binutils-gdb/libctf/ctf-lookup.c
Nick Alcock 8a60c93096 libctf: support addition of types to dicts read via ctf_open()
libctf has long declared deserialized dictionaries (out of files or ELF
sections or memory buffers or whatever) to be read-only: back in the
furthest prehistory this was not the case, in that you could add a
few sorts of type to such dicts, but attempting to do so often caused
horrible memory corruption, so I banned the lot.

But it turns out real consumers want it (notably DTrace, which
synthesises pointers to types that don't have them and adds them to the
ctf_open()ed dicts if it needs them). Let's bring it back again, but
without the memory corruption and without the massive code duplication
required in days of yore to distinguish between static and dynamic
types: the representation of both types has been identical for a few
years, with the only difference being that types as a whole are stored in
a big buffer for types read in via ctf_open and per-type hashtables for
newly-added types.

So we discard the internally-visible concept of "readonly dictionaries"
in favour of declaring the *range of types* that were already present
when the dict was read in to be read-only: you can't modify them (say,
by adding members to them if they're structs, or calling ctf_set_array
on them), but you can add more types and point to them.  (The API
remains the same, with calls sometimes returning ECTF_RDONLY, but now
they do so less often.)

This is a fairly invasive change, mostly because code written since the
ban was introduced didn't take the possibility of a static/dynamic split
into account.  Some of these irregularities were hard to define as
anything but bugs.

Notably:

 - The symbol handling was assuming that symbols only needed to be
   looked for in dynamic hashtabs or static linker-laid-out indexed/
   nonindexed layouts, but now we want to check both in case people
   added more symbols to a dict they opened.

 - The code that handles type additions wasn't checking to see if types
   with the same name existed *at all* (so you could do
   ctf_add_typedef (fp, "foo", bar) repeatedly without error).  This
   seems reasonable for types you just added, but we probably *do* want
   to ban addition of types with names that override names we already
   used in the ctf_open()ed portion, since that would probably corrupt
   existing type relationships.  (Doing things this way also avoids
   causing new errors for any existing code that was doing this sort of
   thing.)

 - ctf_lookup_variable entirely failed to work for variables just added
   by ctf_add_variable: you had to write the dict out and read it back
   in again before they appeared.

 - The symbol handling remembered what symbols you looked up but didn't
   remember their types, so you could look up an object symbol and then
   find it popping up when you asked for function symbols, which seems
   less than ideal.  Since we had to rejig things enough to be able to
   distinguish function and object symbols internally anyway (in order
   to give suitable errors if you try to add a symbol with a name that
   already existed in the ctf_open()ed dict), this bug suddenly became
   more visible and was easily fixed.

We do not (yet) support writing out dicts that have been previously read
in via ctf_open() or other deserializer (you can look things up in them,
but not write them out a second time).  This never worked, so there is
no incompatibility; if it is needed at a later date, the serializer is a
little bit closer to having it work now (the only table we don't deal
with is the types table, and that's because the upcoming CTFv4 changes
are likely to make major changes to the way that table is represented
internally, so adding more code that depends on its current form seems
like a bad idea).

There is a new testcase that tests much of this, in particular that
modification of existing types is still banned and that you can add new
ones and chase them without error.

libctf/

	* ctf-impl.h (struct ctf_dict.ctf_symhash): Split into...
	(ctf_dict.ctf_symhash_func): ... this and...
	(ctf_dict.ctf_symhash_objt): ... this.
	(ctf_dict.ctf_stypes): New, counts static types.
	(LCTF_INDEX_TO_TYPEPTR): Use it instead of CTF_RDWR.
	(LCTF_RDWR): Deleted.
	(LCTF_DIRTY): Renumbered.
	(LCTF_LINKING): Likewise.
	(ctf_lookup_variable_here): New.
	(ctf_lookup_by_sym_or_name): Likewise.
	(ctf_symbol_next_static): Likewise.
	(ctf_add_variable_forced): Likewise.
	(ctf_add_funcobjt_sym_forced): Likewise.
	(ctf_simple_open_internal): Adjust.
	(ctf_bufopen_internal): Likewise.
	* ctf-create.c (ctf_grow_ptrtab): Adjust a lot to start with.
	(ctf_create): Migrate a bunch of initializations into bufopen.
	Force recreation of name tables.  Do not forcibly override the
	model, let ctf_bufopen do it.
	(ctf_static_type): New.
	(ctf_update): Drop LCTF_RDWR check.
	(ctf_dynamic_type): Likewise.
	(ctf_add_function): Likewise.
	(ctf_add_type_internal): Likewise.
	(ctf_rollback): Check ctf_stypes, not LCTF_RDWR.
	(ctf_set_array): Likewise.
	(ctf_add_struct_sized): Likewise.
	(ctf_add_union_sized): Likewise.
	(ctf_add_enum): Likewise.
	(ctf_add_enumerator): Likewise (only on the target dict).
	(ctf_add_member_offset): Likewise.
	(ctf_add_generic): Drop LCTF_RDWR check.  Ban addition of types
	with colliding names.
	(ctf_add_forward): Note safety under the new rules.
	(ctf_add_variable): Split all but the existence check into...
	(ctf_add_variable_forced): ... this new function.
	(ctf_add_funcobjt_sym): Likewise...
	(ctf_add_funcobjt_sym_forced): ... for this new function.
	* ctf-link.c (ctf_link_add_linker_symbol): Ban calling on dicts
	with any stypes.
	(ctf_link_add_strtab): Likewise.
	(ctf_link_shuffle_syms): Likewise.
	(ctf_link_intern_extern_string): Note pre-existing prohibition.
	* ctf-lookup.c (ctf_lookup_by_id): Drop LCTF_RDWR check.
	(ctf_lookup_variable): Split out looking in a dict but not
	its parent into...
	(ctf_lookup_variable_here): ... this new function.
	(ctf_lookup_symbol_idx): Track whether looking up a function or
	object: cache them separately.
	(ctf_symbol_next): Split out looking in non-dynamic symtypetab
	entries to...
	(ctf_symbol_next_static): ... this new function.  Don't get confused
	by the simultaneous presence of static and dynamic symtypetab entries.
	(ctf_try_lookup_indexed):  Don't waste time looking up symbols by
	index before there can be any idea how symbols are numbered.
	(ctf_lookup_by_sym_or_name): Distinguish between function and
	data object lookups.  Drop LCTF_RDWR.
	(ctf_lookup_by_symbol): Adjust.
	(ctf_lookup_by_symbol_name): Likewise.
	* ctf-open.c (init_types): Rename to...
	(init_static_types): ... this.  Drop LCTF_RDWR.  Populate ctf_stypes.
	(ctf_simple_open): Drop writable arg.
	(ctf_simple_open_internal): Likewise.
	(ctf_bufopen): Likewise.
	(ctf_bufopen_internal): Populate fields only used for writable dicts.
	Drop LCTF_RDWR.
	(ctf_dict_close): Cater for symhash cache split.
	* ctf-serialize.c (ctf_serialize): Use ctf_stypes, not LCTF_RDWR.
	* ctf-types.c (ctf_variable_next): Drop LCTF_RDWR.
	* testsuite/libctf-lookup/add-to-opened*: New test.
2024-04-19 16:14:46 +01:00

1164 lines
32 KiB
C

/* Symbol, variable and name lookup.
Copyright (C) 2019-2024 Free Software Foundation, Inc.
This file is part of libctf.
libctf is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not see
<http://www.gnu.org/licenses/>. */
#include <ctf-impl.h>
#include <elf.h>
#include <string.h>
#include <assert.h>
/* Grow the pptrtab so that it is at least NEW_LEN long. */
static int
grow_pptrtab (ctf_dict_t *fp, size_t new_len)
{
uint32_t *new_pptrtab;
if ((new_pptrtab = realloc (fp->ctf_pptrtab, sizeof (uint32_t)
* new_len)) == NULL)
return (ctf_set_errno (fp, ENOMEM));
fp->ctf_pptrtab = new_pptrtab;
memset (fp->ctf_pptrtab + fp->ctf_pptrtab_len, 0,
sizeof (uint32_t) * (new_len - fp->ctf_pptrtab_len));
fp->ctf_pptrtab_len = new_len;
return 0;
}
/* Update entries in the pptrtab that relate to types newly added in the
child. */
static int
refresh_pptrtab (ctf_dict_t *fp, ctf_dict_t *pfp)
{
uint32_t i;
for (i = fp->ctf_pptrtab_typemax; i <= fp->ctf_typemax; i++)
{
ctf_id_t type = LCTF_INDEX_TO_TYPE (fp, i, 1);
ctf_id_t reffed_type;
if (ctf_type_kind (fp, type) != CTF_K_POINTER)
continue;
reffed_type = ctf_type_reference (fp, type);
if (LCTF_TYPE_ISPARENT (fp, reffed_type))
{
uint32_t idx = LCTF_TYPE_TO_INDEX (fp, reffed_type);
/* Guard against references to invalid types. No need to consider
the CTF dict corrupt in this case: this pointer just can't be a
pointer to any type we know about. */
if (idx <= pfp->ctf_typemax)
{
if (idx >= fp->ctf_pptrtab_len
&& grow_pptrtab (fp, pfp->ctf_ptrtab_len) < 0)
return -1; /* errno is set for us. */
fp->ctf_pptrtab[idx] = i;
}
}
}
fp->ctf_pptrtab_typemax = fp->ctf_typemax;
return 0;
}
/* Compare the given input string and length against a table of known C storage
qualifier keywords. We just ignore these in ctf_lookup_by_name, below. To
do this quickly, we use a pre-computed Perfect Hash Function similar to the
technique originally described in the classic paper:
R.J. Cichelli, "Minimal Perfect Hash Functions Made Simple",
Communications of the ACM, Volume 23, Issue 1, January 1980, pp. 17-19.
For an input string S of length N, we use hash H = S[N - 1] + N - 105, which
for the current set of qualifiers yields a unique H in the range [0 .. 20].
The hash can be modified when the keyword set changes as necessary. We also
store the length of each keyword and check it prior to the final strcmp().
TODO: just use gperf. */
static int
isqualifier (const char *s, size_t len)
{
static const struct qual
{
const char *q_name;
size_t q_len;
} qhash[] = {
{"static", 6}, {"", 0}, {"", 0}, {"", 0},
{"volatile", 8}, {"", 0}, {"", 0}, {"", 0}, {"", 0},
{"", 0}, {"auto", 4}, {"extern", 6}, {"", 0}, {"", 0},
{"", 0}, {"", 0}, {"const", 5}, {"register", 8},
{"", 0}, {"restrict", 8}, {"_Restrict", 9}
};
int h = s[len - 1] + (int) len - 105;
const struct qual *qp;
if (h < 0 || (size_t) h >= sizeof (qhash) / sizeof (qhash[0]))
return 0;
qp = &qhash[h];
return ((size_t) len == qp->q_len &&
strncmp (qp->q_name, s, qp->q_len) == 0);
}
/* Attempt to convert the given C type name into the corresponding CTF type ID.
It is not possible to do complete and proper conversion of type names
without implementing a more full-fledged parser, which is necessary to
handle things like types that are function pointers to functions that
have arguments that are function pointers, and fun stuff like that.
Instead, this function implements a very simple conversion algorithm that
finds the things that we actually care about: structs, unions, enums,
integers, floats, typedefs, and pointers to any of these named types. */
static ctf_id_t
ctf_lookup_by_name_internal (ctf_dict_t *fp, ctf_dict_t *child,
const char *name)
{
static const char delimiters[] = " \t\n\r\v\f*";
const ctf_lookup_t *lp;
const char *p, *q, *end;
ctf_id_t type = 0;
ctf_id_t ntype, ptype;
if (name == NULL)
return (ctf_set_typed_errno (fp, EINVAL));
for (p = name, end = name + strlen (name); *p != '\0'; p = q)
{
while (isspace ((int) *p))
p++; /* Skip leading whitespace. */
if (p == end)
break;
if ((q = strpbrk (p + 1, delimiters)) == NULL)
q = end; /* Compare until end. */
if (*p == '*')
{
/* Find a pointer to type by looking in child->ctf_pptrtab (if child
is set) and fp->ctf_ptrtab. If we can't find a pointer to the
given type, see if we can compute a pointer to the type resulting
from resolving the type down to its base type and use that instead.
This helps with cases where the CTF data includes "struct foo *"
but not "foo_t *" and the user tries to access "foo_t *" in the
debugger.
There is extra complexity here because uninitialized elements in
the pptrtab and ptrtab are set to zero, but zero (as the type ID
meaning the unimplemented type) is a valid return type from
ctf_lookup_by_name. (Pointers to types are never of type 0, so
this is unambiguous, just fiddly to deal with.) */
uint32_t idx = LCTF_TYPE_TO_INDEX (fp, type);
int in_child = 0;
ntype = CTF_ERR;
if (child && idx < child->ctf_pptrtab_len)
{
ntype = child->ctf_pptrtab[idx];
if (ntype)
in_child = 1;
else
ntype = CTF_ERR;
}
if (ntype == CTF_ERR)
{
ntype = fp->ctf_ptrtab[idx];
if (ntype == 0)
ntype = CTF_ERR;
}
/* Try resolving to its base type and check again. */
if (ntype == CTF_ERR)
{
if (child)
ntype = ctf_type_resolve_unsliced (child, type);
else
ntype = ctf_type_resolve_unsliced (fp, type);
if (ntype == CTF_ERR)
goto notype;
idx = LCTF_TYPE_TO_INDEX (fp, ntype);
ntype = CTF_ERR;
if (child && idx < child->ctf_pptrtab_len)
{
ntype = child->ctf_pptrtab[idx];
if (ntype)
in_child = 1;
else
ntype = CTF_ERR;
}
if (ntype == CTF_ERR)
{
ntype = fp->ctf_ptrtab[idx];
if (ntype == 0)
ntype = CTF_ERR;
}
if (ntype == CTF_ERR)
goto notype;
}
type = LCTF_INDEX_TO_TYPE (fp, ntype, (fp->ctf_flags & LCTF_CHILD)
|| in_child);
/* We are looking up a type in the parent, but the pointed-to type is
in the child. Switch to looking in the child: if we need to go
back into the parent, we can recurse again. */
if (in_child)
{
fp = child;
child = NULL;
}
q = p + 1;
continue;
}
if (isqualifier (p, (size_t) (q - p)))
continue; /* Skip qualifier keyword. */
for (lp = fp->ctf_lookups; lp->ctl_prefix != NULL; lp++)
{
/* TODO: This is not MT-safe. */
if ((lp->ctl_prefix[0] == '\0' ||
strncmp (p, lp->ctl_prefix, (size_t) (q - p)) == 0) &&
(size_t) (q - p) >= lp->ctl_len)
{
for (p += lp->ctl_len; isspace ((int) *p); p++)
continue; /* Skip prefix and next whitespace. */
if ((q = strchr (p, '*')) == NULL)
q = end; /* Compare until end. */
while (isspace ((int) q[-1]))
q--; /* Exclude trailing whitespace. */
/* Expand and/or allocate storage for a slice of the name, then
copy it in. */
if (fp->ctf_tmp_typeslicelen >= (size_t) (q - p) + 1)
{
memcpy (fp->ctf_tmp_typeslice, p, (size_t) (q - p));
fp->ctf_tmp_typeslice[(size_t) (q - p)] = '\0';
}
else
{
free (fp->ctf_tmp_typeslice);
fp->ctf_tmp_typeslice = xstrndup (p, (size_t) (q - p));
if (fp->ctf_tmp_typeslice == NULL)
return ctf_set_typed_errno (fp, ENOMEM);
}
if ((type = (ctf_id_t) (uintptr_t)
ctf_dynhash_lookup (lp->ctl_hash,
fp->ctf_tmp_typeslice)) == 0)
goto notype;
break;
}
}
if (lp->ctl_prefix == NULL)
goto notype;
}
if (*p != '\0' || type == 0)
return (ctf_set_typed_errno (fp, ECTF_SYNTAX));
return type;
notype:
ctf_set_errno (fp, ECTF_NOTYPE);
if (fp->ctf_parent != NULL)
{
/* Need to look up in the parent, from the child's perspective.
