mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-06 12:09:26 +08:00
6d00b59031
This renames the bfd targets to <cpu>_<format>_<other>_<endian>_vec. So for example, bfd_elf32_ntradlittlemips_vec becomes mips_elf32_ntrad_le_vec and hp300bsd_vec becomes m68k_aout_hp300bsd_vec. bfd/ * aix386-core.c, * aout-adobe.c, * aout-arm.c, * aout-ns32k.c, * aout-sparcle.c, * aout0.c, * aoutx.h, * armnetbsd.c, * bout.c, * cf-i386lynx.c, * cf-sparclynx.c, * cisco-core.c, * coff-alpha.c, * coff-apollo.c, * coff-arm.c, * coff-aux.c, * coff-go32.c, * coff-h8300.c, * coff-h8500.c, * coff-i386.c, * coff-i860.c, * coff-i960.c, * coff-m68k.c, * coff-m88k.c, * coff-mips.c, * coff-rs6000.c, * coff-sh.c, * coff-sparc.c, * coff-stgo32.c, * coff-svm68k.c, * coff-tic80.c, * coff-u68k.c, * coff-w65.c, * coff-we32k.c, * coff-x86_64.c, * coff-z80.c, * coff-z8k.c, * coff64-rs6000.c, * config.bfd, * configure.com, * configure.in, * demo64.c, * elf-m10200.c, * elf-m10300.c, * elf32-am33lin.c, * elf32-arc.c, * elf32-arm.c, * elf32-avr.c, * elf32-bfin.c, * elf32-cr16.c, * elf32-cr16c.c, * elf32-cris.c, * elf32-crx.c, * elf32-d10v.c, * elf32-d30v.c, * elf32-dlx.c, * elf32-epiphany.c, * elf32-fr30.c, * elf32-frv.c, * elf32-gen.c, * elf32-h8300.c, * elf32-hppa.c, * elf32-i370.c, * elf32-i386.c, * elf32-i860.c, * elf32-i960.c, * elf32-ip2k.c, * elf32-iq2000.c, * elf32-lm32.c, * elf32-m32c.c, * elf32-m32r.c, * elf32-m68hc11.c, * elf32-m68hc12.c, * elf32-m68k.c, * elf32-m88k.c, * elf32-mcore.c, * elf32-mep.c, * elf32-metag.c, * elf32-microblaze.c, * elf32-mips.c, * elf32-moxie.c, * elf32-msp430.c, * elf32-mt.c, * elf32-nds32.c, * elf32-nios2.c, * elf32-or1k.c, * elf32-pj.c, * elf32-ppc.c, * elf32-rl78.c, * elf32-rx.c, * elf32-s390.c, * elf32-score.c, * elf32-sh-symbian.c, * elf32-sh.c, * elf32-sh64.c, * elf32-sparc.c, * elf32-spu.c, * elf32-tic6x.c, * elf32-tilegx.c, * elf32-tilepro.c, * elf32-v850.c, * elf32-vax.c, * elf32-xc16x.c, * elf32-xgate.c, * elf32-xstormy16.c, * elf32-xtensa.c, * elf64-alpha.c, * elf64-gen.c, * elf64-hppa.c, * elf64-ia64-vms.c, * elf64-mips.c, * elf64-mmix.c, * elf64-ppc.c, * elf64-s390.c, * elf64-sh64.c, * elf64-sparc.c, * elf64-tilegx.c, * elf64-x86-64.c, * elfn32-mips.c, * elfnn-aarch64.c, * elfnn-ia64.c, * epoc-pe-arm.c, * epoc-pei-arm.c, * hp300bsd.c, * hp300hpux.c, * hppabsd-core.c, * hpux-core.c, * i386aout.c, * i386bsd.c, * i386dynix.c, * i386freebsd.c, * i386linux.c, * i386lynx.c, * i386mach3.c, * i386msdos.c, * i386netbsd.c, * i386os9k.c, * irix-core.c, * m68k4knetbsd.c, * m68klinux.c, * m68knetbsd.c, * m88kmach3.c, * m88kopenbsd.c, * mach-o-i386.c, * mach-o-x86-64.c, * makefile.vms, * mipsbsd.c, * mmo.c, * netbsd-core.c, * newsos3.c, * nlm32-alpha.c, * nlm32-i386.c, * nlm32-ppc.c, * nlm32-sparc.c, * ns32knetbsd.c, * osf-core.c, * pc532-mach.c, * pe-arm-wince.c, * pe-arm.c, * pe-i386.c, * pe-mcore.c, * pe-mips.c, * pe-ppc.c, * pe-sh.c, * pe-x86_64.c, * pei-arm-wince.c, * pei-arm.c, * pei-i386.c, * pei-ia64.c, * pei-mcore.c, * pei-mips.c, * pei-ppc.c, * pei-sh.c, * pei-x86_64.c, * ppcboot.c, * ptrace-core.c, * riscix.c, * sco5-core.c, * som.c, * sparclinux.c, * sparclynx.c, * sparcnetbsd.c, * sunos.c, * targets.c, * trad-core.c, * vax1knetbsd.c, * vaxbsd.c, * vaxnetbsd.c, * versados.c, * vms-alpha.c, * vms-lib.c: Rename bfd targets to <cpu>_<format>_<other>_<endian>_vec. Adjust associated MY macros on aout targets. * configure: Regenerate. binutils/ * emul_aix.c: Update bfd target vector naming. * testsuite/binutils-all/objcopy.exp: Likewise. ld/ * emultempl/metagelf.em: Update bfd target vector naming. * emultempl/nios2elf.em: Likewise. * emultempl/spuelf.em: Likewise. * emultempl/tic6xdsbt.em: Likewise.
5310 lines
147 KiB
C
5310 lines
147 KiB
C
/* 32-bit ELF support for Nios II.
|
|
Copyright (C) 2012-2014 Free Software Foundation, Inc.
|
|
Contributed by Nigel Gray (ngray@altera.com).
|
|
Contributed by Mentor Graphics, Inc.
|
|
|
|
This file is part of BFD, the Binary File Descriptor library.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
|
MA 02110-1301, USA. */
|
|
|
|
/* This file handles Altera Nios II ELF targets. */
|
|
|
|
#include "sysdep.h"
|
|
#include "bfd.h"
|
|
#include "libbfd.h"
|
|
#include "bfdlink.h"
|
|
#include "genlink.h"
|
|
#include "elf-bfd.h"
|
|
#include "elf/nios2.h"
|
|
#include "opcode/nios2.h"
|
|
#include "elf32-nios2.h"
|
|
|
|
/* Use RELA relocations. */
|
|
#ifndef USE_RELA
|
|
#define USE_RELA
|
|
#endif
|
|
|
|
#ifdef USE_REL
|
|
#undef USE_REL
|
|
#endif
|
|
|
|
/* Forward declarations. */
|
|
static bfd_reloc_status_type nios2_elf32_ignore_reloc
|
|
(bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
|
|
static bfd_reloc_status_type nios2_elf32_hi16_relocate
|
|
(bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
|
|
static bfd_reloc_status_type nios2_elf32_lo16_relocate
|
|
(bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
|
|
static bfd_reloc_status_type nios2_elf32_hiadj16_relocate
|
|
(bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
|
|
static bfd_reloc_status_type nios2_elf32_pcrel_lo16_relocate
|
|
(bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
|
|
static bfd_reloc_status_type nios2_elf32_pcrel_hiadj16_relocate
|
|
(bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
|
|
static bfd_reloc_status_type nios2_elf32_pcrel16_relocate
|
|
(bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
|
|
static bfd_reloc_status_type nios2_elf32_call26_relocate
|
|
(bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
|
|
static bfd_reloc_status_type nios2_elf32_gprel_relocate
|
|
(bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
|
|
static bfd_reloc_status_type nios2_elf32_ujmp_relocate
|
|
(bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
|
|
static bfd_reloc_status_type nios2_elf32_cjmp_relocate
|
|
(bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
|
|
static bfd_reloc_status_type nios2_elf32_callr_relocate
|
|
(bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
|
|
|
|
/* Target vector. */
|
|
extern const bfd_target nios2_elf32_le_vec;
|
|
extern const bfd_target nios2_elf32_be_vec;
|
|
|
|
/* Offset of tp and dtp pointers from start of TLS block. */
|
|
#define TP_OFFSET 0x7000
|
|
#define DTP_OFFSET 0x8000
|
|
|
|
/* The relocation table used for SHT_REL sections. */
|
|
static reloc_howto_type elf_nios2_howto_table_rel[] = {
|
|
/* No relocation. */
|
|
HOWTO (R_NIOS2_NONE, /* type */
|
|
0, /* rightshift */
|
|
0, /* size (0 = byte, 1 = short, 2 = long) */
|
|
0, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_NIOS2_NONE", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 16-bit signed immediate relocation. */
|
|
HOWTO (R_NIOS2_S16, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
6, /* bitpos */
|
|
complain_overflow_signed, /* complain on overflow */
|
|
bfd_elf_generic_reloc, /* special function */
|
|
"R_NIOS2_S16", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x003fffc0, /* src_mask */
|
|
0x003fffc0, /* dest_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 16-bit unsigned immediate relocation. */
|
|
HOWTO (R_NIOS2_U16, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
6, /* bitpos */
|
|
complain_overflow_unsigned, /* complain on overflow */
|
|
bfd_elf_generic_reloc, /* special function */
|
|
"R_NIOS2_U16", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x003fffc0, /* src_mask */
|
|
0x003fffc0, /* dest_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_NIOS2_PCREL16, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
6, /* bitpos */
|
|
complain_overflow_signed, /* complain on overflow */
|
|
nios2_elf32_pcrel16_relocate, /* special function */
|
|
"R_NIOS2_PCREL16", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x003fffc0, /* src_mask */
|
|
0x003fffc0, /* dest_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_NIOS2_CALL26, /* type */
|
|
2, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
26, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
6, /* bitpos */
|
|
complain_overflow_dont, /* complain on overflow */
|
|
nios2_elf32_call26_relocate, /* special function */
|
|
"R_NIOS2_CALL26", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffc0, /* src_mask */
|
|
0xffffffc0, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_NIOS2_IMM5,
|
|
0,
|
|
2,
|
|
5,
|
|
FALSE,
|
|
6,
|
|
complain_overflow_bitfield,
|
|
bfd_elf_generic_reloc,
|
|
"R_NIOS2_IMM5",
|
|
FALSE,
|
|
0x000007c0,
|
|
0x000007c0,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_CACHE_OPX,
|
|
0,
|
|
2,
|
|
5,
|
|
FALSE,
|
|
22,
|
|
complain_overflow_bitfield,
|
|
bfd_elf_generic_reloc,
|
|
"R_NIOS2_CACHE_OPX",
|
|
FALSE,
|
|
0x07c00000,
|
|
0x07c00000,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_IMM6,
|
|
0,
|
|
2,
|
|
6,
|
|
FALSE,
|
|
6,
|
|
complain_overflow_bitfield,
|
|
bfd_elf_generic_reloc,
|
|
"R_NIOS2_IMM6",
|
|
FALSE,
|
|
0x00000fc0,
|
|
0x00000fc0,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_IMM8,
|
|
0,
|
|
2,
|
|
8,
|
|
FALSE,
|
|
6,
|
|
complain_overflow_bitfield,
|
|
bfd_elf_generic_reloc,
|
|
"R_NIOS2_IMM8",
|
|
FALSE,
|
|
0x00003fc0,
|
|
0x00003fc0,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_HI16,
|
|
0,
|
|
2,
|
|
32,
|
|
FALSE,
|
|
6,
|
|
complain_overflow_dont,
|
|
nios2_elf32_hi16_relocate,
|
|
"R_NIOS2_HI16",
|
|
FALSE,
|
|
0x003fffc0,
|
|
0x003fffc0,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_LO16,
|
|
0,
|
|
2,
|
|
32,
|
|
FALSE,
|
|
6,
|
|
complain_overflow_dont,
|
|
nios2_elf32_lo16_relocate,
|
|
"R_NIOS2_LO16",
|
|
FALSE,
|
|
0x003fffc0,
|
|
0x003fffc0,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_HIADJ16,
|
|
0,
|
|
2,
|
|
32,
|
|
FALSE,
|
|
6,
|
|
complain_overflow_dont,
|
|
nios2_elf32_hiadj16_relocate,
|
|
"R_NIOS2_HIADJ16",
|
|
FALSE,
|
|
0x003fffc0,
|
|
0x003fffc0,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_BFD_RELOC_32,
|
|
0,
|
|
2, /* long */
|
|
32,
|
|
FALSE,
|
|
0,
|
|
complain_overflow_dont,
|
|
bfd_elf_generic_reloc,
|
|
"R_NIOS2_BFD_RELOC32",
|
|
FALSE,
|
|
0xffffffff,
|
|
0xffffffff,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_BFD_RELOC_16,
|
|
0,
|
|
1, /* short */
|
|
16,
|
|
FALSE,
|
|
0,
|
|
complain_overflow_bitfield,
|
|
bfd_elf_generic_reloc,
|
|
"R_NIOS2_BFD_RELOC16",
|
|
FALSE,
|
|
0x0000ffff,
|
|
0x0000ffff,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_BFD_RELOC_8,
|
|
0,
|
|
0, /* byte */
|
|
8,
|
|
FALSE,
|
|
0,
|
|
complain_overflow_bitfield,
|
|
bfd_elf_generic_reloc,
|
|
"R_NIOS2_BFD_RELOC8",
|
|
FALSE,
|
|
0x000000ff,
|
|
0x000000ff,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_GPREL,
|
|
0,
|
|
2,
|
|
32,
|
|
FALSE,
|
|
6,
|
|
complain_overflow_dont,
|
|
nios2_elf32_gprel_relocate,
|
|
"R_NIOS2_GPREL",
|
|
FALSE,
|
|
0x003fffc0,
|
|
0x003fffc0,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_GNU_VTINHERIT,
|
|
0,
|
|
2, /* short */
|
|
0,
|
|
FALSE,
|
|
0,
|
|
complain_overflow_dont,
|
|
NULL,
|
|
"R_NIOS2_GNU_VTINHERIT",
|
|
FALSE,
|
|
0,
|
|
0,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_GNU_VTENTRY,
|
|
0,
|
|
2, /* byte */
|
|
0,
|
|
FALSE,
|
|
0,
|
|
complain_overflow_dont,
|
|
_bfd_elf_rel_vtable_reloc_fn,
|
|
"R_NIOS2_GNU_VTENTRY",
|
|
FALSE,
|
|
0,
|
|
0,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_UJMP,
|
|
0,
|
|
2,
|
|
32,
|
|
FALSE,
|
|
6,
|
|
complain_overflow_dont,
|
|
nios2_elf32_ujmp_relocate,
|
|
"R_NIOS2_UJMP",
|
|
FALSE,
|
|
0x003fffc0,
|
|
0x003fffc0,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_CJMP,
|
|
0,
|
|
2,
|
|
32,
|
|
FALSE,
|
|
6,
|
|
complain_overflow_dont,
|
|
nios2_elf32_cjmp_relocate,
|
|
"R_NIOS2_CJMP",
|
|
FALSE,
|
|
0x003fffc0,
|
|
0x003fffc0,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_CALLR,
|
|
0,
|
|
2,
|
|
32,
|
|
FALSE,
|
|
6,
|
|
complain_overflow_dont,
|
|
nios2_elf32_callr_relocate,
|
|
"R_NIOS2_CALLR",
|
|
FALSE,
|
|
0x003fffc0,
|
|
0x003fffc0,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_ALIGN,
|
|
0,
|
|
2,
|
|
0,
|
|
FALSE,
|
|
0,
|
|
complain_overflow_dont,
|
|
nios2_elf32_ignore_reloc,
|
|
"R_NIOS2_ALIGN",
|
|
FALSE,
|
|
0,
|
|
0,
|
|
TRUE),
|
|
|
|
|
|
HOWTO (R_NIOS2_GOT16,
|
|
0,
|
|
2,
|
|
16,
|
|
FALSE,
|
|
6,
|
|
complain_overflow_bitfield,
|
|
bfd_elf_generic_reloc,
|
|
"R_NIOS2_GOT16",
|
|
FALSE,
|
|
0x003fffc0,
|
|
0x003fffc0,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_CALL16,
|
|
0,
|
|
2,
|
|
16,
|
|
FALSE,
|
|
6,
|
|
complain_overflow_bitfield,
|
|
bfd_elf_generic_reloc,
|
|
"R_NIOS2_CALL16",
|
|
FALSE,
|
|
0x003fffc0,
|
|
0x003fffc0,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_GOTOFF_LO,
|
|
0,
|
|
2,
|
|
16,
|
|
FALSE,
|
|
6,
|
|
complain_overflow_dont,
|
|
bfd_elf_generic_reloc,
|
|
"R_NIOS2_GOTOFF_LO",
|
|
FALSE,
|
|
0x003fffc0,
|
|
0x003fffc0,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_GOTOFF_HA,
|
|
0,
|
|
2,
|
|
16,
|
|
FALSE,
|
|
6,
|
|
complain_overflow_dont,
|
|
bfd_elf_generic_reloc,
|
|
"R_NIOS2_GOTOFF_HA",
|
|
FALSE,
|
|
0x003fffc0,
|
|
0x003fffc0,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_PCREL_LO,
|
|
0,
|
|
2,
|
|
16,
|
|
TRUE,
|
|
6,
|
|
complain_overflow_dont,
|
|
nios2_elf32_pcrel_lo16_relocate,
|
|
"R_NIOS2_PCREL_LO",
|
|
FALSE,
|
|
0x003fffc0,
|
|
0x003fffc0,
|
|
TRUE),
|
|
|
|
HOWTO (R_NIOS2_PCREL_HA,
|
|
0,
|
|
2,
|
|
16,
|
|
FALSE, /* This is a PC-relative relocation, but we need to subtract
|
|
PC ourselves before the HIADJ. */
|
|
6,
|
|
complain_overflow_dont,
|
|
nios2_elf32_pcrel_hiadj16_relocate,
|
|
"R_NIOS2_PCREL_HA",
|
|
FALSE,
|
|
0x003fffc0,
|
|
0x003fffc0,
|
|
TRUE),
|
|
|
|
HOWTO (R_NIOS2_TLS_GD16,
|
|
0,
|
|
2,
|
|
16,
|
|
FALSE,
|
|
6,
|
|
complain_overflow_bitfield,
|
|
bfd_elf_generic_reloc,
|
|
"R_NIOS2_TLS_GD16",
|
|
FALSE,
|
|
0x003fffc0,
|
|
0x003fffc0,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_TLS_LDM16,
|
|
0,
|
|
2,
|
|
16,
|
|
FALSE,
|
|
6,
|
|
complain_overflow_bitfield,
|
|
bfd_elf_generic_reloc,
|
|
"R_NIOS2_TLS_LDM16",
|
|
FALSE,
|
|
0x003fffc0,
|
|
0x003fffc0,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_TLS_LDO16,
|
|
0,
|
|
2,
|
|
16,
|
|
FALSE,
|
|
6,
|
|
complain_overflow_bitfield,
|
|
bfd_elf_generic_reloc,
|
|
"R_NIOS2_TLS_LDO16",
|
|
FALSE,
|
|
0x003fffc0,
|
|
0x003fffc0,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_TLS_IE16,
|
|
0,
|
|
2,
|
|
16,
|
|
FALSE,
|
|
6,
|
|
complain_overflow_bitfield,
|
|
bfd_elf_generic_reloc,
|
|
"R_NIOS2_TLS_IE16",
|
|
FALSE,
|
|
0x003fffc0,
|
|
0x003fffc0,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_TLS_LE16,
|
|
0,
|
|
2,
|
|
16,
|
|
FALSE,
|
|
6,
|
|
complain_overflow_bitfield,
|
|
bfd_elf_generic_reloc,
|
|
"R_NIOS2_TLS_LE16",
|
|
FALSE,
|
|
0x003fffc0,
|
|
0x003fffc0,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_TLS_DTPMOD,
|
|
0,
|
|
2,
|
|
32,
|
|
FALSE,
|
|
0,
|
|
complain_overflow_dont,
|
|
bfd_elf_generic_reloc,
|
|
"R_NIOS2_TLS_DTPMOD",
|
|
FALSE,
|
|
0xffffffff,
|
|
0xffffffff,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_TLS_DTPREL,
|
|
0,
|
|
2,
|
|
32,
|
|
FALSE,
|
|
0,
|
|
complain_overflow_dont,
|
|
bfd_elf_generic_reloc,
|
|
"R_NIOS2_TLS_DTPREL",
|
|
FALSE,
|
|
0xffffffff,
|
|
0xffffffff,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_TLS_TPREL,
|
|
0,
|
|
2,
|
|
32,
|
|
FALSE,
|
|
0,
|
|
complain_overflow_dont,
|
|
bfd_elf_generic_reloc,
|
|
"R_NIOS2_TLS_TPREL",
|
|
FALSE,
|
|
0xffffffff,
|
|
0xffffffff,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_COPY,
|
|
0,
|
|
2,
|
|
32,
|
|
FALSE,
|
|
0,
|
|
complain_overflow_dont,
|
|
bfd_elf_generic_reloc,
|
|
"R_NIOS2_COPY",
|
|
FALSE,
|
|
0,
|
|
0,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_GLOB_DAT,
|
|
0,
|
|
2,
|
|
32,
|
|
FALSE,
|
|
0,
|
|
complain_overflow_dont,
|
|
bfd_elf_generic_reloc,
|
|
"R_NIOS2_GLOB_DAT",
|
|
FALSE,
|
|
0xffffffff,
|
|
0xffffffff,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_JUMP_SLOT,
|
|
0,
|
|
2,
|
|
32,
|
|
FALSE,
|
|
0,
|
|
complain_overflow_dont,
|
|
bfd_elf_generic_reloc,
|
|
"R_NIOS2_JUMP_SLOT",
|
|
FALSE,
|
|
0xffffffff,
|
|
0xffffffff,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_RELATIVE,
|
|
0,
|
|
2,
|
|
32,
|
|
FALSE,
|
|
0,
|
|
complain_overflow_dont,
|
|
bfd_elf_generic_reloc,
|
|
"R_NIOS2_RELATIVE",
|
|
FALSE,
|
|
0xffffffff,
|
|
0xffffffff,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_GOTOFF,
|
|
0,
|
|
2,
|
|
32,
|
|
FALSE,
|
|
0,
|
|
complain_overflow_dont,
|
|
bfd_elf_generic_reloc,
|
|
"R_NIOS2_GOTOFF",
|
|
FALSE,
|
|
0xffffffff,
|
|
0xffffffff,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_CALL26_NOAT, /* type */
|
|
2, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
26, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
6, /* bitpos */
|
|
complain_overflow_dont, /* complain on overflow */
|
|
nios2_elf32_call26_relocate, /* special function */
|
|
"R_NIOS2_CALL26_NOAT", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffc0, /* src_mask */
|
|
0xffffffc0, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_NIOS2_GOT_LO,
|
|
0,
|
|
2,
|
|
16,
|
|
FALSE,
|
|
6,
|
|
complain_overflow_dont,
|
|
bfd_elf_generic_reloc,
|
|
"R_NIOS2_GOT_LO",
|
|
FALSE,
|
|
0x003fffc0,
|
|
0x003fffc0,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_GOT_HA,
|
|
0,
|
|
2,
|
|
16,
|
|
FALSE,
|
|
6,
|
|
complain_overflow_dont,
|
|
bfd_elf_generic_reloc,
|
|
"R_NIOS2_GOT_HA",
|
|
FALSE,
|
|
0x003fffc0,
|
|
0x003fffc0,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_CALL_LO,
|
|
0,
|
|
2,
|
|
16,
|
|
FALSE,
|
|
6,
|
|
complain_overflow_dont,
|
|
bfd_elf_generic_reloc,
|
|
"R_NIOS2_CALL_LO",
|
|
FALSE,
|
|
0x003fffc0,
|
|
0x003fffc0,
|
|
FALSE),
|
|
|
|
HOWTO (R_NIOS2_CALL_HA,
|
|
0,
|
|
2,
|
|
16,
|
|
FALSE,
|
|
6,
|
|
complain_overflow_dont,
|
|
bfd_elf_generic_reloc,
|
|
"R_NIOS2_CALL_HA",
|
|
FALSE,
|
|
0x003fffc0,
|
|
0x003fffc0,
|
|
FALSE),
|
|
|
|
/* Add other relocations here. */
|
|
};
|
|
|
|
static unsigned char elf_code_to_howto_index[R_NIOS2_ILLEGAL + 1];
|
|
|
|
/* Return the howto for relocation RTYPE. */
|
|
static reloc_howto_type *
|
|
lookup_howto (unsigned int rtype)
|
|
{
|
|
static int initialized = 0;
|
|
int i;
|
|
int howto_tbl_size = (int) (sizeof (elf_nios2_howto_table_rel)
|
|
/ sizeof (elf_nios2_howto_table_rel[0]));
|
|
|
|
if (!initialized)
|
|
{
|
|
initialized = 1;
|
|
memset (elf_code_to_howto_index, 0xff,
|
|
sizeof (elf_code_to_howto_index));
|
|
for (i = 0; i < howto_tbl_size; i++)
|
|
elf_code_to_howto_index[elf_nios2_howto_table_rel[i].type] = i;
|
|
}
|
|
|
|
BFD_ASSERT (rtype <= R_NIOS2_ILLEGAL);
|
|
i = elf_code_to_howto_index[rtype];
|
|
if (i >= howto_tbl_size)
|
|
return 0;
|
|
return elf_nios2_howto_table_rel + i;
|
|
}
|
|
|
|
/* Map for converting BFD reloc types to Nios II reloc types. */
|
|
struct elf_reloc_map
|
|
{
|
|
bfd_reloc_code_real_type bfd_val;
|
|
enum elf_nios2_reloc_type elf_val;
|
|
};
|
|
|
|
static const struct elf_reloc_map nios2_reloc_map[] = {
|
|
{BFD_RELOC_NIOS2_S16, R_NIOS2_S16},
|
|
{BFD_RELOC_NIOS2_U16, R_NIOS2_U16},
|
|
{BFD_RELOC_16_PCREL, R_NIOS2_PCREL16},
|
|
{BFD_RELOC_NIOS2_CALL26, R_NIOS2_CALL26},
|
|
{BFD_RELOC_NIOS2_IMM5, R_NIOS2_IMM5},
|
|
{BFD_RELOC_NIOS2_CACHE_OPX, R_NIOS2_CACHE_OPX},
|
|
{BFD_RELOC_NIOS2_IMM6, R_NIOS2_IMM6},
|
|
{BFD_RELOC_NIOS2_IMM8, R_NIOS2_IMM8},
|
|
{BFD_RELOC_NIOS2_HI16, R_NIOS2_HI16},
|
|
{BFD_RELOC_NIOS2_LO16, R_NIOS2_LO16},
|
|
{BFD_RELOC_NIOS2_HIADJ16, R_NIOS2_HIADJ16},
|
|
{BFD_RELOC_32, R_NIOS2_BFD_RELOC_32},
|
|
{BFD_RELOC_16, R_NIOS2_BFD_RELOC_16},
|
|
{BFD_RELOC_8, R_NIOS2_BFD_RELOC_8},
|
|
{BFD_RELOC_NIOS2_GPREL, R_NIOS2_GPREL},
|
|
{BFD_RELOC_VTABLE_INHERIT, R_NIOS2_GNU_VTINHERIT},
|
|
{BFD_RELOC_VTABLE_ENTRY, R_NIOS2_GNU_VTENTRY},
|
|
{BFD_RELOC_NIOS2_UJMP, R_NIOS2_UJMP},
|
|
{BFD_RELOC_NIOS2_CJMP, R_NIOS2_CJMP},
|
|
{BFD_RELOC_NIOS2_CALLR, R_NIOS2_CALLR},
|
|
{BFD_RELOC_NIOS2_ALIGN, R_NIOS2_ALIGN},
|
|
{BFD_RELOC_NIOS2_GOT16, R_NIOS2_GOT16},
|
|
{BFD_RELOC_NIOS2_CALL16, R_NIOS2_CALL16},
|
|
{BFD_RELOC_NIOS2_GOTOFF_LO, R_NIOS2_GOTOFF_LO},
|
|
{BFD_RELOC_NIOS2_GOTOFF_HA, R_NIOS2_GOTOFF_HA},
|
|
{BFD_RELOC_NIOS2_PCREL_LO, R_NIOS2_PCREL_LO},
|
|
{BFD_RELOC_NIOS2_PCREL_HA, R_NIOS2_PCREL_HA},
|
|
{BFD_RELOC_NIOS2_TLS_GD16, R_NIOS2_TLS_GD16},
|
|
{BFD_RELOC_NIOS2_TLS_LDM16, R_NIOS2_TLS_LDM16},
|
|
{BFD_RELOC_NIOS2_TLS_LDO16, R_NIOS2_TLS_LDO16},
|
|
{BFD_RELOC_NIOS2_TLS_IE16, R_NIOS2_TLS_IE16},
|
|
{BFD_RELOC_NIOS2_TLS_LE16, R_NIOS2_TLS_LE16},
|
|
{BFD_RELOC_NIOS2_TLS_DTPMOD, R_NIOS2_TLS_DTPMOD},
|
|
{BFD_RELOC_NIOS2_TLS_DTPREL, R_NIOS2_TLS_DTPREL},
|
|
{BFD_RELOC_NIOS2_TLS_TPREL, R_NIOS2_TLS_TPREL},
|
|
{BFD_RELOC_NIOS2_COPY, R_NIOS2_COPY},
|
|
{BFD_RELOC_NIOS2_GLOB_DAT, R_NIOS2_GLOB_DAT},
|
|
{BFD_RELOC_NIOS2_JUMP_SLOT, R_NIOS2_JUMP_SLOT},
|
|
{BFD_RELOC_NIOS2_RELATIVE, R_NIOS2_RELATIVE},
|
|
{BFD_RELOC_NIOS2_GOTOFF, R_NIOS2_GOTOFF},
|
|
{BFD_RELOC_NIOS2_CALL26_NOAT, R_NIOS2_CALL26_NOAT},
|
|
{BFD_RELOC_NIOS2_GOT_LO, R_NIOS2_GOT_LO},
|
|
{BFD_RELOC_NIOS2_GOT_HA, R_NIOS2_GOT_HA},
|
|
{BFD_RELOC_NIOS2_CALL_LO, R_NIOS2_CALL_LO},
|
|
{BFD_RELOC_NIOS2_CALL_HA, R_NIOS2_CALL_HA},
|
|
};
|
|
|
|
enum elf32_nios2_stub_type
|
|
{
|
|
nios2_stub_call26_before,
|
|
nios2_stub_call26_after,
|
|
nios2_stub_none
|
|
};
|
|
|
|
struct elf32_nios2_stub_hash_entry
|
|
{
|
|
/* Base hash table entry structure. */
|
|
struct bfd_hash_entry bh_root;
|
|
|
|
/* The stub section. */
|
|
asection *stub_sec;
|
|
|
|
/* Offset within stub_sec of the beginning of this stub. */
|
|
bfd_vma stub_offset;
|
|
|
|
/* Given the symbol's value and its section we can determine its final
|
|
value when building the stubs (so the stub knows where to jump. */
|
|
bfd_vma target_value;
|
|
asection *target_section;
|
|
|
|
enum elf32_nios2_stub_type stub_type;
|
|
|
|
/* The symbol table entry, if any, that this was derived from. */
|
|
struct elf32_nios2_link_hash_entry *hh;
|
|
|
|
/* And the reloc addend that this was derived from. */
|
|
bfd_vma addend;
|
|
|
|
/* Where this stub is being called from, or, in the case of combined
|
|
stub sections, the first input section in the group. */
|
|
asection *id_sec;
|
|
};
|
|
|
|
#define nios2_stub_hash_entry(ent) \
|
|
((struct elf32_nios2_stub_hash_entry *)(ent))
|
|
|
|
#define nios2_stub_hash_lookup(table, string, create, copy) \
|
|
((struct elf32_nios2_stub_hash_entry *) \
|
|
bfd_hash_lookup ((table), (string), (create), (copy)))
|
|
|
|
|
|
/* The Nios II linker needs to keep track of the number of relocs that it
|
|
decides to copy as dynamic relocs in check_relocs for each symbol.
