mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-12 12:16:04 +08:00
0d0e1a63ef
(register_objfile_data, set_objfile_data, objfile_data): New prototypes. * objfiles.c (objfile_alloc_data, objfile_free_data): New prototypes. (allocate_objfile): Call objfile_alloc_data. (free_objfile): Call objfile_free_data. (struct objfile_data): New. (struct objfile_data_registration): New. (struct objfile_data_registry): New. (objfile_data_registry): New variable. (register_objfile_data): New function. (objfile_alloc_data, objfile_free_data): New functions. (set_objfile_data, objfile_data): New functions. * dwarf2-frame.c (dwarf2_frame_data): New variable. (dwarf2_frame_find_fde, add_fde): Use new per-objfile data mechanism. (_initialize_dwarf2_frame): New function and prototype.
1178 lines
34 KiB
C
1178 lines
34 KiB
C
/* GDB routines for manipulating objfiles.
|
||
|
||
Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
|
||
2001, 2002, 2003 Free Software Foundation, Inc.
|
||
|
||
Contributed by Cygnus Support, using pieces from other GDB modules.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
/* This file contains support routines for creating, manipulating, and
|
||
destroying objfile structures. */
|
||
|
||
#include "defs.h"
|
||
#include "bfd.h" /* Binary File Description */
|
||
#include "symtab.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "gdb-stabs.h"
|
||
#include "target.h"
|
||
#include "bcache.h"
|
||
|
||
#include "gdb_assert.h"
|
||
#include <sys/types.h>
|
||
#include "gdb_stat.h"
|
||
#include <fcntl.h>
|
||
#include "gdb_obstack.h"
|
||
#include "gdb_string.h"
|
||
#include "hashtab.h"
|
||
|
||
#include "breakpoint.h"
|
||
#include "block.h"
|
||
#include "dictionary.h"
|
||
|
||
/* Prototypes for local functions */
|
||
|
||
#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
|
||
|
||
#include "mmalloc.h"
|
||
|
||
static int open_existing_mapped_file (char *, long, int);
|
||
|
||
static int open_mapped_file (char *filename, long mtime, int flags);
|
||
|
||
static void *map_to_file (int);
|
||
|
||
#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
|
||
|
||
static void add_to_objfile_sections (bfd *, sec_ptr, void *);
|
||
|
||
static void objfile_alloc_data (struct objfile *objfile);
|
||
static void objfile_free_data (struct objfile *objfile);
|
||
|
||
/* Externally visible variables that are owned by this module.
|
||
See declarations in objfile.h for more info. */
|
||
|
||
struct objfile *object_files; /* Linked list of all objfiles */
|
||
struct objfile *current_objfile; /* For symbol file being read in */
|
||
struct objfile *symfile_objfile; /* Main symbol table loaded from */
|
||
struct objfile *rt_common_objfile; /* For runtime common symbols */
|
||
|
||
int mapped_symbol_files; /* Try to use mapped symbol files */
|
||
|
||
/* Locate all mappable sections of a BFD file.
|
||
objfile_p_char is a char * to get it through
|
||
bfd_map_over_sections; we cast it back to its proper type. */
|
||
|
||
#ifndef TARGET_KEEP_SECTION
|
||
#define TARGET_KEEP_SECTION(ASECT) 0
|
||
#endif
|
||
|
||
/* Called via bfd_map_over_sections to build up the section table that
|
||
the objfile references. The objfile contains pointers to the start
|
||
of the table (objfile->sections) and to the first location after
|
||
the end of the table (objfile->sections_end). */
|
||
|
||
static void
|
||
add_to_objfile_sections (bfd *abfd, sec_ptr asect, void *objfile_p_char)
|
||
{
|
||
struct objfile *objfile = (struct objfile *) objfile_p_char;
|
||
struct obj_section section;
|
||
flagword aflag;
|
||
|
||
aflag = bfd_get_section_flags (abfd, asect);
|
||
|
||
if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
|
||
return;
|
||
|
||
if (0 == bfd_section_size (abfd, asect))
|
||
return;
|
||
section.offset = 0;
|
||
section.objfile = objfile;
|
||
section.the_bfd_section = asect;
|
||
section.ovly_mapped = 0;
|
||
section.addr = bfd_section_vma (abfd, asect);
|
||
section.endaddr = section.addr + bfd_section_size (abfd, asect);
|
||
obstack_grow (&objfile->psymbol_obstack, (char *) §ion, sizeof (section));
|
||
objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
|
||
}
|
||
|
||
/* Builds a section table for OBJFILE.
|
||
Returns 0 if OK, 1 on error (in which case bfd_error contains the
|
||
error).
|
||
|
||
Note that while we are building the table, which goes into the
|
||
psymbol obstack, we hijack the sections_end pointer to instead hold
|
||
a count of the number of sections. When bfd_map_over_sections
|
||
returns, this count is used to compute the pointer to the end of
|
||
the sections table, which then overwrites the count.
|
||
|
||
Also note that the OFFSET and OVLY_MAPPED in each table entry
|
||
are initialized to zero.