Make sure the pptrtab is up to date. */
if (fp->ctf_pptrtab_typemax < fp->ctf_typemax)
{
if (refresh_pptrtab (fp, fp->ctf_parent) < 0)
return CTF_ERR; /* errno is set for us. */
}
if ((ptype = ctf_lookup_by_name_internal (fp->ctf_parent, fp,
name)) != CTF_ERR)
return ptype;
return (ctf_set_typed_errno (fp, ctf_errno (fp->ctf_parent)));
}
return CTF_ERR;
}
ctf_id_t
ctf_lookup_by_name (ctf_dict_t *fp, const char *name)
{
return ctf_lookup_by_name_internal (fp, NULL, name);
}
/* Return the pointer to the internal CTF type data corresponding to the
given type ID. If the ID is invalid, the function returns NULL.
This function is not exported outside of the library. */
const ctf_type_t *
ctf_lookup_by_id (ctf_dict_t **fpp, ctf_id_t type)
{
ctf_dict_t *fp = *fpp;
ctf_id_t idx;
if ((fp = ctf_get_dict (fp, type)) == NULL)
{
(void) ctf_set_errno (*fpp, ECTF_NOPARENT);
return NULL;
}
idx = LCTF_TYPE_TO_INDEX (fp, type);
if (idx > 0 && (unsigned long) idx <= fp->ctf_typemax)
{
*fpp = fp; /* Possibly the parent CTF dict. */
return (LCTF_INDEX_TO_TYPEPTR (fp, idx));
}
(void) ctf_set_errno (*fpp, ECTF_BADID);
return NULL;
}
typedef struct ctf_lookup_idx_key
{
ctf_dict_t *clik_fp;
const char *clik_name;
uint32_t *clik_names;
} ctf_lookup_idx_key_t;
/* A bsearch function for variable names. */
static int
ctf_lookup_var (const void *key_, const void *lookup_)
{
const ctf_lookup_idx_key_t *key = key_;
const ctf_varent_t *lookup = lookup_;
return (strcmp (key->clik_name, ctf_strptr (key->clik_fp, lookup->ctv_name)));
}
/* Given a variable name, return the type of the variable with that name.
Look only in this dict, not in the parent. */
ctf_id_t
ctf_lookup_variable_here (ctf_dict_t *fp, const char *name)
{
ctf_dvdef_t *dvd = ctf_dvd_lookup (fp, name);
ctf_varent_t *ent;
ctf_lookup_idx_key_t key = { fp, name, NULL };
if (dvd != NULL)
return dvd->dvd_type;
/* This array is sorted, so we can bsearch for it. */
ent = bsearch (&key, fp->ctf_vars, fp->ctf_nvars, sizeof (ctf_varent_t),
ctf_lookup_var);
if (ent == NULL)
return (ctf_set_typed_errno (fp, ECTF_NOTYPEDAT));
return ent->ctv_type;
}
/* As above, but look in the parent too. */
ctf_id_t
ctf_lookup_variable (ctf_dict_t *fp, const char *name)
{
ctf_id_t type;
if ((type = ctf_lookup_variable_here (fp, name)) == CTF_ERR)
{
if (ctf_errno (fp) == ECTF_NOTYPEDAT && fp->ctf_parent != NULL)
{
if ((type = ctf_lookup_variable_here (fp->ctf_parent, name)) != CTF_ERR)
return type;
return (ctf_set_typed_errno (fp, ctf_errno (fp->ctf_parent)));
}
return -1; /* errno is set for us. */
}
return type;
}
typedef struct ctf_symidx_sort_arg_cb
{
ctf_dict_t *fp;
uint32_t *names;
} ctf_symidx_sort_arg_cb_t;
static int
sort_symidx_by_name (const void *one_, const void *two_, void *arg_)
{
const uint32_t *one = one_;
const uint32_t *two = two_;
ctf_symidx_sort_arg_cb_t *arg = arg_;
return (strcmp (ctf_strptr (arg->fp, arg->names[*one]),
ctf_strptr (arg->fp, arg->names[*two])));
}
/* Sort a symbol index section by name. Takes a 1:1 mapping of names to the
corresponding symbol table. Returns a lexicographically sorted array of idx
indexes (and thus, of indexes into the corresponding func info / data object
section). */
static uint32_t *
ctf_symidx_sort (ctf_dict_t *fp, uint32_t *idx, size_t *nidx,
size_t len)
{
uint32_t *sorted;
size_t i;
if ((sorted = malloc (len)) == NULL)
{
ctf_set_errno (fp, ENOMEM);
return NULL;
}
*nidx = len / sizeof (uint32_t);
for (i = 0; i < *nidx; i++)
sorted[i] = i;
if (!(fp->ctf_header->cth_flags & CTF_F_IDXSORTED))
{
ctf_symidx_sort_arg_cb_t arg = { fp, idx };
ctf_dprintf ("Index section unsorted: sorting.");
ctf_qsort_r (sorted, *nidx, sizeof (uint32_t), sort_symidx_by_name, &arg);
fp->ctf_header->cth_flags |= CTF_F_IDXSORTED;
}
return sorted;
}
/* Given a symbol index, return the name of that symbol from the table provided
by ctf_link_shuffle_syms, or failing that from the secondary string table, or
the null string. */
static const char *
ctf_lookup_symbol_name (ctf_dict_t *fp, unsigned long symidx)
{
const ctf_sect_t *sp = &fp->ctf_symtab;
ctf_link_sym_t sym;
int err;
if (fp->ctf_dynsymidx)
{
err = EINVAL;
if (symidx > fp->ctf_dynsymmax)
goto try_parent;
ctf_link_sym_t *symp = fp->ctf_dynsymidx[symidx];
if (!symp)
goto try_parent;
return symp->st_name;
}
err = ECTF_NOSYMTAB;
if (sp->cts_data == NULL)
goto try_parent;
if (symidx >= fp->ctf_nsyms)
goto try_parent;
switch (sp->cts_entsize)
{