|
|
This is so that it can later discard them if they are found to be
|
|
unnecessary. We store the information in a field extending the
|
|
regular ELF linker hash table. */
|
|
|
|
struct elf32_nios2_dyn_relocs
|
|
{
|
|
struct elf32_nios2_dyn_relocs *next;
|
|
|
|
/* The input section of the reloc. */
|
|
asection *sec;
|
|
|
|
/* Total number of relocs copied for the input section. */
|
|
bfd_size_type count;
|
|
|
|
/* Number of pc-relative relocs copied for the input section. */
|
|
bfd_size_type pc_count;
|
|
};
|
|
|
|
/* Nios II ELF linker hash entry. */
|
|
|
|
struct elf32_nios2_link_hash_entry
|
|
{
|
|
struct elf_link_hash_entry root;
|
|
|
|
/* A pointer to the most recently used stub hash entry against this
|
|
symbol. */
|
|
struct elf32_nios2_stub_hash_entry *hsh_cache;
|
|
|
|
/* Track dynamic relocs copied for this symbol. */
|
|
struct elf32_nios2_dyn_relocs *dyn_relocs;
|
|
|
|
#define GOT_UNKNOWN 0
|
|
#define GOT_NORMAL 1
|
|
#define GOT_TLS_GD 2
|
|
#define GOT_TLS_IE 4
|
|
unsigned char tls_type;
|
|
|
|
/* We need to detect and take special action for symbols which are only
|
|
referenced with %call() and not with %got(). Such symbols do not need
|
|
a dynamic GOT reloc in shared objects, only a dynamic PLT reloc. Lazy
|
|
linking will not work if the dynamic GOT reloc exists.
|
|
To check for this condition efficiently, we compare got_types_used against
|
|
CALL_USED, meaning
|
|
(got_types_used & (GOT_USED | CALL_USED)) == CALL_USED.
|
|
*/
|
|
#define GOT_USED 1
|
|
#define CALL_USED 2
|
|
unsigned char got_types_used;
|
|
};
|
|
|
|
#define elf32_nios2_hash_entry(ent) \
|
|
((struct elf32_nios2_link_hash_entry *) (ent))
|
|
|
|
/* Get the Nios II elf linker hash table from a link_info structure. */
|
|
#define elf32_nios2_hash_table(info) \
|
|
((struct elf32_nios2_link_hash_table *) ((info)->hash))
|
|
|
|
/* Nios II ELF linker hash table. */
|
|
struct elf32_nios2_link_hash_table
|
|
{
|
|
/* The main hash table. */
|
|
struct elf_link_hash_table root;
|
|
|
|
/* The stub hash table. */
|
|
struct bfd_hash_table bstab;
|
|
|
|
/* Linker stub bfd. */
|
|
bfd *stub_bfd;
|
|
|
|
/* Linker call-backs. */
|
|
asection * (*add_stub_section) (const char *, asection *, bfd_boolean);
|
|
void (*layout_sections_again) (void);
|
|
|
|
/* Array to keep track of which stub sections have been created, and
|
|
information on stub grouping. */
|
|
struct map_stub
|
|
{
|
|
/* These are the section to which stubs in the group will be
|
|
attached. */
|
|
asection *first_sec, *last_sec;
|
|
/* The stub sections. There might be stubs inserted either before
|
|
or after the real section.*/
|
|
asection *first_stub_sec, *last_stub_sec;
|
|
} *stub_group;
|
|
|
|
/* Assorted information used by nios2_elf32_size_stubs. */
|
|
unsigned int bfd_count;
|
|
int top_index;
|
|
asection **input_list;
|
|
Elf_Internal_Sym **all_local_syms;
|
|
|
|
/* Short-cuts to get to dynamic linker sections. */
|
|
asection *sdynbss;
|
|
asection *srelbss;
|
|
asection *sbss;
|
|
|
|
/* GOT pointer symbol _gp_got. */
|
|
struct elf_link_hash_entry *h_gp_got;
|
|
|
|
union {
|
|
bfd_signed_vma refcount;
|
|
bfd_vma offset;
|
|
} tls_ldm_got;
|
|
|
|
/* Small local sym cache. */
|
|
struct sym_cache sym_cache;
|
|
|
|
bfd_vma res_n_size;
|
|
};
|
|
|
|
struct nios2_elf32_obj_tdata
|
|
{
|
|
struct elf_obj_tdata root;
|
|
|
|
/* tls_type for each local got entry. */
|
|
char *local_got_tls_type;
|
|
|
|
/* TRUE if TLS GD relocs have been seen for this object. */
|
|
bfd_boolean has_tlsgd;
|
|
};
|
|
|
|
#define elf32_nios2_tdata(abfd) \
|
|
((struct nios2_elf32_obj_tdata *) (abfd)->tdata.any)
|
|
|
|
#define elf32_nios2_local_got_tls_type(abfd) \
|
|
(elf32_nios2_tdata (abfd)->local_got_tls_type)
|
|
|
|
/* The name of the dynamic interpreter. This is put in the .interp
|
|
section. */
|
|
#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
|
|
|
|
/* PLT implementation for position-dependent code. */
|
|
static const bfd_vma nios2_plt_entry[] = { /* .PLTn: */
|
|
0x03c00034, /* movhi r15, %hiadj(plt_got_slot_address) */
|
|
0x7bc00017, /* ldw r15, %lo(plt_got_slot_address)(r15) */
|
|
0x7800683a /* jmp r15 */
|
|
};
|
|
|
|
static const bfd_vma nios2_plt0_entry[] = { /* .PLTresolve */
|
|
0x03800034, /* movhi r14, %hiadj(res_0) */
|
|
0x73800004, /* addi r14, r14, %lo(res_0) */
|
|
0x7b9fc83a, /* sub r15, r15, r14 */
|
|
0x03400034, /* movhi r13, %hiadj(_GLOBAL_OFFSET_TABLE_) */
|
|
0x6b800017, /* ldw r14, %lo(_GLOBAL_OFFSET_TABLE_+4)(r13) */
|
|
0x6b400017, /* ldw r13, %lo(_GLOBAL_OFFSET_TABLE_+8)(r13) */
|
|
0x6800683a /* jmp r13 */
|
|
};
|
|
|
|
/* PLT implementation for position-independent code. */
|
|
static const bfd_vma nios2_so_plt_entry[] = { /* .PLTn */
|
|
0x03c00034, /* movhi r15, %hiadj(index * 4) */
|
|
0x7bc00004, /* addi r15, r15, %lo(index * 4) */
|
|
0x00000006 /* br .PLTresolve */
|
|
};
|
|
|
|
static const bfd_vma nios2_so_plt0_entry[] = { /* .PLTresolve */
|
|
0x001ce03a, /* nextpc r14 */
|
|
0x03400034, /* movhi r13, %hiadj(_GLOBAL_OFFSET_TABLE_) */
|
|
0x6b9b883a, /* add r13, r13, r14 */
|
|
0x6b800017, /* ldw r14, %lo(_GLOBAL_OFFSET_TABLE_+4)(r13) */
|
|
0x6b400017, /* ldw r13, %lo(_GLOBAL_OFFSET_TABLE_+8)(r13) */
|
|
0x6800683a /* jmp r13 */
|
|
};
|
|
|
|
/* CALL26 stub. */
|
|
static const bfd_vma nios2_call26_stub_entry[] = {
|
|
0x00400034, /* orhi at, r0, %hiadj(dest) */
|
|
0x08400004, /* addi at, at, %lo(dest) */
|
|
0x0800683a /* jmp at */
|
|
};
|
|
|
|
/* Install 16-bit immediate value VALUE at offset OFFSET into section SEC. */
|
|
static void
|
|
nios2_elf32_install_imm16 (asection *sec, bfd_vma offset, bfd_vma value)
|
|
{
|
|
bfd_vma word = bfd_get_32 (sec->owner, sec->contents + offset);
|
|
|
|
BFD_ASSERT(value <= 0xffff);
|
|
|
|
bfd_put_32 (sec->owner, word | ((value & 0xffff) << 6),
|
|
sec->contents + offset);
|
|
}
|
|
|
|
/* Install COUNT 32-bit values DATA starting at offset OFFSET into
|
|
section SEC. */
|
|
static void
|
|
nios2_elf32_install_data (asection *sec, const bfd_vma *data, bfd_vma offset,
|
|
int count)
|
|
{
|
|
while (count--)
|
|
{
|
|
bfd_put_32 (sec->owner, *data, sec->contents + offset);
|
|
offset += 4;
|
|
++data;
|
|
}
|
|
}
|
|
|
|
/* The usual way of loading a 32-bit constant into a Nios II register is to
|
|
load the high 16 bits in one instruction and then add the low 16 bits with
|
|
a signed add. This means that the high halfword needs to be adjusted to
|
|
compensate for the sign bit of the low halfword. This function returns the
|
|
adjusted high halfword for a given 32-bit constant. */
|
|
static
|
|
bfd_vma hiadj (bfd_vma symbol_value)
|
|
{
|
|
return ((symbol_value + 0x8000) >> 16) & 0xffff;
|
|
}
|
|
|
|
/* Implement elf_backend_grok_prstatus:
|
|
Support for core dump NOTE sections. */
|
|
static bfd_boolean
|
|
nios2_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
|
|
{
|
|
int offset;
|
|
size_t size;
|
|
|
|
switch (note->descsz)
|
|
{
|
|
default:
|
|
return FALSE;
|
|
|
|
case 212: /* Linux/Nios II */
|
|
/* pr_cursig */
|
|
elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
|
|
|
|
/* pr_pid */
|
|
elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 24);
|
|
|
|
/* pr_reg */
|
|
offset = 72;
|
|
size = 136;
|
|
|
|
break;
|
|
}
|
|
|
|
/* Make a ".reg/999" section. */
|
|
return _bfd_elfcore_make_pseudosection (abfd, ".reg",
|
|
size, note->descpos + offset);
|
|
}
|
|
|
|
/* Implement elf_backend_grok_psinfo. */
|
|
static bfd_boolean
|
|
nios2_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
|
|
{
|
|
switch (note->descsz)
|
|
{
|
|
default:
|
|
return FALSE;
|
|
|
|
case 124: /* Linux/Nios II elf_prpsinfo */
|
|
elf_tdata (abfd)->core->program
|
|
= _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
|
|
elf_tdata (abfd)->core->command
|
|
= _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
|
|
}
|
|
|
|
/* Note that for some reason, a spurious space is tacked
|
|
onto the end of the args in some (at least one anyway)
|
|
implementations, so strip it off if it exists. */
|
|
|
|
{
|
|
char *command = elf_tdata (abfd)->core->command;
|
|
int n = strlen (command);
|
|
|
|
if (0 < n && command[n - 1] == ' ')
|
|
command[n - 1] = '\0';
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Assorted hash table functions. */
|
|
|
|
/* Initialize an entry in the stub hash table. */
|
|
static struct bfd_hash_entry *
|
|
stub_hash_newfunc (struct bfd_hash_entry *entry,
|
|
struct bfd_hash_table *table,
|
|
const char *string)
|
|
{
|
|
/* Allocate the structure if it has not already been allocated by a
|
|
subclass. */
|
|
if (entry == NULL)
|
|
{
|
|
entry = bfd_hash_allocate (table,
|
|
sizeof (struct elf32_nios2_stub_hash_entry));
|
|
if (entry == NULL)
|
|
return entry;
|
|
}
|
|
|
|
/* Call the allocation method of the superclass. */
|
|
entry = bfd_hash_newfunc (entry, table, string);
|
|
if (entry != NULL)
|
|
{
|
|
struct elf32_nios2_stub_hash_entry *hsh;
|
|
|
|
/* Initialize the local fields. */
|
|
hsh = (struct elf32_nios2_stub_hash_entry *) entry;
|
|
hsh->stub_sec = NULL;
|
|
hsh->stub_offset = 0;
|
|
hsh->target_value = 0;
|
|
hsh->target_section = NULL;
|
|
hsh->stub_type = nios2_stub_none;
|
|
hsh->hh = NULL;
|
|
hsh->id_sec = NULL;
|
|
}
|
|
|
|
return entry;
|
|
}
|
|
|
|
/* Create an entry in a Nios II ELF linker hash table. */
|
|
static struct bfd_hash_entry *
|
|
link_hash_newfunc (struct bfd_hash_entry *entry,
|
|
struct bfd_hash_table *table, const char *string)
|
|
{
|
|
/* Allocate the structure if it has not already been allocated by a
|
|
subclass. */
|
|
if (entry == NULL)
|
|
{
|
|
entry = bfd_hash_allocate (table,
|
|
sizeof (struct elf32_nios2_link_hash_entry));
|
|
if (entry == NULL)
|
|
return entry;
|
|
}
|
|
|
|
/* Call the allocation method of the superclass. */
|
|
entry = _bfd_elf_link_hash_newfunc (entry, table, string);
|
|
if (entry)
|
|
{
|
|
struct elf32_nios2_link_hash_entry *eh;
|
|
|
|
eh = (struct elf32_nios2_link_hash_entry *) entry;
|
|
eh->hsh_cache = NULL;
|
|
eh->dyn_relocs = NULL;
|
|
eh->tls_type = GOT_UNKNOWN;
|
|
eh->got_types_used = 0;
|
|
}
|
|
|
|
return entry;
|
|
}
|
|
|
|
/* Section name for stubs is the associated section name plus this
|
|
string. */
|
|
#define STUB_SUFFIX ".stub"
|
|
|
|
/* Build a name for an entry in the stub hash table. */
|
|
static char *
|
|
nios2_stub_name (const asection *input_section,
|
|
const asection *sym_sec,
|
|
const struct elf32_nios2_link_hash_entry *hh,
|
|
const Elf_Internal_Rela *rel,
|
|
enum elf32_nios2_stub_type stub_type)
|
|
{
|
|
char *stub_name;
|
|
bfd_size_type len;
|
|
char stubpos = (stub_type == nios2_stub_call26_before) ? 'b' : 'a';
|
|
|
|
if (hh)
|
|
{
|
|
len = 8 + 1 + 1 + 1+ strlen (hh->root.root.root.string) + 1 + 8 + 1;
|
|
stub_name = bfd_malloc (len);
|
|
if (stub_name != NULL)
|
|
{
|
|
sprintf (stub_name, "%08x_%c_%s+%x",
|
|
input_section->id & 0xffffffff,
|
|
stubpos,
|
|
hh->root.root.root.string,
|
|
(int) rel->r_addend & 0xffffffff);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
len = 8 + 1 + 1 + 1+ 8 + 1 + 8 + 1 + 8 + 1;
|
|
stub_name = bfd_malloc (len);
|
|
if (stub_name != NULL)
|
|
{
|
|
sprintf (stub_name, "%08x_%c_%x:%x+%x",
|
|
input_section->id & 0xffffffff,
|
|
stubpos,
|
|
sym_sec->id & 0xffffffff,
|
|
(int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
|
|
(int) rel->r_addend & 0xffffffff);
|
|
}
|
|
}
|
|
return stub_name;
|
|
}
|
|
|
|
/* Look up an entry in the stub hash. Stub entries are cached because
|
|
creating the stub name takes a bit of time. */
|
|
static struct elf32_nios2_stub_hash_entry *
|
|
nios2_get_stub_entry (const asection *input_section,
|
|
const asection *sym_sec,
|
|
struct elf32_nios2_link_hash_entry *hh,
|
|
const Elf_Internal_Rela *rel,
|
|
struct elf32_nios2_link_hash_table *htab,
|
|
enum elf32_nios2_stub_type stub_type)
|
|
{
|
|
struct elf32_nios2_stub_hash_entry *hsh;
|
|
const asection *id_sec;
|
|
|
|
/* If this input section is part of a group of sections sharing one
|
|
stub section, then use the id of the first/last section in the group,
|
|
depending on the stub section placement relative to the group.
