocs + sec->reloc_count;
|
||
for (rel = relocs; rel < relend; ++rel)
|
||
{
|
||
unsigned long r_symndx, r_type;
|
||
struct alpha_elf_link_hash_entry *h;
|
||
|
||
r_symndx = ELF64_R_SYM (rel->r_info);
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
h = NULL;
|
||
else
|
||
{
|
||
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
||
|
||
while (h->root.root.type == bfd_link_hash_indirect
|
||
|| h->root.root.type == bfd_link_hash_warning)
|
||
h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;
|
||
|
||
h->root.elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
|
||
}
|
||
r_type = ELF64_R_TYPE (rel->r_info);
|
||
|
||
switch (r_type)
|
||
{
|
||
case R_ALPHA_LITERAL:
|
||
{
|
||
struct alpha_elf_got_entry *gotent;
|
||
int flags = 0;
|
||
|
||
if (h)
|
||
{
|
||
/* Search for and possibly create a got entry. */
|
||
for (gotent = h->got_entries; gotent ; gotent = gotent->next)
|
||
if (gotent->gotobj == abfd &&
|
||
gotent->addend == rel->r_addend)
|
||
break;
|
||
|
||
if (!gotent)
|
||
{
|
||
gotent = ((struct alpha_elf_got_entry *)
|
||
bfd_alloc (abfd,
|
||
sizeof (struct alpha_elf_got_entry)));
|
||
if (!gotent)
|
||
return false;
|
||
|
||
gotent->gotobj = abfd;
|
||
gotent->addend = rel->r_addend;
|
||
gotent->got_offset = -1;
|
||
gotent->flags = 0;
|
||
gotent->use_count = 1;
|
||
|
||
gotent->next = h->got_entries;
|
||
h->got_entries = gotent;
|
||
|
||
alpha_elf_tdata (abfd)->total_got_entries++;
|
||
}
|
||
else
|
||
gotent->use_count += 1;
|
||
}
|
||
else
|
||
{
|
||
/* This is a local .got entry -- record for merge. */
|
||
if (!local_got_entries)
|
||
{
|
||
size_t size;
|
||
size = (symtab_hdr->sh_info
|
||
* sizeof (struct alpha_elf_got_entry *));
|
||
|
||
local_got_entries = ((struct alpha_elf_got_entry **)
|
||
bfd_alloc (abfd, size));
|
||
if (!local_got_entries)
|
||
return false;
|
||
|
||
memset (local_got_entries, 0, size);
|
||
alpha_elf_tdata (abfd)->local_got_entries =
|
||
local_got_entries;
|
||
}
|
||
|
||
for (gotent = local_got_entries[ELF64_R_SYM(rel->r_info)];
|
||
gotent != NULL && gotent->addend != rel->r_addend;
|
||
gotent = gotent->next)
|
||
continue;
|
||
if (!gotent)
|
||
{
|
||
gotent = ((struct alpha_elf_got_entry *)
|
||
bfd_alloc (abfd,
|
||
sizeof (struct alpha_elf_got_entry)));
|
||
if (!gotent)
|
||
return false;
|
||
|
||
gotent->gotobj = abfd;
|
||
gotent->addend = rel->r_addend;
|
||
gotent->got_offset = -1;
|
||
gotent->flags = 0;
|
||
gotent->use_count = 1;
|
||
|
||
gotent->next = local_got_entries[ELF64_R_SYM(rel->r_info)];
|
||
local_got_entries[ELF64_R_SYM(rel->r_info)] = gotent;
|
||
|
||
alpha_elf_tdata(abfd)->total_got_entries++;
|
||
alpha_elf_tdata(abfd)->n_local_got_entries++;
|
||
}
|
||
else
|
||
gotent->use_count += 1;
|
||
}
|
||
|
||
/* Remember how this literal is used from its LITUSEs.
|
||
This will be important when it comes to decide if we can
|
||
create a .plt entry for a function symbol. */
|
||
if (rel+1 < relend
|
||
&& ELF64_R_TYPE (rel[1].r_info) == R_ALPHA_LITUSE)
|
||
{
|
||
do
|
||
{
|
||
++rel;
|
||
if (rel->r_addend >= 1 && rel->r_addend <= 3)
|
||
flags |= 1 << rel->r_addend;
|
||
}
|
||
while (rel+1 < relend &&
|
||
ELF64_R_TYPE (rel[1].r_info) == R_ALPHA_LITUSE);
|
||
}
|
||
else
|
||
{
|
||
/* No LITUSEs -- presumably the address is not being
|
||
loaded for nothing. */
|
||
flags = ALPHA_ELF_LINK_HASH_LU_ADDR;
|
||
}
|
||
|
||
gotent->flags |= flags;
|
||
if (h)
|
||
{
|
||
/* Make a guess as to whether a .plt entry will be needed. */
|
||
if ((h->flags |= flags) == ALPHA_ELF_LINK_HASH_LU_FUNC)
|
||
h->root.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
|
||
else
|
||
h->root.elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
|
||
}
|
||
}
|
||
/* FALLTHRU */
|
||
|
||
case R_ALPHA_GPDISP:
|
||
case R_ALPHA_GPREL32:
|
||
case R_ALPHA_GPRELHIGH:
|
||
case R_ALPHA_GPRELLOW:
|
||
/* We don't actually use the .got here, but the sections must
|
||
be created before the linker maps input sections to output
|
||
sections. */
|
||
if (!got_created)
|
||
{
|
||
if (!elf64_alpha_create_got_section (abfd, info))
|
||
return false;
|
||
|
||
/* Make sure the object's gotobj is set to itself so
|
||
that we default to every object with its own .got.
|
||
We'll merge .gots later once we've collected each
|
||
object's info. */
|
||
alpha_elf_tdata(abfd)->gotobj = abfd;
|
||
|
||
got_created = 1;
|
||
}
|
||
break;
|
||
|
||
case R_ALPHA_SREL16:
|
||
case R_ALPHA_SREL32:
|
||
case R_ALPHA_SREL64:
|
||
if (h == NULL)
|
||
break;
|
||
/* FALLTHRU */
|
||
|
||
case R_ALPHA_REFLONG:
|
||
case R_ALPHA_REFQUAD:
|
||
if (rel_sec_name == NULL)
|
||
{
|
||
rel_sec_name = (bfd_elf_string_from_elf_section
|
||
(abfd, elf_elfheader(abfd)->e_shstrndx,
|
||
elf_section_data(sec)->rel_hdr.sh_name));
|
||
if (rel_sec_name == NULL)
|
||
return false;
|
||
|
||
BFD_ASSERT (strncmp (rel_sec_name, ".rela", 5) == 0
|
||
&& strcmp (bfd_get_section_name (abfd, sec),
|
||
rel_sec_name+5) == 0);
|
||
}
|
||
|
||
/* We need to create the section here now whether we eventually
|
||
use it or not so that it gets mapped to an output section by
|
||
the linker. If not used, we'll kill it in
|
||
size_dynamic_sections. */
|
||
if (sreloc == NULL)
|
||
{
|
||
sreloc = bfd_get_section_by_name (dynobj, rel_sec_name);
|
||
if (sreloc == NULL)
|
||
{
|
||
sreloc = bfd_make_section (dynobj, rel_sec_name);
|
||
if (sreloc == NULL
|
||
|| !bfd_set_section_flags (dynobj, sreloc,
|
||
((sec->flags & (SEC_ALLOC
|
||
| SEC_LOAD))
|
||
| SEC_HAS_CONTENTS
|
||
| SEC_IN_MEMORY
|
||
| SEC_LINKER_CREATED
|
||
| SEC_READONLY))
|
||
|| !bfd_set_section_alignment (dynobj, sreloc, 3))
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (h)
|
||
{
|
||
/* Since we havn't seen all of the input symbols yet, we
|
||
don't know whether we'll actually need a dynamic relocation
|
||
entry for this reloc. So make a record of it. Once we
|
||
find out if this thing needs dynamic relocation we'll
|
||
expand the relocation sections by the appropriate amount. */
|
||
|
||
struct alpha_elf_reloc_entry *rent;
|
||
|
||
for (rent = h->reloc_entries; rent; rent = rent->next)
|
||
if (rent->rtype == r_type && rent->srel == sreloc)
|
||
break;
|
||
|
||
if (!rent)
|
||
{
|
||
rent = ((struct alpha_elf_reloc_entry *)
|
||
bfd_alloc (abfd,
|
||
sizeof (struct alpha_elf_reloc_entry)));
|
||
if (!rent)
|
||
return false;
|
||
|
||
rent->srel = sreloc;
|
||
rent->rtype = r_type;
|
||
rent->count = 1;
|
||
|
||
rent->next = h->reloc_entries;
|
||
h->reloc_entries = rent;
|
||
}
|
||
else
|
||
rent->count++;
|
||
}
|
||
else if (info->shared && (sec->flags & SEC_ALLOC))
|
||
{
|
||
/* If this is a shared library, and the section is to be
|
||
loaded into memory, we need a RELATIVE reloc. */
|
||
sreloc->_raw_size += sizeof (Elf64_External_Rela);
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Adjust a symbol defined by a dynamic object and referenced by a
|
||
regular object. The current definition is in some section of the
|
||
dynamic object, but we're not including those sections. We have to
|
||
change the definition to something the rest of the link can
|
||
understand. */
|
||
|
||
static boolean
|
||
elf64_alpha_adjust_dynamic_symbol (info, h)
|
||
struct bfd_link_info *info;
|
||
struct elf_link_hash_entry *h;
|
||
{
|
||
bfd *dynobj;
|
||
asection *s;
|
||
struct alpha_elf_link_hash_entry *ah;
|
||
|
||
dynobj = elf_hash_table(info)->dynobj;
|
||
ah = (struct alpha_elf_link_hash_entry *)h;
|
||
|
||
/* Now that we've seen all of the input symbols, finalize our decision
|
||
about whether this symbol should get a .plt entry. */
|
||
|
||
if (h->root.type != bfd_link_hash_undefweak
|
||
&& alpha_elf_dynamic_symbol_p (h, info)
|
||
&& ((h->type == STT_FUNC
|
||
&& !(ah->flags & ALPHA_ELF_LINK_HASH_LU_ADDR))
|
||
|| (h->type == STT_NOTYPE
|
||
&& ah->flags == ALPHA_ELF_LINK_HASH_LU_FUNC))
|
||
/* Don't prevent otherwise valid programs from linking by attempting
|
||
to create a new .got entry somewhere. A Correct Solution would be
|
||
to add a new .got section to a new object file and let it be merged
|
||
somewhere later. But for now don't bother. */
|
||
&& ah->got_entries)
|
||
{
|
||
h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
|
||
|
||
s = bfd_get_section_by_name(dynobj, ".plt");
|
||
if (!s && !elf64_alpha_create_dynamic_sections (dynobj, info))
|
||
return false;
|
||
|
||
/* The first bit of the .plt is reserved. */
|
||
if (s->_raw_size == 0)
|
||
s->_raw_size = PLT_HEADER_SIZE;
|
||
|
||
h->plt.offset = s->_raw_size;
|
||
s->_raw_size += PLT_ENTRY_SIZE;
|
||
|
||
/* If this symbol is not defined in a regular file, and we are not
|
||