case sizeof (Elf64_Sym):
{
const Elf64_Sym *symp = (Elf64_Sym *) sp->cts_data + symidx;
ctf_elf64_to_link_sym (fp, &sym, symp, symidx);
}
break;
case sizeof (Elf32_Sym):
{
const Elf32_Sym *symp = (Elf32_Sym *) sp->cts_data + symidx;
ctf_elf32_to_link_sym (fp, &sym, symp, symidx);
}
break;
default:
ctf_set_errno (fp, ECTF_SYMTAB);
return _CTF_NULLSTR;
}
assert (!sym.st_nameidx_set);
return sym.st_name;
try_parent:
if (fp->ctf_parent)
{
const char *ret;
ret = ctf_lookup_symbol_name (fp->ctf_parent, symidx);
if (ret == NULL)
ctf_set_errno (fp, ctf_errno (fp->ctf_parent));
return ret;
}
else
{
ctf_set_errno (fp, err);
return _CTF_NULLSTR;
}
}
/* Given a symbol name, return the index of that symbol, or -1 on error or if
not found. If is_function is >= 0, return only function or data object
symbols, respectively. */
static unsigned long
ctf_lookup_symbol_idx (ctf_dict_t *fp, const char *symname, int try_parent,
int is_function)
{
const ctf_sect_t *sp = &fp->ctf_symtab;
ctf_link_sym_t sym;
void *known_idx;
int err;
ctf_dict_t *cache = fp;
if (fp->ctf_dynsyms)
{
err = EINVAL;
ctf_link_sym_t *symp;
if (((symp = ctf_dynhash_lookup (fp->ctf_dynsyms, symname)) == NULL)
|| (symp->st_type != STT_OBJECT && is_function == 0)
|| (symp->st_type != STT_FUNC && is_function == 1))
goto try_parent;
return symp->st_symidx;
}
err = ECTF_NOSYMTAB;
if (sp->cts_data == NULL)
goto try_parent;
/* First, try a hash lookup to see if we have already spotted this symbol
during a past iteration: create the hash first if need be. The
lifespan of the strings is equal to the lifespan of the cts_data, so we
don't need to strdup them. If this dict was opened as part of an
archive, and this archive has a crossdict_cache to cache results that
are the same across all dicts in an archive, use it. */
if (fp->ctf_archive && fp->ctf_archive->ctfi_crossdict_cache)
cache = fp->ctf_archive->ctfi_crossdict_cache;
if (!cache->ctf_symhash_func)
if ((cache->ctf_symhash_func = ctf_dynhash_create (ctf_hash_string,
ctf_hash_eq_string,
NULL, NULL)) == NULL)
goto oom;
if (!cache->ctf_symhash_objt)
if ((cache->ctf_symhash_objt = ctf_dynhash_create (ctf_hash_string,
ctf_hash_eq_string,
NULL, NULL)) == NULL)
goto oom;
if (is_function != 0 &&
ctf_dynhash_lookup_kv (cache->ctf_symhash_func, symname, NULL, &known_idx))
return (unsigned long) (uintptr_t) known_idx;
if (is_function != 1 &&
ctf_dynhash_lookup_kv (cache->ctf_symhash_objt, symname, NULL, &known_idx))
return (unsigned long) (uintptr_t) known_idx;
/* Hash lookup unsuccessful: linear search, populating the hashtab for later
lookups as we go. */
for (; cache->ctf_symhash_latest < sp->cts_size / sp->cts_entsize;
cache->ctf_symhash_latest++)
{
ctf_dynhash_t *h;
switch (sp->cts_entsize)
{
case sizeof (Elf64_Sym):
{
Elf64_Sym *symp = (Elf64_Sym *) sp->cts_data;
ctf_elf64_to_link_sym (fp, &sym, &symp[cache->ctf_symhash_latest],
cache->ctf_symhash_latest);
}
break;
case sizeof (Elf32_Sym):
{
Elf32_Sym *symp = (Elf32_Sym *) sp->cts_data;
ctf_elf32_to_link_sym (fp, &sym, &symp[cache->ctf_symhash_latest],
cache->ctf_symhash_latest);
break;
}
default:
ctf_set_errno (fp, ECTF_SYMTAB);
return (unsigned long) -1;
}
if (sym.st_type == STT_FUNC)
h = cache->ctf_symhash_func;
else if (sym.st_type == STT_OBJECT)
h = cache->ctf_symhash_objt;
else
continue; /* Not of interest. */
if (!ctf_dynhash_lookup_kv (h, sym.st_name,
NULL, NULL))
if (ctf_dynhash_cinsert (h, sym.st_name,
(const void *) (uintptr_t)
cache->ctf_symhash_latest) < 0)
goto oom;
if (strcmp (sym.st_name, symname) == 0)
return cache->ctf_symhash_latest++;
}
/* Searched everything, still not found. */
return (unsigned long) -1;
try_parent:
if (fp->ctf_parent && try_parent)
{
unsigned long psym;
if ((psym = ctf_lookup_symbol_idx (fp->ctf_parent, symname, try_parent,
is_function))
!= (unsigned long) -1)
return psym;
ctf_set_errno (fp, ctf_errno (fp->ctf_parent));
return (unsigned long) -1;
}
else
{
ctf_set_errno (fp, err);
return (unsigned long) -1;
}
oom:
ctf_set_errno (fp, ENOMEM);
ctf_err_warn (fp, 0, ENOMEM, _("cannot allocate memory for symbol "
"lookup hashtab"));
return (unsigned long) -1;
}
ctf_id_t
ctf_symbol_next_static (ctf_dict_t *fp, ctf_next_t **it, const char **name,
int functions);
/* Iterate over all symbols with types: if FUNC, function symbols,
otherwise, data symbols. The name argument is not optional. The return
order is arbitrary, though is likely to be in symbol index or name order.