|
||
|
||
Also note that if anything else writes to the psymbol obstack while
|
||
we are building the table, we're pretty much hosed. */
|
||
|
||
int
|
||
build_objfile_section_table (struct objfile *objfile)
|
||
{
|
||
/* objfile->sections can be already set when reading a mapped symbol
|
||
file. I believe that we do need to rebuild the section table in
|
||
this case (we rebuild other things derived from the bfd), but we
|
||
can't free the old one (it's in the psymbol_obstack). So we just
|
||
waste some memory. */
|
||
|
||
objfile->sections_end = 0;
|
||
bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
|
||
objfile->sections = (struct obj_section *)
|
||
obstack_finish (&objfile->psymbol_obstack);
|
||
objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
|
||
return (0);
|
||
}
|
||
|
||
/* Given a pointer to an initialized bfd (ABFD) and some flag bits
|
||
allocate a new objfile struct, fill it in as best we can, link it
|
||
into the list of all known objfiles, and return a pointer to the
|
||
new objfile struct.
|
||
|
||
The FLAGS word contains various bits (OBJF_*) that can be taken as
|
||
requests for specific operations, like trying to open a mapped
|
||
version of the objfile (OBJF_MAPPED). Other bits like
|
||
OBJF_SHARED are simply copied through to the new objfile flags
|
||
member. */
|
||
|
||
/* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
|
||
by jv-lang.c, to create an artificial objfile used to hold
|
||
information about dynamically-loaded Java classes. Unfortunately,
|
||
that branch of this function doesn't get tested very frequently, so
|
||
it's prone to breakage. (E.g. at one time the name was set to NULL
|
||
in that situation, which broke a loop over all names in the dynamic
|
||
library loader.) If you change this function, please try to leave
|
||
things in a consistent state even if abfd is NULL. */
|
||
|
||
struct objfile *
|
||
allocate_objfile (bfd *abfd, int flags)
|
||
{
|
||
struct objfile *objfile = NULL;
|
||
struct objfile *last_one = NULL;
|
||
|
||
if (mapped_symbol_files)
|
||
flags |= OBJF_MAPPED;
|
||
|
||
#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
|
||
if (abfd != NULL)
|
||
{
|
||
|
||
/* If we can support mapped symbol files, try to open/reopen the
|
||
mapped file that corresponds to the file from which we wish to
|
||
read symbols. If the objfile is to be mapped, we must malloc
|
||
the structure itself using the mmap version, and arrange that
|
||
all memory allocation for the objfile uses the mmap routines.
|
||
If we are reusing an existing mapped file, from which we get
|
||
our objfile pointer, we have to make sure that we update the
|
||
pointers to the alloc/free functions in the obstack, in case
|
||
these functions have moved within the current gdb. */
|
||
|
||
int fd;
|
||
|
||
fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
|
||
flags);
|
||
if (fd >= 0)
|
||
{
|
||
void *md;
|
||
|
||
if ((md = map_to_file (fd)) == NULL)
|
||
{
|
||
close (fd);
|
||
}
|
||
else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
|
||
{
|
||
/* Update memory corruption handler function addresses. */
|
||
init_malloc (md);
|
||
objfile->md = md;
|
||
objfile->mmfd = fd;
|
||
/* Update pointers to functions to *our* copies */
|
||
if (objfile->demangled_names_hash)
|
||
htab_set_functions_ex
|
||
(objfile->demangled_names_hash, htab_hash_string,
|
||
(int (*) (const void *, const void *)) streq, NULL,
|
||
objfile->md, xmcalloc, xmfree);
|
||
obstack_chunkfun (&objfile->psymbol_cache.cache, xmmalloc);
|
||
obstack_freefun (&objfile->psymbol_cache.cache, xmfree);
|
||
obstack_chunkfun (&objfile->macro_cache.cache, xmmalloc);
|
||
obstack_freefun (&objfile->macro_cache.cache, xmfree);
|
||
obstack_chunkfun (&objfile->psymbol_obstack, xmmalloc);
|
||
obstack_freefun (&objfile->psymbol_obstack, xmfree);
|
||
obstack_chunkfun (&objfile->symbol_obstack, xmmalloc);
|
||
obstack_freefun (&objfile->symbol_obstack, xmfree);
|
||
obstack_chunkfun (&objfile->type_obstack, xmmalloc);
|
||
obstack_freefun (&objfile->type_obstack, xmfree);
|
||
/* If already in objfile list, unlink it. */
|
||
unlink_objfile (objfile);
|
||
/* Forget things specific to a particular gdb, may have changed. */
|
||
objfile->sf = NULL;
|
||
}
|
||
else
|
||
{
|
||
|
||
/* Set up to detect internal memory corruption. MUST be
|
||
done before the first malloc. See comments in
|
||
init_malloc() and mmcheck(). */
|
||
|
||
init_malloc (md);
|
||
|
||
objfile = (struct objfile *)
|
||
xmmalloc (md, sizeof (struct objfile));
|
||
memset (objfile, 0, sizeof (struct objfile));
|
||
objfile->md = md;
|
||
objfile->mmfd = fd;
|
||
objfile->flags |= OBJF_MAPPED;
|
||
mmalloc_setkey (objfile->md, 0, objfile);
|
||
obstack_specify_allocation_with_arg (&objfile->psymbol_cache.cache,
|
||
0, 0, xmmalloc, xmfree,
|
||
objfile->md);
|
||
obstack_specify_allocation_with_arg (&objfile->macro_cache.cache,
|
||
0, 0, xmmalloc, xmfree,
|
||
objfile->md);
|
||
obstack_specify_allocation_with_arg (&objfile->psymbol_obstack,
|
||
0, 0, xmmalloc, xmfree,
|
||
objfile->md);
|
||
obstack_specify_allocation_with_arg (&objfile->symbol_obstack,
|
||
0, 0, xmmalloc, xmfree,
|
||
objfile->md);
|
||
obstack_specify_allocation_with_arg (&objfile->type_obstack,
|
||
0, 0, xmmalloc, xmfree,
|
||
objfile->md);
|
||
}
|
||
}
|
||
|
||
if ((flags & OBJF_MAPPED) && (objfile == NULL))
|
||
{
|
||
warning ("symbol table for '%s' will not be mapped",
|
||
bfd_get_filename (abfd));
|
||
flags &= ~OBJF_MAPPED;
|
||
}
|
||
}
|
||
#else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */
|
||
|
||
if (flags & OBJF_MAPPED)
|
||
{
|
||
warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
|
||
|
||
/* Turn off the global flag so we don't try to do mapped symbol tables
|
||
any more, which shuts up gdb unless the user specifically gives the
|
||
"mapped" keyword again. */
|
||
|
||
mapped_symbol_files = 0;
|
||
flags &= ~OBJF_MAPPED;
|
||
}
|
||
|
||
#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
|
||
|
||
/* If we don't support mapped symbol files, didn't ask for the file to be
|
||
mapped, or failed to open the mapped file for some reason, then revert
|
||
back to an unmapped objfile. */
|
||
|
||
if (objfile == NULL)
|
||
{
|
||
objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
|
||
memset (objfile, 0, sizeof (struct objfile));
|
||
objfile->md = NULL;
|
||
objfile->psymbol_cache = bcache_xmalloc ();
|
||
objfile->macro_cache = bcache_xmalloc ();
|
||
obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
|
||
xfree);
|
||
obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
|
||
xfree);
|
||
obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
|
||
xfree);
|
||
flags &= ~OBJF_MAPPED;
|
||
|
||
terminate_minimal_symbol_table (objfile);
|
||
}
|
||
|
||
objfile_alloc_data (objfile);
|
||
|
||
/* Update the per-objfile information that comes from the bfd, ensuring
|
||
that any data that is reference is saved in the per-objfile data
|
||
region. */
|
||
|
||
objfile->obfd = abfd;
|
||
if (objfile->name != NULL)
|
||
{
|
||
xmfree (objfile->md, objfile->name);
|
||
}
|
||
if (abfd != NULL)
|
||
{
|
||
objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd));
|
||
objfile->mtime = bfd_get_mtime (abfd);
|
||
|
||
/* Build section table. */
|
||
|
||
if (build_objfile_section_table (objfile))
|
||
{
|
||
error ("Can't find the file sections in `%s': %s",
|
||
objfile->name, bfd_errmsg (bfd_get_error ()));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
objfile->name = mstrsave (objfile->md, "<<anonymous objfile>>");
|
||
}
|
||
|
||
/* Initialize the section indexes for this objfile, so that we can
|
||
later detect if they are used w/o being properly assigned to. */
|
||
|
||
objfile->sect_index_text = -1;
|
||
objfile->sect_index_data = -1;
|
||
objfile->sect_index_bss = -1;
|
||
objfile->sect_index_rodata = -1;
|
||
|
||
/* Add this file onto the tail of the linked list of other such files. */
|
||
|
||
objfile->next = NULL;
|
||
if (object_files == NULL)
|
||
object_files = objfile;
|
||
else
|
||
{
|
||
for (last_one = object_files;
|
||
last_one->next;
|
||
last_one = last_one->next);
|
||
last_one->next = objfile;
|
||
}
|
||
|
||
/* Save passed in flag bits. */
|
||
objfile->flags |= flags;
|
||
|
||
return (objfile);
|
||
}
|
||
|
||
|
||
/* Create the terminating entry of OBJFILE's minimal symbol table.
|
||
If OBJFILE->msymbols is zero, allocate a single entry from
|
||
OBJFILE->symbol_obstack; otherwise, just initialize
|
||
OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
|
||
void
|
||
terminate_minimal_symbol_table (struct objfile *objfile)
|
||
{
|
||
if (! objfile->msymbols)
|
||
objfile->msymbols = ((struct minimal_symbol *)
|
||
obstack_alloc (&objfile->symbol_obstack,
|
||
sizeof (objfile->msymbols[0])));
|
||
|
||
{
|
||
struct minimal_symbol *m
|
||
= &objfile->msymbols[objfile->minimal_symbol_count];
|
||
|
||
memset (m, 0, sizeof (*m));
|
||
DEPRECATED_SYMBOL_NAME (m) = NULL;
|
||
SYMBOL_VALUE_ADDRESS (m) = 0;
|
||
MSYMBOL_INFO (m) = NULL;
|
||
MSYMBOL_TYPE (m) = mst_unknown;
|
||
SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
|
||
}
|
||
}
|
||
|
||
|
||
/* Put one object file before a specified on in the global list.
|
||
This can be used to make sure an object file is destroyed before
|
||
another when using ALL_OBJFILES_SAFE to free all objfiles. */
|
||
void
|
||
put_objfile_before (struct objfile *objfile, struct objfile *before_this)
|
||
{
|
||
struct objfile **objp;
|
||
|
||
unlink_objfile (objfile);
|
||
|
||
for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
|
||
{
|
||
if (*objp == before_this)
|
||
{
|
||
objfile->next = *objp;
|
||
*objp = objfile;
|
||
return;
|
||
}
|
||
}
|
||
|
||
internal_error (__FILE__, __LINE__,
|
||
"put_objfile_before: before objfile not in list");
|
||
}
|
||
|
||
/* Put OBJFILE at the front of the list. */
|
||
|
||
void
|
||
objfile_to_front (struct objfile *objfile)
|
||
{
|
||
struct objfile **objp;
|
||
for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
|
||
{
|
||
if (*objp == objfile)
|
||
{
|
||
/* Unhook it from where it is. */
|
||
*objp = objfile->next;
|
||
/* Put it in the front. */
|
||
objfile->next = object_files;
|
||
object_files = objfile;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Unlink OBJFILE from the list of known objfiles, if it is found in the
|
||
list.
|
||
|
||
It is not a bug, or error, to call this function if OBJFILE is not known
|
||
to be in the current list. This is done in the case of mapped objfiles,
|
||
for example, just to ensure that the mapped objfile doesn't appear twice
|
||
in the list. Since the list is threaded, linking in a mapped objfile
|
||
twice would create a circular list.
|
||
|
||
If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
|
||
unlinking it, just to ensure that we have completely severed any linkages
|
||
between the OBJFILE and the list. */
|
||
|
||
void
|
||
unlink_objfile (struct objfile *objfile)
|
||
{
|
||
struct objfile **objpp;
|
||
|
||
for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
|
||
{
|
||
if (*objpp == objfile)
|
||
{
|
||
*objpp = (*objpp)->next;
|
||
objfile->next = NULL;
|
||
return;
|
||
}
|
||
}
|
||
|
||
internal_error (__FILE__, __LINE__,
|
||
"unlink_objfile: objfile already unlinked");
|
||
}
|
||
|
||
|
||
/* Destroy an objfile and all the symtabs and psymtabs under it. Note
|
||
that as much as possible is allocated on the symbol_obstack and
|
||
psymbol_obstack, so that the memory can be efficiently freed.
|
||
|
||
Things which we do NOT free because they are not in malloc'd memory
|
||
or not in memory specific to the objfile include:
|
||
|
||
objfile -> sf
|
||
|
||
FIXME: If the objfile is using reusable symbol information (via mmalloc),
|
||
then we need to take into account the fact that more than one process
|
||
may be using the symbol information at the same time (when mmalloc is
|
||
extended to support cooperative locking). When more than one process
|
||
is using the mapped symbol info, we need to be more careful about when
|
||
we free objects in the reusable area. */
|
||
|
||
void
|
||
free_objfile (struct objfile *objfile)
|
||
{
|
||
if (objfile->separate_debug_objfile)
|
||
{
|
||
free_objfile (objfile->separate_debug_objfile);
|
||
}
|
||
|
||
if (objfile->separate_debug_objfile_backlink)
|
||
{
|
||
/* We freed the separate debug file, make sure the base objfile
|
||
doesn't reference it. */
|
||
objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL;
|
||
}
|
||
|
||
/* First do any symbol file specific actions required when we are
|
||
finished with a particular symbol file. Note that if the objfile
|
||
is using reusable symbol information (via mmalloc) then each of
|
||
these routines is responsible for doing the correct thing, either
|
||
freeing things which are valid only during this particular gdb
|
||
execution, or leaving them to be reused during the next one. */
|
||
|
||
if (objfile->sf != NULL)
|
||
{
|
||
(*objfile->sf->sym_finish) (objfile);
|
||
}
|
||
|
||
/* We always close the bfd. */
|
||
|
||
if (objfile->obfd != NULL)
|
||
{
|
||
char *name = bfd_get_filename (objfile->obfd);
|
||
if (!bfd_close (objfile->obfd))
|
||
warning ("cannot close \"%s\": %s",
|
||
name, bfd_errmsg (bfd_get_error ()));
|
||
xfree (name);
|
||
}
|
||
|
||
/* Remove it from the chain of all objfiles. */
|
||
|
||
unlink_objfile (objfile);
|
||
|
||
/* If we are going to free the runtime common objfile, mark it
|
||
as unallocated. */
|
||
|
||
if (objfile == rt_common_objfile)
|
||
rt_common_objfile = NULL;
|
||
|
||
/* Before the symbol table code was redone to make it easier to
|
||
selectively load and remove information particular to a specific
|
||
linkage unit, gdb used to do these things whenever the monolithic
|
||
symbol table was blown away. How much still needs to be done
|
||
is unknown, but we play it safe for now and keep each action until
|
||
it is shown to be no longer needed. */
|
||
|
||
/* I *think* all our callers call clear_symtab_users. If so, no need
|
||
to call this here. */
|
||
clear_pc_function_cache ();
|
||
|
||
/* The last thing we do is free the objfile struct itself for the
|
||
non-reusable case, or detach from the mapped file for the
|
||
reusable case. Note that the mmalloc_detach or the xmfree() is
|
||
the last thing we can do with this objfile. */
|
||
|
||
#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
|
||
|
||
if (objfile->flags & OBJF_MAPPED)
|
||
{
|
||
/* Remember the fd so we can close it. We can't close it before
|
||
doing the detach, and after the detach the objfile is gone. */
|
||
int mmfd;
|
||
|
||
mmfd = objfile->mmfd;
|
||
mmalloc_detach (objfile->md);
|
||
objfile = NULL;
|
||
close (mmfd);
|
||
}
|
||
|
||
#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
|
||
|
||
/* If we still have an objfile, then either we don't support reusable
|
||
objfiles or this one was not reusable. So free it normally. */
|
||
|
||
if (objfile != NULL)
|
||
{
|
||
objfile_free_data (objfile);
|
||
if (objfile->name != NULL)
|
||
{
|
||
xmfree (objfile->md, objfile->name);
|
||
}
|
||
if (objfile->global_psymbols.list)
|
||
xmfree (objfile->md, objfile->global_psymbols.list);
|
||
if (objfile->static_psymbols.list)
|
||
xmfree (objfile->md, objfile->static_psymbols.list);
|
||
/* Free the obstacks for non-reusable objfiles */
|
||
bcache_xfree (objfile->psymbol_cache);
|
||
bcache_xfree (objfile->macro_cache);
|
||
if (objfile->demangled_names_hash)
|
||
htab_delete (objfile->demangled_names_hash);
|
||
obstack_free (&objfile->psymbol_obstack, 0);
|
||
obstack_free (&objfile->symbol_obstack, 0);
|
||
obstack_free (&objfile->type_obstack, 0);
|
||
xmfree (objfile->md, objfile);
|
||
objfile = NULL;
|
||
}
|
||
}
|
||
|
||
static void
|
||
do_free_objfile_cleanup (void *obj)
|
||
{
|
||
free_objfile (obj);
|
||
}
|
||
|
||
struct cleanup *
|
||
make_cleanup_free_objfile (struct objfile *obj)
|
||
{
|
||
return make_cleanup (do_free_objfile_cleanup, obj);
|
||
}
|
||
|
||
/* Free all the object files at once and clean up their users. */
|
||
|
||
void
|
||
free_all_objfiles (void)
|
||
{
|
||
struct objfile *objfile, *temp;
|
||
|
||
ALL_OBJFILES_SAFE (objfile, temp)
|
||
{
|
||
free_objfile (objfile);
|
||
}
|
||
clear_symtab_users ();
|
||
}
|
||
|
||
/* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
|
||
entries in new_offsets. */
|
||
void
|
||
objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
|
||
{
|
||
struct section_offsets *delta =
|
||
((struct section_offsets *)
|
||
alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
|
||
|
||
{
|
||
int i;
|
||
int something_changed = 0;
|
||
for (i = 0; i < objfile->num_sections; ++i)
|
||
{
|
||
delta->offsets[i] =
|
||
ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
|
||
if (ANOFFSET (delta, i) != 0)
|
||
something_changed = 1;
|
||
}
|
||
if (!something_changed)
|
||
return;
|
||
}
|
||
|
||
/* OK, get all the symtabs. */
|
||
{
|
||
struct symtab *s;
|
||
|
||
ALL_OBJFILE_SYMTABS (objfile, s)
|
||
{
|
||
struct linetable *l;
|
||
struct blockvector *bv;
|
||
int i;
|
||
|
||
/* First the line table. */
|
||
l = LINETABLE (s);
|
||
if (l)
|
||
{
|
||
for (i = 0; i < l->nitems; ++i)
|
||
l->item[i].pc += ANOFFSET (delta, s->block_line_section);
|
||
}
|
||
|
||
/* Don't relocate a shared blockvector more than once. */
|
||
if (!s->primary)
|
||
continue;
|
||
|
||
bv = BLOCKVECTOR (s);
|
||
for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
|
||
{
|
||
struct block *b;
|
||
struct symbol *sym;
|
||
struct dict_iterator iter;
|
||
|
||
b = BLOCKVECTOR_BLOCK (bv, i);
|
||
BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
|
||
BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
|
||
|
||
ALL_BLOCK_SYMBOLS (b, iter, sym)
|
||
{
|
||
fixup_symbol_section (sym, objfile);
|
||
|
||
/* The RS6000 code from which this was taken skipped
|
||
any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
|
||
But I'm leaving out that test, on the theory that
|
||
they can't possibly pass the tests below. */
|
||
if ((SYMBOL_CLASS (sym) == LOC_LABEL
|
||
|| SYMBOL_CLASS (sym) == LOC_STATIC
|
||
|| SYMBOL_CLASS (sym) == LOC_INDIRECT)
|
||
&& SYMBOL_SECTION (sym) >= 0)
|
||
{
|
||
SYMBOL_VALUE_ADDRESS (sym) +=
|
||
ANOFFSET (delta, SYMBOL_SECTION (sym));
|
||
}
|
||
#ifdef MIPS_EFI_SYMBOL_NAME
|
||
/* Relocate Extra Function Info for ecoff. */
|
||
|
||
else if (SYMBOL_CLASS (sym) == LOC_CONST
|
||
&& SYMBOL_DOMAIN (sym) == LABEL_DOMAIN
|
||
&& strcmp (DEPRECATED_SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
|
||
ecoff_relocate_efi (sym, ANOFFSET (delta,
|
||
s->block_line_section));
|
||
#endif
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
{
|
||
struct partial_symtab *p;
|
||
|
||
ALL_OBJFILE_PSYMTABS (objfile, p)
|
||
{
|
||
p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
|
||
p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
|
||
}
|
||
}
|
||
|
||
{
|
||
struct partial_symbol **psym;
|
||
|
||
for (psym = objfile->global_psymbols.list;
|
||
psym < objfile->global_psymbols.next;
|
||
psym++)
|
||
{
|
||
fixup_psymbol_section (*psym, objfile);
|
||
if (SYMBOL_SECTION (*psym) >= 0)
|
||
SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
|
||
SYMBOL_SECTION (*psym));
|
||
}
|
||
for (psym = objfile->static_psymbols.list;
|
||
psym < objfile->static_psymbols.next;
|
||
psym++)
|
||
{
|
||
fixup_psymbol_section (*psym, objfile);
|
||
if (SYMBOL_SECTION (*psym) >= 0)
|
||
SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
|
||
SYMBOL_SECTION (*psym));
|
||
}
|
||
}
|
||
|
||
{
|
||
struct minimal_symbol *msym;
|
||
ALL_OBJFILE_MSYMBOLS (objfile, msym)
|
||
if (SYMBOL_SECTION (msym) >= 0)
|
||
SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
|
||
}
|
||
/* Relocating different sections by different amounts may cause the symbols
|
||
to be out of order. */
|
||
msymbols_sort (objfile);
|
||
|
||
{
|
||
int i;
|
||
for (i = 0; i < objfile->num_sections; ++i)
|
||
(objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
|
||
}
|
||
|
||
if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
|
||
{
|
||
/* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
|
||
only as a fallback. */
|
||
struct obj_section *s;
|
||
s = find_pc_section (objfile->ei.entry_point);
|
||
if (s)
|
||
objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
|
||
else
|
||
objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
|
||
}
|
||
|
||
{
|
||
struct obj_section *s;
|
||
bfd *abfd;
|
||
|
||
abfd = objfile->obfd;
|
||
|
||
ALL_OBJFILE_OSECTIONS (objfile, s)
|
||
{
|
||
int idx = s->the_bfd_section->index;
|
||
|
||
s->addr += ANOFFSET (delta, idx);
|
||
s->endaddr += ANOFFSET (delta, idx);
|
||
}
|
||
}
|
||
|
||
if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
|
||
{
|
||
objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
|
||
objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
|
||
}
|
||
|
||
if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
|
||
{
|
||
objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
|
||
objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
|
||
}
|
||
|
||
if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
|
||
{
|
||
objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
|
||
objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
|
||
}
|
||
|
||
/* Relocate breakpoints as necessary, after things are relocated. */
|
||
breakpoint_re_set ();
|
||
}
|
||
|
||
/* Many places in gdb want to test just to see if we have any partial
|
||
symbols available. This function returns zero if none are currently
|
||
available, nonzero otherwise. */
|
||
|
||
int
|
||
have_partial_symbols (void)
|
||
{
|
||
struct objfile *ofp;
|
||
|
||
ALL_OBJFILES (ofp)
|
||
{
|
||
if (ofp->psymtabs != NULL)
|
||
{
|
||
return 1;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Many places in gdb want to test just to see if we have any full
|
||
symbols available. This function returns zero if none are currently
|
||
available, nonzero otherwise. */
|
||
|
||
int
|
||
have_full_symbols (void)
|
||
{
|
||
struct objfile *ofp;
|
||
|
||
ALL_OBJFILES (ofp)
|
||
{
|
||
if (ofp->symtabs != NULL)
|
||
{
|
||
return 1;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* This operations deletes all objfile entries that represent solibs that
|
||
weren't explicitly loaded by the user, via e.g., the add-symbol-file
|
||
command.
|
||
*/
|
||
void
|
||
objfile_purge_solibs (void)
|
||
{
|
||
struct objfile *objf;
|
||
struct objfile *temp;
|
||
|
||
ALL_OBJFILES_SAFE (objf, temp)
|
||
{
|
||
/* We assume that the solib package has been purged already, or will
|
||
be soon.
|
||
*/
|
||
if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
|
||
free_objfile (objf);
|
||
}
|
||
}
|
||
|
||
|
||
/* Many places in gdb want to test just to see if we have any minimal
|
||
symbols available. This function returns zero if none are currently
|
||
available, nonzero otherwise. */
|
||
|
||
int
|
||
have_minimal_symbols (void)
|
||
{
|
||
struct objfile *ofp;
|
||
|
||
ALL_OBJFILES (ofp)
|
||
{
|
||
if (ofp->minimal_symbol_count > 0)
|
||
{
|
||
return 1;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
|
||
|
||
/* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
|
||
of the corresponding symbol file in MTIME, try to open an existing file
|
||
with the name SYMSFILENAME and verify it is more recent than the base
|
||
file by checking it's timestamp against MTIME.