|
|
Stub names need to include a section id, as there may well be
|
|
more than one stub used to reach say, printf, and we need to
|
|
distinguish between them. */
|
|
if (stub_type == nios2_stub_call26_before)
|
|
id_sec = htab->stub_group[input_section->id].first_sec;
|
|
else
|
|
id_sec = htab->stub_group[input_section->id].last_sec;
|
|
|
|
if (hh != NULL && hh->hsh_cache != NULL
|
|
&& hh->hsh_cache->hh == hh
|
|
&& hh->hsh_cache->id_sec == id_sec
|
|
&& hh->hsh_cache->stub_type == stub_type)
|
|
{
|
|
hsh = hh->hsh_cache;
|
|
}
|
|
else
|
|
{
|
|
char *stub_name;
|
|
|
|
stub_name = nios2_stub_name (id_sec, sym_sec, hh, rel, stub_type);
|
|
if (stub_name == NULL)
|
|
return NULL;
|
|
|
|
hsh = nios2_stub_hash_lookup (&htab->bstab,
|
|
stub_name, FALSE, FALSE);
|
|
|
|
if (hh != NULL)
|
|
hh->hsh_cache = hsh;
|
|
|
|
free (stub_name);
|
|
}
|
|
|
|
return hsh;
|
|
}
|
|
|
|
/* Add a new stub entry to the stub hash. Not all fields of the new
|
|
stub entry are initialised. */
|
|
static struct elf32_nios2_stub_hash_entry *
|
|
nios2_add_stub (const char *stub_name,
|
|
asection *section,
|
|
struct elf32_nios2_link_hash_table *htab,
|
|
enum elf32_nios2_stub_type stub_type)
|
|
{
|
|
asection *link_sec;
|
|
asection *stub_sec;
|
|
asection **secptr, **linkptr;
|
|
struct elf32_nios2_stub_hash_entry *hsh;
|
|
bfd_boolean afterp;
|
|
|
|
if (stub_type == nios2_stub_call26_before)
|
|
{
|
|
link_sec = htab->stub_group[section->id].first_sec;
|
|
secptr = &(htab->stub_group[section->id].first_stub_sec);
|
|
linkptr = &(htab->stub_group[link_sec->id].first_stub_sec);
|
|
afterp = FALSE;
|
|
}
|
|
else
|
|
{
|
|
link_sec = htab->stub_group[section->id].last_sec;
|
|
secptr = &(htab->stub_group[section->id].last_stub_sec);
|
|
linkptr = &(htab->stub_group[link_sec->id].last_stub_sec);
|
|
afterp = TRUE;
|
|
}
|
|
stub_sec = *secptr;
|
|
if (stub_sec == NULL)
|
|
{
|
|
stub_sec = *linkptr;
|
|
if (stub_sec == NULL)
|
|
{
|
|
size_t namelen;
|
|
bfd_size_type len;
|
|
char *s_name;
|
|
|
|
namelen = strlen (link_sec->name);
|
|
len = namelen + sizeof (STUB_SUFFIX);
|
|
s_name = bfd_alloc (htab->stub_bfd, len);
|
|
if (s_name == NULL)
|
|
return NULL;
|
|
|
|
memcpy (s_name, link_sec->name, namelen);
|
|
memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
|
|
|
|
stub_sec = (*htab->add_stub_section) (s_name, link_sec, afterp);
|
|
if (stub_sec == NULL)
|
|
return NULL;
|
|
*linkptr = stub_sec;
|
|
}
|
|
*secptr = stub_sec;
|
|
}
|
|
|
|
/* Enter this entry into the linker stub hash table. */
|
|
hsh = nios2_stub_hash_lookup (&htab->bstab, stub_name,
|
|
TRUE, FALSE);
|
|
if (hsh == NULL)
|
|
{
|
|
(*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
|
|
section->owner,
|
|
stub_name);
|
|
return NULL;
|
|
}
|
|
|
|
hsh->stub_sec = stub_sec;
|
|
hsh->stub_offset = 0;
|
|
hsh->id_sec = link_sec;
|
|
return hsh;
|
|
}
|
|
|
|
/* Set up various things so that we can make a list of input sections
|
|
for each output section included in the link. Returns -1 on error,
|
|
0 when no stubs will be needed, and 1 on success. */
|
|
int
|
|
nios2_elf32_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
|
|
{
|
|
bfd *input_bfd;
|
|
unsigned int bfd_count;
|
|
int top_id, top_index;
|
|
asection *section;
|
|
asection **input_list, **list;
|
|
bfd_size_type amt;
|
|
struct elf32_nios2_link_hash_table *htab = elf32_nios2_hash_table (info);
|
|
|
|
/* Count the number of input BFDs and find the top input section id. */
|
|
for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
|
|
input_bfd != NULL;
|
|
input_bfd = input_bfd->link_next)
|
|
{
|
|
bfd_count += 1;
|
|
for (section = input_bfd->sections;
|
|
section != NULL;
|
|
section = section->next)
|
|
{
|
|
if (top_id < section->id)
|
|
top_id = section->id;
|
|
}
|
|
}
|
|
|
|
htab->bfd_count = bfd_count;
|
|
|
|
amt = sizeof (struct map_stub) * (top_id + 1);
|
|
htab->stub_group = bfd_zmalloc (amt);
|
|
if (htab->stub_group == NULL)
|
|
return -1;
|
|
|
|
/* We can't use output_bfd->section_count here to find the top output
|
|
section index as some sections may have been removed, and
|
|
strip_excluded_output_sections doesn't renumber the indices. */
|
|
for (section = output_bfd->sections, top_index = 0;
|
|
section != NULL;
|
|
section = section->next)
|
|
{
|
|
if (top_index < section->index)
|
|
top_index = section->index;
|
|
}
|
|
|
|
htab->top_index = top_index;
|
|
amt = sizeof (asection *) * (top_index + 1);
|
|
input_list = bfd_malloc (amt);
|
|
htab->input_list = input_list;
|
|
if (input_list == NULL)
|
|
return -1;
|
|
|
|
/* For sections we aren't interested in, mark their entries with a
|
|
value we can check later. */
|
|
list = input_list + top_index;
|
|
do
|
|
*list = bfd_abs_section_ptr;
|
|
while (list-- != input_list);
|
|
|
|
for (section = output_bfd->sections;
|
|
section != NULL;
|
|
section = section->next)
|
|
{
|
|
/* FIXME: This is a bit of hack. Currently our .ctors and .dtors
|
|
* have PC relative relocs in them but no code flag set. */
|
|
if (((section->flags & SEC_CODE) != 0) ||
|
|
strcmp(".ctors", section->name) ||
|
|
strcmp(".dtors", section->name))
|
|
input_list[section->index] = NULL;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* The linker repeatedly calls this function for each input section,
|
|
in the order that input sections are linked into output sections.
|
|
Build lists of input sections to determine groupings between which
|
|
we may insert linker stubs. */
|
|
void
|
|
nios2_elf32_next_input_section (struct bfd_link_info *info, asection *isec)
|
|
{
|
|
struct elf32_nios2_link_hash_table *htab = elf32_nios2_hash_table (info);
|
|
|
|
if (isec->output_section->index <= htab->top_index)
|
|
{
|
|
asection **list = htab->input_list + isec->output_section->index;
|
|
if (*list != bfd_abs_section_ptr)
|
|
{
|
|
/* Steal the last_sec pointer for our list.
|
|
This happens to make the list in reverse order,
|
|
which is what we want. */
|
|
htab->stub_group[isec->id].last_sec = *list;
|
|
*list = isec;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Segment mask for CALL26 relocation relaxation. */
|
|
#define CALL26_SEGMENT(x) ((x) & 0xf0000000)
|
|
|
|
/* Fudge factor for approximate maximum size of all stubs that might
|
|
be inserted by the linker. This does not actually limit the number
|
|
of stubs that might be inserted, and only affects strategy for grouping
|
|
and placement of stubs. Perhaps this should be computed based on number
|
|
of relocations seen, or be specifiable on the command line. */
|
|
#define MAX_STUB_SECTION_SIZE 0xffff
|
|
|
|
/* See whether we can group stub sections together. Grouping stub
|
|
sections may result in fewer stubs. More importantly, we need to
|
|
put all .init* and .fini* stubs at the end of the .init or
|
|
.fini output sections respectively, because glibc splits the
|
|
_init and _fini functions into multiple parts. Putting a stub in
|
|
the middle of a function is not a good idea.
|
|
Rather than computing groups of a maximum fixed size, for Nios II
|
|
CALL26 relaxation it makes more sense to compute the groups based on
|
|
sections that fit within a 256MB address segment. Also do not allow
|
|
a group to span more than one output section, since different output
|
|
sections might correspond to different memory banks on a bare-metal
|
|
target, etc. */
|
|
static void
|
|
group_sections (struct elf32_nios2_link_hash_table *htab)
|
|
{
|
|
asection **list = htab->input_list + htab->top_index;
|
|
do
|
|
{
|
|
/* The list is in reverse order so we'll search backwards looking
|
|
for the first section that begins in the same memory segment,
|
|
marking sections along the way to point at the tail for this
|
|
group. */
|
|
asection *tail = *list;
|
|
if (tail == bfd_abs_section_ptr)
|
|
continue;
|
|
while (tail != NULL)
|
|
{
|
|
bfd_vma start = tail->output_section->vma + tail->output_offset;
|
|
bfd_vma end = start + tail->size;
|
|
bfd_vma segment = CALL26_SEGMENT (end);
|
|
asection *prev;
|
|
|
|
if (segment != CALL26_SEGMENT (start)
|
|
|| segment != CALL26_SEGMENT (end + MAX_STUB_SECTION_SIZE))
|
|
/* This section spans more than one memory segment, or is
|
|
close enough to the end of the segment that adding stub
|
|
sections before it might cause it to move so that it
|
|
spans memory segments, or that stubs added at the end of
|
|
this group might overflow into the next memory segment.
|
|
Put it in a group by itself to localize the effects. */
|
|
{
|
|
prev = htab->stub_group[tail->id].last_sec;
|
|
htab->stub_group[tail->id].last_sec = tail;
|
|
htab->stub_group[tail->id].first_sec = tail;
|
|
}
|
|
else
|
|
/* Collect more sections for this group. */
|
|
{
|
|
asection *curr, *first;
|
|
for (curr = tail; ; curr = prev)
|
|
{
|
|
prev = htab->stub_group[curr->id].last_sec;
|
|
if (!prev
|
|
|| tail->output_section != prev->output_section
|
|
|| (CALL26_SEGMENT (prev->output_section->vma
|
|
+ prev->output_offset)
|
|
!= segment))
|
|
break;
|
|
}
|
|
first = curr;
|
|
for (curr = tail; ; curr = prev)
|
|
{
|
|
prev = htab->stub_group[curr->id].last_sec;
|
|
htab->stub_group[curr->id].last_sec = tail;
|
|
htab->stub_group[curr->id].first_sec = first;
|
|
if (curr == first)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Reset tail for the next group. */
|
|
tail = prev;
|
|
}
|
|
}
|
|
while (list-- != htab->input_list);
|
|
free (htab->input_list);
|
|
}
|
|
|
|
/* Determine the type of stub needed, if any, for a call. */
|
|
static enum elf32_nios2_stub_type
|
|
nios2_type_of_stub (asection *input_sec,
|
|
const Elf_Internal_Rela *rel,
|
|
struct elf32_nios2_link_hash_entry *hh,
|
|
struct elf32_nios2_link_hash_table *htab,
|
|
bfd_vma destination,
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED)
|
|
{
|
|
bfd_vma location, segment, start, end;
|
|
asection *s0, *s1, *s;
|
|
|
|
if (hh != NULL &&
|
|
!(hh->root.root.type == bfd_link_hash_defined
|
|
|| hh->root.root.type == bfd_link_hash_defweak))
|
|
return nios2_stub_none;
|
|
|
|
/* Determine where the call point is. */
|
|
location = (input_sec->output_section->vma
|
|
+ input_sec->output_offset + rel->r_offset);
|
|
segment = CALL26_SEGMENT (location);
|
|
|
|
/* Nios II CALL and JMPI instructions can transfer control to addresses
|
|
within the same 256MB segment as the PC. */
|
|
if (segment == CALL26_SEGMENT (destination))
|
|
return nios2_stub_none;
|
|
|
|
/* Find the start and end addresses of the stub group. Also account for
|
|
any already-created stub sections for this group. Note that for stubs
|
|
in the end section, only the first instruction of the last stub
|
|
(12 bytes long) needs to be within range. */
|
|
s0 = htab->stub_group[input_sec->id].first_sec;
|
|
s = htab->stub_group[s0->id].first_stub_sec;
|
|
if (s != NULL && s->size > 0)
|
|
start = s->output_section->vma + s->output_offset;
|
|
else
|
|
start = s0->output_section->vma + s0->output_offset;
|
|
|
|
s1 = htab->stub_group[input_sec->id].last_sec;
|
|
s = htab->stub_group[s1->id].last_stub_sec;
|
|
if (s != NULL && s->size > 0)
|
|
end = s->output_section->vma + s->output_offset + s->size - 8;
|
|
else
|
|
end = s1->output_section->vma + s1->output_offset + s1->size;
|
|
|
|
BFD_ASSERT (start < end);
|
|
BFD_ASSERT (start <= location);
|
|
BFD_ASSERT (location < end);
|
|
|
|
/* Put stubs at the end of the group unless that is not a valid
|
|
location and the beginning of the group is. It might be that
|
|
neither the beginning nor end works if we have an input section
|
|
so large that it spans multiple segment boundaries. In that
|
|
case, punt; the end result will be a relocation overflow error no
|
|
matter what we do here.
|
|
|
|
Note that adding stubs pushes up the addresses of all subsequent
|
|
sections, so that stubs allocated on one pass through the
|
|
relaxation loop may not be valid on the next pass. (E.g., we may
|
|
allocate a stub at the beginning of the section on one pass and
|
|
find that the call site has been bumped into the next memory
|
|
segment on the next pass.) The important thing to note is that
|
|
we never try to reclaim the space allocated to such unused stubs,
|
|
so code size and section addresses can only increase with each
|
|
iteration. Accounting for the start and end addresses of the
|
|
already-created stub sections ensures that when the algorithm
|
|
converges, it converges accurately, with the entire appropriate
|
|
stub section accessible from the call site and not just the
|
|
address at the start or end of the stub group proper. */
|
|
|
|
if (segment == CALL26_SEGMENT (end))
|
|
return nios2_stub_call26_after;
|
|
else if (segment == CALL26_SEGMENT (start))
|
|
return nios2_stub_call26_before;
|
|
else
|
|
/* Perhaps this should be a dedicated error code. */
|
|
return nios2_stub_none;
|
|
}
|
|
|
|
static bfd_boolean
|
|
nios2_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg ATTRIBUTE_UNUSED)
|
|
{
|
|
struct elf32_nios2_stub_hash_entry *hsh
|
|
= (struct elf32_nios2_stub_hash_entry *) gen_entry;
|
|
asection *stub_sec = hsh->stub_sec;
|
|
bfd_vma sym_value;
|
|
|
|
/* Make a note of the offset within the stubs for this entry. */
|
|
hsh->stub_offset = stub_sec->size;
|
|
|
|
switch (hsh->stub_type)
|
|
{
|
|
case nios2_stub_call26_before:
|
|
case nios2_stub_call26_after:
|
|
/* A call26 stub looks like:
|
|
orhi at, %hiadj(dest)
|
|
addi at, at, %lo(dest)
|
|
jmp at
|
|
Note that call/jmpi instructions can't be used in PIC code
|
|
so there is no reason for the stub to be PIC, either. */
|
|
sym_value = (hsh->target_value
|
|
+ hsh->target_section->output_offset
|
|
+ hsh->target_section->output_section->vma
|
|
+ hsh->addend);
|
|
|
|
nios2_elf32_install_data (stub_sec, nios2_call26_stub_entry,
|
|
hsh->stub_offset, 3);
|
|
nios2_elf32_install_imm16 (stub_sec, hsh->stub_offset,
|
|
hiadj (sym_value));
|
|
nios2_elf32_install_imm16 (stub_sec, hsh->stub_offset + 4,
|
|
(sym_value & 0xffff));
|
|
stub_sec->size += 12;
|
|
break;
|
|
default:
|
|
BFD_FAIL ();
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* As above, but don't actually build the stub. Just bump offset so
|
|
we know stub section sizes. */
|
|
static bfd_boolean
|
|
nios2_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg ATTRIBUTE_UNUSED)
|
|
{
|
|
struct elf32_nios2_stub_hash_entry *hsh
|
|
= (struct elf32_nios2_stub_hash_entry *) gen_entry;
|
|
|
|
switch (hsh->stub_type)
|
|
{
|
|
case nios2_stub_call26_before:
|
|
case nios2_stub_call26_after:
|
|
hsh->stub_sec->size += 12;
|
|
break;
|
|
default:
|
|
BFD_FAIL ();
|
|
return FALSE;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
/* Read in all local syms for all input bfds.
|
|
Returns -1 on error, 0 otherwise. */
|
|
|
|
static int
|
|
get_local_syms (bfd *output_bfd ATTRIBUTE_UNUSED, bfd *input_bfd,
|
|
struct bfd_link_info *info)
|
|
{
|
|
unsigned int bfd_indx;
|
|
Elf_Internal_Sym *local_syms, **all_local_syms;
|
|
struct elf32_nios2_link_hash_table *htab = elf32_nios2_hash_table (info);
|
|
|
|
/* We want to read in symbol extension records only once. To do this
|
|
we need to read in the local symbols in parallel and save them for
|
|
later use; so hold pointers to the local symbols in an array. */
|
|
bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
|
|
all_local_syms = bfd_zmalloc (amt);
|
|
htab->all_local_syms = all_local_syms;
|
|
if (all_local_syms == NULL)
|
|
return -1;
|
|
|
|
/* Walk over all the input BFDs, swapping in local symbols. */
|
|
for (bfd_indx = 0;
|
|
input_bfd != NULL;
|
|
input_bfd = input_bfd->link_next, bfd_indx++)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
|
|
/* We'll need the symbol table in a second. */
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
|
if (symtab_hdr->sh_info == 0)
|
|
continue;
|
|
|
|
/* We need an array of the local symbols attached to the input bfd. */
|
|
local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
|
|
if (local_syms == NULL)
|
|
{
|
|
local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
|
|
symtab_hdr->sh_info, 0,
|
|
NULL, NULL, NULL);
|
|
/* Cache them for elf_link_input_bfd. */
|
|
symtab_hdr->contents = (unsigned char *) local_syms;
|
|
}
|
|
if (local_syms == NULL)
|
|
return -1;
|
|
|
|
all_local_syms[bfd_indx] = local_syms;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Determine and set the size of the stub section for a final link. */
|
|
bfd_boolean
|
|
nios2_elf32_size_stubs (bfd *output_bfd, bfd *stub_bfd,
|
|
struct bfd_link_info *info,
|
|
asection *(*add_stub_section) (const char *,
|
|
asection *, bfd_boolean),
|
|
void (*layout_sections_again) (void))
|
|
{
|
|
bfd_boolean stub_changed = FALSE;
|
|
struct elf32_nios2_link_hash_table *htab = elf32_nios2_hash_table (info);
|
|
|
|
/* Stash our params away. */
|
|
htab->stub_bfd = stub_bfd;
|
|
htab->add_stub_section = add_stub_section;
|
|
htab->layout_sections_again = layout_sections_again;
|
|
|
|
/* FIXME: We only compute the section groups once. This could cause
|
|
problems if adding a large stub section causes following sections,
|
|
or parts of them, to move into another segment. However, this seems
|
|
to be consistent with the way other back ends handle this.... */
|
|
group_sections (htab);
|
|
|
|
if (get_local_syms (output_bfd, info->input_bfds, info))
|
|
{
|
|
if (htab->all_local_syms)
|
|
goto error_ret_free_local;
|
|
return FALSE;
|
|
}
|
|
|
|
while (1)
|
|
{
|
|
bfd *input_bfd;
|
|
unsigned int bfd_indx;
|
|
asection *stub_sec;
|
|
|
|
for (input_bfd = info->input_bfds, bfd_indx = 0;
|
|
input_bfd != NULL;
|
|
input_bfd = input_bfd->link_next, bfd_indx++)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
asection *section;
|
|
Elf_Internal_Sym *local_syms;
|
|
|
|
/* We'll need the symbol table in a second. */
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
|
if (symtab_hdr->sh_info == 0)
|
|
continue;
|
|
|
|
local_syms = htab->all_local_syms[bfd_indx];
|
|
|
|
/* Walk over each section attached to the input bfd. */
|
|
for (section = input_bfd->sections;
|
|
section != NULL;
|
|
section = section->next)
|
|
{
|
|
Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
|
|
|
|
/* If there aren't any relocs, then there's nothing more
|
|
to do. */
|
|
if ((section->flags & SEC_RELOC) == 0
|
|
|| section->reloc_count == 0)
|
|
continue;
|
|
|
|
/* If this section is a link-once section that will be
|
|
discarded, then don't create any stubs. */
|
|
if (section->output_section == NULL
|
|
|| section->output_section->owner != output_bfd)
|
|
continue;
|
|
|
|
/* Get the relocs. */
|
|
internal_relocs
|
|
= _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
|
|
info->keep_memory);
|
|
if (internal_relocs == NULL)
|
|
goto error_ret_free_local;
|
|
|
|
/* Now examine each relocation. */
|
|
irela = internal_relocs;
|
|
irelaend = irela + section->reloc_count;
|
|
for (; irela < irelaend; irela++)
|
|
{
|
|
unsigned int r_type, r_indx;
|
|
enum elf32_nios2_stub_type stub_type;
|
|
struct elf32_nios2_stub_hash_entry *hsh;
|
|
asection *sym_sec;
|
|
bfd_vma sym_value;
|
|
bfd_vma destination;
|
|
struct elf32_nios2_link_hash_entry *hh;
|
|
char *stub_name;
|
|
const asection *id_sec;
|
|
|
|
r_type = ELF32_R_TYPE (irela->r_info);
|
|
r_indx = ELF32_R_SYM (irela->r_info);
|
|
|
|
if (r_type >= (unsigned int) R_NIOS2_ILLEGAL)
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
error_ret_free_internal:
|
|
if (elf_section_data (section)->relocs == NULL)
|
|
free (internal_relocs);
|
|
goto error_ret_free_local;
|
|
}
|
|
|
|
/* Only look for stubs on CALL and JMPI instructions. */
|
|
if (r_type != (unsigned int) R_NIOS2_CALL26)
|
|
continue;
|
|
|
|
/* Now determine the call target, its name, value,
|
|
section. */
|
|
sym_sec = NULL;
|
|
sym_value = 0;
|
|
destination = 0;
|
|
hh = NULL;
|
|
if (r_indx < symtab_hdr->sh_info)
|
|
{
|
|
/* It's a local symbol. */
|
|
Elf_Internal_Sym *sym;
|
|
Elf_Internal_Shdr *hdr;
|
|
unsigned int shndx;
|
|
|
|
sym = local_syms + r_indx;
|
|
if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
|
|
sym_value = sym->st_value;
|
|
shndx = sym->st_shndx;
|
|
if (shndx < elf_numsections (input_bfd))
|
|
{
|
|
hdr = elf_elfsections (input_bfd)[shndx];
|
|
sym_sec = hdr->bfd_section;
|
|
destination = (sym_value + irela->r_addend
|
|
+ sym_sec->output_offset
|
|
+ sym_sec->output_section->vma);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* It's an external symbol. */
|
|
int e_indx;
|
|
|
|
e_indx = r_indx - symtab_hdr->sh_info;
|
|
hh = ((struct elf32_nios2_link_hash_entry *)
|
|
elf_sym_hashes (input_bfd)[e_indx]);
|
|
|
|
while (hh->root.root.type == bfd_link_hash_indirect
|
|
|| hh->root.root.type == bfd_link_hash_warning)
|
|
hh = ((struct elf32_nios2_link_hash_entry *)
|
|
hh->root.root.u.i.link);
|
|
|
|
if (hh->root.root.type == bfd_link_hash_defined
|
|
|| hh->root.root.type == bfd_link_hash_defweak)
|
|
{
|
|
sym_sec = hh->root.root.u.def.section;
|
|
sym_value = hh->root.root.u.def.value;
|
|
|
|
if (sym_sec->output_section != NULL)
|
|
destination = (sym_value + irela->r_addend
|
|
+ sym_sec->output_offset
|
|
+ sym_sec->output_section->vma);
|
|
else
|
|
continue;
|
|
}
|
|
else if (hh->root.root.type == bfd_link_hash_undefweak)
|
|
{
|
|
if (! info->shared)
|
|
continue;
|
|
}
|
|
else if (hh->root.root.type == bfd_link_hash_undefined)
|
|
{
|
|
if (! (info->unresolved_syms_in_objects == RM_IGNORE
|
|
&& (ELF_ST_VISIBILITY (hh->root.other)
|
|
== STV_DEFAULT)))
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
goto error_ret_free_internal;
|
|
}
|
|
}
|
|
|
|
/* Determine what (if any) linker stub is needed. */
|
|
stub_type = nios2_type_of_stub (section, irela, hh, htab,
|
|
destination, info);
|
|
if (stub_type == nios2_stub_none)
|
|
continue;
|
|
|
|
/* Support for grouping stub sections. */
|
|
if (stub_type == nios2_stub_call26_before)
|
|
id_sec = htab->stub_group[section->id].first_sec;
|
|
else
|
|
id_sec = htab->stub_group[section->id].last_sec;
|
|
|
|
/* Get the name of this stub. */
|
|
stub_name = nios2_stub_name (id_sec, sym_sec, hh, irela,
|
|
stub_type);
|
|
if (!stub_name)
|
|
goto error_ret_free_internal;
|
|
|
|
hsh = nios2_stub_hash_lookup (&htab->bstab,
|
|
stub_name,
|
|
FALSE, FALSE);
|
|
if (hsh != NULL)
|
|
{
|
|
/* The proper stub has already been created. */
|
|
free (stub_name);
|
|
continue;
|
|
}
|
|
|
|
hsh = nios2_add_stub (stub_name, section, htab, stub_type);
|
|
if (hsh == NULL)
|
|
{
|
|
free (stub_name);
|
|
goto error_ret_free_internal;
|
|
}
|
|
hsh->target_value = sym_value;
|
|
hsh->target_section = sym_sec;
|
|
hsh->stub_type = stub_type;
|
|
hsh->hh = hh;
|
|
hsh->addend = irela->r_addend;
|
|
stub_changed = TRUE;
|
|
}
|
|
|
|
/* We're done with the internal relocs, free them. */
|
|
if (elf_section_data (section)->relocs == NULL)
|
|
free (internal_relocs);
|
|
}
|
|
}
|
|
|
|
if (!stub_changed)
|
|
break;
|
|
|
|
/* OK, we've added some stubs. Find out the new size of the
|
|
stub sections. */
|
|
for (stub_sec = htab->stub_bfd->sections;
|
|
stub_sec != NULL;
|
|
stub_sec = stub_sec->next)
|
|
stub_sec->size = 0;
|
|
|
|
bfd_hash_traverse (&htab->bstab, nios2_size_one_stub, htab);
|
|
|
|
/* Ask the linker to do its stuff. */
|
|
(*htab->layout_sections_again) ();
|
|
stub_changed = FALSE;
|
|
}
|
|
|
|
free (htab->all_local_syms);
|
|
return TRUE;
|
|
|
|
error_ret_free_local:
|
|
free (htab->all_local_syms);
|
|
return FALSE;
|
|
}
|
|
|
|
/* Build all the stubs associated with the current output file. The
|
|
stubs are kept in a hash table attached to the main linker hash
|
|
table. This function is called via nios2elf_finish in the linker. */
|
|
bfd_boolean
|
|
nios2_elf32_build_stubs (struct bfd_link_info *info)
|
|
{
|
|
asection *stub_sec;
|
|
struct bfd_hash_table *table;
|
|
struct elf32_nios2_link_hash_table *htab;
|
|
|
|
htab = elf32_nios2_hash_table (info);
|
|
|
|
for (stub_sec = htab->stub_bfd->sections;
|
|
stub_sec != NULL;
|
|
stub_sec = stub_sec->next)
|
|
/* The stub_bfd may contain non-stub sections if it is also the
|
|
dynobj. Any such non-stub sections are created with the
|
|
SEC_LINKER_CREATED flag set, while stub sections do not
|
|
have that flag. Ignore any non-stub sections here. */
|
|
if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
|
|
{
|
|
bfd_size_type size;
|
|
|
|
/* Allocate memory to hold the linker stubs. */
|
|
size = stub_sec->size;
|
|
stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
|
|
if (stub_sec->contents == NULL && size != 0)
|
|
return FALSE;
|
|
stub_sec->size = 0;
|
|
}
|
|
|
|
/* Build the stubs as directed by the stub hash table. */
|
|
table = &htab->bstab;
|
|
bfd_hash_traverse (table, nios2_build_one_stub, info);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/* Implement bfd_elf32_bfd_reloc_type_lookup:
|
|
Given a BFD reloc type, return a howto structure. */
|
|
static reloc_howto_type *
|
|
nios2_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
|
|
bfd_reloc_code_real_type code)
|
|
{
|
|
int i;
|
|
for (i = 0;
|
|
i < (int) (sizeof (nios2_reloc_map) / sizeof (struct elf_reloc_map));
|
|
++i)
|
|
if (nios2_reloc_map[i].bfd_val == code)
|
|
return &elf_nios2_howto_table_rel[(int) nios2_reloc_map[i].elf_val];
|
|
return NULL;
|
|
}
|
|
|
|
/* Implement bfd_elf32_bfd_reloc_name_lookup:
|
|
Given a reloc name, return a howto structure. */
|
|
static reloc_howto_type *
|
|
nios2_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
|
|
const char *r_name)
|
|
{
|
|
unsigned int i;
|
|
for (i = 0;
|
|
i < (sizeof (elf_nios2_howto_table_rel)
|
|
/ sizeof (elf_nios2_howto_table_rel[0]));
|
|
i++)
|
|
if (elf_nios2_howto_table_rel[i].name
|
|
&& strcasecmp (elf_nios2_howto_table_rel[i].name, r_name) == 0)
|
|
return &elf_nios2_howto_table_rel[i];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Implement elf_info_to_howto:
|
|
Given a ELF32 relocation, fill in a arelent structure. */
|
|
static void
|
|
nios2_elf32_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
|
|
Elf_Internal_Rela *dst)
|
|
{
|
|
unsigned int r_type;
|
|
|
|
r_type = ELF32_R_TYPE (dst->r_info);
|
|
BFD_ASSERT (r_type < R_NIOS2_ILLEGAL);
|
|
cache_ptr->howto = &elf_nios2_howto_table_rel[r_type];
|
|
}
|
|
|
|
/* Return the base VMA address which should be subtracted from real addresses
|
|
when resolving @dtpoff relocation.