Changing the value of 'functions' in the middle of iteration has
unpredictable effects (probably skipping symbols, etc) and is not
recommended. Adding symbols while iteration is underway may also lead
to other symbols being skipped. */
ctf_id_t
ctf_symbol_next (ctf_dict_t *fp, ctf_next_t **it, const char **name,
int functions)
{
ctf_id_t sym = CTF_ERR;
ctf_next_t *i = *it;
int err;
if (!i)
{
if ((i = ctf_next_create ()) == NULL)
return ctf_set_typed_errno (fp, ENOMEM);
i->cu.ctn_fp = fp;
i->ctn_iter_fun = (void (*) (void)) ctf_symbol_next;
i->ctn_n = 0;
*it = i;
}
if ((void (*) (void)) ctf_symbol_next != i->ctn_iter_fun)
return (ctf_set_typed_errno (fp, ECTF_NEXT_WRONGFUN));
if (fp != i->cu.ctn_fp)
return (ctf_set_typed_errno (fp, ECTF_NEXT_WRONGFP));
/* Check the dynamic set of names first, to allow previously-written names
to be replaced with dynamic ones (there is still no way to remove them,
though).
We intentionally use raw access, not ctf_lookup_by_symbol, to avoid
incurring additional sorting cost for unsorted symtypetabs coming from the
compiler, to allow ctf_symbol_next to work in the absence of a symtab, and
finally because it's easier to work out what the name of each symbol is if
we do that. */
ctf_dynhash_t *dynh = functions ? fp->ctf_funchash : fp->ctf_objthash;
void *dyn_name = NULL, *dyn_value = NULL;
size_t dyn_els = dynh ? ctf_dynhash_elements (dynh) : 0;
if (i->ctn_n < dyn_els)
{
err = ctf_dynhash_next (dynh, &i->ctn_next, &dyn_name, &dyn_value);
/* This covers errors and also end-of-iteration. */
if (err != 0)
{
ctf_next_destroy (i);
*it = NULL;
return ctf_set_typed_errno (fp, err);
}
*name = dyn_name;
sym = (ctf_id_t) (uintptr_t) dyn_value;
i->ctn_n++;
return sym;
}
return ctf_symbol_next_static (fp, it, name, functions);
}
/* ctf_symbol_next, but only for static symbols. Mostly an internal
implementation detail of ctf_symbol_next, but also used to simplify
serialization. */
ctf_id_t
ctf_symbol_next_static (ctf_dict_t *fp, ctf_next_t **it, const char **name,
int functions)
{
ctf_id_t sym = CTF_ERR;
ctf_next_t *i = *it;
ctf_dynhash_t *dynh = functions ? fp->ctf_funchash : fp->ctf_objthash;
size_t dyn_els = dynh ? ctf_dynhash_elements (dynh) : 0;
/* Only relevant for direct internal-to-library calls, not via
ctf_symbol_next (but important then). */
if (!i)
{
if ((i = ctf_next_create ()) == NULL)
return ctf_set_typed_errno (fp, ENOMEM);
i->cu.ctn_fp = fp;
i->ctn_iter_fun = (void (*) (void)) ctf_symbol_next;
i->ctn_n = dyn_els;
*it = i;
}
if ((void (*) (void)) ctf_symbol_next != i->ctn_iter_fun)
return (ctf_set_typed_errno (fp, ECTF_NEXT_WRONGFUN));
if (fp != i->cu.ctn_fp)
return (ctf_set_typed_errno (fp, ECTF_NEXT_WRONGFP));
/* TODO-v4: Indexed after non-indexed portions? */
if ((!functions && fp->ctf_objtidx_names) ||
(functions && fp->ctf_funcidx_names))
{
ctf_header_t *hp = fp->ctf_header;
uint32_t *idx = functions ? fp->ctf_funcidx_names : fp->ctf_objtidx_names;
uint32_t *tab;
size_t len;
if (functions)
{
len = (hp->cth_varoff - hp->cth_funcidxoff) / sizeof (uint32_t);
tab = (uint32_t *) (fp->ctf_buf + hp->cth_funcoff);
}
else
{
len = (hp->cth_funcidxoff - hp->cth_objtidxoff) / sizeof (uint32_t);
tab = (uint32_t *) (fp->ctf_buf + hp->cth_objtoff);
}
do
{
if (i->ctn_n - dyn_els >= len)
goto end;
*name = ctf_strptr (fp, idx[i->ctn_n - dyn_els]);
sym = tab[i->ctn_n - dyn_els];
i->ctn_n++;
}
while (sym == -1u || sym == 0);
}
else
{
/* Skip over pads in ctf_sxlate, padding for typeless symbols in the
symtypetab itself, and symbols in the wrong table. */
