binutils-gdb/gdb/loongarch-linux-tdep.c
Simon Marchi 8480a37e14 gdb: pass frames as const frame_info_ptr &
We currently pass frames to function by value, as `frame_info_ptr`.
This is somewhat expensive:

 - the size of `frame_info_ptr` is 64 bytes, which is a bit big to pass
   by value
 - the constructors and destructor link/unlink the object in the global
   `frame_info_ptr::frame_list` list.  This is an `intrusive_list`, so
   it's not so bad: it's just assigning a few points, there's no memory
   allocation as if it was `std::list`, but still it's useless to do
   that over and over.

As suggested by Tom Tromey, change many function signatures to accept
`const frame_info_ptr &` instead of `frame_info_ptr`.

Some functions reassign their `frame_info_ptr` parameter, like:

  void
  the_func (frame_info_ptr frame)
  {
    for (; frame != nullptr; frame = get_prev_frame (frame))
      {
        ...
      }
  }

I wondered what to do about them, do I leave them as-is or change them
(and need to introduce a separate local variable that can be
re-assigned).  I opted for the later for consistency.  It might not be
clear why some functions take `const frame_info_ptr &` while others take
`frame_info_ptr`.  Also, if a function took a `frame_info_ptr` because
it did re-assign its parameter, I doubt that we would think to change it
to `const frame_info_ptr &` should the implementation change such that
it doesn't need to take `frame_info_ptr` anymore.  It seems better to
have a simple rule and apply it everywhere.

Change-Id: I59d10addef687d157f82ccf4d54f5dde9a963fd0
Approved-By: Andrew Burgess <aburgess@redhat.com>
2024-02-20 10:42:25 -05:00

