mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-15 04:31:49 +08:00
b315b67d7a
When building gdbserver with AddressSanitizer, I get this annoying little leak when gdbserver exits: ==307817==ERROR: LeakSanitizer: detected memory leaks Direct leak of 14 byte(s) in 1 object(s) allocated from: #0 0x7f7fd4256459 in __interceptor_malloc /build/gcc/src/gcc/libsanitizer/asan/asan_malloc_linux.cpp:145 #1 0x563bef981b80 in xmalloc /home/simark/src/binutils-gdb/gdbserver/../gdb/alloc.c:60 #2 0x563befb53301 in xstrdup /home/simark/src/binutils-gdb/libiberty/xstrdup.c:34 #3 0x563bef9d742b in handle_query /home/simark/src/binutils-gdb/gdbserver/server.cc:2286 #4 0x563bef9ed0b7 in process_serial_event /home/simark/src/binutils-gdb/gdbserver/server.cc:4061 #5 0x563bef9f1d9e in handle_serial_event(int, void*) /home/simark/src/binutils-gdb/gdbserver/server.cc:4402 #6 0x563befb0ec65 in handle_file_event /home/simark/src/binutils-gdb/gdbsupport/event-loop.cc:548 #7 0x563befb0f49f in gdb_wait_for_event /home/simark/src/binutils-gdb/gdbsupport/event-loop.cc:673 #8 0x563befb0d4a1 in gdb_do_one_event() /home/simark/src/binutils-gdb/gdbsupport/event-loop.cc:215 #9 0x563bef9e721a in start_event_loop /home/simark/src/binutils-gdb/gdbserver/server.cc:3484 #10 0x563bef9eb90a in captured_main /home/simark/src/binutils-gdb/gdbserver/server.cc:3875 #11 0x563bef9ec2c7 in main /home/simark/src/binutils-gdb/gdbserver/server.cc:3961 #12 0x7f7fd3330001 in __libc_start_main (/usr/lib/libc.so.6+0x27001) SUMMARY: AddressSanitizer: 14 byte(s) leaked in 1 allocation(s). This is due to the handling of unknown qsupported features in handle_query. The `qsupported` vector is built, containing all the feature names received from GDB. As we iterate on them, when we encounter unknown ones, we move them at the beginning of the vector, in preparation of passing this vector of unknown features down to the target (which may know about them). When moving these unknown features to other slots in the vector, we overwrite other pointers without freeing them, which therefore leak. An easy fix would be to add a `free` when doing the move. However, I think this is a good opportunity to sprinkle a bit of automatic memory management in this code. So, use a vector of std::string which owns all the entries. And use a separate vector (that doesn't own the entries) for the unknown ones, which is then passed to target_process_qsupported. Given that the `c_str` method of std::string returns a `const char *`, it follows that process_stratum_target::process_qsupported must accept a `const char **` instead of a `char **`. And while at it, change the pointer + size paramters to use an array_view instead. gdbserver/ChangeLog: * server.cc (handle_query): Use std::vector of std::string for `qsupported` vector. Use separate vector for unknowns. * target.h (class process_stratum_target) <process_qsupported>: Change parameters to array_view of const char *. (target_process_qsupported): Remove `count` parameter. * target.cc (process_stratum_target::process_qsupported): Change parameters to array_view of const char *. * linux-x86-low.cc (class x86_target) <process_qsupported>: Likewise. Change-Id: I97f133825faa6d7abbf83a58504eb0ba77462812 |
||
---|---|---|
.. | ||
.dir-locals.el | ||
.gitattributes | ||
.gitignore | ||
acinclude.m4 | ||
aclocal.m4 | ||
ax.cc | ||
ax.h | ||
ChangeLog | ||
config.in | ||
configure | ||
configure.ac | ||
configure.srv | ||
debug.cc | ||
debug.h | ||
dll.cc | ||
dll.h | ||
fork-child.cc | ||
gdb_proc_service.h | ||
gdbreplay.cc | ||
gdbthread.h | ||
hostio-errno.cc | ||
hostio.cc | ||
hostio.h | ||
i387-fp.cc | ||
i387-fp.h | ||
inferiors.cc | ||
inferiors.h | ||
linux-aarch32-low.cc | ||
linux-aarch32-low.h | ||
linux-aarch32-tdesc.cc | ||
linux-aarch32-tdesc.h | ||
linux-aarch64-ipa.cc | ||
linux-aarch64-low.cc | ||
linux-aarch64-tdesc.cc | ||
linux-aarch64-tdesc.h | ||
linux-amd64-ipa.cc | ||
linux-arm-low.cc | ||
linux-arm-tdesc.cc | ||
linux-arm-tdesc.h | ||
linux-i386-ipa.cc | ||
linux-ia64-low.cc | ||
linux-low.cc | ||
linux-low.h | ||
linux-m68k-low.cc | ||
linux-mips-low.cc | ||
linux-nios2-low.cc | ||
linux-ppc-ipa.cc | ||
linux-ppc-low.cc | ||
linux-ppc-tdesc-init.h | ||
linux-riscv-low.cc | ||
linux-s390-ipa.cc | ||
linux-s390-low.cc | ||
linux-s390-tdesc.h | ||
linux-sh-low.cc | ||
linux-sparc-low.cc | ||
linux-tic6x-low.cc | ||
linux-x86-low.cc | ||
linux-x86-tdesc.cc | ||
linux-x86-tdesc.h | ||
linux-xtensa-low.cc | ||
Makefile.in | ||
mem-break.cc | ||
mem-break.h | ||
notif.cc | ||
notif.h | ||
proc-service.cc | ||
proc-service.list | ||
README | ||
regcache.cc | ||
regcache.h | ||
remote-utils.cc | ||
remote-utils.h | ||
server.cc | ||
server.h | ||
symbol.cc | ||
target.cc | ||
target.h | ||
tdesc.cc | ||
tdesc.h | ||
thread-db.cc | ||
tracepoint.cc | ||
tracepoint.h | ||
utils.cc | ||
utils.h | ||
win32-i386-low.cc | ||
win32-low.cc | ||
win32-low.h | ||
x86-low.cc | ||
x86-low.h | ||
x86-tdesc.h | ||
xtensa-xtregs.cc |
README for GDBserver & GDBreplay by Stu Grossman and Fred Fish Introduction: This is GDBserver, a remote server for Un*x-like systems. It can be used to control the execution of a program on a target system from a GDB on a different host. GDB and GDBserver communicate using the standard remote serial protocol. They communicate via either a serial line or a TCP connection. For more information about GDBserver, see the GDB manual: https://sourceware.org/gdb/current/onlinedocs/gdb/Remote-Protocol.html Usage (server (target) side): First, you need to have a copy of the program you want to debug put onto the target system. The program can be stripped to save space if needed, as GDBserver doesn't care about symbols. All symbol handling is taken care of by the GDB running on the host system. To use the server, you log on to the target system, and run the `gdbserver' program. You must tell it (a) how to communicate with GDB, (b) the name of your program, and (c) its arguments. The general syntax is: target> gdbserver COMM PROGRAM [ARGS ...] For example, using a serial port, you might say: target> gdbserver /dev/com1 emacs foo.txt This tells GDBserver to debug emacs with an argument of foo.txt, and to communicate with GDB via /dev/com1. GDBserver now waits patiently for the host GDB to communicate with it. To use a TCP connection, you could say: target> gdbserver host:2345 emacs foo.txt This says pretty much the same thing as the last example, except that we are going to communicate with the host GDB via TCP. The `host:2345' argument means that we are expecting to see a TCP connection to local TCP port 2345. (Currently, the `host' part is ignored.) You can choose any number you want for the port number as long as it does not conflict with any existing TCP ports on the target system. This same port number must be used in the host GDB's `target remote' command, which will be described shortly. Note that if you chose a port number that conflicts with another service, GDBserver will print an error message and exit. On some targets, GDBserver can also attach to running programs. This is accomplished via the --attach argument. The syntax is: target> gdbserver --attach COMM PID PID is the process ID of a currently running process. It isn't necessary to point GDBserver at a binary for the running process. Usage (host side): You need an unstripped copy of the target program on your host system, since GDB needs to examine it's symbol tables and such. Start up GDB as you normally would, with the target program as the first argument. (You may need to use the --baud option if the serial line is running at anything except 9600 baud.) Ie: `gdb TARGET-PROG', or `gdb --baud BAUD TARGET-PROG'. After that, the only new command you need to know about is `target remote'. It's argument is either a device name (usually a serial device, like `/dev/ttyb'), or a HOST:PORT descriptor. For example: (gdb) target remote /dev/ttyb communicates with the server via serial line /dev/ttyb, and: (gdb) target remote the-target:2345 communicates via a TCP connection to port 2345 on host `the-target', where you previously started up GDBserver with the same port number. Note that for TCP connections, you must start up GDBserver prior to using the `target remote' command, otherwise you may get an error that looks something like `Connection refused'. Building GDBserver: See the `configure.srv` file for the list of host triplets you can build GDBserver for. Building GDBserver for your host is very straightforward. If you build GDB natively on a host which GDBserver supports, it will be built automatically when you build GDB. You can also build just GDBserver: % mkdir obj % cd obj % path-to-toplevel-sources/configure --disable-gdb % make all-gdbserver (If you have a combined binutils+gdb tree, you may want to also disable other directories when configuring, e.g., binutils, gas, gold, gprof, and ld.) If you prefer to cross-compile to your target, then you can also build GDBserver that way. For example: % export CC=your-cross-compiler % path-to-topevel-sources/configure --disable-gdb % make all-gdbserver Using GDBreplay: A special hacked down version of GDBserver can be used to replay remote debug log files created by GDB. Before using the GDB "target" command to initiate a remote debug session, use "set remotelogfile <filename>" to tell GDB that you want to make a recording of the serial or tcp session. Note that when replaying the session, GDB communicates with GDBreplay via tcp, regardless of whether the original session was via a serial link or tcp. Once you are done with the remote debug session, start GDBreplay and tell it the name of the log file and the host and port number that GDB should connect to (typically the same as the host running GDB): $ gdbreplay logfile host:port Then start GDB (preferably in a different screen or window) and use the "target" command to connect to GDBreplay: (gdb) target remote host:port Repeat the same sequence of user commands to GDB that you gave in the original debug session. GDB should not be able to tell that it is talking to GDBreplay rather than a real target, all other things being equal. Note that GDBreplay echos the command lines to stderr, as well as the contents of the packets it sends and receives. The last command echoed by GDBreplay is the next command that needs to be typed to GDB to continue the session in sync with the original session.