for (; i->ctn_n - dyn_els < fp->ctf_nsyms; i->ctn_n++)
{
ctf_header_t *hp = fp->ctf_header;
size_t n = i->ctn_n - dyn_els;
if (fp->ctf_sxlate[n] == -1u)
continue;
sym = *(uint32_t *) ((uintptr_t) fp->ctf_buf + fp->ctf_sxlate[n]);
if (sym == 0)
continue;
if (functions)
{
if (fp->ctf_sxlate[n] >= hp->cth_funcoff
&& fp->ctf_sxlate[n] < hp->cth_objtidxoff)
break;
}
else
{
if (fp->ctf_sxlate[n] >= hp->cth_objtoff
&& fp->ctf_sxlate[n] < hp->cth_funcoff)
break;
}
}
if (i->ctn_n - dyn_els >= fp->ctf_nsyms)
goto end;
*name = ctf_lookup_symbol_name (fp, i->ctn_n - dyn_els);
i->ctn_n++;
}
return sym;
end:
ctf_next_destroy (i);
*it = NULL;
return (ctf_set_typed_errno (fp, ECTF_NEXT_END));
}
/* A bsearch function for function and object index names. */
static int
ctf_lookup_idx_name (const void *key_, const void *idx_)
{
const ctf_lookup_idx_key_t *key = key_;
const uint32_t *idx = idx_;
return (strcmp (key->clik_name, ctf_strptr (key->clik_fp, key->clik_names[*idx])));
}
/* Given a symbol name or (failing that) number, look up that symbol in the
function or object index table (which must exist). Return 0 if not found
there (or pad). */
static ctf_id_t
ctf_try_lookup_indexed (ctf_dict_t *fp, unsigned long symidx,
const char *symname, int is_function)
{
struct ctf_header *hp = fp->ctf_header;
uint32_t *symtypetab;
uint32_t *names;
uint32_t *sxlate;
size_t nidx;
if (symname == NULL)
symname = ctf_lookup_symbol_name (fp, symidx);
/* Dynamic dict with no static portion: just return. */
if (!hp)
{
ctf_dprintf ("%s not found in idx: dict is dynamic\n", symname);
return 0;
}
ctf_dprintf ("Looking up type of object with symtab idx %lx or name %s in "
"indexed symtypetab\n", symidx, symname);
if (symname[0] == '\0')
return CTF_ERR; /* errno is set for us. */
if (is_function)
{
if (!fp->ctf_funcidx_sxlate)
{
if ((fp->ctf_funcidx_sxlate
= ctf_symidx_sort (fp, (uint32_t *)
(fp->ctf_buf + hp->cth_funcidxoff),
&fp->ctf_nfuncidx,
hp->cth_varoff - hp->cth_funcidxoff))
== NULL)
{
ctf_err_warn (fp, 0, 0, _("cannot sort function symidx"));
return CTF_ERR; /* errno is set for us. */
}
}
symtypetab = (uint32_t *) (fp->ctf_buf + hp->cth_funcoff);
sxlate = fp->ctf_funcidx_sxlate;
names = fp->ctf_funcidx_names;
nidx = fp->ctf_nfuncidx;
}
else
{
if (!fp->ctf_objtidx_sxlate)
{
if ((fp->ctf_objtidx_sxlate
= ctf_symidx_sort (fp, (uint32_t *)
(fp->ctf_buf + hp->cth_objtidxoff),
&fp->ctf_nobjtidx,
hp->cth_funcidxoff - hp->cth_objtidxoff))
== NULL)
{
ctf_err_warn (fp, 0, 0, _("cannot sort object symidx"));
return CTF_ERR; /* errno is set for us. */
}
}
symtypetab = (uint32_t *) (fp->ctf_buf + hp->cth_objtoff);
sxlate = fp->ctf_objtidx_sxlate;
names = fp->ctf_objtidx_names;
nidx = fp->ctf_nobjtidx;
}
ctf_lookup_idx_key_t key = { fp, symname, names };
uint32_t *idx;
idx = bsearch (&key, sxlate, nidx, sizeof (uint32_t), ctf_lookup_idx_name);
if (!idx)
{
ctf_dprintf ("%s not found in idx\n", symname);
return 0;
}
/* Should be impossible, but be paranoid. */
if ((idx - sxlate) > (ptrdiff_t) nidx)
return (ctf_set_typed_errno (fp, ECTF_CORRUPT));
ctf_dprintf ("Symbol %lx (%s) is of type %x\n", symidx, symname,
symtypetab[*idx]);
return symtypetab[*idx];
}
/* Given a symbol name or (if NULL) symbol index, return the type of the
function or data object described by the corresponding entry in the symbol
table. We can only return symbols in read-only dicts and in dicts for which
ctf_link_shuffle_syms has been called to assign symbol indexes to symbol
names.
If try_parent is false, do not check the parent dict too.
If is_function is > -1, only look for data objects or functions in
particular. */
ctf_id_t
ctf_lookup_by_sym_or_name (ctf_dict_t *fp, unsigned long symidx,
const char *symname, int try_parent,
int is_function)
{
const ctf_sect_t *sp = &fp->ctf_symtab;
ctf_id_t type = 0;
int err = 0;
/* Shuffled dynsymidx present? Use that. For now, the dynsymidx and
shuffled-symbol lookup only support dynamically-added symbols, because
this interface is meant for use by linkers, and linkers are only going
to report symbols against newly-created, freshly-ctf_link'ed dicts: so
there will be no static component in any case. */
if (fp->ctf_dynsymidx)
{
const ctf_link_sym_t *sym;
if (symname)
ctf_dprintf ("Looking up type of object with symname %s in "
"writable dict symtypetab\n", symname);
else
ctf_dprintf ("Looking up type of object with symtab idx %lx in "
"writable dict symtypetab\n", symidx);
/* No name? Need to look it up. */
if (!symname)
{
err = EINVAL;
if (symidx > fp->ctf_dynsymmax)
goto try_parent;
sym = fp->ctf_dynsymidx[symidx];
err = ECTF_NOTYPEDAT;
if (!sym || (sym->st_type != STT_OBJECT && sym->st_type != STT_FUNC)
|| (sym->st_type != STT_OBJECT && is_function == 0)
|| (sym->st_type != STT_FUNC && is_function == 1))
goto try_parent;
if (!ctf_assert (fp, !sym->st_nameidx_set))
return CTF_ERR;
symname = sym->st_name;
}
if (fp->ctf_objthash == NULL
|| is_function == 1
|| (type = (ctf_id_t) (uintptr_t)
ctf_dynhash_lookup (fp->ctf_objthash, symname)) == 0)
{
if (fp->ctf_funchash == NULL
|| is_function == 0
|| (type = (ctf_id_t) (uintptr_t)
ctf_dynhash_lookup (fp->ctf_funchash, symname)) == 0)
goto try_parent;
}
return type;
}
/* Dict not shuffled: look for a dynamic sym first, and look it up
directly. */
if (symname)
{
if (fp->ctf_objthash != NULL
&& is_function != 1
&& ((type = (ctf_id_t) (uintptr_t)
ctf_dynhash_lookup (fp->ctf_objthash, symname)) != 0))
return type;
if (fp->ctf_funchash != NULL
&& is_function != 0
&& ((type = (ctf_id_t) (uintptr_t)
ctf_dynhash_lookup (fp->ctf_funchash, symname)) != 0))
return type;
}
err = ECTF_NOSYMTAB;
if (sp->cts_data == NULL)
goto try_parent;
/* This covers both out-of-range lookups by index and a dynamic dict which
hasn't been shuffled yet. */
err = EINVAL;
if (symname == NULL && symidx >= fp->ctf_nsyms)
goto try_parent;
/* Try an indexed lookup. */
if (fp->ctf_objtidx_names && is_function != 1)
{
if ((type = ctf_try_lookup_indexed (fp, symidx, symname, 0)) == CTF_ERR)
return CTF_ERR; /* errno is set for us. */
}
if (type == 0 && fp->ctf_funcidx_names && is_function != 0)
{
if ((type = ctf_try_lookup_indexed (fp, symidx, symname, 1)) == CTF_ERR)
return CTF_ERR; /* errno is set for us. */
}
if (type != 0)
return type;
/* Indexed but no symbol found -> not present, try the parent. */
err = ECTF_NOTYPEDAT;
if (fp->ctf_objtidx_names && fp->ctf_funcidx_names)
goto try_parent;
/* Table must be nonindexed. */
ctf_dprintf ("Looking up object type %lx in 1:1 dict symtypetab\n", symidx);
if (symname != NULL)
if ((symidx = ctf_lookup_symbol_idx (fp, symname, try_parent, is_function))
== (unsigned long) -1)
goto try_parent;
if (fp->ctf_sxlate[symidx] == -1u)
goto try_parent;
type = *(uint32_t *) ((uintptr_t) fp->ctf_buf + fp->ctf_sxlate[symidx]);
if (type == 0)
goto try_parent;
return type;
try_parent:
if (!try_parent)
return ctf_set_errno (fp, err);
if (fp->ctf_parent)
{
ctf_id_t ret = ctf_lookup_by_sym_or_name (fp->ctf_parent, symidx,
symname, try_parent,
is_function);
if (ret == CTF_ERR)
ctf_set_errno (fp, ctf_errno (fp->ctf_parent));
return ret;
}
else
return (ctf_set_typed_errno (fp, err));
}
/* Given a symbol table index, return the type of the function or data object
described by the corresponding entry in the symbol table. */
ctf_id_t
ctf_lookup_by_symbol (ctf_dict_t *fp, unsigned long symidx)
{
return ctf_lookup_by_sym_or_name (fp, symidx, NULL, 1, -1);
}
/* Given a symbol name, return the type of the function or data object described
by the corresponding entry in the symbol table. */
ctf_id_t
ctf_lookup_by_symbol_name (ctf_dict_t *fp, const char *symname)
{
return ctf_lookup_by_sym_or_name (fp, 0, symname, 1, -1);
}
/* Given a symbol table index, return the info for the function described
by the corresponding entry in the symbol table, which may be a function
symbol or may be a data symbol that happens to be a function pointer. */
int
ctf_func_info (ctf_dict_t *fp, unsigned long symidx, ctf_funcinfo_t *fip)
{
ctf_id_t type;
if ((type = ctf_lookup_by_symbol (fp, symidx)) == CTF_ERR)
return -1; /* errno is set for us. */
if (ctf_type_kind (fp, type) != CTF_K_FUNCTION)
return (ctf_set_errno (fp, ECTF_NOTFUNC));
return ctf_func_type_info (fp, type, fip);
}
/* Given a symbol table index, return the arguments for the function described
by the corresponding entry in the symbol table. */
int
ctf_func_args (ctf_dict_t *fp, unsigned long symidx, uint32_t argc,
ctf_id_t *argv)
{
ctf_id_t type;
if ((type = ctf_lookup_by_symbol (fp, symidx)) == CTF_ERR)
return -1; /* errno is set for us. */
if (ctf_type_kind (fp, type) != CTF_K_FUNCTION)
return (ctf_set_errno (fp, ECTF_NOTFUNC));
return ctf_func_type_args (fp, type, argc, argv);
}