generating a shared library, then set the symbol to the location
|
||
in the .plt. This is required to make function pointers compare
|
||
equal between the normal executable and the shared library. */
|
||
if (! info->shared
|
||
&& h->root.type != bfd_link_hash_defweak)
|
||
{
|
||
h->root.u.def.section = s;
|
||
h->root.u.def.value = h->plt.offset;
|
||
}
|
||
|
||
/* We also need a JMP_SLOT entry in the .rela.plt section. */
|
||
s = bfd_get_section_by_name (dynobj, ".rela.plt");
|
||
BFD_ASSERT (s != NULL);
|
||
s->_raw_size += sizeof (Elf64_External_Rela);
|
||
|
||
return true;
|
||
}
|
||
else
|
||
h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
|
||
|
||
/* If this is a weak symbol, and there is a real definition, the
|
||
processor independent code will have arranged for us to see the
|
||
real definition first, and we can just use the same value. */
|
||
if (h->weakdef != NULL)
|
||
{
|
||
BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
|
||
|| h->weakdef->root.type == bfd_link_hash_defweak);
|
||
h->root.u.def.section = h->weakdef->root.u.def.section;
|
||
h->root.u.def.value = h->weakdef->root.u.def.value;
|
||
return true;
|
||
}
|
||
|
||
/* This is a reference to a symbol defined by a dynamic object which
|
||
is not a function. The Alpha, since it uses .got entries for all
|
||
symbols even in regular objects, does not need the hackery of a
|
||
.dynbss section and COPY dynamic relocations. */
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Symbol versioning can create new symbols, and make our old symbols
|
||
indirect to the new ones. Consolidate the got and reloc information
|
||
in these situations. */
|
||
|
||
static boolean
|
||
elf64_alpha_merge_ind_symbols (hi, dummy)
|
||
struct alpha_elf_link_hash_entry *hi;
|
||
PTR dummy ATTRIBUTE_UNUSED;
|
||
{
|
||
struct alpha_elf_link_hash_entry *hs;
|
||
|
||
if (hi->root.root.type != bfd_link_hash_indirect)
|
||
return true;
|
||
hs = hi;
|
||
do {
|
||
hs = (struct alpha_elf_link_hash_entry *)hs->root.root.u.i.link;
|
||
} while (hs->root.root.type == bfd_link_hash_indirect);
|
||
|
||
/* Merge the flags. Whee. */
|
||
|
||
hs->flags |= hi->flags;
|
||
|
||
/* Merge the .got entries. Cannibalize the old symbol's list in
|
||
doing so, since we don't need it anymore. */
|
||
|
||
if (hs->got_entries == NULL)
|
||
hs->got_entries = hi->got_entries;
|
||
else
|
||
{
|
||
struct alpha_elf_got_entry *gi, *gs, *gin, *gsh;
|
||
|
||
gsh = hs->got_entries;
|
||
for (gi = hi->got_entries; gi ; gi = gin)
|
||
{
|
||
gin = gi->next;
|
||
for (gs = gsh; gs ; gs = gs->next)
|
||
if (gi->gotobj == gs->gotobj && gi->addend == gs->addend)
|
||
goto got_found;
|
||
gi->next = hs->got_entries;
|
||
hs->got_entries = gi;
|
||
got_found:;
|
||
}
|
||
}
|
||
hi->got_entries = NULL;
|
||
|
||
/* And similar for the reloc entries. */
|
||
|
||
if (hs->reloc_entries == NULL)
|
||
hs->reloc_entries = hi->reloc_entries;
|
||
else
|
||
{
|
||
struct alpha_elf_reloc_entry *ri, *rs, *rin, *rsh;
|
||
|
||
rsh = hs->reloc_entries;
|
||
for (ri = hi->reloc_entries; ri ; ri = rin)
|
||
{
|
||
rin = ri->next;
|
||
for (rs = rsh; rs ; rs = rs->next)
|
||
if (ri->rtype == rs->rtype)
|
||
{
|
||
rs->count += ri->count;
|
||
goto found_reloc;
|
||
}
|
||
ri->next = hs->reloc_entries;
|
||
hs->reloc_entries = ri;
|
||
found_reloc:;
|
||
}
|
||
}
|
||
hi->reloc_entries = NULL;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Is it possible to merge two object file's .got tables? */
|
||
|
||
static boolean
|
||
elf64_alpha_can_merge_gots (a, b)
|
||
bfd *a, *b;
|
||
{
|
||
int total = alpha_elf_tdata (a)->total_got_entries;
|
||
bfd *bsub;
|
||
|
||
/* Trivial quick fallout test. */
|
||
if (total + alpha_elf_tdata (b)->total_got_entries <= MAX_GOT_ENTRIES)
|
||
return true;
|
||
|
||
/* By their nature, local .got entries cannot be merged. */
|
||
if ((total += alpha_elf_tdata (b)->n_local_got_entries) > MAX_GOT_ENTRIES)
|
||
return false;
|
||
|
||
/* Failing the common trivial comparison, we must effectively
|
||
perform the merge. Not actually performing the merge means that
|
||
we don't have to store undo information in case we fail. */
|
||
for (bsub = b; bsub ; bsub = alpha_elf_tdata (bsub)->in_got_link_next)
|
||
{
|
||
struct alpha_elf_link_hash_entry **hashes = alpha_elf_sym_hashes (bsub);
|
||
Elf_Internal_Shdr *symtab_hdr = &elf_tdata (bsub)->symtab_hdr;
|
||
int i, n;
|
||
|
||
n = NUM_SHDR_ENTRIES (symtab_hdr) - symtab_hdr->sh_info;
|
||
for (i = 0; i < n; ++i)
|
||
{
|
||
struct alpha_elf_got_entry *ae, *be;
|
||
struct alpha_elf_link_hash_entry *h;
|
||
|
||
h = hashes[i];
|
||
while (h->root.root.type == bfd_link_hash_indirect
|
||
|| h->root.root.type == bfd_link_hash_warning)
|
||
h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;
|
||
|
||
for (be = h->got_entries; be ; be = be->next)
|
||
{
|
||
if (be->use_count == 0)
|
||
continue;
|
||
if (be->gotobj != b)
|
||
continue;
|
||
|
||
for (ae = h->got_entries; ae ; ae = ae->next)
|
||
if (ae->gotobj == a && ae->addend == be->addend)
|
||
goto global_found;
|
||
|
||
if (++total > MAX_GOT_ENTRIES)
|
||
return false;
|
||
global_found:;
|
||
}
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Actually merge two .got tables. */
|
||
|
||
static void
|
||
elf64_alpha_merge_gots (a, b)
|
||
bfd *a, *b;
|
||
{
|
||
int total = alpha_elf_tdata (a)->total_got_entries;
|
||
bfd *bsub;
|
||
|
||
/* Remember local expansion. */
|
||
{
|
||
int e = alpha_elf_tdata (b)->n_local_got_entries;
|
||
total += e;
|
||
alpha_elf_tdata (a)->n_local_got_entries += e;
|
||
}
|
||
|
||
for (bsub = b; bsub ; bsub = alpha_elf_tdata (bsub)->in_got_link_next)
|
||
{
|
||
struct alpha_elf_got_entry **local_got_entries;
|
||
struct alpha_elf_link_hash_entry **hashes;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
int i, n;
|
||
|
||
/* Let the local .got entries know they are part of a new subsegment. */
|
||
local_got_entries = alpha_elf_tdata (bsub)->local_got_entries;
|
||
if (local_got_entries)
|
||
{
|
||
n = elf_tdata (bsub)->symtab_hdr.sh_info;
|
||
for (i = 0; i < n; ++i)
|
||
{
|
||
struct alpha_elf_got_entry *ent;
|
||
for (ent = local_got_entries[i]; ent; ent = ent->next)
|
||
ent->gotobj = a;
|
||
}
|
||
}
|
||
|
||
/* Merge the global .got entries. */
|
||
hashes = alpha_elf_sym_hashes (bsub);
|
||
symtab_hdr = &elf_tdata (bsub)->symtab_hdr;
|
||
|
||
n = NUM_SHDR_ENTRIES (symtab_hdr) - symtab_hdr->sh_info;
|
||
for (i = 0; i < n; ++i)
|
||
{
|
||
struct alpha_elf_got_entry *ae, *be, **pbe, **start;
|
||
struct alpha_elf_link_hash_entry *h;
|
||
|
||
h = hashes[i];
|
||
while (h->root.root.type == bfd_link_hash_indirect
|
||
|| h->root.root.type == bfd_link_hash_warning)
|
||
h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;
|
||
|
||
start = &h->got_entries;
|
||
for (pbe = start, be = *start; be ; pbe = &be->next, be = be->next)
|
||
{
|
||
if (be->use_count == 0)
|
||
{
|
||
*pbe = be->next;
|
||
continue;
|
||
}
|
||
if (be->gotobj != b)
|
||
continue;
|
||
|
||
for (ae = *start; ae ; ae = ae->next)
|
||
if (ae->gotobj == a && ae->addend == be->addend)
|
||
{
|
||
ae->flags |= be->flags;
|
||
ae->use_count += be->use_count;
|
||
*pbe = be->next;
|
||
goto global_found;
|
||
}
|
||
be->gotobj = a;
|
||
total += 1;
|
||
|
||
global_found:;
|
||
}
|
||
}
|
||
|
||
alpha_elf_tdata (bsub)->gotobj = a;
|
||
}
|
||
alpha_elf_tdata (a)->total_got_entries = total;
|
||
|
||
/* Merge the two in_got chains. */
|
||
{
|
||
bfd *next;
|
||
|
||
bsub = a;
|
||
while ((next = alpha_elf_tdata (bsub)->in_got_link_next) != NULL)
|
||
bsub = next;
|
||
|
||
alpha_elf_tdata (bsub)->in_got_link_next = b;
|
||
}
|
||
}
|
||
|
||
/* Calculate the offsets for the got entries. */
|
||
|
||
static boolean
|
||
elf64_alpha_calc_got_offsets_for_symbol (h, arg)
|
||
struct alpha_elf_link_hash_entry *h;
|
||
PTR arg;
|
||
{
|
||
struct alpha_elf_got_entry *gotent;
|
||
|
||
for (gotent = h->got_entries; gotent; gotent = gotent->next)
|
||
if (gotent->use_count > 0)
|
||
{
|
||
bfd_size_type *plge
|
||
= &alpha_elf_tdata (gotent->gotobj)->got->_raw_size;
|
||
|
||
gotent->got_offset = *plge;
|
||
*plge += 8;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
static void
|
||
elf64_alpha_calc_got_offsets (info)
|
||
struct bfd_link_info *info;
|
||
{
|
||
bfd *i, *got_list = alpha_elf_hash_table(info)->got_list;
|
||
|
||
/* First, zero out the .got sizes, as we may be recalculating the
|
||
.got after optimizing it. */
|
||
for (i = got_list; i ; i = alpha_elf_tdata(i)->got_link_next)
|
||
alpha_elf_tdata(i)->got->_raw_size = 0;
|
||
|
||
/* Next, fill in the offsets for all the global entries. */
|
||