|
|
This is PT_TLS segment p_vaddr. */
|
|
static bfd_vma
|
|
dtpoff_base (struct bfd_link_info *info)
|
|
{
|
|
/* If tls_sec is NULL, we should have signalled an error already. */
|
|
if (elf_hash_table (info)->tls_sec == NULL)
|
|
return 0;
|
|
return elf_hash_table (info)->tls_sec->vma;
|
|
}
|
|
|
|
/* Return the relocation value for @tpoff relocation
|
|
if STT_TLS virtual address is ADDRESS. */
|
|
static bfd_vma
|
|
tpoff (struct bfd_link_info *info, bfd_vma address)
|
|
{
|
|
struct elf_link_hash_table *htab = elf_hash_table (info);
|
|
|
|
/* If tls_sec is NULL, we should have signalled an error already. */
|
|
if (htab->tls_sec == NULL)
|
|
return 0;
|
|
return address - htab->tls_sec->vma;
|
|
}
|
|
|
|
/* Set the GP value for OUTPUT_BFD. Returns FALSE if this is a
|
|
dangerous relocation. */
|
|
static bfd_boolean
|
|
nios2_elf_assign_gp (bfd *output_bfd, bfd_vma *pgp, struct bfd_link_info *info)
|
|
{
|
|
|
|
bfd_boolean gp_found;
|
|
struct bfd_hash_entry *h;
|
|
struct bfd_link_hash_entry *lh;
|
|
|
|
/* If we've already figured out what GP will be, just return it. */
|
|
*pgp = _bfd_get_gp_value (output_bfd);
|
|
if (*pgp)
|
|
return TRUE;
|
|
|
|
h = bfd_hash_lookup (&info->hash->table, "_gp", FALSE, FALSE);
|
|
lh = (struct bfd_link_hash_entry *) h;
|
|
lookup:
|
|
if (lh)
|
|
{
|
|
switch (lh->type)
|
|
{
|
|
case bfd_link_hash_undefined:
|
|
case bfd_link_hash_undefweak:
|
|
case bfd_link_hash_common:
|
|
gp_found = FALSE;
|
|
break;
|
|
case bfd_link_hash_defined:
|
|
case bfd_link_hash_defweak:
|
|
gp_found = TRUE;
|
|
*pgp = lh->u.def.value;
|
|
break;
|
|
case bfd_link_hash_indirect:
|
|
case bfd_link_hash_warning:
|
|
lh = lh->u.i.link;
|
|
/* @@FIXME ignoring warning for now */
|
|
goto lookup;
|
|
case bfd_link_hash_new:
|
|
default:
|
|
abort ();
|
|
}
|
|
}
|
|
else
|
|
gp_found = FALSE;
|
|
|
|
if (!gp_found)
|
|
{
|
|
/* Only get the error once. */
|
|
*pgp = 4;
|
|
_bfd_set_gp_value (output_bfd, *pgp);
|
|
return FALSE;
|
|
}
|
|
|
|
_bfd_set_gp_value (output_bfd, *pgp);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Retrieve the previously cached _gp pointer, returning bfd_reloc_dangerous
|
|
if it's not available as we don't have a link_info pointer available here
|
|
to look it up in the output symbol table. We don't need to adjust the
|
|
symbol value for an external symbol if we are producing relocatable
|
|
output. */
|
|
static bfd_reloc_status_type
|
|
nios2_elf_final_gp (bfd *output_bfd, asymbol *symbol, bfd_boolean relocatable,
|
|
char **error_message, bfd_vma *pgp)
|
|
{
|
|
if (bfd_is_und_section (symbol->section) && !relocatable)
|
|
{
|
|
*pgp = 0;
|
|
return bfd_reloc_undefined;
|
|
}
|
|
|
|
*pgp = _bfd_get_gp_value (output_bfd);
|
|
if (*pgp == 0 && (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0))
|
|
{
|
|
if (relocatable)
|
|
{
|
|
/* Make up a value. */
|
|
*pgp = symbol->section->output_section->vma + 0x4000;
|
|
_bfd_set_gp_value (output_bfd, *pgp);
|
|
}
|
|
else
|
|
{
|
|
*error_message
|
|
= (char *) _("global pointer relative relocation when _gp not defined");
|
|
return bfd_reloc_dangerous;
|
|
}
|
|
}
|
|
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
/* Do the relocations that require special handling. */
|
|
static bfd_reloc_status_type
|
|
nios2_elf32_do_hi16_relocate (bfd *abfd, reloc_howto_type *howto,
|
|
asection *input_section,
|
|
bfd_byte *data, bfd_vma offset,
|
|
bfd_vma symbol_value, bfd_vma addend)
|
|
{
|
|
symbol_value = symbol_value + addend;
|
|
addend = 0;
|
|
symbol_value = (symbol_value >> 16) & 0xffff;
|
|
return _bfd_final_link_relocate (howto, abfd, input_section,
|
|
data, offset, symbol_value, addend);
|
|
}
|
|
|
|
static bfd_reloc_status_type
|
|
nios2_elf32_do_lo16_relocate (bfd *abfd, reloc_howto_type *howto,
|
|
asection *input_section,
|
|
bfd_byte *data, bfd_vma offset,
|
|
bfd_vma symbol_value, bfd_vma addend)
|
|
{
|
|
symbol_value = symbol_value + addend;
|
|
addend = 0;
|
|
symbol_value = symbol_value & 0xffff;
|
|
return _bfd_final_link_relocate (howto, abfd, input_section,
|
|
data, offset, symbol_value, addend);
|
|
}
|
|
|
|
static bfd_reloc_status_type
|
|
nios2_elf32_do_hiadj16_relocate (bfd *abfd, reloc_howto_type *howto,
|
|
asection *input_section,
|
|
bfd_byte *data, bfd_vma offset,
|
|
bfd_vma symbol_value, bfd_vma addend)
|
|
{
|
|
symbol_value = symbol_value + addend;
|
|
addend = 0;
|
|
symbol_value = hiadj(symbol_value);
|
|
return _bfd_final_link_relocate (howto, abfd, input_section, data, offset,
|
|
symbol_value, addend);
|
|
}
|
|
|
|
static bfd_reloc_status_type
|
|
nios2_elf32_do_pcrel_lo16_relocate (bfd *abfd, reloc_howto_type *howto,
|
|
asection *input_section,
|
|
bfd_byte *data, bfd_vma offset,
|
|
bfd_vma symbol_value, bfd_vma addend)
|
|
{
|
|
symbol_value = symbol_value + addend;
|
|
addend = 0;
|
|
symbol_value = symbol_value & 0xffff;
|
|
return _bfd_final_link_relocate (howto, abfd, input_section,
|
|
data, offset, symbol_value, addend);
|
|
}
|
|
|
|
static bfd_reloc_status_type
|
|
nios2_elf32_do_pcrel_hiadj16_relocate (bfd *abfd, reloc_howto_type *howto,
|
|
asection *input_section,
|
|
bfd_byte *data, bfd_vma offset,
|
|
bfd_vma symbol_value, bfd_vma addend)
|
|
{
|
|
symbol_value = symbol_value + addend;
|
|
symbol_value -= (input_section->output_section->vma
|
|
+ input_section->output_offset);
|
|
symbol_value -= offset;
|
|
addend = 0;
|
|
symbol_value = hiadj(symbol_value);
|
|
return _bfd_final_link_relocate (howto, abfd, input_section, data, offset,
|
|
symbol_value, addend);
|
|
}
|
|
|
|
static bfd_reloc_status_type
|
|
nios2_elf32_do_pcrel16_relocate (bfd *abfd, reloc_howto_type *howto,
|
|
asection *input_section,
|
|
bfd_byte *data, bfd_vma offset,
|
|
bfd_vma symbol_value, bfd_vma addend)
|
|
{
|
|
/* NIOS2 pc relative relocations are relative to the next 32-bit instruction
|
|
so we need to subtract 4 before doing a final_link_relocate. */
|
|
symbol_value = symbol_value + addend - 4;
|
|
addend = 0;
|
|
return _bfd_final_link_relocate (howto, abfd, input_section,
|
|
data, offset, symbol_value, addend);
|
|
}
|
|
|
|
static bfd_reloc_status_type
|
|
nios2_elf32_do_call26_relocate (bfd *abfd, reloc_howto_type *howto,
|
|
asection *input_section,
|
|
bfd_byte *data, bfd_vma offset,
|
|
bfd_vma symbol_value, bfd_vma addend)
|
|
{
|
|
/* Check that the relocation is in the same page as the current address. */
|
|
if (CALL26_SEGMENT (symbol_value + addend)
|
|
!= CALL26_SEGMENT (input_section->output_section->vma
|
|
+ input_section->output_offset
|
|
+ offset))
|
|
return bfd_reloc_overflow;
|
|
|
|
return _bfd_final_link_relocate (howto, abfd, input_section,
|
|
data, offset, symbol_value, addend);
|
|
}
|
|
|
|
static bfd_reloc_status_type
|
|
nios2_elf32_do_gprel_relocate (bfd *abfd, reloc_howto_type *howto,
|
|
asection *input_section,
|
|
bfd_byte *data, bfd_vma offset,
|
|
bfd_vma symbol_value, bfd_vma addend)
|
|
{
|
|
/* Because we need the output_bfd, the special handling is done
|
|
in nios2_elf32_relocate_section or in nios2_elf32_gprel_relocate. */
|
|
return _bfd_final_link_relocate (howto, abfd, input_section,
|
|
data, offset, symbol_value, addend);
|
|
}
|
|
|
|
static bfd_reloc_status_type
|
|
nios2_elf32_do_ujmp_relocate (bfd *abfd, reloc_howto_type *howto,
|
|
asection *input_section,
|
|
bfd_byte *data, bfd_vma offset,
|
|
bfd_vma symbol_value, bfd_vma addend)
|
|
{
|
|
bfd_vma symbol_lo16, symbol_hi16;
|
|
bfd_reloc_status_type r;
|
|
symbol_value = symbol_value + addend;
|
|
addend = 0;
|
|
symbol_hi16 = (symbol_value >> 16) & 0xffff;
|
|
symbol_lo16 = symbol_value & 0xffff;
|
|
|
|
r = _bfd_final_link_relocate (howto, abfd, input_section,
|
|
data, offset, symbol_hi16, addend);
|
|
|
|
if (r == bfd_reloc_ok)
|
|
return _bfd_final_link_relocate (howto, abfd, input_section,
|
|
data, offset + 4, symbol_lo16, addend);
|
|
|
|
return r;
|
|
}
|
|
|
|
static bfd_reloc_status_type
|
|
nios2_elf32_do_cjmp_relocate (bfd *abfd, reloc_howto_type *howto,
|
|
asection *input_section,
|
|
bfd_byte *data, bfd_vma offset,
|
|
bfd_vma symbol_value, bfd_vma addend)
|
|
{
|
|
bfd_vma symbol_lo16, symbol_hi16;
|
|
bfd_reloc_status_type r;
|
|
symbol_value = symbol_value + addend;
|
|
addend = 0;
|
|
symbol_hi16 = (symbol_value >> 16) & 0xffff;
|
|
symbol_lo16 = symbol_value & 0xffff;
|
|
|
|
r = _bfd_final_link_relocate (howto, abfd, input_section,
|
|
data, offset, symbol_hi16, addend);
|
|
|
|
if (r == bfd_reloc_ok)
|
|
return _bfd_final_link_relocate (howto, abfd, input_section,
|
|
data, offset + 4, symbol_lo16, addend);
|
|
|
|
return r;
|
|
}
|
|
|
|
static bfd_reloc_status_type
|
|
nios2_elf32_do_callr_relocate (bfd *abfd, reloc_howto_type *howto,
|
|
asection *input_section,
|
|
bfd_byte *data, bfd_vma offset,
|
|
bfd_vma symbol_value, bfd_vma addend)
|
|
{
|
|
bfd_vma symbol_lo16, symbol_hi16;
|
|
bfd_reloc_status_type r;
|
|
symbol_value = symbol_value + addend;
|
|
addend = 0;
|
|
symbol_hi16 = (symbol_value >> 16) & 0xffff;
|
|
symbol_lo16 = symbol_value & 0xffff;
|
|
|
|
r = _bfd_final_link_relocate (howto, abfd, input_section,
|
|
data, offset, symbol_hi16, addend);
|
|
|
|
if (r == bfd_reloc_ok)
|
|
return _bfd_final_link_relocate (howto, abfd, input_section,
|
|
data, offset + 4, symbol_lo16, addend);
|
|
|
|
return r;
|
|
}
|
|
|
|
/* HOWTO handlers for relocations that require special handling. */
|
|
|
|
/* This is for relocations used only when relaxing to ensure
|
|
changes in size of section don't screw up .align. */
|
|
static bfd_reloc_status_type
|
|
nios2_elf32_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
|
|
asymbol *symbol ATTRIBUTE_UNUSED,
|
|
void *data ATTRIBUTE_UNUSED, asection *input_section,
|
|
bfd *output_bfd,
|
|
char **error_message ATTRIBUTE_UNUSED)
|
|
{
|
|
if (output_bfd != NULL)
|
|
reloc_entry->address += input_section->output_offset;
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
static bfd_reloc_status_type
|
|
nios2_elf32_hi16_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
|
|
void *data, asection *input_section,
|
|
bfd *output_bfd,
|
|
char **error_message ATTRIBUTE_UNUSED)
|
|
{
|
|
/* This part is from bfd_elf_generic_reloc. */
|
|
if (output_bfd != NULL
|
|
&& (symbol->flags & BSF_SECTION_SYM) == 0
|
|
&& (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
|
|
{
|
|
reloc_entry->address += input_section->output_offset;
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
if (output_bfd != NULL)
|
|
/* FIXME: See bfd_perform_relocation. Is this right? */
|
|
return bfd_reloc_continue;
|
|
|
|
return nios2_elf32_do_hi16_relocate (abfd, reloc_entry->howto,
|
|
input_section,
|
|
data, reloc_entry->address,
|
|
(symbol->value
|
|
+ symbol->section->output_section->vma
|
|
+ symbol->section->output_offset),
|
|
reloc_entry->addend);
|
|
}
|
|
|
|
static bfd_reloc_status_type
|
|
nios2_elf32_lo16_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
|
|
void *data, asection *input_section,
|
|
bfd *output_bfd,
|
|
char **error_message ATTRIBUTE_UNUSED)
|
|
{
|
|
/* This part is from bfd_elf_generic_reloc. */
|
|
if (output_bfd != NULL
|
|
&& (symbol->flags & BSF_SECTION_SYM) == 0
|
|
&& (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
|
|
{
|
|
reloc_entry->address += input_section->output_offset;
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
if (output_bfd != NULL)
|
|
/* FIXME: See bfd_perform_relocation. Is this right? */
|
|
return bfd_reloc_continue;
|
|
|
|
return nios2_elf32_do_lo16_relocate (abfd, reloc_entry->howto,
|
|
input_section,
|
|
data, reloc_entry->address,
|
|
(symbol->value
|
|
+ symbol->section->output_section->vma
|
|
+ symbol->section->output_offset),
|
|
reloc_entry->addend);
|
|
}
|
|
|
|
static bfd_reloc_status_type
|
|
nios2_elf32_hiadj16_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
|
|
void *data, asection *input_section,
|
|
bfd *output_bfd,
|
|
char **error_message ATTRIBUTE_UNUSED)
|
|
{
|
|
/* This part is from bfd_elf_generic_reloc. */
|
|
if (output_bfd != NULL
|
|
&& (symbol->flags & BSF_SECTION_SYM) == 0
|
|
&& (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
|
|
{
|
|
reloc_entry->address += input_section->output_offset;
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
if (output_bfd != NULL)
|
|
/* FIXME: See bfd_perform_relocation. Is this right? */
|
|
return bfd_reloc_continue;
|
|
|
|
return nios2_elf32_do_hiadj16_relocate (abfd, reloc_entry->howto,
|
|
input_section,
|
|
data, reloc_entry->address,
|
|
(symbol->value
|
|
+ symbol->section->output_section->vma
|
|
+ symbol->section->output_offset),
|
|
reloc_entry->addend);
|
|
}
|
|
|
|
static bfd_reloc_status_type
|
|
nios2_elf32_pcrel_lo16_relocate (bfd *abfd, arelent *reloc_entry,
|
|
asymbol *symbol, void *data,
|
|
asection *input_section, bfd *output_bfd,
|
|
char **error_message ATTRIBUTE_UNUSED)
|
|
{
|
|
/* This part is from bfd_elf_generic_reloc. */
|
|
if (output_bfd != NULL
|
|
&& (symbol->flags & BSF_SECTION_SYM) == 0
|
|
&& (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
|
|
{
|
|
reloc_entry->address += input_section->output_offset;
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
if (output_bfd != NULL)
|
|
/* FIXME: See bfd_perform_relocation. Is this right? */
|
|
return bfd_reloc_continue;
|
|
|
|
return nios2_elf32_do_pcrel_lo16_relocate (
|
|
abfd, reloc_entry->howto, input_section, data, reloc_entry->address,
|
|
(symbol->value + symbol->section->output_section->vma
|
|
+ symbol->section->output_offset),
|
|
reloc_entry->addend);
|
|
}
|
|
|
|
static bfd_reloc_status_type
|
|
nios2_elf32_pcrel_hiadj16_relocate (bfd *abfd, arelent *reloc_entry,
|
|
asymbol *symbol, void *data,
|
|
asection *input_section, bfd *output_bfd,
|
|
char **error_message ATTRIBUTE_UNUSED)
|
|
{
|
|
/* This part is from bfd_elf_generic_reloc. */
|
|
if (output_bfd != NULL
|
|
&& (symbol->flags & BSF_SECTION_SYM) == 0
|
|
&& (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
|
|
{
|
|
reloc_entry->address += input_section->output_offset;
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
if (output_bfd != NULL)
|
|
/* FIXME: See bfd_perform_relocation. Is this right? */
|
|
return bfd_reloc_continue;
|
|
|
|
return nios2_elf32_do_pcrel_hiadj16_relocate (
|
|
abfd, reloc_entry->howto, input_section, data, reloc_entry->address,
|
|
(symbol->value + symbol->section->output_section->vma
|
|
+ symbol->section->output_offset),
|
|
reloc_entry->addend);
|
|
}
|
|
|
|
static bfd_reloc_status_type
|
|
nios2_elf32_pcrel16_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
|
|
void *data, asection *input_section,
|
|
bfd *output_bfd,
|
|
char **error_message ATTRIBUTE_UNUSED)
|
|
{
|
|
/* This part is from bfd_elf_generic_reloc. */
|
|
if (output_bfd != NULL
|
|
&& (symbol->flags & BSF_SECTION_SYM) == 0
|
|
&& (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
|
|
{
|
|
reloc_entry->address += input_section->output_offset;
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
if (output_bfd != NULL)
|
|
/* FIXME: See bfd_perform_relocation. Is this right? */
|
|
return bfd_reloc_continue;
|
|
|
|
return nios2_elf32_do_pcrel16_relocate (abfd, reloc_entry->howto,
|
|
input_section,
|
|
data, reloc_entry->address,
|
|
(symbol->value
|
|
+ symbol->section->output_section->vma
|
|
+ symbol->section->output_offset),
|
|
reloc_entry->addend);
|
|
}
|
|
|
|
static bfd_reloc_status_type
|
|
nios2_elf32_call26_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
|
|
void *data, asection *input_section,
|
|
bfd *output_bfd,
|
|
char **error_message ATTRIBUTE_UNUSED)
|
|
{
|
|
/* This part is from bfd_elf_generic_reloc. */
|
|
if (output_bfd != NULL
|
|
&& (symbol->flags & BSF_SECTION_SYM) == 0
|
|
&& (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
|
|
{
|
|
reloc_entry->address += input_section->output_offset;
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
if (output_bfd != NULL)
|
|
/* FIXME: See bfd_perform_relocation. Is this right? */
|
|
return bfd_reloc_continue;
|
|
|
|
return nios2_elf32_do_call26_relocate (abfd, reloc_entry->howto,
|
|
input_section,
|
|
data, reloc_entry->address,
|
|
(symbol->value
|
|
+ symbol->section->output_section->vma
|
|
+ symbol->section->output_offset),
|
|
reloc_entry->addend);
|
|
}
|
|
|
|
static bfd_reloc_status_type
|
|
nios2_elf32_gprel_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
|
|
void *data, asection *input_section,
|
|
bfd *output_bfd, char **msg)
|
|
{
|
|
bfd_vma relocation;
|
|
bfd_vma gp;
|
|
bfd_reloc_status_type r;
|
|
|
|
|
|
/* This part is from bfd_elf_generic_reloc. */
|
|
if (output_bfd != NULL
|
|
&& (symbol->flags & BSF_SECTION_SYM) == 0
|
|
&& (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
|
|
{
|
|
reloc_entry->address += input_section->output_offset;
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
if (output_bfd != NULL)
|
|
/* FIXME: See bfd_perform_relocation. Is this right? */
|
|
return bfd_reloc_continue;
|
|
|
|
relocation = (symbol->value
|
|
+ symbol->section->output_section->vma
|
|
+ symbol->section->output_offset);
|
|
|
|
/* This assumes we've already cached the _gp symbol. */
|
|
r = nios2_elf_final_gp (abfd, symbol, FALSE, msg, &gp);
|
|
if (r == bfd_reloc_ok)
|
|
{
|
|
relocation = relocation + reloc_entry->addend - gp;
|
|
reloc_entry->addend = 0;
|
|
if ((signed) relocation < -32768 || (signed) relocation > 32767)
|
|
{
|
|
*msg = _("global pointer relative address out of range");
|
|
r = bfd_reloc_outofrange;
|
|
}
|
|
else
|
|
r = nios2_elf32_do_gprel_relocate (abfd, reloc_entry->howto,
|
|
input_section,
|
|
data, reloc_entry->address,
|
|
relocation, reloc_entry->addend);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static bfd_reloc_status_type
|
|
nios2_elf32_ujmp_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
|
|
void *data, asection *input_section,
|
|
bfd *output_bfd, char **msg ATTRIBUTE_UNUSED)
|
|
{
|
|
/* This part is from bfd_elf_generic_reloc. */
|
|
if (output_bfd != NULL
|
|
&& (symbol->flags & BSF_SECTION_SYM) == 0
|
|
&& (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
|
|
{
|
|
reloc_entry->address += input_section->output_offset;
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
