mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-21 04:42:53 +08:00
84f5c557a4
The last section in a CTF dict is the string table, at an offset represented by the cth_stroff header field. Its length is recorded in the next field, cth_strlen, and the two added together are taken as the size of the CTF dict. Upon opening a dict, we check that none of the header offsets exceed this size, and we check when uncompressing a compressed dict that the result of the uncompression is the same length: but CTF dicts need not be compressed, and short ones are not. Uncompressed dicts just use the ctf_size without checking it. This field is thankfully almost unused: it is mostly used when reserializing a dict, which can't be done to dicts read off disk since they're read-only. However, when opening an uncompressed foreign-endian dict we have to copy it out of the mmaped region it is stored in so we can endian- swap it, and we use ctf_size when doing that. When the cth_strlen is corrupt, this can overrun. Fix this by checking the ctf_size in all uncompressed cases, just as we already do in the compressed case. Add a new test. This came to light because various corrupted-CTF raw-asm tests had an incorrect cth_strlen: fix all of them so they produce the expected error again. libctf/ PR libctf/28933 * ctf-open.c (ctf_bufopen_internal): Always check uncompressed CTF dict sizes against the section size in case the cth_strlen is corrupt. ld/ PR libctf/28933 * testsuite/ld-ctf/diag-strlen-invalid.*: New test, derived from diag-cttname-invalid.s. * testsuite/ld-ctf/diag-cttname-invalid.s: Fix incorrect cth_strlen. * testsuite/ld-ctf/diag-cttname-null.s: Likewise. * testsuite/ld-ctf/diag-cuname.s: Likewise. * testsuite/ld-ctf/diag-parlabel.s: Likewise. * testsuite/ld-ctf/diag-parname.s: Likewise. |
||
---|---|---|
.. | ||
emulparams | ||
emultempl | ||
po | ||
scripttempl | ||
testsuite | ||
.gitignore | ||
aclocal.m4 | ||
ChangeLog | ||
ChangeLog-0001 | ||
ChangeLog-0203 | ||
ChangeLog-2004 | ||
ChangeLog-2005 | ||
ChangeLog-2006 | ||
ChangeLog-2007 | ||
ChangeLog-2008 | ||
ChangeLog-2009 | ||
ChangeLog-2010 | ||
ChangeLog-2011 | ||
ChangeLog-2012 | ||
ChangeLog-2013 | ||
ChangeLog-2014 | ||
ChangeLog-2015 | ||
ChangeLog-2016 | ||
ChangeLog-2017 | ||
ChangeLog-2018 | ||
ChangeLog-2019 | ||
ChangeLog-2020 | ||
ChangeLog-9197 | ||
ChangeLog-9899 | ||
config.in | ||
configure | ||
configure.ac | ||
configure.host | ||
configure.tgt | ||
deffile.h | ||
deffilep.y | ||
dep-in.sed | ||
elf-hints-local.h | ||
fdl.texi | ||
gen-doc.texi | ||
genscrba.sh | ||
genscripts.sh | ||
h8-doc.texi | ||
ld.h | ||
ld.texi | ||
ldbuildid.c | ||
ldbuildid.h | ||
ldcref.c | ||
ldctor.c | ||
ldctor.h | ||
ldelf.c | ||
ldelf.h | ||
ldelfgen.c | ||
ldelfgen.h | ||
ldemul.c | ||
ldemul.h | ||
ldexp.c | ||
ldexp.h | ||
ldfile.c | ||
ldfile.h | ||
ldgram.y | ||
ldint.texi | ||
ldlang.c | ||
ldlang.h | ||
ldlex-wrapper.c | ||
ldlex.h | ||
ldlex.l | ||
ldmain.c | ||
ldmain.h | ||
ldmisc.c | ||
ldmisc.h | ||
ldver.c | ||
ldver.h | ||
ldwrite.c | ||
ldwrite.h | ||
lexsup.c | ||
libdep_plugin.c | ||
MAINTAINERS | ||
Makefile.am | ||
Makefile.in | ||
mri.c | ||
mri.h | ||
NEWS | ||
pe-dll.c | ||
pe-dll.h | ||
pep-dll.c | ||
pep-dll.h | ||
plugin.c | ||
plugin.h | ||
README | ||
sysdep.h | ||
testplug2.c | ||
testplug3.c | ||
testplug4.c | ||
testplug.c | ||
TODO |
README for LD
This is the GNU linker. It is distributed with other "binary
utilities" which should be in ../binutils. See ../binutils/README for
more general notes, including where to send bug reports.
There are many features of the linker:
* The linker uses a Binary File Descriptor library (../bfd)
that it uses to read and write object files. This helps
insulate the linker itself from the format of object files.
* The linker supports a number of different object file
formats. It can even handle multiple formats at once:
Read two input formats and write a third.
* The linker can be configured for cross-linking.
* The linker supports a control language.
* There is a user manual (ld.texi), as well as the
beginnings of an internals manual (ldint.texi).
Installation
============
See ../binutils/README.
If you want to make a cross-linker, you may want to specify
a different search path of -lfoo libraries than the default.
You can do this by setting the LIB_PATH variable in ./Makefile
or using the --with-lib-path configure switch.
To build just the linker, make the target all-ld from the top level
directory (one directory above this one).
Porting to a new target
=======================
See the ldint.texi manual.
Reporting bugs etc
===========================
See ../binutils/README.
Known problems
==============
The Solaris linker normally exports all dynamic symbols from an
executable. The GNU linker does not do this by default. This is
because the GNU linker tries to present the same interface for all
similar targets (in this case, all native ELF targets). This does not
matter for normal programs, but it can make a difference for programs
which try to dlopen an executable, such as PERL or Tcl. You can make
the GNU linker export all dynamic symbols with the -E or
--export-dynamic command line option.
HP/UX 9.01 has a shell bug that causes the linker scripts to be
generated incorrectly. The symptom of this appears to be "fatal error
- scanner input buffer overflow" error messages. There are various
workarounds to this:
* Build and install bash, and build with "make SHELL=bash".
* Update to a version of HP/UX with a working shell (e.g., 9.05).
* Replace "(. ${srcdir}/scripttempl/${SCRIPT_NAME}.sc)" in
genscripts.sh with "sh ${srcdir}..." (no parens) and make sure the
emulparams script used exports any shell variables it sets.
Copyright (C) 2012-2022 Free Software Foundation, Inc.
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved.