binutils-gdb/gdb/thread-fsm.h
Andrew Burgess 1d506c26d9 Update copyright year range in header of all files managed by GDB
This commit is the result of the following actions:

  - Running gdb/copyright.py to update all of the copyright headers to
    include 2024,

  - Manually updating a few files the copyright.py script told me to
    update, these files had copyright headers embedded within the
    file,

  - Regenerating gdbsupport/Makefile.in to refresh it's copyright
    date,

  - Using grep to find other files that still mentioned 2023.  If
    these files were updated last year from 2022 to 2023 then I've
    updated them this year to 2024.

I'm sure I've probably missed some dates.  Feel free to fix them up as
you spot them.
2024-01-12 15:49:57 +00:00

114 lines
3.6 KiB
C++

/* Thread command's finish-state machine, for GDB, the GNU debugger.
Copyright (C) 2015-2024 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#ifndef THREAD_FSM_H
#define THREAD_FSM_H
#include "mi/mi-common.h"
struct return_value_info;
struct thread_fsm_ops;
/* A thread finite-state machine structure contains the necessary info
and callbacks to manage the state machine protocol of a thread's
execution command. */
struct thread_fsm
{
explicit thread_fsm (struct interp *cmd_interp)
: command_interp (cmd_interp)
{
}
/* The destructor. This should simply free heap allocated data
structures. Cleaning up target resources (like, e.g.,
breakpoints) should be done in the clean_up method. */
virtual ~thread_fsm () = default;
DISABLE_COPY_AND_ASSIGN (thread_fsm);
/* Called to clean up target resources after the FSM. E.g., if the
FSM created internal breakpoints, this is where they should be
deleted. */
virtual void clean_up (struct thread_info *thread)
{
}
/* Called after handle_inferior_event decides the target is done
(that is, after stop_waiting). The FSM is given a chance to
decide whether the command is done and thus the target should
stop, or whether there's still more to do and thus the thread
should be re-resumed. This is a good place to cache target data
too. For example, the "finish" command saves the just-finished
function's return value here. */
virtual bool should_stop (struct thread_info *thread) = 0;
/* If this FSM saved a function's return value, you can use this
method to retrieve it. Otherwise, this returns NULL. */
virtual struct return_value_info *return_value ()
{
return nullptr;
}
enum async_reply_reason async_reply_reason ()
{
/* If we didn't finish, then the stop reason must come from
elsewhere. E.g., a breakpoint hit or a signal intercepted. */
gdb_assert (finished_p ());
return do_async_reply_reason ();
}
/* Whether the stop should be notified to the user/frontend. */
virtual bool should_notify_stop ()
{
return true;
}
void set_finished ()
{
finished = true;
}
bool finished_p () const
{
return finished;
}
/* The interpreter that issued the execution command that caused
this thread to resume. If the top level interpreter is MI/async,
and the execution command was a CLI command (next/step/etc.),
we'll want to print stop event output to the MI console channel
(the stepped-to line, etc.), as if the user entered the execution
command on a real GDB console. */
struct interp *command_interp = nullptr;
protected:
/* Whether the FSM is done successfully. */
bool finished = false;
/* The async_reply_reason that is broadcast to MI clients if this
FSM finishes successfully. */
virtual enum async_reply_reason do_async_reply_reason ()
{
gdb_assert_not_reached ("should not call async_reply_reason here");
}
};
#endif /* THREAD_FSM_H */