if (output_bfd != NULL)
|
|
/* FIXME: See bfd_perform_relocation. Is this right? */
|
|
return bfd_reloc_continue;
|
|
|
|
return nios2_elf32_do_ujmp_relocate (abfd, reloc_entry->howto,
|
|
input_section,
|
|
data, reloc_entry->address,
|
|
(symbol->value
|
|
+ symbol->section->output_section->vma
|
|
+ symbol->section->output_offset),
|
|
reloc_entry->addend);
|
|
}
|
|
|
|
static bfd_reloc_status_type
|
|
nios2_elf32_cjmp_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
|
|
void *data, asection *input_section,
|
|
bfd *output_bfd, char **msg ATTRIBUTE_UNUSED)
|
|
{
|
|
/* This part is from bfd_elf_generic_reloc. */
|
|
if (output_bfd != NULL
|
|
&& (symbol->flags & BSF_SECTION_SYM) == 0
|
|
&& (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
|
|
{
|
|
reloc_entry->address += input_section->output_offset;
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
if (output_bfd != NULL)
|
|
/* FIXME: See bfd_perform_relocation. Is this right? */
|
|
return bfd_reloc_continue;
|
|
|
|
return nios2_elf32_do_cjmp_relocate (abfd, reloc_entry->howto,
|
|
input_section,
|
|
data, reloc_entry->address,
|
|
(symbol->value
|
|
+ symbol->section->output_section->vma
|
|
+ symbol->section->output_offset),
|
|
reloc_entry->addend);
|
|
}
|
|
|
|
static bfd_reloc_status_type
|
|
nios2_elf32_callr_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
|
|
void *data, asection *input_section,
|
|
bfd *output_bfd, char **msg ATTRIBUTE_UNUSED)
|
|
{
|
|
/* This part is from bfd_elf_generic_reloc. */
|
|
if (output_bfd != NULL
|
|
&& (symbol->flags & BSF_SECTION_SYM) == 0
|
|
&& (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
|
|
{
|
|
reloc_entry->address += input_section->output_offset;
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
if (output_bfd != NULL)
|
|
/* FIXME: See bfd_perform_relocation. Is this right? */
|
|
return bfd_reloc_continue;
|
|
|
|
return nios2_elf32_do_callr_relocate (abfd, reloc_entry->howto,
|
|
input_section,
|
|
data, reloc_entry->address,
|
|
(symbol->value
|
|
+ symbol->section->output_section->vma
|
|
+ symbol->section->output_offset),
|
|
reloc_entry->addend);
|
|
}
|
|
|
|
|
|
/* Implement elf_backend_relocate_section. */
|
|
static bfd_boolean
|
|
nios2_elf32_relocate_section (bfd *output_bfd,
|
|
struct bfd_link_info *info,
|
|
bfd *input_bfd,
|
|
asection *input_section,
|
|
bfd_byte *contents,
|
|
Elf_Internal_Rela *relocs,
|
|
Elf_Internal_Sym *local_syms,
|
|
asection **local_sections)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
struct elf_link_hash_entry **sym_hashes;
|
|
Elf_Internal_Rela *rel;
|
|
Elf_Internal_Rela *relend;
|
|
struct elf32_nios2_link_hash_table *htab;
|
|
asection *sgot;
|
|
asection *splt;
|
|
asection *sreloc = NULL;
|
|
bfd_vma *local_got_offsets;
|
|
bfd_vma got_base;
|
|
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
|
sym_hashes = elf_sym_hashes (input_bfd);
|
|
relend = relocs + input_section->reloc_count;
|
|
|
|
htab = elf32_nios2_hash_table (info);
|
|
sgot = htab->root.sgot;
|
|
splt = htab->root.splt;
|
|
local_got_offsets = elf_local_got_offsets (input_bfd);
|
|
|
|
if (elf32_nios2_hash_table (info)->h_gp_got == NULL)
|
|
got_base = 0;
|
|
else
|
|
got_base = elf32_nios2_hash_table (info)->h_gp_got->root.u.def.value;
|
|
|
|
for (rel = relocs; rel < relend; rel++)
|
|
{
|
|
reloc_howto_type *howto;
|
|
unsigned long r_symndx;
|
|
Elf_Internal_Sym *sym;
|
|
asection *sec;
|
|
struct elf_link_hash_entry *h;
|
|
struct elf32_nios2_link_hash_entry *eh;
|
|
bfd_vma relocation;
|
|
bfd_vma gp;
|
|
bfd_vma reloc_address;
|
|
bfd_reloc_status_type r = bfd_reloc_ok;
|
|
const char *name = NULL;
|
|
int r_type;
|
|
const char *format;
|
|
char msgbuf[256];
|
|
const char* msg = (const char*) NULL;
|
|
bfd_boolean unresolved_reloc;
|
|
bfd_vma off;
|
|
int use_plt;
|
|
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
|
|
|
howto = lookup_howto ((unsigned) ELF32_R_TYPE (rel->r_info));
|
|
h = NULL;
|
|
sym = NULL;
|
|
sec = NULL;
|
|
|
|
if (r_symndx < symtab_hdr->sh_info)
|
|
{
|
|
sym = local_syms + r_symndx;
|
|
sec = local_sections[r_symndx];
|
|
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
|
|
}
|
|
else
|
|
{
|
|
bfd_boolean warned, ignored;
|
|
|
|
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
|
|
r_symndx, symtab_hdr, sym_hashes,
|
|
h, sec, relocation,
|
|
unresolved_reloc, warned, ignored);
|
|
}
|
|
|
|
if (sec && discarded_section (sec))
|
|
RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
|
|
rel, 1, relend, howto, 0, contents);
|
|
|
|
/* Nothing more to do unless this is a final link. */
|
|
if (info->relocatable)
|
|
continue;
|
|
|
|
if (sec && sec->output_section)
|
|
reloc_address = (sec->output_section->vma + sec->output_offset
|
|
+ rel->r_offset);
|
|
else
|
|
reloc_address = 0;
|
|
|
|
if (howto)
|
|
{
|
|
switch (howto->type)
|
|
{
|
|
case R_NIOS2_HI16:
|
|
r = nios2_elf32_do_hi16_relocate (input_bfd, howto,
|
|
input_section,
|
|
contents, rel->r_offset,
|
|
relocation, rel->r_addend);
|
|
break;
|
|
case R_NIOS2_LO16:
|
|
r = nios2_elf32_do_lo16_relocate (input_bfd, howto,
|
|
input_section,
|
|
contents, rel->r_offset,
|
|
relocation, rel->r_addend);
|
|
break;
|
|
case R_NIOS2_PCREL_LO:
|
|
r = nios2_elf32_do_pcrel_lo16_relocate (input_bfd, howto,
|
|
input_section,
|
|
contents,
|
|
rel->r_offset,
|
|
relocation,
|
|
rel->r_addend);
|
|
break;
|
|
case R_NIOS2_HIADJ16:
|
|
r = nios2_elf32_do_hiadj16_relocate (input_bfd, howto,
|
|
input_section, contents,
|
|
rel->r_offset, relocation,
|
|
rel->r_addend);
|
|
break;
|
|
case R_NIOS2_PCREL_HA:
|
|
r = nios2_elf32_do_pcrel_hiadj16_relocate (input_bfd, howto,
|
|
input_section,
|
|
contents,
|
|
rel->r_offset,
|
|
relocation,
|
|
rel->r_addend);
|
|
break;
|
|
case R_NIOS2_PCREL16:
|
|
r = nios2_elf32_do_pcrel16_relocate (input_bfd, howto,
|
|
input_section, contents,
|
|
rel->r_offset, relocation,
|
|
rel->r_addend);
|
|
break;
|
|
case R_NIOS2_GPREL:
|
|
/* Turns an absolute address into a gp-relative address. */
|
|
if (!nios2_elf_assign_gp (output_bfd, &gp, info))
|
|
{
|
|
format = _("global pointer relative relocation at address "
|
|
"0x%08x when _gp not defined\n");
|
|
sprintf (msgbuf, format, reloc_address);
|
|
msg = msgbuf;
|
|
r = bfd_reloc_dangerous;
|
|
}
|
|
else
|
|
{
|
|
bfd_vma symbol_address = rel->r_addend + relocation;
|
|
relocation = relocation + rel->r_addend - gp;
|
|
rel->r_addend = 0;
|
|
if (((signed) relocation < -32768
|
|
|| (signed) relocation > 32767)
|
|
&& (!h
|
|
|| h->root.type == bfd_link_hash_defined
|
|
|| h->root.type == bfd_link_hash_defweak))
|
|
{
|
|
format = _("Unable to reach %s (at 0x%08x) from the "
|
|
"global pointer (at 0x%08x) because the "
|
|
"offset (%d) is out of the allowed range, "
|
|
"-32678 to 32767.\n" );
|
|
sprintf (msgbuf, format, name, symbol_address, gp,
|
|
(signed)relocation);
|
|
msg = msgbuf;
|
|
r = bfd_reloc_outofrange;
|
|
}
|
|
else
|
|
r = _bfd_final_link_relocate (howto, input_bfd,
|
|
input_section, contents,
|
|
rel->r_offset, relocation,
|
|
rel->r_addend);
|
|
}
|
|
|
|
break;
|
|
case R_NIOS2_UJMP:
|
|
r = nios2_elf32_do_ujmp_relocate (input_bfd, howto,
|
|
input_section,
|
|
contents, rel->r_offset,
|
|
relocation, rel->r_addend);
|
|
break;
|
|
case R_NIOS2_CJMP:
|
|
r = nios2_elf32_do_cjmp_relocate (input_bfd, howto,
|
|
input_section,
|
|
contents, rel->r_offset,
|
|
relocation, rel->r_addend);
|
|
break;
|
|
case R_NIOS2_CALLR:
|
|
r = nios2_elf32_do_callr_relocate (input_bfd, howto,
|
|
input_section, contents,
|
|
rel->r_offset, relocation,
|
|
rel->r_addend);
|
|
break;
|
|
case R_NIOS2_CALL26:
|
|
case R_NIOS2_CALL26_NOAT:
|
|
/* If we have a call to an undefined weak symbol, we just want
|
|
to stuff a zero in the bits of the call instruction and
|
|
bypass the normal call26 relocation handling, because it'll
|
|
diagnose an overflow error if address 0 isn't in the same
|
|
256MB segment as the call site. Presumably the call
|
|
should be guarded by a null check anyway. */
|
|
if (h != NULL && h->root.type == bfd_link_hash_undefweak)
|
|
{
|
|
BFD_ASSERT (relocation == 0 && rel->r_addend == 0);
|
|
r = _bfd_final_link_relocate (howto, input_bfd,
|
|
input_section, contents,
|
|
rel->r_offset, relocation,
|
|
rel->r_addend);
|
|
break;
|
|
}
|
|
/* Handle relocations which should use the PLT entry.
|
|
NIOS2_BFD_RELOC_32 relocations will use the symbol's value,
|
|
which may point to a PLT entry, but we don't need to handle
|
|
that here. If we created a PLT entry, all branches in this
|
|
object should go to it. */
|
|
if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
|
|
{
|
|
/* If we've created a .plt section, and assigned a PLT entry
|
|
to this function, it should not be known to bind locally.
|
|
If it were, we would have cleared the PLT entry. */
|
|
BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
|
|
|
|
relocation = (splt->output_section->vma
|
|
+ splt->output_offset
|
|
+ h->plt.offset);
|
|
|
|
unresolved_reloc = FALSE;
|
|
}
|
|
/* Detect R_NIOS2_CALL26 relocations that would overflow the
|
|
256MB segment. Replace the target with a reference to a
|
|
trampoline instead.
|
|
Note that htab->stub_group is null if relaxation has been
|
|
disabled by the --no-relax linker command-line option, so
|
|
we can use that to skip this processing entirely. */
|
|
if (howto->type == R_NIOS2_CALL26 && htab->stub_group)
|
|
{
|
|
bfd_vma dest = relocation + rel->r_addend;
|
|
enum elf32_nios2_stub_type stub_type;
|
|
|
|
eh = (struct elf32_nios2_link_hash_entry *)h;
|
|
stub_type = nios2_type_of_stub (input_section, rel, eh,
|
|
htab, dest, NULL);
|
|
|
|
if (stub_type != nios2_stub_none)
|
|
{
|
|
struct elf32_nios2_stub_hash_entry *hsh;
|
|
|
|
hsh = nios2_get_stub_entry (input_section, sec,
|
|
eh, rel, htab, stub_type);
|
|
if (hsh == NULL)
|
|
{
|
|
r = bfd_reloc_undefined;
|
|
break;
|
|
}
|
|
|
|
dest = (hsh->stub_offset
|
|
+ hsh->stub_sec->output_offset
|
|
+ hsh->stub_sec->output_section->vma);
|
|
r = nios2_elf32_do_call26_relocate (input_bfd, howto,
|
|
input_section,
|
|
contents,
|
|
rel->r_offset,
|
|
dest, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Normal case. */
|
|
r = nios2_elf32_do_call26_relocate (input_bfd, howto,
|
|
input_section, contents,
|
|
rel->r_offset, relocation,
|
|
rel->r_addend);
|
|
break;
|
|
case R_NIOS2_ALIGN:
|
|
r = bfd_reloc_ok;
|
|
/* For symmetry this would be
|
|
r = nios2_elf32_do_ignore_reloc (input_bfd, howto,
|
|
input_section, contents,
|
|
rel->r_offset, relocation,
|
|
rel->r_addend);
|
|
but do_ignore_reloc would do no more than return
|
|
bfd_reloc_ok. */
|
|
break;
|
|
|
|
case R_NIOS2_GOT16:
|
|
case R_NIOS2_CALL16:
|
|
case R_NIOS2_GOT_LO:
|
|
case R_NIOS2_GOT_HA:
|
|
case R_NIOS2_CALL_LO:
|
|
case R_NIOS2_CALL_HA:
|
|
/* Relocation is to the entry for this symbol in the
|
|
global offset table. */
|
|
if (sgot == NULL)
|
|
{
|
|
r = bfd_reloc_notsupported;
|
|
break;
|
|
}
|
|
|
|
use_plt = 0;
|
|
|
|
if (h != NULL)
|
|
{
|
|
bfd_boolean dyn;
|
|
|
|
eh = (struct elf32_nios2_link_hash_entry *)h;
|
|
use_plt = (eh->got_types_used == CALL_USED
|
|
&& h->plt.offset != (bfd_vma) -1);
|
|
|
|
off = h->got.offset;
|
|
BFD_ASSERT (off != (bfd_vma) -1);
|
|
dyn = elf_hash_table (info)->dynamic_sections_created;
|
|
if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
|
|
|| (info->shared
|
|
&& SYMBOL_REFERENCES_LOCAL (info, h))
|
|
|| (ELF_ST_VISIBILITY (h->other)
|
|
&& h->root.type == bfd_link_hash_undefweak))
|
|
{
|
|
/* This is actually a static link, or it is a -Bsymbolic
|
|
link and the symbol is defined locally. We must
|
|
initialize this entry in the global offset table.
|
|
Since the offset must always be a multiple of 4, we
|
|
use the least significant bit to record whether we
|
|
have initialized it already.
|
|
|
|
When doing a dynamic link, we create a .rela.got
|
|
relocation entry to initialize the value. This is
|
|
done in the finish_dynamic_symbol routine. */
|
|
if ((off & 1) != 0)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
bfd_put_32 (output_bfd, relocation,
|
|
sgot->contents + off);
|
|
h->got.offset |= 1;
|
|
}
|
|
}
|
|
else
|
|
unresolved_reloc = FALSE;
|
|
}
|
|
else
|
|
{
|
|
BFD_ASSERT (local_got_offsets != NULL
|
|
&& local_got_offsets[r_symndx] != (bfd_vma) -1);
|
|
|
|
off = local_got_offsets[r_symndx];
|
|
|
|
/* The offset must always be a multiple of 4. We use the
|
|
least significant bit to record whether we have already
|
|
generated the necessary reloc. */
|
|
if ((off & 1) != 0)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
bfd_put_32 (output_bfd, relocation,
|
|
sgot->contents + off);
|
|
|
|
if (info->shared)
|
|
{
|
|
asection *srelgot;
|
|
Elf_Internal_Rela outrel;
|
|
bfd_byte *loc;
|
|
|
|
srelgot = htab->root.srelgot;
|
|
BFD_ASSERT (srelgot != NULL);
|
|
|
|
outrel.r_addend = relocation;
|
|
outrel.r_offset = (sgot->output_section->vma
|
|
+ sgot->output_offset
|
|
+ off);
|
|
outrel.r_info = ELF32_R_INFO (0, R_NIOS2_RELATIVE);
|
|
loc = srelgot->contents;
|
|
loc += (srelgot->reloc_count++ *
|
|
sizeof (Elf32_External_Rela));
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
|
}
|
|
|
|
local_got_offsets[r_symndx] |= 1;
|
|
}
|
|
}
|
|
|
|
if (use_plt && info->shared)
|
|
{
|
|
off = ((h->plt.offset - 24) / 12 + 3) * 4;
|
|
relocation = (htab->root.sgotplt->output_offset + off
|
|
- got_base);
|
|
}
|
|
else
|
|
relocation = sgot->output_offset + off - got_base;
|
|
|
|
/* This relocation does not use the addend. */
|
|
rel->r_addend = 0;
|
|
|
|
switch (howto->type)
|
|
{
|
|
case R_NIOS2_GOT_LO:
|
|
case R_NIOS2_CALL_LO:
|
|
r = nios2_elf32_do_lo16_relocate (input_bfd, howto,
|
|
input_section, contents,
|
|
rel->r_offset, relocation,
|
|
rel->r_addend);
|
|
break;
|
|
case R_NIOS2_GOT_HA:
|
|
case R_NIOS2_CALL_HA:
|
|
r = nios2_elf32_do_hiadj16_relocate (input_bfd, howto,
|
|
input_section, contents,
|
|
rel->r_offset,
|
|
relocation,
|
|
rel->r_addend);
|
|
break;
|
|
default:
|
|
r = _bfd_final_link_relocate (howto, input_bfd,
|
|
input_section, contents,
|
|
rel->r_offset, relocation,
|
|
rel->r_addend);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case R_NIOS2_GOTOFF_LO:
|
|
case R_NIOS2_GOTOFF_HA:
|
|
case R_NIOS2_GOTOFF:
|
|
/* Relocation is relative to the global offset table pointer. */
|
|
|
|
BFD_ASSERT (sgot != NULL);
|
|
if (sgot == NULL)
|
|
{
|
|
r = bfd_reloc_notsupported;
|
|
break;
|
|
}
|
|
|
|
/* Note that sgot->output_offset is not involved in this
|
|
calculation. We always want the start of .got. */
|
|
relocation -= sgot->output_section->vma;
|
|
|
|
/* Now we adjust the relocation to be relative to the GOT pointer
|
|
(the _gp_got symbol), which possibly contains the 0x8000 bias. */
|
|
relocation -= got_base;
|
|
|
|
switch (howto->type)
|
|
{
|
|
case R_NIOS2_GOTOFF_LO:
|
|
r = nios2_elf32_do_lo16_relocate (input_bfd, howto,
|
|
input_section, contents,
|
|
rel->r_offset, relocation,
|
|
rel->r_addend);
|
|
break;
|
|
case R_NIOS2_GOTOFF_HA:
|
|
r = nios2_elf32_do_hiadj16_relocate (input_bfd, howto,
|
|
input_section, contents,
|
|
rel->r_offset,
|
|
relocation,
|
|
rel->r_addend);
|
|
break;
|
|
default:
|
|
r = _bfd_final_link_relocate (howto, input_bfd,
|
|
input_section, contents,
|
|
rel->r_offset, relocation,
|
|
rel->r_addend);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case R_NIOS2_TLS_LDO16:
|
|
relocation -= dtpoff_base (info) + DTP_OFFSET;
|
|
|
|
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset,
|
|
relocation, rel->r_addend);
|
|
break;
|
|
case R_NIOS2_TLS_LDM16:
|
|
if (htab->root.sgot == NULL)
|
|
abort ();
|
|
|
|
off = htab->tls_ldm_got.offset;
|
|
|
|
if ((off & 1) != 0)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
/* If we don't know the module number, create a relocation
|
|
for it. */
|
|
if (info->shared)
|
|
{
|
|
Elf_Internal_Rela outrel;
|
|
bfd_byte *loc;
|
|
|
|
if (htab->root.srelgot == NULL)
|
|
abort ();
|
|
|
|
outrel.r_addend = 0;
|
|
outrel.r_offset = (htab->root.sgot->output_section->vma
|
|
+ htab->root.sgot->output_offset
|
|
+ off);
|
|
outrel.r_info = ELF32_R_INFO (0, R_NIOS2_TLS_DTPMOD);
|
|
|
|
loc = htab->root.srelgot->contents;
|
|
loc += (htab->root.srelgot->reloc_count++
|
|
* sizeof (Elf32_External_Rela));
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
|
}
|
|
else
|
|
bfd_put_32 (output_bfd, 1,
|
|
htab->root.sgot->contents + off);
|
|
|
|
htab->tls_ldm_got.offset |= 1;
|
|
}
|
|
|
|
relocation = htab->root.sgot->output_offset + off - got_base;
|
|
|
|
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset,
|
|
relocation, rel->r_addend);
|
|
|
|
break;
|
|
case R_NIOS2_TLS_GD16:
|
|
case R_NIOS2_TLS_IE16:
|
|
{
|
|
int indx;
|
|
char tls_type;
|
|
|
|
if (htab->root.sgot == NULL)
|
|
abort ();
|
|
|
|
indx = 0;
|
|
if (h != NULL)
|
|
{
|
|
bfd_boolean dyn;
|
|
dyn = htab->root.dynamic_sections_created;
|
|
if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
|
|
&& (!info->shared
|
|
|| !SYMBOL_REFERENCES_LOCAL (info, h)))
|
|
{
|
|
unresolved_reloc = FALSE;
|
|
indx = h->dynindx;
|
|
}
|
|
off = h->got.offset;
|
|
tls_type = (((struct elf32_nios2_link_hash_entry *) h)
|
|
->tls_type);
|
|
}
|
|
else
|
|
{
|
|
if (local_got_offsets == NULL)
|
|
abort ();
|
|
off = local_got_offsets[r_symndx];
|
|
tls_type = (elf32_nios2_local_got_tls_type (input_bfd)
|
|
[r_symndx]);
|
|
}
|
|
|
|
if (tls_type == GOT_UNKNOWN)
|
|
abort ();
|
|
|
|
if ((off & 1) != 0)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
bfd_boolean need_relocs = FALSE;
|
|
Elf_Internal_Rela outrel;
|
|
bfd_byte *loc = NULL;
|
|
int cur_off = off;
|
|
|
|
/* The GOT entries have not been initialized yet. Do it
|
|
now, and emit any relocations. If both an IE GOT and a
|
|
GD GOT are necessary, we emit the GD first. */
|
|
|
|
if ((info->shared || indx != 0)
|
|
&& (h == NULL
|
|
|| ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|
|
|| h->root.type != bfd_link_hash_undefweak))
|
|
{
|
|
need_relocs = TRUE;
|
|
if (htab->root.srelgot == NULL)
|
|
abort ();
|
|
loc = htab->root.srelgot->contents;
|
|
loc += (htab->root.srelgot->reloc_count *
|
|
sizeof (Elf32_External_Rela));
|
|
}
|
|
|
|
if (tls_type & GOT_TLS_GD)
|
|
{
|
|
if (need_relocs)
|
|
{
|
|
outrel.r_addend = 0;
|
|
outrel.r_offset = (htab->root.sgot->output_section->vma
|
|
+ htab->root.sgot->output_offset
|
|
+ cur_off);
|
|
outrel.r_info = ELF32_R_INFO (indx,
|
|
R_NIOS2_TLS_DTPMOD);
|
|
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel,
|
|
loc);
|
|
htab->root.srelgot->reloc_count++;
|
|
loc += sizeof (Elf32_External_Rela);
|
|
|
|
if (indx == 0)
|
|
bfd_put_32 (output_bfd,
|
|
(relocation - dtpoff_base (info) -
|
|
DTP_OFFSET),
|
|
htab->root.sgot->contents + cur_off + 4);
|
|
else
|
|
{
|
|
outrel.r_addend = 0;
|
|
outrel.r_info = ELF32_R_INFO (indx,
|
|
R_NIOS2_TLS_DTPREL);
|
|
outrel.r_offset += 4;
|
|
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel,
|
|
loc);
|
|
htab->root.srelgot->reloc_count++;
|
|
loc += sizeof (Elf32_External_Rela);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* If we are not emitting relocations for a
|
|
general dynamic reference, then we must be in a
|
|
static link or an executable link with the
|
|
symbol binding locally. Mark it as belonging
|
|
to module 1, the executable. */
|
|
bfd_put_32 (output_bfd, 1,
|
|
htab->root.sgot->contents + cur_off);
|
|
bfd_put_32 (output_bfd, (relocation -
|
|
dtpoff_base (info) -
|
|
DTP_OFFSET),
|
|
htab->root.sgot->contents + cur_off + 4);
|
|
}
|
|
|
|
cur_off += 8;
|
|
}
|
|
|
|
if (tls_type & GOT_TLS_IE)
|
|
{
|
|
if (need_relocs)
|
|
{
|
|
if (indx == 0)
|
|
outrel.r_addend = (relocation -
|
|
dtpoff_base (info));
|
|
else
|
|
outrel.r_addend = 0;
|
|
outrel.r_offset = (htab->root.sgot->output_section->vma
|
|
+ htab->root.sgot->output_offset
|
|
+ cur_off);
|
|
outrel.r_info = ELF32_R_INFO (indx,
|
|
R_NIOS2_TLS_TPREL);
|
|
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel,
|
|
loc);
|
|
htab->root.srelgot->reloc_count++;
|
|
loc += sizeof (Elf32_External_Rela);
|
|
}
|
|
else
|
|
bfd_put_32 (output_bfd, (tpoff (info, relocation)
|
|
- TP_OFFSET),
|
|
htab->root.sgot->contents + cur_off);
|
|
cur_off += 4;
|
|
}
|
|
|
|
if (h != NULL)
|
|
h->got.offset |= 1;
|
|
else
|
|
local_got_offsets[r_symndx] |= 1;
|
|
}
|
|
|
|
if ((tls_type & GOT_TLS_GD) && r_type != R_NIOS2_TLS_GD16)
|
|
off += 8;
|
|
relocation = htab->root.sgot->output_offset + off - got_base;
|
|
|
|
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset,
|
|
relocation, rel->r_addend);
|
|
}
|
|
|
|
break;
|
|
case R_NIOS2_TLS_LE16:
|
|
if (info->shared && !info->pie)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%B(%A+0x%lx): R_NIOS2_TLS_LE16 relocation not "
|
|
"permitted in shared object"),
|
|
input_bfd, input_section,
|
|
(long) rel->r_offset, howto->name);
|
|
return FALSE;
|
|
}
|
|
else
|
|
relocation = tpoff (info, relocation) - TP_OFFSET;
|
|
|
|
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset,
|
|
relocation, rel->r_addend);
|
|
break;
|
|
|
|
case R_NIOS2_BFD_RELOC_32:
|
|
if (info->shared
|
|
&& (input_section->flags & SEC_ALLOC) != 0
|
|
&& (h == NULL
|
|
|| ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|
|
|| h->root.type != bfd_link_hash_undefweak))
|
|
{
|
|
Elf_Internal_Rela outrel;
|
|
bfd_byte *loc;
|
|
bfd_boolean skip, relocate;
|
|
|
|
/* When generating a shared object, these relocations
|
|
are copied into the output file to be resolved at run
|
|
time. */
|
|
|
|
skip = FALSE;
|
|
relocate = FALSE;
|
|
|
|
outrel.r_offset
|
|
= _bfd_elf_section_offset (output_bfd, info,
|
|
input_section, rel->r_offset);
|
|
if (outrel.r_offset == (bfd_vma) -1)
|
|
skip = TRUE;
|
|
else if (outrel.r_offset == (bfd_vma) -2)
|
|
skip = TRUE, relocate = TRUE;
|
|
outrel.r_offset += (input_section->output_section->vma
|
|
+ input_section->output_offset);
|
|
|
|
if (skip)
|
|
memset (&outrel, 0, sizeof outrel);
|
|
else if (h != NULL
|
|
&& h->dynindx != -1
|
|
&& (!info->shared
|
|
|| !info->symbolic
|
|
|| !h->def_regular))
|
|
{
|
|
outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
|
|
outrel.r_addend = rel->r_addend;
|
|
}
|
|
else
|
|
{
|
|
/* This symbol is local, or marked to become local. */
|
|
outrel.r_addend = relocation + rel->r_addend;
|
|
relocate = TRUE;
|
|
outrel.r_info = ELF32_R_INFO (0, R_NIOS2_RELATIVE);
|
|
}
|
|
|
|
sreloc = elf_section_data (input_section)->sreloc;
|
|
if (sreloc == NULL)
|
|
abort ();
|
|
|
|
loc = sreloc->contents;
|
|
loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
|
|
|
/* This reloc will be computed at runtime, so there's no
|
|
need to do anything now, except for R_NIOS2_BFD_RELOC_32
|
|
relocations that have been turned into
|
|
R_NIOS2_RELATIVE. */
|
|
if (!relocate)
|
|
break;
|
|
}
|
|
|
|
r = _bfd_final_link_relocate (howto, input_bfd,
|
|
input_section, contents,
|
|
rel->r_offset, relocation,
|
|
rel->r_addend);
|
|
break;
|
|
|
|
case R_NIOS2_TLS_DTPREL:
|
|
relocation -= dtpoff_base (info);
|
|
/* Fall through. */
|
|
|
|
default:
|
|
r = _bfd_final_link_relocate (howto, input_bfd,
|
|
input_section, contents,
|
|
rel->r_offset, relocation,
|
|
rel->r_addend);
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
r = bfd_reloc_notsupported;
|
|
|
|
if (r != bfd_reloc_ok)
|
|
{
|
|
if (h != NULL)
|
|
name = h->root.root.string;
|
|
else
|
|
{
|
|
name = bfd_elf_string_from_elf_section (input_bfd,
|
|
symtab_hdr->sh_link,
|
|
sym->st_name);
|
|
if (name == NULL || *name == '\0')
|
|
name = bfd_section_name (input_bfd, sec);
|
|
}
|
|
|
|
switch (r)
|
|
{
|
|
case bfd_reloc_overflow:
|
|
r = info->callbacks->reloc_overflow (info, NULL, name,
|
|
howto->name, (bfd_vma) 0,
|
|
input_bfd, input_section,
|
|
rel->r_offset);
|
|
break;
|
|
|
|
case bfd_reloc_undefined:
|
|
r = info->callbacks->undefined_symbol (info, name, input_bfd,
|
|
input_section,
|
|
rel->r_offset, TRUE);
|
|
break;
|
|
|
|
case bfd_reloc_outofrange:
|
|
if (msg == NULL)
|
|
msg = _("relocation out of range");
|
|
break;
|
|
|
|
case bfd_reloc_notsupported:
|
|
if (msg == NULL)
|
|
msg = _("unsupported relocation");
|
|
break;
|
|
|
|
case bfd_reloc_dangerous:
|
|
if (msg == NULL)
|
|
msg = _("dangerous relocation");
|
|
break;
|
|
|
|
default:
|
|
if (msg == NULL)
|
|
msg = _("unknown error");
|
|
break;
|
|
}
|
|
|
|
if (msg)
|
|
{
|
|
r = info->callbacks->warning
|
|
(info, msg, name, input_bfd, input_section, rel->r_offset);
|
|
return FALSE;
|
|
}
|
|
}
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
/* Implement elf-backend_section_flags:
|
|
Convert NIOS2 specific section flags to bfd internal section flags. */
|
|
static bfd_boolean
|
|
nios2_elf32_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
|
|
{
|
|
if (hdr->sh_flags & SHF_NIOS2_GPREL)
|
|
*flags |= SEC_SMALL_DATA;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Implement elf_backend_fake_sections:
|
|
Set the correct type for an NIOS2 ELF section. We do this by the
|
|
section name, which is a hack, but ought to work. */
|
|
static bfd_boolean
|
|
nios2_elf32_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
|
|
Elf_Internal_Shdr *hdr, asection *sec)
|
|
{
|
|
register const char *name = bfd_get_section_name (abfd, sec);
|
|
|
|
if ((sec->flags & SEC_SMALL_DATA)
|
|
|| strcmp (name, ".sdata") == 0
|
|
|| strcmp (name, ".sbss") == 0
|
|
|| strcmp (name, ".lit4") == 0 || strcmp (name, ".lit8") == 0)
|
|
hdr->sh_flags |= SHF_NIOS2_GPREL;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
|
|
shortcuts to them in our hash table. */
|
|
static bfd_boolean
|
|
create_got_section (bfd *dynobj, struct bfd_link_info *info)
|
|
{
|
|
struct elf32_nios2_link_hash_table *htab;
|
|
struct elf_link_hash_entry *h;
|
|
|
|
htab = elf32_nios2_hash_table (info);
|
|
|
|
if (! _bfd_elf_create_got_section (dynobj, info))
|
|
return FALSE;
|
|
|
|
/* In order for the two loads in .PLTresolve to share the same %hiadj,
|
|
_GLOBAL_OFFSET_TABLE_ must be aligned to a 16-byte boundary. */
|
|
if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt, 4))
|
|
return FALSE;
|
|
|
|
/* The Nios II ABI specifies that GOT-relative relocations are relative
|
|
to the linker-created symbol _gp_got, rather than using
|
|
_GLOBAL_OFFSET_TABLE_ directly. In particular, the latter always
|
|
points to the base of the GOT while _gp_got may include a bias. */
|
|
h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.sgotplt,
|
|
"_gp_got");
|
|
elf32_nios2_hash_table (info)->h_gp_got = h;
|
|
if (h == NULL)
|
|
return FALSE;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Implement elf_backend_create_dynamic_sections:
|
|
Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
|
|
.rela.bss sections in DYNOBJ, and set up shortcuts to them in our
|
|
hash table. */
|
|
static bfd_boolean
|
|
nios2_elf32_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
|
|
{
|
|
struct elf32_nios2_link_hash_table *htab;
|
|
|
|
htab = elf32_nios2_hash_table (info);
|
|
if (!htab->root.sgot && !create_got_section (dynobj, info))
|
|
return FALSE;
|
|
|
|
_bfd_elf_create_dynamic_sections (dynobj, info);
|
|
|
|
/* In order for the two loads in a shared object .PLTresolve to share the
|
|
same %hiadj, the start of the PLT (as well as the GOT) must be aligned
|
|
to a 16-byte boundary. This is because the addresses for these loads
|
|
include the -(.plt+4) PIC correction. */
|
|
if (!bfd_set_section_alignment (dynobj, htab->root.splt, 4))
|
|
return FALSE;
|
|
|
|
htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
|
|
if (!htab->sdynbss)
|
|
return FALSE;
|
|
if (!info->shared)
|
|
{
|
|
htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
|
|
if (!htab->srelbss)
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Implement elf_backend_copy_indirect_symbol:
|
|
Copy the extra info we tack onto an elf_link_hash_entry. */
|
|
static void
|
|
nios2_elf32_copy_indirect_symbol (struct bfd_link_info *info,
|
|
struct elf_link_hash_entry *dir,
|
|
struct elf_link_hash_entry *ind)
|
|
{
|
|
struct elf32_nios2_link_hash_entry *edir, *eind;
|
|
|
|
edir = (struct elf32_nios2_link_hash_entry *) dir;
|
|
eind = (struct elf32_nios2_link_hash_entry *) ind;
|
|
|
|
if (eind->dyn_relocs != NULL)
|
|
{
|
|
if (edir->dyn_relocs != NULL)
|
|
{
|
|
struct elf32_nios2_dyn_relocs **pp;
|
|
struct elf32_nios2_dyn_relocs *p;
|
|
|
|
/* Add reloc counts against the indirect sym to the direct sym
|
|
list. Merge any entries against the same section. */
|
|
for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
|
|
{
|
|
struct elf32_nios2_dyn_relocs *q;
|
|
|
|
for (q = edir->dyn_relocs; q != NULL; q = q->next)
|
|
if (q->sec == p->sec)
|
|
{
|
|
q->pc_count += p->pc_count;
|
|
q->count += p->count;
|
|
*pp = p->next;
|
|
break;
|
|
}
|
|
if (q == NULL)
|
|
pp = &p->next;
|
|
}
|
|
*pp = edir->dyn_relocs;
|
|
}
|
|
|
|
edir->dyn_relocs = eind->dyn_relocs;
|
|
eind->dyn_relocs = NULL;
|
|
}
|
|
|
|
if (ind->root.type == bfd_link_hash_indirect
|
|
&& dir->got.refcount <= 0)
|
|
{
|
|
edir->tls_type = eind->tls_type;
|
|
eind->tls_type = GOT_UNKNOWN;
|
|
}
|
|
|
|
edir->got_types_used |= eind->got_types_used;
|
|
|
|
_bfd_elf_link_hash_copy_indirect (info, dir, ind);
|
|
}
|
|
|
|
/* Implement elf_backend_check_relocs:
|
|
Look through the relocs for a section during the first phase. */
|
|
static bfd_boolean
|
|
nios2_elf32_check_relocs (bfd *abfd, struct bfd_link_info *info,
|
|
asection *sec, const Elf_Internal_Rela *relocs)
|
|
{
|
|
bfd *dynobj;
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
|
|
const Elf_Internal_Rela *rel;
|
|
const Elf_Internal_Rela *rel_end;
|
|
struct elf32_nios2_link_hash_table *htab;
|
|
asection *sgot;
|
|
asection *srelgot;
|
|
asection *sreloc = NULL;
|
|
bfd_signed_vma *local_got_refcounts;
|
|
|
|
if (info->relocatable)
|
|
return TRUE;
|
|
|
|
dynobj = elf_hash_table (info)->dynobj;
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
|
sym_hashes = elf_sym_hashes (abfd);
|
|
sym_hashes_end = (sym_hashes
|
|
+ symtab_hdr->sh_size / sizeof (Elf32_External_Sym));
|
|
if (!elf_bad_symtab (abfd))
|
|
sym_hashes_end -= symtab_hdr->sh_info;
|
|
local_got_refcounts = elf_local_got_refcounts (abfd);
|
|
|
|
htab = elf32_nios2_hash_table (info);
|
|
sgot = htab->root.sgot;
|
|
srelgot = htab->root.srelgot;
|
|
|
|
rel_end = relocs + sec->reloc_count;
|
|
for (rel = relocs; rel < rel_end; rel++)
|
|
{
|
|
unsigned int r_type;
|
|
struct elf_link_hash_entry *h;
|
|
unsigned long r_symndx;
|
|
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
|
if (r_symndx < symtab_hdr->sh_info)
|
|
h = NULL;
|
|
else
|
|
{
|
|
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
|
while (h->root.type == bfd_link_hash_indirect
|
|
|| h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
/* PR15323, ref flags aren't set for references in the same
|
|
object. */
|
|
h->root.non_ir_ref = 1;
|
|
}
|
|
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_NIOS2_GOT16:
|
|
case R_NIOS2_GOT_LO:
|
|
case R_NIOS2_GOT_HA:
|
|
case R_NIOS2_CALL16:
|
|
case R_NIOS2_CALL_LO:
|
|
case R_NIOS2_CALL_HA:
|
|
case R_NIOS2_TLS_GD16:
|
|
case R_NIOS2_TLS_IE16:
|
|
/* This symbol requires a global offset table entry. */
|
|
{
|
|
int tls_type, old_tls_type;
|
|
|
|
switch (r_type)
|
|
{
|
|
default:
|
|
case R_NIOS2_GOT16:
|
|
case R_NIOS2_GOT_LO:
|
|
case R_NIOS2_GOT_HA:
|
|
case R_NIOS2_CALL16:
|
|
case R_NIOS2_CALL_LO:
|
|
case R_NIOS2_CALL_HA:
|
|
tls_type = GOT_NORMAL;
|
|
break;
|
|
case R_NIOS2_TLS_GD16:
|
|
tls_type = GOT_TLS_GD;
|
|
break;
|
|
case R_NIOS2_TLS_IE16:
|
|
tls_type = GOT_TLS_IE;
|
|
break;
|
|
}
|
|
|
|
if (dynobj == NULL)
|
|
{
|
|
/* Create the .got section. */
|
|
elf_hash_table (info)->dynobj = dynobj = abfd;
|
|
nios2_elf32_create_dynamic_sections (dynobj, info);
|
|
}
|
|
|
|
if (sgot == NULL)
|
|
{
|
|
sgot = htab->root.sgot;
|
|
BFD_ASSERT (sgot != NULL);
|
|
}
|
|
|
|
if (srelgot == NULL
|
|
&& (h != NULL || info->shared))
|
|
{
|
|
srelgot = htab->root.srelgot;
|
|
BFD_ASSERT (srelgot != NULL);
|
|
}
|
|
|
|
if (h != NULL)
|
|
{
|
|
struct elf32_nios2_link_hash_entry *eh
|
|
= (struct elf32_nios2_link_hash_entry *)h;
|
|
h->got.refcount++;
|
|
old_tls_type = elf32_nios2_hash_entry(h)->tls_type;
|
|
if (r_type == R_NIOS2_CALL16
|
|
|| r_type == R_NIOS2_CALL_LO
|
|
|| r_type == R_NIOS2_CALL_HA)
|
|
{
|
|
/* Make sure a plt entry is created for this symbol if
|
|
it turns out to be a function defined by a dynamic
|
|
object. */
|
|
h->plt.refcount++;
|
|
h->needs_plt = 1;
|
|
h->type = STT_FUNC;
|
|
eh->got_types_used |= CALL_USED;
|
|
}
|
|
else
|
|
eh->got_types_used |= GOT_USED;
|
|
}
|
|
else
|
|
{
|
|
/* This is a global offset table entry for a local symbol. */
|
|
if (local_got_refcounts == NULL)
|
|
{
|
|
bfd_size_type size;
|
|
|
|
size = symtab_hdr->sh_info;
|
|
size *= (sizeof (bfd_signed_vma) + sizeof (char));
|
|
local_got_refcounts
|
|
= ((bfd_signed_vma *) bfd_zalloc (abfd, size));
|
|
if (local_got_refcounts == NULL)
|
|
return FALSE;
|
|
elf_local_got_refcounts (abfd) = local_got_refcounts;
|
|
elf32_nios2_local_got_tls_type (abfd)
|
|
= (char *) (local_got_refcounts + symtab_hdr->sh_info);
|
|
}
|
|
local_got_refcounts[r_symndx]++;
|
|
old_tls_type = elf32_nios2_local_got_tls_type (abfd) [r_symndx];
|
|
}
|
|
|
|
/* We will already have issued an error message if there is a
|
|
TLS / non-TLS mismatch, based on the symbol type. We don't
|
|
support any linker relaxations. So just combine any TLS
|
|
types needed. */
|
|
if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
|
|
&& tls_type != GOT_NORMAL)
|
|
tls_type |= old_tls_type;
|
|
|
|
if (old_tls_type != tls_type)
|
|
{
|
|
if (h != NULL)
|
|
elf32_nios2_hash_entry (h)->tls_type = tls_type;
|
|
else
|
|
elf32_nios2_local_got_tls_type (abfd) [r_symndx] = tls_type;
|
|
}
|
|
}
|
|
/* Fall through */
|
|
case R_NIOS2_TLS_LDM16:
|
|
if (r_type == R_NIOS2_TLS_LDM16)
|
|
htab->tls_ldm_got.refcount++;
|
|
|
|
if (htab->root.sgot == NULL)
|
|
{
|
|
if (htab->root.dynobj == NULL)
|
|
htab->root.dynobj = abfd;
|
|
if (!create_got_section (htab->root.dynobj, info))
|
|
return FALSE;
|
|
}
|
|
break;
|
|
|
|
/* This relocation describes the C++ object vtable hierarchy.
|
|
Reconstruct it for later use during GC. */
|
|
case R_NIOS2_GNU_VTINHERIT:
|
|
if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
|
|
return FALSE;
|
|
break;
|
|
|
|
/* This relocation describes which C++ vtable entries are actually
|
|
used. Record for later use during GC. */
|
|
case R_NIOS2_GNU_VTENTRY:
|
|
if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
|
|
return FALSE;
|
|
break;
|
|
|
|
case R_NIOS2_BFD_RELOC_32:
|
|
case R_NIOS2_CALL26:
|
|
case R_NIOS2_CALL26_NOAT:
|
|
case R_NIOS2_HIADJ16:
|
|
case R_NIOS2_LO16:
|
|
|
|
if (h != NULL)
|
|
{
|
|
/* If this reloc is in a read-only section, we might
|
|
need a copy reloc. We can't check reliably at this
|
|
stage whether the section is read-only, as input
|
|
sections have not yet been mapped to output sections.
|
|
Tentatively set the flag for now, and correct in
|
|
adjust_dynamic_symbol. */
|
|
if (!info->shared)
|
|
h->non_got_ref = 1;
|
|
|
|
/* Make sure a plt entry is created for this symbol if it
|
|
turns out to be a function defined by a dynamic object. */
|
|
h->plt.refcount++;
|
|
|
|
if (r_type == R_NIOS2_CALL26 || r_type == R_NIOS2_CALL26_NOAT)
|
|
h->needs_plt = 1;
|
|
}
|
|
|
|
/* If we are creating a shared library, we need to copy the
|
|
reloc into the shared library. */
|
|
if (info->shared
|
|
&& (sec->flags & SEC_ALLOC) != 0
|
|
&& (r_type == R_NIOS2_BFD_RELOC_32
|
|
|| (h != NULL && ! h->needs_plt
|
|
&& (! info->symbolic || ! h->def_regular))))
|
|
{
|
|
struct elf32_nios2_dyn_relocs *p;
|
|
struct elf32_nios2_dyn_relocs **head;
|
|
|
|
/* When creating a shared object, we must copy these
|
|
reloc types into the output file. We create a reloc
|
|
section in dynobj and make room for this reloc. */
|
|
if (sreloc == NULL)
|
|
{
|
|
sreloc = _bfd_elf_make_dynamic_reloc_section
|
|
(sec, dynobj, 2, abfd, TRUE);
|
|
if (sreloc == NULL)
|
|
return FALSE;
|
|
}
|
|
|
|
/* If this is a global symbol, we count the number of
|
|
relocations we need for this symbol. */
|
|
if (h != NULL)
|
|
head = &((struct elf32_nios2_link_hash_entry *) h)->dyn_relocs;
|
|
else
|
|
{
|
|
/* Track dynamic relocs needed for local syms too.
|
|
We really need local syms available to do this
|
|
easily. Oh well. */
|
|
|
|
asection *s;
|
|
void *vpp;
|
|
Elf_Internal_Sym *isym;
|
|
|
|
isym = bfd_sym_from_r_symndx (&htab->sym_cache,
|
|
abfd, r_symndx);
|
|
if (isym == NULL)
|
|
return FALSE;
|
|
|
|
s = bfd_section_from_elf_index (abfd, isym->st_shndx);
|
|
if (s == NULL)
|
|
s = sec;
|
|
|
|
vpp = &elf_section_data (s)->local_dynrel;
|
|
head = (struct elf32_nios2_dyn_relocs **) vpp;
|
|
}
|
|
|
|
p = *head;
|
|
if (p == NULL || p->sec != sec)
|
|
{
|
|
bfd_size_type amt = sizeof *p;
|
|
p = ((struct elf32_nios2_dyn_relocs *)
|
|
bfd_alloc (htab->root.dynobj, amt));
|
|
if (p == NULL)
|
|
return FALSE;
|
|
p->next = *head;
|
|
*head = p;
|
|
p->sec = sec;
|
|
p->count = 0;
|
|
p->pc_count = 0;
|
|
}
|
|
|
|
p->count += 1;
|
|
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/* Implement elf_backend_gc_mark_hook:
|
|
Return the section that should be marked against GC for a given
|
|
relocation. */
|
|
static asection *
|
|
nios2_elf32_gc_mark_hook (asection *sec,
|
|
struct bfd_link_info *info,
|
|
Elf_Internal_Rela *rel,
|
|
struct elf_link_hash_entry *h,
|
|
Elf_Internal_Sym *sym)
|
|
{
|
|
if (h != NULL)
|
|
switch (ELF32_R_TYPE (rel->r_info))
|
|
{
|
|
case R_NIOS2_GNU_VTINHERIT:
|
|
case R_NIOS2_GNU_VTENTRY:
|
|
return NULL;
|
|
}
|
|
return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
|
|
}
|
|
|
|
/* Implement elf_backend_gc_sweep_hook:
|
|
Update the got entry reference counts for the section being removed. */
|
|
static bfd_boolean
|
|
nios2_elf32_gc_sweep_hook (bfd *abfd,
|
|
struct bfd_link_info *info,
|
|
asection *sec,
|
|
const Elf_Internal_Rela *relocs)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
struct elf_link_hash_entry **sym_hashes;
|
|
bfd_signed_vma *local_got_refcounts;
|
|
const Elf_Internal_Rela *rel, *relend;
|
|
bfd *dynobj;
|
|
|
|
if (info->relocatable)
|
|
return TRUE;
|
|
|
|
elf_section_data (sec)->local_dynrel = NULL;
|
|
|
|
dynobj = elf_hash_table (info)->dynobj;
|
|
if (dynobj == NULL)
|
|
return TRUE;
|
|
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
|
sym_hashes = elf_sym_hashes (abfd);
|
|
local_got_refcounts = elf_local_got_refcounts (abfd);
|
|
|
|
relend = relocs + sec->reloc_count;
|
|
for (rel = relocs; rel < relend; rel++)
|
|
{
|
|
unsigned long r_symndx;
|
|
struct elf_link_hash_entry *h = NULL;
|
|
int r_type;
|
|
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
|
if (r_symndx >= symtab_hdr->sh_info)
|
|
{
|
|
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
|
while (h->root.type == bfd_link_hash_indirect
|
|
|| h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
}
|
|
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
|
switch (r_type)
|
|
{
|
|
case R_NIOS2_GOT16:
|
|
case R_NIOS2_GOT_LO:
|
|
case R_NIOS2_GOT_HA:
|
|
case R_NIOS2_CALL16:
|
|
case R_NIOS2_CALL_LO:
|
|
case R_NIOS2_CALL_HA:
|
|
if (h != NULL)
|
|
{
|
|
if (h->got.refcount > 0)
|
|
--h->got.refcount;
|
|
}
|
|
else if (local_got_refcounts != NULL)
|
|
{
|
|
if (local_got_refcounts[r_symndx] > 0)
|
|
--local_got_refcounts[r_symndx];
|
|
}
|
|
break;
|
|
|
|
case R_NIOS2_PCREL_LO:
|
|
case R_NIOS2_PCREL_HA:
|
|
case R_NIOS2_BFD_RELOC_32:
|
|
case R_NIOS2_CALL26:
|
|
case R_NIOS2_CALL26_NOAT:
|
|
if (h != NULL)
|
|
{
|
|
struct elf32_nios2_link_hash_entry *eh;
|
|
struct elf32_nios2_dyn_relocs **pp;
|
|
struct elf32_nios2_dyn_relocs *p;
|
|
|
|
eh = (struct elf32_nios2_link_hash_entry *) h;
|
|
|
|
if (h->plt.refcount > 0)
|
|
--h->plt.refcount;
|
|
|
|
if (r_type == R_NIOS2_PCREL_LO || r_type == R_NIOS2_PCREL_HA
|
|
|| r_type == R_NIOS2_BFD_RELOC_32)
|
|
{
|
|
for (pp = &eh->dyn_relocs; (p = *pp) != NULL;
|
|
pp = &p->next)
|
|
if (p->sec == sec)
|
|
{
|
|
p->count -= 1;
|
|
if (p->count == 0)
|
|
*pp = p->next;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Implement elf_backend_finish_dynamic_symbols:
|
|
Finish up dynamic symbol handling. We set the contents of various
|
|
dynamic sections here. */
|
|
static bfd_boolean
|
|
nios2_elf32_finish_dynamic_symbol (bfd *output_bfd,
|
|
struct bfd_link_info *info,
|
|
struct elf_link_hash_entry *h,
|
|
Elf_Internal_Sym *sym)
|
|
{
|
|
struct elf32_nios2_link_hash_table *htab;
|
|
struct elf32_nios2_link_hash_entry *eh
|
|
= (struct elf32_nios2_link_hash_entry *)h;
|
|
int use_plt;
|
|
|
|
htab = elf32_nios2_hash_table (info);
|
|
|
|
if (h->plt.offset != (bfd_vma) -1)
|
|
{
|
|
asection *splt;
|
|
asection *sgotplt;
|
|
asection *srela;
|
|
bfd_vma plt_index;
|
|
bfd_vma got_offset;
|
|
Elf_Internal_Rela rela;
|
|
bfd_byte *loc;
|
|
bfd_vma got_address;
|
|
|
|
/* This symbol has an entry in the procedure linkage table. Set
|
|
it up. */
|
|
BFD_ASSERT (h->dynindx != -1);
|
|
splt = htab->root.splt;
|
|
sgotplt = htab->root.sgotplt;
|
|
srela = htab->root.srelplt;
|
|
BFD_ASSERT (splt != NULL && sgotplt != NULL && srela != NULL);
|
|
|
|
/* Emit the PLT entry. */
|
|
if (info->shared)
|
|
{
|
|
nios2_elf32_install_data (splt, nios2_so_plt_entry, h->plt.offset,
|
|
3);
|
|
plt_index = (h->plt.offset - 24) / 12;
|
|
got_offset = (plt_index + 3) * 4;
|
|
nios2_elf32_install_imm16 (splt, h->plt.offset,
|
|
hiadj(plt_index * 4));
|
|
nios2_elf32_install_imm16 (splt, h->plt.offset + 4,
|
|
(plt_index * 4) & 0xffff);
|
|
nios2_elf32_install_imm16 (splt, h->plt.offset + 8,
|
|
0xfff4 - h->plt.offset);
|
|
got_address = (sgotplt->output_section->vma + sgotplt->output_offset
|
|
+ got_offset);
|
|
|
|
/* Fill in the entry in the global offset table. There are no
|
|
res_n slots for a shared object PLT, instead the .got.plt entries
|
|
point to the PLT entries. */
|
|
bfd_put_32 (output_bfd,
|
|
splt->output_section->vma + splt->output_offset
|
|
+ h->plt.offset, sgotplt->contents + got_offset);
|
|
}
|
|
else
|
|
{
|
|
plt_index = (h->plt.offset - 28 - htab->res_n_size) / 12;
|
|
got_offset = (plt_index + 3) * 4;
|
|
|
|
nios2_elf32_install_data (splt, nios2_plt_entry, h->plt.offset, 3);
|
|
got_address = (sgotplt->output_section->vma + sgotplt->output_offset
|
|
+ got_offset);
|
|
nios2_elf32_install_imm16 (splt, h->plt.offset, hiadj(got_address));
|
|
nios2_elf32_install_imm16 (splt, h->plt.offset + 4,
|
|
got_address & 0xffff);
|
|
|
|
/* Fill in the entry in the global offset table. */
|
|
bfd_put_32 (output_bfd,
|
|
splt->output_section->vma + splt->output_offset
|
|
+ plt_index * 4, sgotplt->contents + got_offset);
|
|
}
|
|
|
|
/* Fill in the entry in the .rela.plt section. */
|
|
rela.r_offset = got_address;
|
|
rela.r_info = ELF32_R_INFO (h->dynindx, R_NIOS2_JUMP_SLOT);
|
|
rela.r_addend = 0;
|
|
loc = srela->contents + plt_index * sizeof (Elf32_External_Rela);
|
|
bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
|
|
|
|
if (!h->def_regular)
|
|
{
|
|
/* Mark the symbol as undefined, rather than as defined in
|
|
the .plt section. Leave the value alone. */
|
|
sym->st_shndx = SHN_UNDEF;
|
|
/* If the symbol is weak, we do need to clear the value.
|
|
Otherwise, the PLT entry would provide a definition for
|
|
the symbol even if the symbol wasn't defined anywhere,
|
|
and so the symbol would never be NULL. */
|
|
if (!h->ref_regular_nonweak)
|
|
sym->st_value = 0;
|
|
}
|
|
}
|
|
|
|
use_plt = (eh->got_types_used == CALL_USED
|
|
&& h->plt.offset != (bfd_vma) -1);
|
|
|
|
if (!use_plt && h->got.offset != (bfd_vma) -1
|
|
&& (elf32_nios2_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
|
|
&& (elf32_nios2_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
|
|
{
|
|
asection *sgot;
|
|
asection *srela;
|
|
Elf_Internal_Rela rela;
|
|
bfd_byte *loc;
|
|
bfd_vma offset;
|
|
|
|
/* This symbol has an entry in the global offset table. Set it
|
|
up. */
|
|
sgot = htab->root.sgot;
|
|
srela = htab->root.srelgot;
|
|
BFD_ASSERT (sgot != NULL && srela != NULL);
|
|
|
|
offset = (h->got.offset & ~(bfd_vma) 1);
|
|
rela.r_offset = (sgot->output_section->vma
|
|
+ sgot->output_offset + offset);
|
|
|
|
/* If this is a -Bsymbolic link, and the symbol is defined
|
|
locally, we just want to emit a RELATIVE reloc. Likewise if
|
|
the symbol was forced to be local because of a version file.
|
|
The entry in the global offset table will already have been
|
|
initialized in the relocate_section function. */
|
|
|
|
if (info->shared && SYMBOL_REFERENCES_LOCAL (info, h))
|
|
{
|
|
rela.r_info = ELF32_R_INFO (0, R_NIOS2_RELATIVE);
|
|
rela.r_addend = bfd_get_signed_32 (output_bfd,
|
|
(sgot->contents + offset));
|
|
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
|
|
}
|
|
else
|
|
{
|
|
bfd_put_32 (output_bfd, (bfd_vma) 0,
|
|
sgot->contents + offset);
|
|
rela.r_info = ELF32_R_INFO (h->dynindx, R_NIOS2_GLOB_DAT);
|
|
rela.r_addend = 0;
|
|
}
|
|
|
|
loc = srela->contents;
|
|
loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
|
|
bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
|
|
}
|
|
|
|
if (use_plt && h->got.offset != (bfd_vma) -1)
|
|
{
|
|
bfd_vma offset = (h->got.offset & ~(bfd_vma) 1);
|
|
asection *sgot = htab->root.sgot;
|
|
asection *splt = htab->root.splt;
|
|
bfd_put_32 (output_bfd, (splt->output_section->vma + splt->output_offset
|
|
+ h->plt.offset),
|
|
sgot->contents + offset);
|
|
}
|
|
|
|
if (h->needs_copy)
|
|
{
|
|
asection *s;
|
|
Elf_Internal_Rela rela;
|
|
bfd_byte *loc;
|
|
|
|
/* This symbol needs a copy reloc. Set it up. */
|
|
BFD_ASSERT (h->dynindx != -1
|
|
&& (h->root.type == bfd_link_hash_defined
|
|
|| h->root.type == bfd_link_hash_defweak));
|
|
|
|
s = htab->srelbss;
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
rela.r_offset = (h->root.u.def.value
|
|
+ h->root.u.def.section->output_section->vma
|
|
+ h->root.u.def.section->output_offset);
|
|
rela.r_info = ELF32_R_INFO (h->dynindx, R_NIOS2_COPY);
|
|
rela.r_addend = 0;
|
|
loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
|
|
bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
|
|
}
|
|
|
|
/* Mark _DYNAMIC, _GLOBAL_OFFSET_TABLE_, and _gp_got as absolute. */
|
|
if (strcmp (h->root.root.string, "_DYNAMIC") == 0
|
|
|| h == elf_hash_table (info)->hgot
|
|
|| h == elf32_nios2_hash_table (info)->h_gp_got)
|
|
sym->st_shndx = SHN_ABS;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Implement elf_backend_finish_dynamic_sections. */
|
|
static bfd_boolean
|
|
nios2_elf32_finish_dynamic_sections (bfd *output_bfd,
|
|
struct bfd_link_info *info)
|
|
{
|
|
bfd *dynobj;
|
|
asection *sgotplt;
|
|
asection *sdyn;
|
|
struct elf32_nios2_link_hash_table *htab;
|
|
|
|
htab = elf32_nios2_hash_table (info);
|
|
dynobj = elf_hash_table (info)->dynobj;
|
|
sgotplt = htab->root.sgotplt;
|
|
BFD_ASSERT (sgotplt != NULL);
|
|
sdyn = bfd_get_linker_section (dynobj, ".dynamic");
|
|
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
|
{
|
|
asection *splt;
|
|
Elf32_External_Dyn *dyncon, *dynconend;
|
|
|
|
splt = htab->root.splt;
|
|
BFD_ASSERT (splt != NULL && sdyn != NULL);
|
|
|
|
dyncon = (Elf32_External_Dyn *) sdyn->contents;
|
|
dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
|
|
for (; dyncon < dynconend; dyncon++)
|
|
{
|
|
Elf_Internal_Dyn dyn;
|
|
asection *s;
|
|
|
|
bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
|
|
|
|
switch (dyn.d_tag)
|
|
{
|
|
default:
|
|
break;
|
|
|
|
case DT_PLTGOT:
|
|
s = htab->root.sgot;
|
|
BFD_ASSERT (s != NULL);
|
|
dyn.d_un.d_ptr = s->output_section->vma;
|
|
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
|
break;
|
|
|
|
case DT_JMPREL:
|
|
s = htab->root.srelplt;
|
|
BFD_ASSERT (s != NULL);
|
|
dyn.d_un.d_ptr = s->output_section->vma;
|
|
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
|
break;
|
|
|
|
case DT_PLTRELSZ:
|
|
s = htab->root.srelplt;
|
|
BFD_ASSERT (s != NULL);
|
|
dyn.d_un.d_val = s->size;
|
|
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
|
break;
|
|
|
|
case DT_RELASZ:
|
|
/* The procedure linkage table relocs (DT_JMPREL) should
|
|
not be included in the overall relocs (DT_RELA).
|
|
Therefore, we override the DT_RELASZ entry here to
|
|
make it not include the JMPREL relocs. Since the
|
|
linker script arranges for .rela.plt to follow all
|
|
other relocation sections, we don't have to worry
|
|
about changing the DT_RELA entry. */
|
|
s = htab->root.srelplt;
|
|
if (s != NULL)
|
|
dyn.d_un.d_val -= s->size;
|
|
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
|
break;
|
|
|
|
case DT_NIOS2_GP:
|
|
s = htab->root.sgot;
|
|
BFD_ASSERT (s != NULL);
|
|
dyn.d_un.d_ptr = s->output_section->vma + 0x7ff0;
|
|
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Fill in the first entry in the procedure linkage table. */
|
|
if (splt->size > 0)
|
|
{
|
|
bfd_vma got_address = (sgotplt->output_section->vma
|
|
+ sgotplt->output_offset);
|
|
if (info->shared)
|
|
{
|
|
bfd_vma corrected = got_address - (splt->output_section->vma
|
|
+ splt->output_offset + 4);
|
|
nios2_elf32_install_data (splt, nios2_so_plt0_entry, 0, 6);
|
|
nios2_elf32_install_imm16 (splt, 4, hiadj (corrected));
|
|
nios2_elf32_install_imm16 (splt, 12, (corrected & 0xffff) + 4);
|
|
nios2_elf32_install_imm16 (splt, 16, (corrected & 0xffff) + 8);
|
|
}
|
|
else
|
|
{
|
|
/* Divide by 4 here, not 3 because we already corrected for the
|
|
res_N branches. */
|
|
bfd_vma res_size = (splt->size - 28) / 4;
|
|
bfd_vma res_start = (splt->output_section->vma
|
|
+ splt->output_offset);
|
|
bfd_vma res_offset;
|
|
|
|
for (res_offset = 0; res_offset < res_size; res_offset += 4)
|
|
bfd_put_32 (output_bfd,
|
|
6 | ((res_size - (res_offset + 4)) << 6),
|
|
splt->contents + res_offset);
|
|
|
|
nios2_elf32_install_data (splt, nios2_plt0_entry, res_size, 7);
|
|
nios2_elf32_install_imm16 (splt, res_size, hiadj (res_start));
|
|
nios2_elf32_install_imm16 (splt, res_size + 4,
|
|
res_start & 0xffff);
|
|
nios2_elf32_install_imm16 (splt, res_size + 12,
|
|
hiadj (got_address));
|
|
nios2_elf32_install_imm16 (splt, res_size + 16,
|
|
(got_address & 0xffff) + 4);
|
|
nios2_elf32_install_imm16 (splt, res_size + 20,
|
|
(got_address & 0xffff) + 8);
|
|
}
|
|
}
|
|
}
|
|
/* Fill in the first three entries in the global offset table. */
|
|
if (sgotplt->size > 0)
|
|
{
|
|
if (sdyn == NULL)
|
|
bfd_put_32 (output_bfd, (bfd_vma) 0, sgotplt->contents);
|
|
else
|
|
bfd_put_32 (output_bfd,
|
|
sdyn->output_section->vma + sdyn->output_offset,
|
|
sgotplt->contents);
|
|
bfd_put_32 (output_bfd, (bfd_vma) 0, sgotplt->contents + 4);
|
|
bfd_put_32 (output_bfd, (bfd_vma) 0, sgotplt->contents + 8);
|
|
}
|
|
|
|
elf_section_data (sgotplt->output_section)->this_hdr.sh_entsize = 4;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Implement elf_backend_adjust_dynamic_symbol:
|
|
Adjust a symbol defined by a dynamic object and referenced by a
|
|
regular object. The current definition is in some section of the
|
|
dynamic object, but we're not including those sections. We have to
|
|
change the definition to something the rest of the link can
|
|
understand. */
|
|
static bfd_boolean
|
|
nios2_elf32_adjust_dynamic_symbol (struct bfd_link_info *info,
|
|
struct elf_link_hash_entry *h)
|
|
{
|
|
struct elf32_nios2_link_hash_table *htab;
|
|
bfd *dynobj;
|
|
asection *s;
|
|
unsigned align2;
|
|
|
|
htab = elf32_nios2_hash_table (info);
|
|
dynobj = elf_hash_table (info)->dynobj;
|
|
|
|
/* Make sure we know what is going on here. */
|
|
BFD_ASSERT (dynobj != NULL
|
|
&& (h->needs_plt
|
|
|| h->u.weakdef != NULL
|
|
|| (h->def_dynamic
|
|
&& h->ref_regular
|
|
&& !h->def_regular)));
|
|
|
|
/* If this is a function, put it in the procedure linkage table. We
|
|
will fill in the contents of the procedure linkage table later,
|
|
when we know the address of the .got section. */
|
|
if (h->type == STT_FUNC || h->needs_plt)
|
|
{
|
|
if (h->plt.refcount <= 0
|
|
|| SYMBOL_CALLS_LOCAL (info, h)
|
|
|| (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
|
|
&& h->root.type == bfd_link_hash_undefweak))
|
|
{
|
|
/* This case can occur if we saw a PLT reloc in an input
|
|
file, but the symbol was never referred to by a dynamic
|
|
object, or if all references were garbage collected. In
|
|
such a case, we don't actually need to build a procedure
|
|
linkage table, and we can just do a PCREL reloc instead. */
|
|
h->plt.offset = (bfd_vma) -1;
|
|
h->needs_plt = 0;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Reinitialize the plt offset now that it is not used as a reference
|
|
count any more. */
|
|
h->plt.offset = (bfd_vma) -1;
|
|
|
|
/* If this is a weak symbol, and there is a real definition, the
|
|
processor independent code will have arranged for us to see the
|
|
real definition first, and we can just use the same value. */
|
|
if (h->u.weakdef != NULL)
|
|
{
|
|
BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
|
|
|| h->u.weakdef->root.type == bfd_link_hash_defweak);
|
|
h->root.u.def.section = h->u.weakdef->root.u.def.section;
|
|
h->root.u.def.value = h->u.weakdef->root.u.def.value;
|
|
return TRUE;
|
|
}
|
|
|
|
/* If there are no non-GOT references, we do not need a copy
|
|
relocation. */
|
|
if (!h->non_got_ref)
|
|
return TRUE;
|
|
|
|
/* This is a reference to a symbol defined by a dynamic object which
|
|
is not a function.
|
|
If we are creating a shared library, we must presume that the
|
|
only references to the symbol are via the global offset table.
|
|
For such cases we need not do anything here; the relocations will
|
|
be handled correctly by relocate_section. */
|
|
if (info->shared)
|
|
return TRUE;
|
|
|
|
if (h->size == 0)
|
|
{
|
|
(*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
|
|
h->root.root.string);
|
|
return TRUE;
|
|
}
|
|
|
|
/* We must allocate the symbol in our .dynbss section, which will
|
|
become part of the .bss section of the executable. There will be
|
|
an entry for this symbol in the .dynsym section. The dynamic
|
|
object will contain position independent code, so all references
|
|
from the dynamic object to this symbol will go through the global
|
|
offset table. The dynamic linker will use the .dynsym entry to
|
|
determine the address it must put in the global offset table, so
|
|
both the dynamic object and the regular object will refer to the
|
|
same memory location for the variable. */
|
|
s = htab->sdynbss;
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
/* We must generate a R_NIOS2_COPY reloc to tell the dynamic linker to
|
|
copy the initial value out of the dynamic object and into the
|
|
runtime process image. We need to remember the offset into the
|
|
.rela.bss section we are going to use. */
|
|
if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
|
|
{
|
|
asection *srel;
|
|
|
|
srel = htab->srelbss;
|
|
BFD_ASSERT (srel != NULL);
|
|
srel->size += sizeof (Elf32_External_Rela);
|
|
h->needs_copy = 1;
|
|
}
|
|
|
|
align2 = bfd_log2 (h->size);
|
|
if (align2 > h->root.u.def.section->alignment_power)
|
|
align2 = h->root.u.def.section->alignment_power;
|
|
|
|
/* Align dynbss. */
|
|
s->size = BFD_ALIGN (s->size, (bfd_size_type)1 << align2);
|
|
if (align2 > bfd_get_section_alignment (dynobj, s)
|
|
&& !bfd_set_section_alignment (dynobj, s, align2))
|
|
return FALSE;
|
|
|
|
/* Define the symbol as being at this point in the section. */
|
|
h->root.u.def.section = s;
|
|
h->root.u.def.value = s->size;
|
|
|
|
/* Increment the section size to make room for the symbol. */
|
|
s->size += h->size;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Worker function for nios2_elf32_size_dynamic_sections. */
|
|
static bfd_boolean
|
|
adjust_dynrelocs (struct elf_link_hash_entry *h, PTR inf)
|
|
{
|
|
struct bfd_link_info *info;
|
|
struct elf32_nios2_link_hash_table *htab;
|
|
|
|
if (h->root.type == bfd_link_hash_indirect)
|
|
return TRUE;
|
|
|
|
if (h->root.type == bfd_link_hash_warning)
|
|
/* When warning symbols are created, they **replace** the "real"
|
|
entry in the hash table, thus we never get to see the real
|
|
symbol in a hash traversal. So look at it now. */
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
info = (struct bfd_link_info *) inf;
|
|
htab = elf32_nios2_hash_table (info);
|
|
|
|
if (h->plt.offset != (bfd_vma)-1)
|
|
h->plt.offset += htab->res_n_size;
|
|
if (htab->root.splt == h->root.u.def.section)
|
|
h->root.u.def.value += htab->res_n_size;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Another worker function for nios2_elf32_size_dynamic_sections.