alpha_elf_link_hash_traverse (alpha_elf_hash_table (info),
|
||
elf64_alpha_calc_got_offsets_for_symbol,
|
||
NULL);
|
||
|
||
/* Finally, fill in the offsets for the local entries. */
|
||
for (i = got_list; i ; i = alpha_elf_tdata(i)->got_link_next)
|
||
{
|
||
bfd_size_type got_offset = alpha_elf_tdata(i)->got->_raw_size;
|
||
bfd *j;
|
||
|
||
for (j = i; j ; j = alpha_elf_tdata(j)->in_got_link_next)
|
||
{
|
||
struct alpha_elf_got_entry **local_got_entries, *gotent;
|
||
int k, n;
|
||
|
||
local_got_entries = alpha_elf_tdata(j)->local_got_entries;
|
||
if (!local_got_entries)
|
||
continue;
|
||
|
||
for (k = 0, n = elf_tdata(j)->symtab_hdr.sh_info; k < n; ++k)
|
||
for (gotent = local_got_entries[k]; gotent; gotent = gotent->next)
|
||
if (gotent->use_count > 0)
|
||
{
|
||
gotent->got_offset = got_offset;
|
||
got_offset += 8;
|
||
}
|
||
}
|
||
|
||
alpha_elf_tdata(i)->got->_raw_size = got_offset;
|
||
alpha_elf_tdata(i)->got->_cooked_size = got_offset;
|
||
}
|
||
}
|
||
|
||
/* Constructs the gots. */
|
||
|
||
static boolean
|
||
elf64_alpha_size_got_sections (output_bfd, info)
|
||
bfd *output_bfd;
|
||
struct bfd_link_info *info;
|
||
{
|
||
bfd *i, *got_list, *cur_got_obj;
|
||
int something_changed = 0;
|
||
|
||
got_list = alpha_elf_hash_table (info)->got_list;
|
||
|
||
/* On the first time through, pretend we have an existing got list
|
||
consisting of all of the input files. */
|
||
if (got_list == NULL)
|
||
{
|
||
for (i = info->input_bfds; i ; i = i->link_next)
|
||
{
|
||
bfd *this_got = alpha_elf_tdata (i)->gotobj;
|
||
if (this_got == NULL)
|
||
continue;
|
||
|
||
/* We are assuming no merging has yet ocurred. */
|
||
BFD_ASSERT (this_got == i);
|
||
|
||
if (alpha_elf_tdata (this_got)->total_got_entries > MAX_GOT_ENTRIES)
|
||
{
|
||
/* Yikes! A single object file has too many entries. */
|
||
(*_bfd_error_handler)
|
||
(_("%s: .got subsegment exceeds 64K (size %d)"),
|
||
bfd_get_filename (i),
|
||
alpha_elf_tdata (this_got)->total_got_entries * 8);
|
||
return false;
|
||
}
|
||
|
||
if (got_list == NULL)
|
||
got_list = this_got;
|
||
else
|
||
alpha_elf_tdata(cur_got_obj)->got_link_next = this_got;
|
||
cur_got_obj = this_got;
|
||
}
|
||
|
||
/* Strange degenerate case of no got references. */
|
||
if (got_list == NULL)
|
||
return true;
|
||
|
||
alpha_elf_hash_table (info)->got_list = got_list;
|
||
|
||
/* Force got offsets to be recalculated. */
|
||
something_changed = 1;
|
||
}
|
||
|
||
cur_got_obj = got_list;
|
||
i = alpha_elf_tdata(cur_got_obj)->got_link_next;
|
||
while (i != NULL)
|
||
{
|
||
if (elf64_alpha_can_merge_gots (cur_got_obj, i))
|
||
{
|
||
elf64_alpha_merge_gots (cur_got_obj, i);
|
||
i = alpha_elf_tdata(i)->got_link_next;
|
||
alpha_elf_tdata(cur_got_obj)->got_link_next = i;
|
||
something_changed = 1;
|
||
}
|
||
else
|
||
{
|
||
cur_got_obj = i;
|
||
i = alpha_elf_tdata(i)->got_link_next;
|
||
}
|
||
}
|
||
|
||
/* Once the gots have been merged, fill in the got offsets for
|
||
everything therein. */
|
||
if (1 || something_changed)
|
||
elf64_alpha_calc_got_offsets (info);
|
||
|
||
return true;
|
||
}
|
||
|
||
static boolean
|
||
elf64_alpha_always_size_sections (output_bfd, info)
|
||
bfd *output_bfd;
|
||
struct bfd_link_info *info;
|
||
{
|
||
bfd *i;
|
||
|
||
if (info->relocateable)
|
||
return true;
|
||
|
||
/* First, take care of the indirect symbols created by versioning. */
|
||
alpha_elf_link_hash_traverse (alpha_elf_hash_table (info),
|
||
elf64_alpha_merge_ind_symbols,
|
||
NULL);
|
||
|
||
if (!elf64_alpha_size_got_sections (output_bfd, info))
|
||
return false;
|
||
|
||
/* Allocate space for all of the .got subsections. */
|
||
i = alpha_elf_hash_table (info)->got_list;
|
||
for ( ; i ; i = alpha_elf_tdata(i)->got_link_next)
|
||
{
|
||
asection *s = alpha_elf_tdata(i)->got;
|
||
if (s->_raw_size > 0)
|
||
{
|
||
s->contents = (bfd_byte *) bfd_zalloc (i, s->_raw_size);
|
||
if (s->contents == NULL)
|
||
return false;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Work out the sizes of the dynamic relocation entries. */
|
||
|
||
static boolean
|
||
elf64_alpha_calc_dynrel_sizes (h, info)
|
||
struct alpha_elf_link_hash_entry *h;
|
||
struct bfd_link_info *info;
|
||
{
|
||
/* If the symbol was defined as a common symbol in a regular object
|
||
file, and there was no definition in any dynamic object, then the
|
||
linker will have allocated space for the symbol in a common
|
||
section but the ELF_LINK_HASH_DEF_REGULAR flag will not have been
|
||
set. This is done for dynamic symbols in
|
||
elf_adjust_dynamic_symbol but this is not done for non-dynamic
|
||
symbols, somehow. */
|
||
if (((h->root.elf_link_hash_flags
|
||
& (ELF_LINK_HASH_DEF_REGULAR
|
||
| ELF_LINK_HASH_REF_REGULAR
|
||
| ELF_LINK_HASH_DEF_DYNAMIC))
|
||
== ELF_LINK_HASH_REF_REGULAR)
|
||
&& (h->root.root.type == bfd_link_hash_defined
|
||
|| h->root.root.type == bfd_link_hash_defweak)
|
||
&& !(h->root.root.u.def.section->owner->flags & DYNAMIC))
|
||
{
|
||
h->root.elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
|
||
}
|
||
|
||
/* If the symbol is dynamic, we'll need all the relocations in their
|
||
natural form. If this is a shared object, and it has been forced
|
||
local, we'll need the same number of RELATIVE relocations. */
|
||
|
||
if (alpha_elf_dynamic_symbol_p (&h->root, info) || info->shared)
|
||
{
|
||
struct alpha_elf_reloc_entry *relent;
|
||
bfd *dynobj;
|
||
struct alpha_elf_got_entry *gotent;
|
||
bfd_size_type count;
|
||
asection *srel;
|
||
|
||
for (relent = h->reloc_entries; relent; relent = relent->next)
|
||
if (relent->rtype == R_ALPHA_REFLONG
|
||
|| relent->rtype == R_ALPHA_REFQUAD)
|
||
{
|
||
relent->srel->_raw_size +=
|
||
sizeof (Elf64_External_Rela) * relent->count;
|
||
}
|
||
|
||
dynobj = elf_hash_table(info)->dynobj;
|
||
count = 0;
|
||
|
||
for (gotent = h->got_entries; gotent ; gotent = gotent->next)
|
||
count++;
|
||
|
||
/* If we are using a .plt entry, subtract one, as the first
|
||
reference uses a .rela.plt entry instead. */
|
||
if (h->root.plt.offset != MINUS_ONE)
|
||
count--;
|
||
|
||
if (count > 0)
|
||
{
|
||
srel = bfd_get_section_by_name (dynobj, ".rela.got");
|
||
BFD_ASSERT (srel != NULL);
|
||
srel->_raw_size += sizeof (Elf64_External_Rela) * count;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Set the sizes of the dynamic sections. */
|
||
|
||
static boolean
|
||
elf64_alpha_size_dynamic_sections (output_bfd, info)
|
||
bfd *output_bfd;
|
||
struct bfd_link_info *info;
|
||
{
|
||
bfd *dynobj;
|
||
asection *s;
|
||
boolean reltext;
|
||
boolean relplt;
|
||
|
||
dynobj = elf_hash_table(info)->dynobj;
|
||
BFD_ASSERT(dynobj != NULL);
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
/* Set the contents of the .interp section to the interpreter. */
|
||
if (!info->shared)
|
||
{
|
||
s = bfd_get_section_by_name (dynobj, ".interp");
|
||
BFD_ASSERT (s != NULL);
|
||
s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
|
||
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
|
||
}
|
||
|
||
/* Now that we've seen all of the input files, we can decide which
|
||
symbols need dynamic relocation entries and which don't. We've
|
||
collected information in check_relocs that we can now apply to
|
||
size the dynamic relocation sections. */
|
||
alpha_elf_link_hash_traverse (alpha_elf_hash_table (info),
|
||
elf64_alpha_calc_dynrel_sizes,
|
||
info);
|
||
|
||
/* When building shared libraries, each local .got entry needs a
|
||
RELATIVE reloc. */
|
||
if (info->shared)
|
||
{
|
||
bfd *i;
|
||
asection *srel;
|
||
bfd_size_type count;
|
||
|
||
srel = bfd_get_section_by_name (dynobj, ".rela.got");
|
||
BFD_ASSERT (srel != NULL);
|
||
|
||
for (i = alpha_elf_hash_table(info)->got_list, count = 0;
|
||
i != NULL;
|
||
i = alpha_elf_tdata(i)->got_link_next)
|
||
count += alpha_elf_tdata(i)->n_local_got_entries;
|
||
|
||
srel->_raw_size += count * sizeof (Elf64_External_Rela);
|
||
}
|
||
}
|
||
/* else we're not dynamic and by definition we don't need such things. */
|
||
|
||
/* The check_relocs and adjust_dynamic_symbol entry points have
|
||
determined the sizes of the various dynamic sections. Allocate
|
||
memory for them. */
|
||
reltext = false;
|
||
relplt = false;
|
||
for (s = dynobj->sections; s != NULL; s = s->next)
|
||
{
|
||
const char *name;
|
||
boolean strip;
|
||
|
||
if (!(s->flags & SEC_LINKER_CREATED))
|
||
continue;
|
||
|
||
/* It's OK to base decisions on the section name, because none
|
||
of the dynobj section names depend upon the input files. */
|
||
name = bfd_get_section_name (dynobj, s);
|
||
|
||
/* If we don't need this section, strip it from the output file.
