binutils-gdb/libctf/testsuite/libctf-writable/error-propagation.c
Nick Alcock d7474051e8 libctf: propagate errors from parents correctly
CTF dicts have per-dict errno values: as with other errno values these
are set on error and left unchanged on success.  This means that all
errors *must* set the CTF errno: if a call leaves it unchanged, the
caller is apt to find a previous, lingering error and misinterpret
it as the real error.

There are many places in libctf where we carry out operations on parent
dicts as a result of carrying out other user-requested operations on
child dicts (e.g. looking up information on a pointer to a type will
look up the type as well: the pointer might well be in a child and the
type it's a pointer to in the parent).  Those operations on the parent
might fail; if they do, the error must be correctly reflected on the
child that the user-visible operation was carried out on.  In many
places this was not happening.

So, audit and fix all those places.  Add tests for as many of those
cases as possible so they don't regress.

libctf/
	* ctf-create.c (ctf_add_slice): Use the original dict.
	* ctf-lookup.c (ctf_lookup_variable): Propagate errors.
	(ctf_lookup_symbol_idx): Likewise.
	* ctf-types.c (ctf_member_next): Likewise.
	(ctf_type_resolve_unsliced): Likewise.
	(ctf_type_aname): Likewise.
	(ctf_member_info): Likewise.
	(ctf_type_rvisit): Likewise.
	(ctf_func_type_info): Set the error on the right dict.
	(ctf_type_encoding): Use the original dict.
	* testsuite/libctf-writable/error-propagation.*: New test.
2023-04-08 16:07:17 +01:00

165 lines
4.8 KiB
C

/* Make sure that errors are propagated properly from parent dicts to children
when errors are encountered in child functions that can recurse to parents.
We check specifically a subset of known-buggy functions.
Functions that require a buggy linker to expose, or that only fail on
assertion-failure-incurring corrupted dicts, are not tested. */
#include <ctf-api.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
static const char *desc;
static void
check_prop_err (ctf_dict_t *child, ctf_dict_t *parent, int expected)
{
if (ctf_errno (child) == expected)
return;
if (ctf_errno (parent) == expected)
fprintf (stderr, "%s: error propagation failure: error \"%s\" not seen on child, "
"but instead on parent\n", desc, ctf_errmsg (ctf_errno (parent)));
else
fprintf (stderr, "%s: expected error is entirely lost: "
"\"%s\" seen on parent, \"%s\" on child\n", desc,
ctf_errmsg (ctf_errno (parent)),
ctf_errmsg (ctf_errno (child)));
}
static void
no_prop_err (void)
{
fprintf (stderr, "%s: expected error return not observed.\n", desc);
}
int main (void)
{
ctf_dict_t *parent;
ctf_dict_t *blank;
ctf_dict_t *child;
ctf_id_t void_id;
ctf_id_t base;
ctf_id_t slice;
ctf_id_t function;
ctf_encoding_t long_encoding = { CTF_INT_SIGNED, 0, sizeof (long) };
ctf_encoding_t void_encoding = { CTF_INT_SIGNED, 0, 0 };
ctf_encoding_t foo;
ctf_funcinfo_t fi;
ctf_id_t bar;
char *funcname;
int err;
if ((parent = ctf_create (&err)) == NULL
|| (child = ctf_create (&err)) == NULL
|| (blank = ctf_create (&err)) == NULL)
{
fprintf (stderr, "Cannot create dicts: %s\n", ctf_errmsg (err));
return 1;
}
if ((ctf_import (child, parent)) < 0)
{
fprintf (stderr, "cannot import: %s\n", ctf_errmsg (ctf_errno (child)));
return 1;
}
if ((void_id = ctf_add_integer (parent, CTF_ADD_ROOT, "void", &void_encoding))
== CTF_ERR)
goto parent_err;
if ((base = ctf_add_integer (parent, CTF_ADD_ROOT, "long int", &long_encoding))
== CTF_ERR)
goto parent_err;
foo.cte_format = 0;
foo.cte_bits = 4;
foo.cte_offset = 4;
if ((slice = ctf_add_slice (child, CTF_ADD_ROOT, base, &foo)) == CTF_ERR)
goto parent_err;
if (ctf_add_variable (parent, "foo", base) < 0)
goto child_err;
fi.ctc_return = void_id;
fi.ctc_argc = 0;
fi.ctc_flags = 0;
if ((function = ctf_add_function (child, CTF_ADD_ROOT, &fi, NULL)) == CTF_ERR)
goto child_err;
desc = "func info lookup of non-function";
if ((ctf_func_type_info (child, base, &fi)) != CTF_ERR)
no_prop_err ();
check_prop_err (child, parent, ECTF_NOTFUNC);
desc = "func args lookup of non-function";
if ((ctf_func_type_args (child, base, 0, &bar)) != CTF_ERR)
no_prop_err ();
check_prop_err (child, parent, ECTF_NOTFUNC);
if ((ctf_import (child, blank)) < 0)
{
fprintf (stderr, "cannot reimport: %s\n", ctf_errmsg (ctf_errno (child)));
return 1;
}
/* This is testing ctf_type_resolve_unsliced(), which is called by the enum
functions (which are not themselves buggy). This typea isn't an enum, but
that's OK: we're after an error, after all, and the type we're slicing is
not visible any longer, so nothing can tell it's not an enum. */
desc = "child slice resolution";
if ((ctf_enum_value (child, slice, "foo", NULL)) != CTF_ERR)
no_prop_err ();
check_prop_err (child, parent, ECTF_BADID);
desc = "child slice encoding lookup";
if ((ctf_type_encoding (child, slice, &foo)) != CTF_ERR)
no_prop_err ();
check_prop_err (child, parent, ECTF_BADID);
desc = "func info lookup of non-function";
if ((ctf_func_type_info (child, base, &fi)) != CTF_ERR)
no_prop_err ();
check_prop_err (child, parent, ECTF_BADID);
desc = "func args lookup of non-function";
if ((ctf_func_type_args (child, base, 0, &bar)) != CTF_ERR)
no_prop_err ();
check_prop_err (child, parent, ECTF_BADID);
desc = "child slice addition";
if ((slice = ctf_add_slice (child, CTF_ADD_ROOT, base, &foo)) != CTF_ERR)
no_prop_err ();
check_prop_err (child, parent, ECTF_BADID);
desc = "variable lookup";
if (ctf_lookup_variable (child, "foo") != CTF_ERR)
no_prop_err ();
check_prop_err (child, parent, ECTF_NOTYPEDAT);
desc = "function lookup via ctf_type_aname";
if ((funcname = ctf_type_aname (child, function)) != NULL)
{
no_prop_err ();
free (funcname);
}
check_prop_err (child, parent, ECTF_BADID);
ctf_dict_close (child);
ctf_dict_close (parent);
ctf_dict_close (blank);
fprintf (stderr, "All done.\n");
return 0;
parent_err:
fprintf (stderr, "cannot populate parent: %s\n", ctf_errmsg (ctf_errno (parent)));
return 1;
child_err:
fprintf (stderr, "cannot populate child: %s\n", ctf_errmsg (ctf_errno (parent)));
return 1;
}