|
|
Allocate space in .plt, .got and associated reloc sections for
|
|
dynamic relocs. */
|
|
static bfd_boolean
|
|
allocate_dynrelocs (struct elf_link_hash_entry *h, PTR inf)
|
|
{
|
|
struct bfd_link_info *info;
|
|
struct elf32_nios2_link_hash_table *htab;
|
|
struct elf32_nios2_link_hash_entry *eh;
|
|
struct elf32_nios2_dyn_relocs *p;
|
|
int use_plt;
|
|
|
|
if (h->root.type == bfd_link_hash_indirect)
|
|
return TRUE;
|
|
|
|
if (h->root.type == bfd_link_hash_warning)
|
|
/* When warning symbols are created, they **replace** the "real"
|
|
entry in the hash table, thus we never get to see the real
|
|
symbol in a hash traversal. So look at it now. */
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
info = (struct bfd_link_info *) inf;
|
|
htab = elf32_nios2_hash_table (info);
|
|
|
|
if (htab->root.dynamic_sections_created
|
|
&& h->plt.refcount > 0)
|
|
{
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
|
if (h->dynindx == -1
|
|
&& !h->forced_local
|
|
&& !bfd_elf_link_record_dynamic_symbol (info, h))
|
|
return FALSE;
|
|
|
|
if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
|
|
{
|
|
asection *s = htab->root.splt;
|
|
|
|
/* Allocate room for the header. */
|
|
if (s->size == 0)
|
|
{
|
|
if (info->shared)
|
|
s->size = 24;
|
|
else
|
|
s->size = 28;
|
|
}
|
|
|
|
h->plt.offset = s->size;
|
|
|
|
/* If this symbol is not defined in a regular file, and we are
|
|
not generating a shared library, then set the symbol to this
|
|
location in the .plt. This is required to make function
|
|
pointers compare as equal between the normal executable and
|
|
the shared library. */
|
|
if (! info->shared
|
|
&& !h->def_regular)
|
|
{
|
|
h->root.u.def.section = s;
|
|
h->root.u.def.value = h->plt.offset;
|
|
}
|
|
|
|
/* Make room for this entry. */
|
|
s->size += 12;
|
|
|
|
/* We also need to make an entry in the .rela.plt section. */
|
|
htab->root.srelplt->size += sizeof (Elf32_External_Rela);
|
|
|
|
/* And the .got.plt section. */
|
|
htab->root.sgotplt->size += 4;
|
|
}
|
|
else
|
|
{
|
|
h->plt.offset = (bfd_vma) -1;
|
|
h->needs_plt = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
h->plt.offset = (bfd_vma) -1;
|
|
h->needs_plt = 0;
|
|
}
|
|
|
|
eh = (struct elf32_nios2_link_hash_entry *) h;
|
|
use_plt = (eh->got_types_used == CALL_USED
|
|
&& h->plt.offset != (bfd_vma) -1);
|
|
|
|
if (h->got.refcount > 0)
|
|
{
|
|
asection *s;
|
|
bfd_boolean dyn;
|
|
int tls_type = eh->tls_type;
|
|
int indx;
|
|
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
|
if (h->dynindx == -1
|
|
&& !h->forced_local
|
|
&& !bfd_elf_link_record_dynamic_symbol (info, h))
|
|
return FALSE;
|
|
|
|
s = htab->root.sgot;
|
|
h->got.offset = s->size;
|
|
|
|
if (tls_type == GOT_UNKNOWN)
|
|
abort ();
|
|
|
|
if (tls_type == GOT_NORMAL)
|
|
/* Non-TLS symbols need one GOT slot. */
|
|
s->size += 4;
|
|
else
|
|
{
|
|
if (tls_type & GOT_TLS_GD)
|
|
/* R_NIOS2_TLS_GD16 needs 2 consecutive GOT slots. */
|
|
s->size += 8;
|
|
if (tls_type & GOT_TLS_IE)
|
|
/* R_NIOS2_TLS_IE16 needs one GOT slot. */
|
|
s->size += 4;
|
|
}
|
|
|
|
dyn = htab->root.dynamic_sections_created;
|
|
|
|
indx = 0;
|
|
if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
|
|
&& (!info->shared
|
|
|| !SYMBOL_REFERENCES_LOCAL (info, h)))
|
|
indx = h->dynindx;
|
|
|
|
if (tls_type != GOT_NORMAL
|
|
&& (info->shared || indx != 0)
|
|
&& (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|
|
|| h->root.type != bfd_link_hash_undefweak))
|
|
{
|
|
if (tls_type & GOT_TLS_IE)
|
|
htab->root.srelgot->size += sizeof (Elf32_External_Rela);
|
|
|
|
if (tls_type & GOT_TLS_GD)
|
|
htab->root.srelgot->size += sizeof (Elf32_External_Rela);
|
|
|
|
if ((tls_type & GOT_TLS_GD) && indx != 0)
|
|
htab->root.srelgot->size += sizeof (Elf32_External_Rela);
|
|
}
|
|
else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|
|
|| h->root.type != bfd_link_hash_undefweak)
|
|
&& !use_plt
|
|
&& (info->shared
|
|
|| WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
|
|
htab->root.srelgot->size += sizeof (Elf32_External_Rela);
|
|
}
|
|
else
|
|
h->got.offset = (bfd_vma) -1;
|
|
|
|
if (eh->dyn_relocs == NULL)
|
|
return TRUE;
|
|
|
|
/* In the shared -Bsymbolic case, discard space allocated for
|
|
dynamic pc-relative relocs against symbols which turn out to be
|
|
defined in regular objects. For the normal shared case, discard
|
|
space for pc-relative relocs that have become local due to symbol
|
|
visibility changes. */
|
|
|
|
if (info->shared)
|
|
{
|
|
if (h->def_regular
|
|
&& (h->forced_local || info->symbolic))
|
|
{
|
|
struct elf32_nios2_dyn_relocs **pp;
|
|
|
|
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
|
|
{
|
|
p->count -= p->pc_count;
|
|
p->pc_count = 0;
|
|
if (p->count == 0)
|
|
*pp = p->next;
|
|
else
|
|
pp = &p->next;
|
|
}
|
|
}
|
|
|
|
/* Also discard relocs on undefined weak syms with non-default
|
|
visibility. */
|
|
if (eh->dyn_relocs != NULL
|
|
&& h->root.type == bfd_link_hash_undefweak)
|
|
{
|
|
if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
|
|
eh->dyn_relocs = NULL;
|
|
|
|
/* Make sure undefined weak symbols are output as a dynamic
|
|
symbol in PIEs. */
|
|
else if (h->dynindx == -1
|
|
&& !h->forced_local
|
|
&& !bfd_elf_link_record_dynamic_symbol (info, h))
|
|
return FALSE;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* For the non-shared case, discard space for relocs against
|
|
symbols which turn out to need copy relocs or are not
|
|
dynamic. */
|
|
|
|
if (!h->non_got_ref
|
|
&& ((h->def_dynamic && !h->def_regular)
|
|
|| (htab->root.dynamic_sections_created
|
|
&& (h->root.type == bfd_link_hash_undefweak
|
|
|| h->root.type == bfd_link_hash_undefined))))
|
|
{
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
|
if (h->dynindx == -1
|
|
&& !h->forced_local
|
|
&& !bfd_elf_link_record_dynamic_symbol (info, h))
|
|
return FALSE;
|
|
|
|
/* If that succeeded, we know we'll be keeping all the
|
|
relocs. */
|
|
if (h->dynindx != -1)
|
|
goto keep;
|
|
}
|
|
|
|
eh->dyn_relocs = NULL;
|
|
|
|
keep: ;
|
|
}
|
|
|
|
/* Finally, allocate space. */
|
|
for (p = eh->dyn_relocs; p != NULL; p = p->next)
|
|
{
|
|
asection *sreloc = elf_section_data (p->sec)->sreloc;
|
|
sreloc->size += p->count * sizeof (Elf32_External_Rela);
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Implement elf_backend_size_dynamic_sections:
|
|
Set the sizes of the dynamic sections. */
|
|
static bfd_boolean
|
|
nios2_elf32_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
|
|
struct bfd_link_info *info)
|
|
{
|
|
bfd *dynobj;
|
|
asection *s;
|
|
bfd_boolean plt;
|
|
bfd_boolean got;
|
|
bfd_boolean relocs;
|
|
bfd *ibfd;
|
|
struct elf32_nios2_link_hash_table *htab;
|
|
|
|
htab = elf32_nios2_hash_table (info);
|
|
dynobj = elf_hash_table (info)->dynobj;
|
|
BFD_ASSERT (dynobj != NULL);
|
|
|
|
htab->res_n_size = 0;
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
|
{
|
|
/* Set the contents of the .interp section to the interpreter. */
|
|
if (info->executable)
|
|
{
|
|
s = bfd_get_linker_section (dynobj, ".interp");
|
|
BFD_ASSERT (s != NULL);
|
|
s->size = sizeof ELF_DYNAMIC_INTERPRETER;
|
|
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* We may have created entries in the .rela.got section.
|
|
However, if we are not creating the dynamic sections, we will
|
|
not actually use these entries. Reset the size of .rela.got,
|
|
which will cause it to get stripped from the output file
|
|
below. */
|
|
s = htab->root.srelgot;
|
|
if (s != NULL)
|
|
s->size = 0;
|
|
}
|
|
|
|
/* Set up .got offsets for local syms, and space for local dynamic
|
|
relocs. */
|
|
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
|
|
{
|
|
bfd_signed_vma *local_got;
|
|
bfd_signed_vma *end_local_got;
|
|
char *local_tls_type;
|
|
bfd_size_type locsymcount;
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
asection *srel;
|
|
|
|
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
|
|
continue;
|
|
|
|
for (s = ibfd->sections; s != NULL; s = s->next)
|
|
{
|
|
struct elf32_nios2_dyn_relocs *p;
|
|
|
|
for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
|
|
{
|
|
if (!bfd_is_abs_section (p->sec)
|
|
&& bfd_is_abs_section (p->sec->output_section))
|
|
{
|
|
/* Input section has been discarded, either because
|
|
it is a copy of a linkonce section or due to
|
|
linker script /DISCARD/, so we'll be discarding
|
|
the relocs too. */
|
|
}
|
|
else if (p->count != 0)
|
|
{
|
|
srel = elf_section_data (p->sec)->sreloc;
|
|
srel->size += p->count * sizeof (Elf32_External_Rela);
|
|
if ((p->sec->output_section->flags & SEC_READONLY) != 0)
|
|
info->flags |= DF_TEXTREL;
|
|
}
|
|
}
|
|
}
|
|
|
|
local_got = elf_local_got_refcounts (ibfd);
|
|
if (!local_got)
|
|
continue;
|
|
|
|
symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
|
|
locsymcount = symtab_hdr->sh_info;
|
|
end_local_got = local_got + locsymcount;
|
|
local_tls_type = elf32_nios2_local_got_tls_type (ibfd);
|
|
s = htab->root.sgot;
|
|
srel = htab->root.srelgot;
|
|
for (; local_got < end_local_got; ++local_got, ++local_tls_type)
|
|
{
|
|
if (*local_got > 0)
|
|
{
|
|
*local_got = s->size;
|
|
if (*local_tls_type & GOT_TLS_GD)
|
|
/* TLS_GD relocs need an 8-byte structure in the GOT. */
|
|
s->size += 8;
|
|
if (*local_tls_type & GOT_TLS_IE)
|
|
s->size += 4;
|
|
if (*local_tls_type == GOT_NORMAL)
|
|
s->size += 4;
|
|
|
|
if (info->shared || *local_tls_type == GOT_TLS_GD)
|
|
srel->size += sizeof (Elf32_External_Rela);
|
|
}
|
|
else
|
|
*local_got = (bfd_vma) -1;
|
|
}
|
|
}
|
|
|
|
if (htab->tls_ldm_got.refcount > 0)
|
|
{
|
|
/* Allocate two GOT entries and one dynamic relocation (if necessary)
|
|
for R_NIOS2_TLS_LDM16 relocations. */
|
|
htab->tls_ldm_got.offset = htab->root.sgot->size;
|
|
htab->root.sgot->size += 8;
|
|
if (info->shared)
|
|
htab->root.srelgot->size += sizeof (Elf32_External_Rela);
|
|
}
|
|
else
|
|
htab->tls_ldm_got.offset = -1;
|
|
|
|
/* Allocate global sym .plt and .got entries, and space for global
|
|
sym dynamic relocs. */
|
|
elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
|
|
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
|
{
|
|
/* If the .got section is more than 0x8000 bytes, we add
|
|
0x8000 to the value of _gp_got, so that 16-bit relocations
|
|
have a greater chance of working. */
|
|
if (htab->root.sgot->size >= 0x8000
|
|
&& elf32_nios2_hash_table (info)->h_gp_got->root.u.def.value == 0)
|
|
elf32_nios2_hash_table (info)->h_gp_got->root.u.def.value = 0x8000;
|
|
}
|
|
|
|
/* The check_relocs and adjust_dynamic_symbol entry points have
|
|
determined the sizes of the various dynamic sections. Allocate
|
|
memory for them. */
|
|
plt = FALSE;
|
|
got = FALSE;
|
|
relocs = FALSE;
|
|
for (s = dynobj->sections; s != NULL; s = s->next)
|
|
{
|
|
const char *name;
|
|
|
|
if ((s->flags & SEC_LINKER_CREATED) == 0)
|
|
continue;
|
|
|
|
/* It's OK to base decisions on the section name, because none
|
|
of the dynobj section names depend upon the input files. */
|
|
name = bfd_get_section_name (dynobj, s);
|
|
|
|
if (strcmp (name, ".plt") == 0)
|
|
{
|
|
/* Remember whether there is a PLT. */
|
|
plt = s->size != 0;
|
|
|
|
/* Correct for the number of res_N branches. */
|
|
if (plt && !info->shared)
|
|
{
|
|
htab->res_n_size = (s->size-28) / 3;
|
|
s->size += htab->res_n_size;
|
|
}
|
|
}
|
|
else if (CONST_STRNEQ (name, ".rela"))
|
|
{
|
|
if (s->size != 0)
|
|
{
|
|
relocs = TRUE;
|
|
|
|
/* We use the reloc_count field as a counter if we need
|
|
to copy relocs into the output file. */
|
|
s->reloc_count = 0;
|
|
}
|
|
}
|
|
else if (CONST_STRNEQ (name, ".got"))
|
|
got = s->size != 0;
|
|
else if (strcmp (name, ".dynbss") != 0)
|
|
/* It's not one of our sections, so don't allocate space. */
|
|
continue;
|
|
|
|
if (s->size == 0)
|
|
{
|
|
/* If we don't need this section, strip it from the
|
|
output file. This is mostly to handle .rela.bss and
|
|
.rela.plt. We must create both sections in
|
|
create_dynamic_sections, because they must be created
|
|
before the linker maps input sections to output
|
|
sections. The linker does that before
|
|
adjust_dynamic_symbol is called, and it is that
|
|
function which decides whether anything needs to go
|
|
into these sections. */
|
|
s->flags |= SEC_EXCLUDE;
|
|
continue;
|
|
}
|
|
|
|
if ((s->flags & SEC_HAS_CONTENTS) == 0)
|
|
continue;
|
|
|
|
/* Allocate memory for the section contents. */
|
|
/* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
|
|
Unused entries should be reclaimed before the section's contents
|
|
are written out, but at the moment this does not happen. Thus in
|
|
order to prevent writing out garbage, we initialize the section's
|
|
contents to zero. */
|
|
s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
|
|
if (s->contents == NULL)
|
|
return FALSE;
|
|
}
|
|
|
|
/* Adjust dynamic symbols that point to the plt to account for the
|
|
now-known number of resN slots. */
|
|
if (htab->res_n_size)
|
|
elf_link_hash_traverse (& htab->root, adjust_dynrelocs, info);
|
|
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
|
{
|
|
/* Add some entries to the .dynamic section. We fill in the
|
|
values later, in elf_nios2_finish_dynamic_sections, but we
|
|
must add the entries now so that we get the correct size for
|
|
the .dynamic section. The DT_DEBUG entry is filled in by the
|
|
dynamic linker and used by the debugger. */
|
|
#define add_dynamic_entry(TAG, VAL) \
|
|
_bfd_elf_add_dynamic_entry (info, TAG, VAL)
|
|
|
|
if (!info->shared && !add_dynamic_entry (DT_DEBUG, 0))
|
|
return FALSE;
|
|
|
|
if (got && !add_dynamic_entry (DT_PLTGOT, 0))
|
|
return FALSE;
|
|
|
|
if (plt
|
|
&& (!add_dynamic_entry (DT_PLTRELSZ, 0)
|
|
|| !add_dynamic_entry (DT_PLTREL, DT_RELA)
|
|
|| !add_dynamic_entry (DT_JMPREL, 0)))
|
|
return FALSE;
|
|
|
|
if (relocs
|
|
&& (!add_dynamic_entry (DT_RELA, 0)
|
|
|| !add_dynamic_entry (DT_RELASZ, 0)
|
|
|| !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))))
|
|
return FALSE;
|
|
|
|
if (!info->shared && !add_dynamic_entry (DT_NIOS2_GP, 0))
|
|
return FALSE;
|
|
|
|
if ((info->flags & DF_TEXTREL) != 0
|
|
&& !add_dynamic_entry (DT_TEXTREL, 0))
|
|
return FALSE;
|
|
}
|
|
#undef add_dynamic_entry
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Implement bfd_elf32_bfd_link_hash_table_create. */
|
|
static struct bfd_link_hash_table *
|
|
nios2_elf32_link_hash_table_create (bfd *abfd)
|
|
{
|
|
struct elf32_nios2_link_hash_table *ret;
|
|
bfd_size_type amt = sizeof (struct elf32_nios2_link_hash_table);
|
|
|
|
ret = bfd_zmalloc (amt);
|
|
if (ret == NULL)
|
|
return NULL;
|
|
|
|
if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
|
|
link_hash_newfunc,
|
|
sizeof (struct
|
|
elf32_nios2_link_hash_entry),
|
|
NIOS2_ELF_DATA))
|
|
{
|
|
free (ret);
|
|
return NULL;
|
|
}
|
|
|
|
/* Init the stub hash table too. */
|
|
if (!bfd_hash_table_init (&ret->bstab, stub_hash_newfunc,
|
|
sizeof (struct elf32_nios2_stub_hash_entry)))
|
|
return NULL;
|
|
|
|
return &ret->root.root;
|
|
}
|
|
|
|
/* Free the derived linker hash table. */
|
|
static void
|
|
nios2_elf32_link_hash_table_free (struct bfd_link_hash_table *btab)
|
|
{
|
|
struct elf32_nios2_link_hash_table *htab
|
|
= (struct elf32_nios2_link_hash_table *) btab;
|
|
|
|
bfd_hash_table_free (&htab->bstab);
|
|
_bfd_elf_link_hash_table_free (btab);
|
|
}
|
|
|
|
/* Implement elf_backend_reloc_type_class. */
|
|
static enum elf_reloc_type_class
|
|
nios2_elf32_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
|
const asection *rel_sec ATTRIBUTE_UNUSED,
|
|
const Elf_Internal_Rela *rela)
|
|
{
|
|
switch ((int) ELF32_R_TYPE (rela->r_info))
|
|
{
|
|
case R_NIOS2_RELATIVE:
|
|
return reloc_class_relative;
|
|
case R_NIOS2_JUMP_SLOT:
|
|
return reloc_class_plt;
|
|
case R_NIOS2_COPY:
|
|
return reloc_class_copy;
|
|
default:
|
|
return reloc_class_normal;
|
|
}
|
|
}
|
|
|
|
/* Return 1 if target is one of ours. */
|
|
static bfd_boolean
|
|
is_nios2_elf_target (const struct bfd_target *targ)
|
|
{
|
|
return (targ == &nios2_elf32_le_vec
|
|
|| targ == &nios2_elf32_be_vec);
|
|
}
|
|
|
|
/* Implement elf_backend_add_symbol_hook.
|
|
This hook is called by the linker when adding symbols from an object
|
|
file. We use it to put .comm items in .sbss, and not .bss. */
|
|
static bfd_boolean
|
|
nios2_elf_add_symbol_hook (bfd *abfd,
|
|
struct bfd_link_info *info,
|
|
Elf_Internal_Sym *sym,
|
|
const char **namep ATTRIBUTE_UNUSED,
|
|
flagword *flagsp ATTRIBUTE_UNUSED,
|
|
asection **secp,
|
|
bfd_vma *valp)
|
|
{
|
|
bfd *dynobj;
|
|
|
|
if (sym->st_shndx == SHN_COMMON
|
|
&& !info->relocatable
|
|
&& sym->st_size <= elf_gp_size (abfd)
|
|
&& is_nios2_elf_target (info->output_bfd->xvec))
|
|
{
|
|
/* Common symbols less than or equal to -G nn bytes are automatically
|
|
put into .sbss. */
|
|
struct elf32_nios2_link_hash_table *htab;
|
|
|
|
htab = elf32_nios2_hash_table (info);
|
|
if (htab->sbss == NULL)
|
|
{
|
|
flagword flags = SEC_IS_COMMON | SEC_LINKER_CREATED;
|
|
|
|
dynobj = elf_hash_table (info)->dynobj;
|
|
if (!dynobj)
|
|
dynobj = abfd;
|
|
|
|
htab->sbss = bfd_make_section_anyway_with_flags (dynobj, ".sbss",
|
|
flags);
|
|
if (htab->sbss == NULL)
|
|
return FALSE;
|
|
}
|
|
|
|
*secp = htab->sbss;
|
|
*valp = sym->st_size;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Implement elf_backend_can_make_relative_eh_frame:
|
|
Decide whether to attempt to turn absptr or lsda encodings in
|
|
shared libraries into pcrel within the given input section. */
|
|
static bfd_boolean
|
|
nios2_elf32_can_make_relative_eh_frame (bfd *input_bfd ATTRIBUTE_UNUSED,
|
|
struct bfd_link_info *info
|
|
ATTRIBUTE_UNUSED,
|
|
asection *eh_frame_section
|
|
ATTRIBUTE_UNUSED)
|
|
{
|
|
/* We can't use PC-relative encodings in the .eh_frame section. */
|
|
return FALSE;
|
|
}
|
|
|
|
/* Implement elf_backend_special_sections. */
|
|
const struct bfd_elf_special_section elf32_nios2_special_sections[] =
|
|
{
|
|
{ STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS,
|
|
SHF_ALLOC + SHF_WRITE + SHF_NIOS2_GPREL },
|
|
{ STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS,
|
|
SHF_ALLOC + SHF_WRITE + SHF_NIOS2_GPREL },
|
|
{ NULL, 0, 0, 0, 0 }
|
|
};
|
|
|
|
#define ELF_ARCH bfd_arch_nios2
|
|
#define ELF_TARGET_ID NIOS2_ELF_DATA
|
|
#define ELF_MACHINE_CODE EM_ALTERA_NIOS2
|
|
|
|
/* The Nios II MMU uses a 4K page size. */
|
|
|
|
#define ELF_MAXPAGESIZE 0x1000
|
|
|
|
#define bfd_elf32_bfd_link_hash_table_create \
|
|
nios2_elf32_link_hash_table_create
|
|
#define bfd_elf32_bfd_link_hash_table_free \
|
|
nios2_elf32_link_hash_table_free
|
|
|
|
/* Relocation table lookup macros. */
|
|
|
|
#define bfd_elf32_bfd_reloc_type_lookup nios2_elf32_bfd_reloc_type_lookup
|
|
#define bfd_elf32_bfd_reloc_name_lookup nios2_elf32_bfd_reloc_name_lookup
|
|
|
|
/* JUMP_TABLE_LINK macros. */
|
|
|
|
/* elf_info_to_howto (using RELA relocations). */
|
|
|
|
#define elf_info_to_howto nios2_elf32_info_to_howto
|
|
|
|
/* elf backend functions. */
|
|
|
|
#define elf_backend_can_gc_sections 1
|
|
#define elf_backend_can_refcount 1
|
|
#define elf_backend_plt_readonly 1
|
|
#define elf_backend_want_got_plt 1
|
|
#define elf_backend_rela_normal 1
|
|
|
|
#define elf_backend_relocate_section nios2_elf32_relocate_section
|
|
#define elf_backend_section_flags nios2_elf32_section_flags
|
|
#define elf_backend_fake_sections nios2_elf32_fake_sections
|
|
#define elf_backend_check_relocs nios2_elf32_check_relocs
|
|
|
|
#define elf_backend_gc_mark_hook nios2_elf32_gc_mark_hook
|
|
#define elf_backend_gc_sweep_hook nios2_elf32_gc_sweep_hook
|
|
#define elf_backend_create_dynamic_sections \
|
|
nios2_elf32_create_dynamic_sections
|
|
#define elf_backend_finish_dynamic_symbol nios2_elf32_finish_dynamic_symbol
|
|
#define elf_backend_finish_dynamic_sections \
|
|
nios2_elf32_finish_dynamic_sections
|
|
#define elf_backend_adjust_dynamic_symbol nios2_elf32_adjust_dynamic_symbol
|
|
#define elf_backend_reloc_type_class nios2_elf32_reloc_type_class
|
|
#define elf_backend_size_dynamic_sections nios2_elf32_size_dynamic_sections
|
|
#define elf_backend_add_symbol_hook nios2_elf_add_symbol_hook
|
|
#define elf_backend_copy_indirect_symbol nios2_elf32_copy_indirect_symbol
|
|
|
|
#define elf_backend_grok_prstatus nios2_grok_prstatus
|
|
#define elf_backend_grok_psinfo nios2_grok_psinfo
|
|
|
|
#undef elf_backend_can_make_relative_eh_frame
|
|
#define elf_backend_can_make_relative_eh_frame \
|
|
nios2_elf32_can_make_relative_eh_frame
|
|
|
|
#define elf_backend_special_sections elf32_nios2_special_sections
|
|
|
|
#define TARGET_LITTLE_SYM nios2_elf32_le_vec
|
|
#define TARGET_LITTLE_NAME "elf32-littlenios2"
|
|
#define TARGET_BIG_SYM nios2_elf32_be_vec
|
|
#define TARGET_BIG_NAME "elf32-bignios2"
|
|
|
|
#define elf_backend_got_header_size 12
|
|
|
|
#include "elf32-target.h"
|