|
||
This is to handle .rela.bss and .rela.plt. We must create it
|
||
in create_dynamic_sections, because it must be created before
|
||
the linker maps input sections to output sections. The
|
||
linker does that before adjust_dynamic_symbol is called, and
|
||
it is that function which decides whether anything needs to
|
||
go into these sections. */
|
||
|
||
strip = false;
|
||
|
||
if (strncmp (name, ".rela", 5) == 0)
|
||
{
|
||
strip = (s->_raw_size == 0);
|
||
|
||
if (!strip)
|
||
{
|
||
const char *outname;
|
||
asection *target;
|
||
|
||
/* If this relocation section applies to a read only
|
||
section, then we probably need a DT_TEXTREL entry. */
|
||
outname = bfd_get_section_name (output_bfd,
|
||
s->output_section);
|
||
target = bfd_get_section_by_name (output_bfd, outname + 5);
|
||
if (target != NULL
|
||
&& (target->flags & SEC_READONLY) != 0
|
||
&& (target->flags & SEC_ALLOC) != 0)
|
||
reltext = true;
|
||
|
||
if (strcmp(name, ".rela.plt") == 0)
|
||
relplt = true;
|
||
|
||
/* We use the reloc_count field as a counter if we need
|
||
to copy relocs into the output file. */
|
||
s->reloc_count = 0;
|
||
}
|
||
}
|
||
else if (strcmp (name, ".plt") != 0)
|
||
{
|
||
/* It's not one of our dynamic sections, so don't allocate space. */
|
||
continue;
|
||
}
|
||
|
||
if (strip)
|
||
_bfd_strip_section_from_output (info, s);
|
||
else
|
||
{
|
||
/* Allocate memory for the section contents. */
|
||
s->contents = (bfd_byte *) bfd_zalloc(dynobj, s->_raw_size);
|
||
if (s->contents == NULL && s->_raw_size != 0)
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
/* Add some entries to the .dynamic section. We fill in the
|
||
values later, in elf64_alpha_finish_dynamic_sections, but we
|
||
must add the entries now so that we get the correct size for
|
||
the .dynamic section. The DT_DEBUG entry is filled in by the
|
||
dynamic linker and used by the debugger. */
|
||
if (!info->shared)
|
||
{
|
||
if (!bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0))
|
||
return false;
|
||
}
|
||
|
||
if (! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0))
|
||
return false;
|
||
|
||
if (relplt)
|
||
{
|
||
if (! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0)
|
||
|| ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
|
||
|| ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0))
|
||
return false;
|
||
}
|
||
|
||
if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0)
|
||
|| ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0)
|
||
|| ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT,
|
||
sizeof (Elf64_External_Rela)))
|
||
return false;
|
||
|
||
if (reltext)
|
||
{
|
||
if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0))
|
||
return false;
|
||
info->flags |= DF_TEXTREL;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Relocate an Alpha ELF section. */
|
||
|
||
static boolean
|
||
elf64_alpha_relocate_section (output_bfd, info, input_bfd, input_section,
|
||
contents, relocs, local_syms, local_sections)
|
||
bfd *output_bfd;
|
||
struct bfd_link_info *info;
|
||
bfd *input_bfd;
|
||
asection *input_section;
|
||
bfd_byte *contents;
|
||
Elf_Internal_Rela *relocs;
|
||
Elf_Internal_Sym *local_syms;
|
||
asection **local_sections;
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
Elf_Internal_Rela *rel;
|
||
Elf_Internal_Rela *relend;
|
||
asection *sec, *sgot, *srel, *srelgot;
|
||
bfd *dynobj, *gotobj;
|
||
bfd_vma gp;
|
||
|
||
srelgot = srel = NULL;
|
||
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
if (dynobj)
|
||
{
|
||
srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
|
||
}
|
||
|
||
/* Find the gp value for this input bfd. */
|
||
sgot = NULL;
|
||
gp = 0;
|
||
gotobj = alpha_elf_tdata (input_bfd)->gotobj;
|
||
if (gotobj)
|
||
{
|
||
sgot = alpha_elf_tdata (gotobj)->got;
|
||
gp = _bfd_get_gp_value (gotobj);
|
||
if (gp == 0)
|
||
{
|
||
gp = (sgot->output_section->vma
|
||
+ sgot->output_offset
|
||
+ 0x8000);
|
||
_bfd_set_gp_value (gotobj, gp);
|
||
}
|
||
}
|
||
|
||
rel = relocs;
|
||
relend = relocs + input_section->reloc_count;
|
||
for (; rel < relend; rel++)
|
||
{
|
||
int r_type;
|
||
reloc_howto_type *howto;
|
||
unsigned long r_symndx;
|
||
struct alpha_elf_link_hash_entry *h;
|
||
Elf_Internal_Sym *sym;
|
||
bfd_vma relocation;
|
||
bfd_vma addend;
|
||
bfd_reloc_status_type r;
|
||
|
||
r_type = ELF64_R_TYPE(rel->r_info);
|
||
if (r_type < 0 || r_type >= (int) R_ALPHA_max)
|
||
{
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return false;
|
||
}
|
||
howto = elf64_alpha_howto_table + r_type;
|
||
|
||
r_symndx = ELF64_R_SYM(rel->r_info);
|
||
|
||
if (info->relocateable)
|
||
{
|
||
/* This is a relocateable link. We don't have to change
|
||
anything, unless the reloc is against a section symbol,
|
||
in which case we have to adjust according to where the
|
||
section symbol winds up in the output section. */
|
||
|
||
/* The symbol associated with GPDISP and LITUSE is
|
||
immaterial. Only the addend is significant. */
|
||
if (r_type == R_ALPHA_GPDISP || r_type == R_ALPHA_LITUSE)
|
||
continue;
|
||
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
{
|
||
sym = local_syms + r_symndx;
|
||
if (ELF_ST_TYPE(sym->st_info) == STT_SECTION)
|
||
{
|
||
sec = local_sections[r_symndx];
|
||
rel->r_addend += sec->output_offset + sym->st_value;
|
||
}
|
||
}
|
||
|
||
continue;
|
||
}
|
||
|
||
/* This is a final link. */
|
||
|
||
h = NULL;
|
||
sym = NULL;
|
||
sec = NULL;
|
||
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
{
|
||
sym = local_syms + r_symndx;
|
||
sec = local_sections[r_symndx];
|
||
relocation = (sec->output_section->vma
|
||
+ sec->output_offset
|
||
+ sym->st_value);
|
||
}
|
||
else
|
||
{
|
||
h = alpha_elf_sym_hashes (input_bfd)[r_symndx - symtab_hdr->sh_info];
|
||
|
||
while (h->root.root.type == bfd_link_hash_indirect
|
||
|| h->root.root.type == bfd_link_hash_warning)
|
||
h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;
|
||
|
||
if (h->root.root.type == bfd_link_hash_defined
|
||
|| h->root.root.type == bfd_link_hash_defweak)
|
||
{
|
||
sec = h->root.root.u.def.section;
|
||
|
||
#if rth_notdef
|
||
if ((r_type == R_ALPHA_LITERAL
|
||
&& elf_hash_table(info)->dynamic_sections_created
|
||
&& (!info->shared
|
||
|| !info->symbolic
|
||
|| !(h->root.elf_link_hash_flags
|
||
& ELF_LINK_HASH_DEF_REGULAR)))
|
||
|| (info->shared
|
||
&& (!info->symbolic
|
||
|| !(h->root.elf_link_hash_flags
|
||
& ELF_LINK_HASH_DEF_REGULAR))
|
||
&& (input_section->flags & SEC_ALLOC)
|
||
&& (r_type == R_ALPHA_REFLONG
|
||
|| r_type == R_ALPHA_REFQUAD
|
||
|| r_type == R_ALPHA_LITERAL)))
|
||
{
|
||
/* In these cases, we don't need the relocation value.
|
||
We check specially because in some obscure cases
|
||
sec->output_section will be NULL. */
|
||
relocation = 0;
|
||
}
|
||
#else
|
||
/* FIXME: Are not these obscure cases simply bugs? Let's
|
||
get something working and come back to this. */
|
||
if (sec->output_section == NULL)
|
||
relocation = 0;
|
||
#endif /* rth_notdef */
|
||
else
|
||
{
|
||
relocation = (h->root.root.u.def.value
|
||
+ sec->output_section->vma
|
||
+ sec->output_offset);
|
||
}
|
||
}
|
||
else if (h->root.root.type == bfd_link_hash_undefweak)
|
||
relocation = 0;
|
||
else if (info->shared && !info->symbolic
|
||
&& !info->no_undefined
|
||
&& ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
|
||
relocation = 0;
|
||
else
|
||
{
|
||
if (!((*info->callbacks->undefined_symbol)
|
||
(info, h->root.root.root.string, input_bfd,
|
||
input_section, rel->r_offset,
|
||
(!info->shared || info->no_undefined
|
||
|| ELF_ST_VISIBILITY (h->root.other)))))
|
||
return false;
|
||
relocation = 0;
|
||
}
|
||
}
|
||
addend = rel->r_addend;
|
||
|
||
switch (r_type)
|
||
{
|
||
case R_ALPHA_GPDISP:
|
||
{
|
||
bfd_byte *p_ldah, *p_lda;
|
||
|
||
BFD_ASSERT(gp != 0);
|
||
|
||
relocation = (input_section->output_section->vma
|
||
+ input_section->output_offset
|
||
+ rel->r_offset);
|
||
|
||
p_ldah = contents + rel->r_offset - input_section->vma;
|
||
p_lda = p_ldah + rel->r_addend;
|
||
|
||
r = elf64_alpha_do_reloc_gpdisp (input_bfd, gp - relocation,
|
||
p_ldah, p_lda);
|
||
}
|
||
break;
|
||
|
||
case R_ALPHA_OP_PUSH:
|
||
case R_ALPHA_OP_STORE:
|
||
case R_ALPHA_OP_PSUB:
|
||
case R_ALPHA_OP_PRSHIFT:
|
||
/* We hate these silly beasts. */
|
||
abort ();
|
||
|
||
case R_ALPHA_LITERAL:
|
||
{
|
||
struct alpha_elf_got_entry *gotent;
|
||
boolean dynamic_symbol;
|
||
|
||
BFD_ASSERT(sgot != NULL);
|
||
BFD_ASSERT(gp != 0);
|
||
|
||
if (h != NULL)
|
||
{
|
||
gotent = h->got_entries;
|
||
dynamic_symbol = alpha_elf_dynamic_symbol_p (&h->root, info);
|
||
}
|
||
else
|
||
{
|
||
gotent = (alpha_elf_tdata(input_bfd)->
|
||
local_got_entries[r_symndx]);
|
||
dynamic_symbol = false;
|
||
}
|
||
|
||
BFD_ASSERT(gotent != NULL);
|
||
|
||
while (gotent->gotobj != gotobj || gotent->addend != addend)
|
||
gotent = gotent->next;
|
||
|
||
BFD_ASSERT(gotent->use_count >= 1);
|
||
|
||
/* Initialize the .got entry's value. */
|
||
if (!(gotent->flags & ALPHA_ELF_GOT_ENTRY_RELOCS_DONE))
|
||
{
|
||
bfd_put_64 (output_bfd, relocation+addend,
|
||
sgot->contents + gotent->got_offset);
|
||
|
||
/* If the symbol has been forced local, output a
|
||
RELATIVE reloc, otherwise it will be handled in
|
||
finish_dynamic_symbol. */
|
||
if (info->shared && !dynamic_symbol)
|
||
{
|
||
Elf_Internal_Rela outrel;
|
||
|
||
BFD_ASSERT(srelgot != NULL);
|
||
|
||
outrel.r_offset = (sgot->output_section->vma
|
||
+ sgot->output_offset
|
||
+ gotent->got_offset);
|
||
outrel.r_info = ELF64_R_INFO(0, R_ALPHA_RELATIVE);
|
||
outrel.r_addend = 0;
|
||
|
||
bfd_elf64_swap_reloca_out (output_bfd, &outrel,
|
||
((Elf64_External_Rela *)
|
||
srelgot->contents)
|
||
+ srelgot->reloc_count++);
|
||
BFD_ASSERT (sizeof (Elf64_External_Rela)
|
||
* srelgot->reloc_count
|
||
<= srelgot->_cooked_size);
|
||
}
|
||
|
||
gotent->flags |= ALPHA_ELF_GOT_ENTRY_RELOCS_DONE;
|
||
}
|
||
|
||
/* Figure the gprel relocation. */
|
||
addend = 0;
|
||
relocation = (sgot->output_section->vma
|
||
+ sgot->output_offset
|
||
+ gotent->got_offset);
|
||
relocation -= gp;
|
||
}
|
||
/* overflow handled by _bfd_final_link_relocate */
|
||
goto default_reloc;
|
||
|
||
case R_ALPHA_GPREL32:
|
||
case R_ALPHA_GPRELLOW:
|
||
BFD_ASSERT(gp != 0);
|
||
relocation -= gp;
|
||
goto default_reloc;
|
||
|
||
case R_ALPHA_GPRELHIGH:
|
||
BFD_ASSERT(gp != 0);
|
||
relocation -= gp;
|
||
relocation += addend;
|
||
addend = 0;
|
||
relocation = (((bfd_signed_vma) relocation >> 16)
|
||
+ ((relocation >> 15) & 1));
|
||
goto default_reloc;
|
||
|
||
case R_ALPHA_BRADDR:
|
||
case R_ALPHA_HINT:
|
||
/* The regular PC-relative stuff measures from the start of
|
||
the instruction rather than the end. */
|
||
addend -= 4;
|
||
goto default_reloc;
|
||
|
||
case R_ALPHA_REFLONG:
|
||
case R_ALPHA_REFQUAD:
|
||
{
|
||
Elf_Internal_Rela outrel;
|
||
boolean skip;
|
||
|
||
/* Careful here to remember RELATIVE relocations for global
|
||
variables for symbolic shared objects. */
|
||
|
||
if (h && alpha_elf_dynamic_symbol_p (&h->root, info))
|
||
{
|
||
BFD_ASSERT(h->root.dynindx != -1);
|
||
outrel.r_info = ELF64_R_INFO(h->root.dynindx, r_type);
|
||
outrel.r_addend = addend;
|
||
addend = 0, relocation = 0;
|
||
}
|
||
else if (info->shared && (input_section->flags & SEC_ALLOC))
|
||
{
|
||
outrel.r_info = ELF64_R_INFO(0, R_ALPHA_RELATIVE);
|
||
outrel.r_addend = 0;
|
||
}
|
||
else
|
||
goto default_reloc;
|
||
|
||
if (!srel)
|
||
{
|
||
const char *name;
|
||
|
||
name = (bfd_elf_string_from_elf_section
|
||
(input_bfd, elf_elfheader(input_bfd)->e_shstrndx,
|
||
elf_section_data(input_section)->rel_hdr.sh_name));
|
||
BFD_ASSERT(name != NULL);
|
||
|
||
srel = bfd_get_section_by_name (dynobj, name);
|
||
BFD_ASSERT(srel != NULL);
|
||
}
|
||
|
||
skip = false;
|
||
|
||
if (elf_section_data (input_section)->stab_info == NULL)
|
||
outrel.r_offset = rel->r_offset;
|
||
else
|
||
{
|
||
bfd_vma off;
|
||
|
||
off = (_bfd_stab_section_offset
|
||
(output_bfd, &elf_hash_table (info)->stab_info,
|
||
input_section,
|
||
&elf_section_data (input_section)->stab_info,
|
||
rel->r_offset));
|
||
if (off == (bfd_vma) -1)
|
||
skip = true;
|
||
outrel.r_offset = off;
|
||
}
|
||
|
||
if (! skip)
|
||
outrel.r_offset += (input_section->output_section->vma
|
||
+ input_section->output_offset);
|
||
else
|
||
memset (&outrel, 0, sizeof outrel);
|
||
|
||
bfd_elf64_swap_reloca_out (output_bfd, &outrel,
|
||
((Elf64_External_Rela *)
|
||
srel->contents)
|
||
+ srel->reloc_count++);
|
||
BFD_ASSERT (sizeof (Elf64_External_Rela) * srel->reloc_count
|
||
<= srel->_cooked_size);
|
||
}
|
||
goto default_reloc;
|
||
|
||
default:
|
||
default_reloc:
|
||
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
|
||
contents, rel->r_offset, relocation,
|
||
addend);
|
||
break;
|
||
}
|
||
|
||
switch (r)
|
||
{
|
||
case bfd_reloc_ok:
|
||
break;
|
||
|
||
case bfd_reloc_overflow:
|
||
{
|
||
const char *name;
|
||
|
||
if (h != NULL)
|
||
name = h->root.root.root.string;
|
||
else
|
||
{
|
||
name = (bfd_elf_string_from_elf_section
|
||
(input_bfd, symtab_hdr->sh_link, sym->st_name));
|
||
if (name == NULL)
|
||
return false;
|
||
if (*name == '\0')
|
||
name = bfd_section_name (input_bfd, sec);
|
||
}
|
||
if (! ((*info->callbacks->reloc_overflow)
|
||
(info, name, howto->name, (bfd_vma) 0,
|
||
input_bfd, input_section, rel->r_offset)))
|
||
return false;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
case bfd_reloc_outofrange:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Finish up dynamic symbol handling. We set the contents of various
|
||
dynamic sections here. */
|
||
|
||
static boolean
|
||
elf64_alpha_finish_dynamic_symbol (output_bfd, info, h, sym)
|
||
bfd *output_bfd;
|
||
struct bfd_link_info *info;
|
||
struct elf_link_hash_entry *h;
|
||
Elf_Internal_Sym *sym;
|
||
{
|
||
bfd *dynobj = elf_hash_table(info)->dynobj;
|
||
|
||
if (h->plt.offset != MINUS_ONE)
|
||
{
|
||
/* Fill in the .plt entry for this symbol. */
|
||
asection *splt, *sgot, *srel;
|
||
Elf_Internal_Rela outrel;
|
||
bfd_vma got_addr, plt_addr;
|
||
bfd_vma plt_index;
|
||
struct alpha_elf_got_entry *gotent;
|
||
|
||
BFD_ASSERT (h->dynindx != -1);
|
||
|
||
/* The first .got entry will be updated by the .plt with the
|
||
address of the target function. */
|
||
gotent = ((struct alpha_elf_link_hash_entry *) h)->got_entries;
|
||
BFD_ASSERT (gotent && gotent->addend == 0);
|
||
|
||
splt = bfd_get_section_by_name (dynobj, ".plt");
|
||
BFD_ASSERT (splt != NULL);
|
||
srel = bfd_get_section_by_name (dynobj, ".rela.plt");
|
||
BFD_ASSERT (srel != NULL);
|
||
sgot = alpha_elf_tdata (gotent->gotobj)->got;
|
||
BFD_ASSERT (sgot != NULL);
|
||
|
||
got_addr = (sgot->output_section->vma
|
||
+ sgot->output_offset
|
||
+ gotent->got_offset);
|
||
plt_addr = (splt->output_section->vma
|
||
+ splt->output_offset
|
||
+ h->plt.offset);
|
||
|
||
plt_index = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;
|
||
|
||
/* Fill in the entry in the procedure linkage table. */
|
||
{
|
||
unsigned insn1, insn2, insn3;
|
||
|
||
insn1 = PLT_ENTRY_WORD1 | ((-(h->plt.offset + 4) >> 2) & 0x1fffff);
|
||
insn2 = PLT_ENTRY_WORD2;
|
||
insn3 = PLT_ENTRY_WORD3;
|
||
|
||
bfd_put_32 (output_bfd, insn1, splt->contents + h->plt.offset);
|
||
bfd_put_32 (output_bfd, insn2, splt->contents + h->plt.offset + 4);
|
||
bfd_put_32 (output_bfd, insn3, splt->contents + h->plt.offset + 8);
|
||
}
|
||
|
||
/* Fill in the entry in the .rela.plt section. */
|
||
outrel.r_offset = got_addr;
|
||
outrel.r_info = ELF64_R_INFO(h->dynindx, R_ALPHA_JMP_SLOT);
|
||
outrel.r_addend = 0;
|
||
|
||
bfd_elf64_swap_reloca_out (output_bfd, &outrel,
|
||
((Elf64_External_Rela *)srel->contents
|
||
+ plt_index));
|
||
|
||
if (!(h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
|
||
{
|
||
/* Mark the symbol as undefined, rather than as defined in the
|
||
.plt section. Leave the value alone. */
|
||
sym->st_shndx = SHN_UNDEF;
|
||
}
|
||
|
||
/* Fill in the entries in the .got. */
|
||
bfd_put_64 (output_bfd, plt_addr, sgot->contents + gotent->got_offset);
|
||
|
||