|
||
|
||
If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
|
||
|
||
If SYMSFILENAME does exist, but is out of date, we check to see if the
|
||
user has specified creation of a mapped file. If so, we don't issue
|
||
any warning message because we will be creating a new mapped file anyway,
|
||
overwriting the old one. If not, then we issue a warning message so that
|
||
the user will know why we aren't using this existing mapped symbol file.
|
||
In either case, we return -1.
|
||
|
||
If SYMSFILENAME does exist and is not out of date, but can't be opened for
|
||
some reason, then prints an appropriate system error message and returns -1.
|
||
|
||
Otherwise, returns the open file descriptor. */
|
||
|
||
static int
|
||
open_existing_mapped_file (char *symsfilename, long mtime, int flags)
|
||
{
|
||
int fd = -1;
|
||
struct stat sbuf;
|
||
|
||
if (stat (symsfilename, &sbuf) == 0)
|
||
{
|
||
if (sbuf.st_mtime < mtime)
|
||
{
|
||
if (!(flags & OBJF_MAPPED))
|
||
{
|
||
warning ("mapped symbol file `%s' is out of date, ignored it",
|
||
symsfilename);
|
||
}
|
||
}
|
||
else if ((fd = open (symsfilename, O_RDWR)) < 0)
|
||
{
|
||
if (error_pre_print)
|
||
{
|
||
printf_unfiltered (error_pre_print);
|
||
}
|
||
print_sys_errmsg (symsfilename, errno);
|
||
}
|
||
}
|
||
return (fd);
|
||
}
|
||
|
||
/* Look for a mapped symbol file that corresponds to FILENAME and is more
|
||
recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
|
||
use a mapped symbol file for this file, so create a new one if one does
|
||
not currently exist.
|
||
|
||
If found, then return an open file descriptor for the file, otherwise
|
||
return -1.
|
||
|
||
This routine is responsible for implementing the policy that generates
|
||
the name of the mapped symbol file from the name of a file containing
|
||
symbols that gdb would like to read. Currently this policy is to append
|
||
".syms" to the name of the file.
|
||
|
||
This routine is also responsible for implementing the policy that
|
||
determines where the mapped symbol file is found (the search path).
|
||
This policy is that when reading an existing mapped file, a file of
|
||
the correct name in the current directory takes precedence over a
|
||
file of the correct name in the same directory as the symbol file.
|
||
When creating a new mapped file, it is always created in the current
|
||
directory. This helps to minimize the chances of a user unknowingly
|
||
creating big mapped files in places like /bin and /usr/local/bin, and
|
||
allows a local copy to override a manually installed global copy (in
|
||
/bin for example). */
|
||
|
||
static int
|
||
open_mapped_file (char *filename, long mtime, int flags)
|
||
{
|
||
int fd;
|
||
char *symsfilename;
|
||
|
||
/* First try to open an existing file in the current directory, and
|
||
then try the directory where the symbol file is located. */
|
||
|
||
symsfilename = concat ("./", lbasename (filename), ".syms", (char *) NULL);
|
||
if ((fd = open_existing_mapped_file (symsfilename, mtime, flags)) < 0)
|
||
{
|
||
xfree (symsfilename);
|
||
symsfilename = concat (filename, ".syms", (char *) NULL);
|
||
fd = open_existing_mapped_file (symsfilename, mtime, flags);
|
||
}
|
||
|
||
/* If we don't have an open file by now, then either the file does not
|
||
already exist, or the base file has changed since it was created. In
|
||
either case, if the user has specified use of a mapped file, then
|
||
create a new mapped file, truncating any existing one. If we can't
|
||
create one, print a system error message saying why we can't.
|
||
|
||
By default the file is rw for everyone, with the user's umask taking
|
||
care of turning off the permissions the user wants off. */
|
||
|
||
if ((fd < 0) && (flags & OBJF_MAPPED))
|
||
{
|
||
xfree (symsfilename);
|
||
symsfilename = concat ("./", lbasename (filename), ".syms",
|
||
(char *) NULL);
|
||
if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
|
||
{
|
||
if (error_pre_print)
|
||
{
|
||
printf_unfiltered (error_pre_print);
|
||
}
|
||
print_sys_errmsg (symsfilename, errno);
|
||
}
|
||
}
|
||
|
||
xfree (symsfilename);
|
||
return (fd);
|
||
}
|
||
|
||
static void *
|
||
map_to_file (int fd)
|
||
{
|
||
void *md;
|
||
CORE_ADDR mapto;
|
||
|
||
md = mmalloc_attach (fd, 0);
|
||
if (md != NULL)
|
||
{
|
||
mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
|
||
md = mmalloc_detach (md);
|
||
if (md != NULL)
|
||
{
|
||
/* FIXME: should figure out why detach failed */
|
||
md = NULL;
|
||
}
|
||
else if (mapto != (CORE_ADDR) NULL)
|
||
{
|
||
/* This mapping file needs to be remapped at "mapto" */
|
||
md = mmalloc_attach (fd, mapto);
|
||
}
|
||
else
|
||
{
|
||
/* This is a freshly created mapping file. */
|
||
mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
|
||
if (mapto != 0)
|
||
{
|
||
/* To avoid reusing the freshly created mapping file, at the
|
||
address selected by mmap, we must truncate it before trying
|
||
to do an attach at the address we want. */
|
||
ftruncate (fd, 0);
|
||
md = mmalloc_attach (fd, mapto);
|
||
if (md != NULL)
|
||
{
|
||
mmalloc_setkey (md, 1, mapto);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return (md);
|
||
}
|
||
|
||
#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
|
||
|
||
/* Returns a section whose range includes PC and SECTION,
|
||
or NULL if none found. Note the distinction between the return type,
|
||
struct obj_section (which is defined in gdb), and the input type
|
||
struct sec (which is a bfd-defined data type). The obj_section
|
||
contains a pointer to the bfd struct sec section. */
|
||
|
||
struct obj_section *
|
||
find_pc_sect_section (CORE_ADDR pc, struct sec *section)
|
||
{
|
||
struct obj_section *s;
|
||
struct objfile *objfile;
|
||
|
||
ALL_OBJSECTIONS (objfile, s)
|
||
if ((section == 0 || section == s->the_bfd_section) &&
|
||
s->addr <= pc && pc < s->endaddr)
|
||
return (s);
|
||
|
||
return (NULL);
|
||
}
|
||
|
||
/* Returns a section whose range includes PC or NULL if none found.
|
||
Backward compatibility, no section. */
|
||
|
||
struct obj_section *
|
||
find_pc_section (CORE_ADDR pc)
|
||
{
|
||
return find_pc_sect_section (pc, find_pc_mapped_section (pc));
|
||
}
|
||
|
||
|
||
/* In SVR4, we recognize a trampoline by it's section name.
|
||
That is, if the pc is in a section named ".plt" then we are in
|
||
a trampoline. */
|
||
|
||
int
|
||
in_plt_section (CORE_ADDR pc, char *name)
|
||
{
|
||
struct obj_section *s;
|
||
int retval = 0;
|
||
|
||
s = find_pc_section (pc);
|
||
|
||
retval = (s != NULL
|
||
&& s->the_bfd_section->name != NULL
|
||
&& STREQ (s->the_bfd_section->name, ".plt"));
|
||
return (retval);
|
||
}
|
||
|
||
/* Return nonzero if NAME is in the import list of OBJFILE. Else
|
||
return zero. */
|
||
|
||
int
|
||
is_in_import_list (char *name, struct objfile *objfile)
|
||
{
|
||
register int i;
|
||
|
||
if (!objfile || !name || !*name)
|
||
return 0;
|
||
|
||
for (i = 0; i < objfile->import_list_size; i++)
|
||
if (objfile->import_list[i] && STREQ (name, objfile->import_list[i]))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Keep a registry of per-objfile data-pointers required by other GDB
|
||
modules. */
|
||
|
||
struct objfile_data
|
||
{
|
||
unsigned index;
|
||
};
|
||
|
||
struct objfile_data_registration
|
||
{
|
||
struct objfile_data *data;
|
||
struct objfile_data_registration *next;
|
||
};
|
||
|
||
struct objfile_data_registry
|
||
{
|
||
struct objfile_data_registration *registrations;
|
||
unsigned num_registrations;
|
||
};
|
||
|
||
static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
|
||
|
||
const struct objfile_data *
|
||
register_objfile_data (void)
|
||
{
|
||
struct objfile_data_registration **curr;
|
||
|
||
/* Append new registration. */
|
||
for (curr = &objfile_data_registry.registrations;
|
||
*curr != NULL; curr = &(*curr)->next);
|
||
|
||
*curr = XMALLOC (struct objfile_data_registration);
|
||
(*curr)->next = NULL;
|
||
(*curr)->data = XMALLOC (struct objfile_data);
|
||
(*curr)->data->index = objfile_data_registry.num_registrations++;
|
||
|
||
return (*curr)->data;
|
||
}
|
||
|
||
static void
|
||
objfile_alloc_data (struct objfile *objfile)
|
||
{
|
||
gdb_assert (objfile->data == NULL);
|
||
objfile->num_data = objfile_data_registry.num_registrations;
|
||
objfile->data = XCALLOC (objfile->num_data, void *);
|
||
}
|
||
|
||
static void
|
||
objfile_free_data (struct objfile *objfile)
|
||
{
|
||
gdb_assert (objfile->data != NULL);
|
||
xfree (objfile->data);
|
||
objfile->data = NULL;
|
||
}
|
||
|
||
void
|
||
set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
|
||
void *value)
|
||
{
|
||
gdb_assert (data->index < objfile->num_data);
|
||
objfile->data[data->index] = value;
|
||
}
|
||
|
||
void *
|
||
objfile_data (struct objfile *objfile, const struct objfile_data *data)
|
||
{
|
||
gdb_assert (data->index < objfile->num_data);
|
||
return objfile->data[data->index];
|
||
}
|