/* Subsequent .got entries will continue to bounce through the .plt. */
|
||
if (gotent->next)
|
||
{
|
||
srel = bfd_get_section_by_name (dynobj, ".rela.got");
|
||
BFD_ASSERT (! info->shared || srel != NULL);
|
||
|
||
gotent = gotent->next;
|
||
do
|
||
{
|
||
sgot = alpha_elf_tdata(gotent->gotobj)->got;
|
||
BFD_ASSERT(sgot != NULL);
|
||
BFD_ASSERT(gotent->addend == 0);
|
||
|
||
bfd_put_64 (output_bfd, plt_addr,
|
||
sgot->contents + gotent->got_offset);
|
||
|
||
if (info->shared)
|
||
{
|
||
outrel.r_offset = (sgot->output_section->vma
|
||
+ sgot->output_offset
|
||
+ gotent->got_offset);
|
||
outrel.r_info = ELF64_R_INFO(0, R_ALPHA_RELATIVE);
|
||
outrel.r_addend = 0;
|
||
|
||
bfd_elf64_swap_reloca_out (output_bfd, &outrel,
|
||
((Elf64_External_Rela *)
|
||
srel->contents)
|
||
+ srel->reloc_count++);
|
||
BFD_ASSERT (sizeof (Elf64_External_Rela) * srel->reloc_count
|
||
<= srel->_cooked_size);
|
||
}
|
||
|
||
gotent = gotent->next;
|
||
}
|
||
while (gotent != NULL);
|
||
}
|
||
}
|
||
else if (alpha_elf_dynamic_symbol_p (h, info))
|
||
{
|
||
/* Fill in the dynamic relocations for this symbol's .got entries. */
|
||
asection *srel;
|
||
Elf_Internal_Rela outrel;
|
||
struct alpha_elf_got_entry *gotent;
|
||
|
||
srel = bfd_get_section_by_name (dynobj, ".rela.got");
|
||
BFD_ASSERT (srel != NULL);
|
||
|
||
outrel.r_info = ELF64_R_INFO (h->dynindx, R_ALPHA_GLOB_DAT);
|
||
for (gotent = ((struct alpha_elf_link_hash_entry *) h)->got_entries;
|
||
gotent != NULL;
|
||
gotent = gotent->next)
|
||
{
|
||
asection *sgot = alpha_elf_tdata (gotent->gotobj)->got;
|
||
outrel.r_offset = (sgot->output_section->vma
|
||
+ sgot->output_offset
|
||
+ gotent->got_offset);
|
||
outrel.r_addend = gotent->addend;
|
||
|
||
bfd_elf64_swap_reloca_out (output_bfd, &outrel,
|
||
((Elf64_External_Rela *)srel->contents
|
||
+ srel->reloc_count++));
|
||
BFD_ASSERT (sizeof (Elf64_External_Rela) * srel->reloc_count
|
||
<= srel->_cooked_size);
|
||
}
|
||
}
|
||
|
||
/* Mark some specially defined symbols as absolute. */
|
||
if (strcmp (h->root.root.string, "_DYNAMIC") == 0
|
||
|| strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
|
||
|| strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
|
||
sym->st_shndx = SHN_ABS;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Finish up the dynamic sections. */
|
||
|
||
static boolean
|
||
elf64_alpha_finish_dynamic_sections (output_bfd, info)
|
||
bfd *output_bfd;
|
||
struct bfd_link_info *info;
|
||
{
|
||
bfd *dynobj;
|
||
asection *sdyn;
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
asection *splt;
|
||
Elf64_External_Dyn *dyncon, *dynconend;
|
||
|
||
splt = bfd_get_section_by_name (dynobj, ".plt");
|
||
BFD_ASSERT (splt != NULL && sdyn != NULL);
|
||
|
||
dyncon = (Elf64_External_Dyn *) sdyn->contents;
|
||
dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
|
||
for (; dyncon < dynconend; dyncon++)
|
||
{
|
||
Elf_Internal_Dyn dyn;
|
||
const char *name;
|
||
asection *s;
|
||
|
||
bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
|
||
|
||
switch (dyn.d_tag)
|
||
{
|
||
case DT_PLTGOT:
|
||
name = ".plt";
|
||
goto get_vma;
|
||
case DT_PLTRELSZ:
|
||
name = ".rela.plt";
|
||
goto get_size;
|
||
case DT_JMPREL:
|
||
name = ".rela.plt";
|
||
goto get_vma;
|
||
|
||
case DT_RELASZ:
|
||
/* My interpretation of the TIS v1.1 ELF document indicates
|
||
that RELASZ should not include JMPREL. This is not what
|
||
the rest of the BFD does. It is, however, what the
|
||
glibc ld.so wants. Do this fixup here until we found
|
||
out who is right. */
|
||
s = bfd_get_section_by_name (output_bfd, ".rela.plt");
|
||
if (s)
|
||
{
|
||
dyn.d_un.d_val -=
|
||
(s->_cooked_size ? s->_cooked_size : s->_raw_size);
|
||
}
|
||
break;
|
||
|
||
get_vma:
|
||
s = bfd_get_section_by_name (output_bfd, name);
|
||
dyn.d_un.d_ptr = (s ? s->vma : 0);
|
||
break;
|
||
|
||
get_size:
|
||
s = bfd_get_section_by_name (output_bfd, name);
|
||
dyn.d_un.d_val =
|
||
(s->_cooked_size ? s->_cooked_size : s->_raw_size);
|
||
break;
|
||
}
|
||
|
||
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
|
||
}
|
||
|
||
/* Initialize the PLT0 entry */
|
||
if (splt->_raw_size > 0)
|
||
{
|
||
bfd_put_32 (output_bfd, PLT_HEADER_WORD1, splt->contents);
|
||
bfd_put_32 (output_bfd, PLT_HEADER_WORD2, splt->contents + 4);
|
||
bfd_put_32 (output_bfd, PLT_HEADER_WORD3, splt->contents + 8);
|
||
bfd_put_32 (output_bfd, PLT_HEADER_WORD4, splt->contents + 12);
|
||
|
||
/* The next two words will be filled in by ld.so */
|
||
bfd_put_64 (output_bfd, 0, splt->contents + 16);
|
||
bfd_put_64 (output_bfd, 0, splt->contents + 24);
|
||
|
||
elf_section_data (splt->output_section)->this_hdr.sh_entsize =
|
||
PLT_HEADER_SIZE;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* We need to use a special link routine to handle the .reginfo and
|
||
the .mdebug sections. We need to merge all instances of these
|
||
sections together, not write them all out sequentially. */
|
||
|
||
static boolean
|
||
elf64_alpha_final_link (abfd, info)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
{
|
||
asection *o;
|
||
struct bfd_link_order *p;
|
||
asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
|
||
struct ecoff_debug_info debug;
|
||
const struct ecoff_debug_swap *swap
|
||
= get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
|
||
HDRR *symhdr = &debug.symbolic_header;
|
||
PTR mdebug_handle = NULL;
|
||
|
||
#if 0
|
||
if (++ngots == 2)
|
||
{
|
||
(*info->callbacks->warning)
|
||
(info, _("using multiple gp values"), (char *) NULL,
|
||
output_bfd, (asection *) NULL, (bfd_vma) 0);
|
||
}
|
||
#endif
|
||
|
||
/* Go through the sections and collect the .reginfo and .mdebug
|
||
information. */
|
||
reginfo_sec = NULL;
|
||
mdebug_sec = NULL;
|
||
gptab_data_sec = NULL;
|
||
gptab_bss_sec = NULL;
|
||
for (o = abfd->sections; o != (asection *) NULL; o = o->next)
|
||
{
|
||
#ifdef ERIC_neverdef
|
||
if (strcmp (o->name, ".reginfo") == 0)
|
||
{
|
||
memset (®info, 0, sizeof reginfo);
|
||
|
||
/* We have found the .reginfo section in the output file.
|
||
Look through all the link_orders comprising it and merge
|
||
the information together. */
|
||
for (p = o->link_order_head;
|
||
p != (struct bfd_link_order *) NULL;
|
||
p = p->next)
|
||
{
|
||
asection *input_section;
|
||
bfd *input_bfd;
|
||
Elf64_External_RegInfo ext;
|
||
Elf64_RegInfo sub;
|
||
|
||
if (p->type != bfd_indirect_link_order)
|
||
{
|
||
if (p->type == bfd_fill_link_order)
|
||
continue;
|
||
abort ();
|
||
}
|
||
|
||
input_section = p->u.indirect.section;
|
||
input_bfd = input_section->owner;
|
||
|
||
/* The linker emulation code has probably clobbered the
|
||
size to be zero bytes. */
|
||
if (input_section->_raw_size == 0)
|
||
input_section->_raw_size = sizeof (Elf64_External_RegInfo);
|
||
|
||
if (! bfd_get_section_contents (input_bfd, input_section,
|
||
(PTR) &ext,
|
||
(file_ptr) 0,
|
||
sizeof ext))
|
||
return false;
|
||
|
||
bfd_alpha_elf64_swap_reginfo_in (input_bfd, &ext, &sub);
|
||
|
||
reginfo.ri_gprmask |= sub.ri_gprmask;
|
||
reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
|
||
reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
|
||
reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
|
||
reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
|
||
|
||
/* ri_gp_value is set by the function
|
||
alpha_elf_section_processing when the section is
|
||
finally written out. */
|
||
|
||
/* Hack: reset the SEC_HAS_CONTENTS flag so that
|
||
elf_link_input_bfd ignores this section. */
|
||
input_section->flags &=~ SEC_HAS_CONTENTS;
|
||
}
|
||
|
||
/* Force the section size to the value we want. */
|
||
o->_raw_size = sizeof (Elf64_External_RegInfo);
|
||
|
||
/* Skip this section later on (I don't think this currently
|
||
matters, but someday it might). */
|
||
o->link_order_head = (struct bfd_link_order *) NULL;
|
||
|
||
reginfo_sec = o;
|
||
}
|
||
#endif
|
||
|
||
if (strcmp (o->name, ".mdebug") == 0)
|
||
{
|
||
struct extsym_info einfo;
|
||
|
||
/* We have found the .mdebug section in the output file.
|
||
Look through all the link_orders comprising it and merge
|
||
the information together. */
|
||
symhdr->magic = swap->sym_magic;
|
||
/* FIXME: What should the version stamp be? */
|
||
symhdr->vstamp = 0;
|
||
symhdr->ilineMax = 0;
|
||
symhdr->cbLine = 0;
|
||
symhdr->idnMax = 0;
|
||
symhdr->ipdMax = 0;
|
||
symhdr->isymMax = 0;
|
||
symhdr->ioptMax = 0;
|
||
symhdr->iauxMax = 0;
|
||
symhdr->issMax = 0;
|
||
symhdr->issExtMax = 0;
|
||
symhdr->ifdMax = 0;
|
||
symhdr->crfd = 0;
|
||
symhdr->iextMax = 0;
|
||
|
||
/* We accumulate the debugging information itself in the
|
||
debug_info structure. */
|
||
debug.line = NULL;
|
||
debug.external_dnr = NULL;
|
||
debug.external_pdr = NULL;
|
||
debug.external_sym = NULL;
|
||
debug.external_opt = NULL;
|
||
debug.external_aux = NULL;
|
||
debug.ss = NULL;
|
||
debug.ssext = debug.ssext_end = NULL;
|
||
debug.external_fdr = NULL;
|
||
debug.external_rfd = NULL;
|
||
debug.external_ext = debug.external_ext_end = NULL;
|
||
|
||
mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
|
||
if (mdebug_handle == (PTR) NULL)
|
||
return false;
|
||
|
||
if (1)
|
||
{
|
||
asection *s;
|
||
EXTR esym;
|
||
bfd_vma last;
|
||
unsigned int i;
|
||
static const char * const name[] =
|
||
{
|
||
".text", ".init", ".fini", ".data",
|
||
".rodata", ".sdata", ".sbss", ".bss"
|
||
};
|
||
static const int sc[] = { scText, scInit, scFini, scData,
|
||
scRData, scSData, scSBss, scBss };
|
||
|
||
esym.jmptbl = 0;
|
||
esym.cobol_main = 0;
|
||
esym.weakext = 0;
|
||
esym.reserved = 0;
|
||
esym.ifd = ifdNil;
|
||
esym.asym.iss = issNil;
|
||
esym.asym.st = stLocal;
|
||
esym.asym.reserved = 0;
|
||
esym.asym.index = indexNil;
|
||
for (i = 0; i < 8; i++)
|
||
{
|
||
esym.asym.sc = sc[i];
|
||
s = bfd_get_section_by_name (abfd, name[i]);
|
||
if (s != NULL)
|
||
{
|
||
esym.asym.value = s->vma;
|
||
last = s->vma + s->_raw_size;
|
||
}
|
||
else
|
||
esym.asym.value = last;
|
||
|
||
if (! bfd_ecoff_debug_one_external (abfd, &debug, swap,
|
||
name[i], &esym))
|
||
return false;
|
||
}
|
||
}
|
||
|
||
for (p = o->link_order_head;
|
||
p != (struct bfd_link_order *) NULL;
|
||
p = p->next)
|
||
{
|
||
asection *input_section;
|
||
bfd *input_bfd;
|
||
const struct ecoff_debug_swap *input_swap;
|
||
struct ecoff_debug_info input_debug;
|
||
char *eraw_src;
|
||
char *eraw_end;
|
||
|
||
if (p->type != bfd_indirect_link_order)
|
||
{
|
||
if (p->type == bfd_fill_link_order)
|
||
continue;
|
||
abort ();
|
||
}
|
||
|
||
input_section = p->u.indirect.section;
|
||
input_bfd = input_section->owner;
|
||
|
||
if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
|
||
|| (get_elf_backend_data (input_bfd)
|
||
->elf_backend_ecoff_debug_swap) == NULL)
|
||
{
|
||
/* I don't know what a non ALPHA ELF bfd would be
|
||
doing with a .mdebug section, but I don't really
|
||
want to deal with it. */
|
||
continue;
|
||
}
|
||
|
||
input_swap = (get_elf_backend_data (input_bfd)
|
||
->elf_backend_ecoff_debug_swap);
|
||
|
||
BFD_ASSERT (p->size == input_section->_raw_size);
|
||
|
||
/* The ECOFF linking code expects that we have already
|
||
read in the debugging information and set up an
|
||
ecoff_debug_info structure, so we do that now. */
|
||
if (!elf64_alpha_read_ecoff_info (input_bfd, input_section,
|
||
&input_debug))
|
||
return false;
|
||
|
||
if (! (bfd_ecoff_debug_accumulate
|
||
(mdebug_handle, abfd, &debug, swap, input_bfd,
|
||
&input_debug, input_swap, info)))
|
||
return false;
|
||
|
||
/* Loop through the external symbols. For each one with
|
||
interesting information, try to find the symbol in
|
||
the linker global hash table and save the information
|
||
for the output external symbols. */
|
||
eraw_src = input_debug.external_ext;
|
||
eraw_end = (eraw_src
|
||
+ (input_debug.symbolic_header.iextMax
|
||
* input_swap->external_ext_size));
|
||
for (;
|
||
eraw_src < eraw_end;
|
||
eraw_src += input_swap->external_ext_size)
|
||
{
|
||
EXTR ext;
|
||
const char *name;
|
||
struct alpha_elf_link_hash_entry *h;
|
||
|
||
(*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
|
||
if (ext.asym.sc == scNil
|
||
|| ext.asym.sc == scUndefined
|
||
|| ext.asym.sc == scSUndefined)
|
||
continue;
|
||
|
||
name = input_debug.ssext + ext.asym.iss;
|
||
h = alpha_elf_link_hash_lookup (alpha_elf_hash_table (info),
|
||
name, false, false, true);
|
||
if (h == NULL || h->esym.ifd != -2)
|
||
continue;
|
||
|
||
if (ext.ifd != -1)
|
||
{
|
||
BFD_ASSERT (ext.ifd
|
||
< input_debug.symbolic_header.ifdMax);
|
||
ext.ifd = input_debug.ifdmap[ext.ifd];
|
||
}
|
||
|
||
h->esym = ext;
|
||
}
|
||
|
||
/* Free up the information we just read. */
|
||
free (input_debug.line);
|
||
free (input_debug.external_dnr);
|
||
free (input_debug.external_pdr);
|
||
free (input_debug.external_sym);
|
||
free (input_debug.external_opt);
|
||
free (input_debug.external_aux);
|
||
free (input_debug.ss);
|
||
free (input_debug.ssext);
|
||
free (input_debug.external_fdr);
|
||
free (input_debug.external_rfd);
|
||
free (input_debug.external_ext);
|
||
|
||
/* Hack: reset the SEC_HAS_CONTENTS flag so that
|
||
elf_link_input_bfd ignores this section. */
|
||
input_section->flags &=~ SEC_HAS_CONTENTS;
|
||
}
|
||
|
||
#ifdef ERIC_neverdef
|
||
if (info->shared)
|
||
{
|
||
/* Create .rtproc section. */
|
||
rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
|
||
if (rtproc_sec == NULL)
|
||
{
|
||
flagword flags = (SEC_HAS_CONTENTS
|
||
| SEC_IN_MEMORY
|
||
| SEC_LINKER_CREATED
|
||
| SEC_READONLY);
|
||
|
||
rtproc_sec = bfd_make_section (abfd, ".rtproc");
|
||
if (rtproc_sec == NULL
|
||
|| ! bfd_set_section_flags (abfd, rtproc_sec, flags)
|
||
|| ! bfd_set_section_alignment (abfd, rtproc_sec, 12))
|
||
return false;
|
||
}
|
||
|
||
if (! alpha_elf_create_procedure_table (mdebug_handle, abfd,
|
||
info, rtproc_sec, &debug))
|
||
return false;
|
||
}
|
||
#endif
|
||
|
||
/* Build the external symbol information. */
|
||
einfo.abfd = abfd;
|
||
einfo.info = info;
|
||
einfo.debug = &debug;
|
||
einfo.swap = swap;
|
||
einfo.failed = false;
|
||
elf_link_hash_traverse (elf_hash_table (info),
|
||
elf64_alpha_output_extsym,
|
||
(PTR) &einfo);
|
||
if (einfo.failed)
|
||
return false;
|
||
|
||
/* Set the size of the .mdebug section. */
|
||
o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
|
||
|
||
/* Skip this section later on (I don't think this currently
|
||
matters, but someday it might). */
|
||
o->link_order_head = (struct bfd_link_order *) NULL;
|
||
|
||
mdebug_sec = o;
|
||
}
|
||
|
||
#ifdef ERIC_neverdef
|
||
if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
|
||
{
|
||
const char *subname;
|
||
unsigned int c;
|
||
Elf64_gptab *tab;
|
||
Elf64_External_gptab *ext_tab;
|
||
unsigned int i;
|
||
|
||
/* The .gptab.sdata and .gptab.sbss sections hold
|
||
information describing how the small data area would
|
||
change depending upon the -G switch. These sections
|
||
not used in executables files. */
|
||
if (! info->relocateable)
|
||
{
|
||
asection **secpp;
|
||
|
||
for (p = o->link_order_head;
|
||
p != (struct bfd_link_order *) NULL;
|
||
p = p->next)
|
||
{
|
||
asection *input_section;
|
||
|
||
if (p->type != bfd_indirect_link_order)
|
||
{
|
||
if (p->type == bfd_fill_link_order)
|
||
continue;
|
||
abort ();
|
||
}
|
||
|
||
input_section = p->u.indirect.section;
|
||
|
||
/* Hack: reset the SEC_HAS_CONTENTS flag so that
|
||
elf_link_input_bfd ignores this section. */
|
||
input_section->flags &=~ SEC_HAS_CONTENTS;
|
||
}
|
||
|
||
/* Skip this section later on (I don't think this
|
||
currently matters, but someday it might). */
|
||
o->link_order_head = (struct bfd_link_order *) NULL;
|
||
|
||
/* Really remove the section. */
|
||
for (secpp = &abfd->sections;
|
||
*secpp != o;
|
||
secpp = &(*secpp)->next)
|
||
;
|
||
*secpp = (*secpp)->next;
|
||
--abfd->section_count;
|
||
|
||
continue;
|
||
}
|
||
|
||
/* There is one gptab for initialized data, and one for
|
||
uninitialized data. */
|
||
if (strcmp (o->name, ".gptab.sdata") == 0)
|
||
gptab_data_sec = o;
|
||
else if (strcmp (o->name, ".gptab.sbss") == 0)
|
||
gptab_bss_sec = o;
|
||
else
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%s: illegal section name `%s'"),
|
||
bfd_get_filename (abfd), o->name);
|
||
bfd_set_error (bfd_error_nonrepresentable_section);
|
||
return false;
|
||
}
|
||
|
||
/* The linker script always combines .gptab.data and
|
||
.gptab.sdata into .gptab.sdata, and likewise for
|
||
.gptab.bss and .gptab.sbss. It is possible that there is
|
||
no .sdata or .sbss section in the output file, in which
|
||
case we must change the name of the output section. */
|
||
subname = o->name + sizeof ".gptab" - 1;
|
||
if (bfd_get_section_by_name (abfd, subname) == NULL)
|
||
{
|
||
if (o == gptab_data_sec)
|
||
o->name = ".gptab.data";
|
||
else
|
||
o->name = ".gptab.bss";
|
||
subname = o->name + sizeof ".gptab" - 1;
|
||
BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
|
||
}
|
||
|
||
/* Set up the first entry. */
|
||
c = 1;
|
||
tab = (Elf64_gptab *) bfd_malloc (c * sizeof (Elf64_gptab));
|
||
if (tab == NULL)
|
||
return false;
|
||
tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
|
||
tab[0].gt_header.gt_unused = 0;
|
||
|
||
/* Combine the input sections. */
|
||
for (p = o->link_order_head;
|
||
p != (struct bfd_link_order *) NULL;
|
||
p = p->next)
|
||
{
|
||
asection *input_section;
|
||
bfd *input_bfd;
|
||
bfd_size_type size;
|
||
unsigned long last;
|
||
bfd_size_type gpentry;
|
||
|
||
if (p->type != bfd_indirect_link_order)
|
||
{
|
||
if (p->type == bfd_fill_link_order)
|
||
continue;
|
||
abort ();
|
||
}
|
||
|
||
input_section = p->u.indirect.section;
|
||
input_bfd = input_section->owner;
|
||
|
||
/* Combine the gptab entries for this input section one
|
||
by one. We know that the input gptab entries are
|
||
sorted by ascending -G value. */
|
||
size = bfd_section_size (input_bfd, input_section);
|
||
last = 0;
|
||
for (gpentry = sizeof (Elf64_External_gptab);
|
||
gpentry < size;
|
||
gpentry += sizeof (Elf64_External_gptab))
|
||
{
|
||
Elf64_External_gptab ext_gptab;
|
||
Elf64_gptab int_gptab;
|
||
unsigned long val;
|
||
unsigned long add;
|
||
boolean exact;
|
||
unsigned int look;
|
||
|
||
if (! (bfd_get_section_contents
|
||
(input_bfd, input_section, (PTR) &ext_gptab,
|
||
gpentry, sizeof (Elf64_External_gptab))))
|
||
{
|
||
free (tab);
|
||
return false;
|
||
}
|
||
|
||
bfd_alpha_elf64_swap_gptab_in (input_bfd, &ext_gptab,
|
||
&int_gptab);
|
||
val = int_gptab.gt_entry.gt_g_value;
|
||
add = int_gptab.gt_entry.gt_bytes - last;
|
||
|
||
exact = false;
|
||
for (look = 1; look < c; look++)
|
||
{
|
||
if (tab[look].gt_entry.gt_g_value >= val)
|
||
tab[look].gt_entry.gt_bytes += add;
|
||
|
||
if (tab[look].gt_entry.gt_g_value == val)
|
||
exact = true;
|
||
}
|
||
|
||
if (! exact)
|
||
{
|
||
Elf64_gptab *new_tab;
|
||
unsigned int max;
|
||
|
||
/* We need a new table entry. */
|
||
new_tab = ((Elf64_gptab *)
|
||
bfd_realloc ((PTR) tab,
|
||
(c + 1) * sizeof (Elf64_gptab)));
|
||
if (new_tab == NULL)
|
||
{
|
||
free (tab);
|
||
return false;
|
||
}
|
||
tab = new_tab;
|
||
tab[c].gt_entry.gt_g_value = val;
|
||
tab[c].gt_entry.gt_bytes = add;
|
||
|
||
/* Merge in the size for the next smallest -G
|
||
value, since that will be implied by this new
|
||
value. */
|
||
max = 0;
|
||
for (look = 1; look < c; look++)
|
||
{
|
||
if (tab[look].gt_entry.gt_g_value < val
|
||
&& (max == 0
|
||
|| (tab[look].gt_entry.gt_g_value
|
||
> tab[max].gt_entry.gt_g_value)))
|
||
max = look;
|
||
}
|
||
if (max != 0)
|
||
tab[c].gt_entry.gt_bytes +=
|
||
tab[max].gt_entry.gt_bytes;
|
||
|
||
++c;
|
||
}
|
||
|
||
last = int_gptab.gt_entry.gt_bytes;
|
||
}
|
||
|
||
/* Hack: reset the SEC_HAS_CONTENTS flag so that
|
||
elf_link_input_bfd ignores this section. */
|
||
input_section->flags &=~ SEC_HAS_CONTENTS;
|
||
}
|
||
|
||
/* The table must be sorted by -G value. */
|
||
if (c > 2)
|
||
qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
|
||
|
||
/* Swap out the table. */
|
||
ext_tab = ((Elf64_External_gptab *)
|
||
bfd_alloc (abfd, c * sizeof (Elf64_External_gptab)));
|
||
if (ext_tab == NULL)
|
||
{
|
||
free (tab);
|
||
return false;
|
||
}
|
||
|
||
for (i = 0; i < c; i++)
|
||
bfd_alpha_elf64_swap_gptab_out (abfd, tab + i, ext_tab + i);
|
||
free (tab);
|
||
|
||
o->_raw_size = c * sizeof (Elf64_External_gptab);
|
||
o->contents = (bfd_byte *) ext_tab;
|
||
|
||
/* Skip this section later on (I don't think this currently
|
||
matters, but someday it might). */
|
||
o->link_order_head = (struct bfd_link_order *) NULL;
|
||
}
|
||
#endif
|
||
|
||
}
|
||
|
||
/* Invoke the regular ELF backend linker to do all the work. */
|
||
if (! bfd_elf64_bfd_final_link (abfd, info))
|
||
return false;
|
||
|
||
/* Now write out the computed sections. */
|
||
|
||
/* The .got subsections... */
|
||
{
|
||
bfd *i, *dynobj = elf_hash_table(info)->dynobj;
|
||
for (i = alpha_elf_hash_table(info)->got_list;
|
||
i != NULL;
|
||
i = alpha_elf_tdata(i)->got_link_next)
|
||
{
|
||
asection *sgot;
|
||
|
||
/* elf_bfd_final_link already did everything in dynobj. */
|
||
if (i == dynobj)
|
||
continue;
|
||
|
||
sgot = alpha_elf_tdata(i)->got;
|
||
if (! bfd_set_section_contents (abfd, sgot->output_section,
|
||
sgot->contents, sgot->output_offset,
|
||
sgot->_raw_size))
|
||
return false;
|
||
}
|
||
}
|
||
|
||
#ifdef ERIC_neverdef
|
||
if (reginfo_sec != (asection *) NULL)
|
||
{
|
||
Elf64_External_RegInfo ext;
|
||
|
||
bfd_alpha_elf64_swap_reginfo_out (abfd, ®info, &ext);
|
||
if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
|
||
(file_ptr) 0, sizeof ext))
|
||
return false;
|
||
}
|
||
#endif
|
||
|
||
if (mdebug_sec != (asection *) NULL)
|
||
{
|
||
BFD_ASSERT (abfd->output_has_begun);
|
||
if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
|
||
swap, info,
|
||
mdebug_sec->filepos))
|
||
return false;
|
||
|
||
bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
|
||
}
|
||
|
||
if (gptab_data_sec != (asection *) NULL)
|
||
{
|
||
if (! bfd_set_section_contents (abfd, gptab_data_sec,
|
||
gptab_data_sec->contents,
|
||
(file_ptr) 0,
|
||
gptab_data_sec->_raw_size))
|
||
return false;
|
||
}
|
||
|
||
if (gptab_bss_sec != (asection *) NULL)
|
||
{
|
||
if (! bfd_set_section_contents (abfd, gptab_bss_sec,
|
||
gptab_bss_sec->contents,
|
||
(file_ptr) 0,
|
||
gptab_bss_sec->_raw_size))
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* ECOFF swapping routines. These are used when dealing with the
|
||
.mdebug section, which is in the ECOFF debugging format. Copied
|
||
from elf32-mips.c. */
|
||
static const struct ecoff_debug_swap
|
||
elf64_alpha_ecoff_debug_swap =
|
||
{
|
||
/* Symbol table magic number. */
|
||
magicSym2,
|
||
/* Alignment of debugging information. E.g., 4. */
|
||
8,
|
||
/* Sizes of external symbolic information. */
|
||
sizeof (struct hdr_ext),
|
||
sizeof (struct dnr_ext),
|
||
sizeof (struct pdr_ext),
|
||
sizeof (struct sym_ext),
|
||
sizeof (struct opt_ext),
|
||
sizeof (struct fdr_ext),
|
||
sizeof (struct rfd_ext),
|
||
sizeof (struct ext_ext),
|
||
/* Functions to swap in external symbolic data. */
|
||
ecoff_swap_hdr_in,
|
||
ecoff_swap_dnr_in,
|
||
ecoff_swap_pdr_in,
|
||
ecoff_swap_sym_in,
|
||
ecoff_swap_opt_in,
|
||
ecoff_swap_fdr_in,
|
||
ecoff_swap_rfd_in,
|
||
ecoff_swap_ext_in,
|
||
_bfd_ecoff_swap_tir_in,
|
||
_bfd_ecoff_swap_rndx_in,
|
||
/* Functions to swap out external symbolic data. */
|
||
ecoff_swap_hdr_out,
|
||
ecoff_swap_dnr_out,
|
||
ecoff_swap_pdr_out,
|
||
ecoff_swap_sym_out,
|
||
ecoff_swap_opt_out,
|
||
ecoff_swap_fdr_out,
|
||
ecoff_swap_rfd_out,
|
||
ecoff_swap_ext_out,
|
||
_bfd_ecoff_swap_tir_out,
|
||
_bfd_ecoff_swap_rndx_out,
|
||
/* Function to read in symbolic data. */
|
||
elf64_alpha_read_ecoff_info
|
||
};
|
||
|
||
/* Use a non-standard hash bucket size of 8. */
|
||
|
||
const struct elf_size_info alpha_elf_size_info =
|
||
{
|
||
sizeof (Elf64_External_Ehdr),
|
||
sizeof (Elf64_External_Phdr),
|
||
sizeof (Elf64_External_Shdr),
|
||
sizeof (Elf64_External_Rel),
|
||
sizeof (Elf64_External_Rela),
|
||
sizeof (Elf64_External_Sym),
|
||
sizeof (Elf64_External_Dyn),
|
||
sizeof (Elf_External_Note),
|
||
8,
|
||
1,
|
||
64, 8,
|
||
ELFCLASS64, EV_CURRENT,
|
||
bfd_elf64_write_out_phdrs,
|
||
bfd_elf64_write_shdrs_and_ehdr,
|
||
bfd_elf64_write_relocs,
|
||
bfd_elf64_swap_symbol_out,
|
||
bfd_elf64_slurp_reloc_table,
|
||
bfd_elf64_slurp_symbol_table,
|
||
bfd_elf64_swap_dyn_in,
|
||
bfd_elf64_swap_dyn_out,
|
||
NULL,
|
||
NULL,
|
||
NULL,
|
||
NULL
|
||
};
|
||
|
||
#define TARGET_LITTLE_SYM bfd_elf64_alpha_vec
|
||
#define TARGET_LITTLE_NAME "elf64-alpha"
|
||
#define ELF_ARCH bfd_arch_alpha
|
||
#define ELF_MACHINE_CODE EM_ALPHA
|
||
#define ELF_MAXPAGESIZE 0x10000
|
||
|
||
#define bfd_elf64_bfd_link_hash_table_create \
|
||
elf64_alpha_bfd_link_hash_table_create
|
||
|
||
#define bfd_elf64_bfd_reloc_type_lookup \
|
||
elf64_alpha_bfd_reloc_type_lookup
|
||
#define elf_info_to_howto \
|
||
elf64_alpha_info_to_howto
|
||
|
||
#define bfd_elf64_mkobject \
|
||
elf64_alpha_mkobject
|
||
#define elf_backend_object_p \
|
||
elf64_alpha_object_p
|
||
|
||
#define elf_backend_section_from_shdr \
|
||
elf64_alpha_section_from_shdr
|
||
#define elf_backend_fake_sections \
|
||
elf64_alpha_fake_sections
|
||
|
||
#define bfd_elf64_bfd_is_local_label_name \
|
||
elf64_alpha_is_local_label_name
|
||
#define bfd_elf64_find_nearest_line \
|
||
elf64_alpha_find_nearest_line
|
||
#define bfd_elf64_bfd_relax_section \
|
||
elf64_alpha_relax_section
|
||
|
||
#define elf_backend_add_symbol_hook \
|
||
elf64_alpha_add_symbol_hook
|
||
#define elf_backend_check_relocs \
|
||
elf64_alpha_check_relocs
|
||
#define elf_backend_create_dynamic_sections \
|
||
elf64_alpha_create_dynamic_sections
|
||
#define elf_backend_adjust_dynamic_symbol \
|
||
elf64_alpha_adjust_dynamic_symbol
|
||
#define elf_backend_always_size_sections \
|
||
elf64_alpha_always_size_sections
|
||
#define elf_backend_size_dynamic_sections \
|
||
elf64_alpha_size_dynamic_sections
|
||
#define elf_backend_relocate_section \
|
||
elf64_alpha_relocate_section
|
||
#define elf_backend_finish_dynamic_symbol \
|
||
elf64_alpha_finish_dynamic_symbol
|
||
#define elf_backend_finish_dynamic_sections \
|
||
elf64_alpha_finish_dynamic_sections
|
||
#define bfd_elf64_bfd_final_link \
|
||
elf64_alpha_final_link
|
||
|
||
#define elf_backend_ecoff_debug_swap \
|
||
&elf64_alpha_ecoff_debug_swap
|
||
|
||
#define elf_backend_size_info \
|
||
alpha_elf_size_info
|
||
|
||
/* A few constants that determine how the .plt section is set up. */
|
||
#define elf_backend_want_got_plt 0
|
||
#define elf_backend_plt_readonly 0
|
||
#define elf_backend_want_plt_sym 1
|
||
#define elf_backend_got_header_size 0
|
||
#define elf_backend_plt_header_size PLT_HEADER_SIZE
|
||
|
||
#include "elf64-target.h"
|