608 lines
20 KiB
C

/* Target-dependent code for GNU/Linux on LoongArch processors.
Copyright (C) 2022-2024 Free Software Foundation, Inc.
Contributed by Loongson Ltd.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "glibc-tdep.h"
#include "inferior.h"
#include "linux-tdep.h"
#include "loongarch-tdep.h"
#include "solib-svr4.h"
#include "target-descriptions.h"
#include "trad-frame.h"
#include "tramp-frame.h"
/* Unpack an elf_gregset_t into GDB's register cache. */
static void
loongarch_supply_gregset (const struct regset *regset,
struct regcache *regcache, int regnum,
const void *gprs, size_t len)
{
int regsize = register_size (regcache->arch (), 0);
const gdb_byte *buf = nullptr;
if (regnum == -1)
{
regcache->raw_supply_zeroed (0);
for (int i = 1; i < 32; i++)
{
buf = (const gdb_byte*) gprs + regsize * i;
regcache->raw_supply (i, (const void *) buf);
}
buf = (const gdb_byte*) gprs + regsize * LOONGARCH_ORIG_A0_REGNUM;
regcache->raw_supply (LOONGARCH_ORIG_A0_REGNUM, (const void *) buf);
buf = (const gdb_byte*) gprs + regsize * LOONGARCH_PC_REGNUM;
regcache->raw_supply (LOONGARCH_PC_REGNUM, (const void *) buf);
buf = (const gdb_byte*) gprs + regsize * LOONGARCH_BADV_REGNUM;
regcache->raw_supply (LOONGARCH_BADV_REGNUM, (const void *) buf);
}
else if (regnum == 0)
regcache->raw_supply_zeroed (0);
else if ((regnum > 0 && regnum < 32)
|| regnum == LOONGARCH_ORIG_A0_REGNUM
|| regnum == LOONGARCH_PC_REGNUM
|| regnum == LOONGARCH_BADV_REGNUM)
{
buf = (const gdb_byte*) gprs + regsize * regnum;
regcache->raw_supply (regnum, (const void *) buf);
}
}
/* Pack the GDB's register cache value into an elf_gregset_t. */
static void
loongarch_fill_gregset (const struct regset *regset,
const struct regcache *regcache, int regnum,
void *gprs, size_t len)
{
int regsize = register_size (regcache->arch (), 0);
gdb_byte *buf = nullptr;
if (regnum == -1)
{
for (int i = 0; i < 32; i++)
{
buf = (gdb_byte *) gprs + regsize * i;
regcache->raw_collect (i, (void *) buf);
}
buf = (gdb_byte *) gprs + regsize * LOONGARCH_ORIG_A0_REGNUM;
regcache->raw_collect (LOONGARCH_ORIG_A0_REGNUM, (void *) buf);
buf = (gdb_byte *) gprs + regsize * LOONGARCH_PC_REGNUM;
regcache->raw_collect (LOONGARCH_PC_REGNUM, (void *) buf);
buf = (gdb_byte *) gprs + regsize * LOONGARCH_BADV_REGNUM;
regcache->raw_collect (LOONGARCH_BADV_REGNUM, (void *) buf);
}
else if ((regnum >= 0 && regnum < 32)
|| regnum == LOONGARCH_ORIG_A0_REGNUM
|| regnum == LOONGARCH_PC_REGNUM
|| regnum == LOONGARCH_BADV_REGNUM)
{
buf = (gdb_byte *) gprs + regsize * regnum;
regcache->raw_collect (regnum, (void *) buf);
}
}
/* Define the general register regset. */
const struct regset loongarch_gregset =
{
nullptr,
loongarch_supply_gregset,
loongarch_fill_gregset,
};
/* Unpack an elf_fpregset_t into GDB's register cache. */
static void
loongarch_supply_fpregset (const struct regset *r,
struct regcache *regcache, int regnum,
const void *fprs, size_t len)
{
const gdb_byte *buf = nullptr;
int fprsize = register_size (regcache->arch (), LOONGARCH_FIRST_FP_REGNUM);
int fccsize = register_size (regcache->arch (), LOONGARCH_FIRST_FCC_REGNUM);
if (regnum == -1)
{
for (int i = 0; i < LOONGARCH_LINUX_NUM_FPREGSET; i++)
{
buf = (const gdb_byte *)fprs + fprsize * i;
regcache->raw_supply (LOONGARCH_FIRST_FP_REGNUM + i, (const void *)buf);
}
for (int i = 0; i < LOONGARCH_LINUX_NUM_FCC; i++)
{
buf = (const gdb_byte *)fprs + fprsize * LOONGARCH_LINUX_NUM_FPREGSET +
fccsize * i;
regcache->raw_supply (LOONGARCH_FIRST_FCC_REGNUM + i, (const void *)buf);
}
buf = (const gdb_byte *)fprs + fprsize * LOONGARCH_LINUX_NUM_FPREGSET +
fccsize * LOONGARCH_LINUX_NUM_FCC;
regcache->raw_supply (LOONGARCH_FCSR_REGNUM, (const void *)buf);
}
else if (regnum >= LOONGARCH_FIRST_FP_REGNUM && regnum < LOONGARCH_FIRST_FCC_REGNUM)
{
buf = (const gdb_byte *)fprs + fprsize * (regnum - LOONGARCH_FIRST_FP_REGNUM);
regcache->raw_supply (regnum, (const void *)buf);
}
else if (regnum >= LOONGARCH_FIRST_FCC_REGNUM && regnum < LOONGARCH_FCSR_REGNUM)
{
buf = (const gdb_byte *)fprs + fprsize * LOONGARCH_LINUX_NUM_FPREGSET +
fccsize * (regnum - LOONGARCH_FIRST_FCC_REGNUM);
regcache->raw_supply (regnum, (const void *)buf);
}
else if (regnum == LOONGARCH_FCSR_REGNUM)
{
buf = (const gdb_byte *)fprs + fprsize * LOONGARCH_LINUX_NUM_FPREGSET +
fccsize * LOONGARCH_LINUX_NUM_FCC;
regcache->raw_supply (regnum, (const void *)buf);
}
}
/* Pack the GDB's register cache value into an elf_fpregset_t. */
static void
loongarch_fill_fpregset (const struct regset *r,
const struct regcache *regcache, int regnum,
void *fprs, size_t len)
{
gdb_byte *buf = nullptr;
int fprsize = register_size (regcache->arch (), LOONGARCH_FIRST_FP_REGNUM);
int fccsize = register_size (regcache->arch (), LOONGARCH_FIRST_FCC_REGNUM);
if (regnum == -1)
{
for (int i = 0; i < LOONGARCH_LINUX_NUM_FPREGSET; i++)
{
buf = (gdb_byte *)fprs + fprsize * i;
regcache->raw_collect (LOONGARCH_FIRST_FP_REGNUM + i, (void *)buf);
}
for (int i = 0; i < LOONGARCH_LINUX_NUM_FCC; i++)
{
buf = (gdb_byte *)fprs + fprsize * LOONGARCH_LINUX_NUM_FPREGSET +
fccsize * i;
regcache->raw_collect (LOONGARCH_FIRST_FCC_REGNUM + i, (void *)buf);
}
buf = (gdb_byte *)fprs + fprsize * LOONGARCH_LINUX_NUM_FPREGSET +
fccsize * LOONGARCH_LINUX_NUM_FCC;
regcache->raw_collect (LOONGARCH_FCSR_REGNUM, (void *)buf);
}
else if (regnum >= LOONGARCH_FIRST_FP_REGNUM && regnum < LOONGARCH_FIRST_FCC_REGNUM)
{
buf = (gdb_byte *)fprs + fprsize * (regnum - LOONGARCH_FIRST_FP_REGNUM);
regcache->raw_collect (regnum, (void *)buf);
}
else if (regnum >= LOONGARCH_FIRST_FCC_REGNUM && regnum < LOONGARCH_FCSR_REGNUM)
{
buf = (gdb_byte *)fprs + fprsize * LOONGARCH_LINUX_NUM_FPREGSET +
fccsize * (regnum - LOONGARCH_FIRST_FCC_REGNUM);
regcache->raw_collect (regnum, (void *)buf);
}
else if (regnum == LOONGARCH_FCSR_REGNUM)
{
buf = (gdb_byte *)fprs + fprsize * LOONGARCH_LINUX_NUM_FPREGSET +
fccsize * LOONGARCH_LINUX_NUM_FCC;
regcache->raw_collect (regnum, (void *)buf);
}
}
/* Define the FP register regset. */
const struct regset loongarch_fpregset =
{
nullptr,
loongarch_supply_fpregset,
loongarch_fill_fpregset,
};
/* Unpack elf_lsxregset_t into GDB's register cache. */
static void
loongarch_supply_lsxregset (const struct regset *regset,
struct regcache *regcache, int regnum,
const void *lsxrs, size_t len)
{
int lsxrsize = register_size (regcache->arch (), LOONGARCH_FIRST_LSX_REGNUM);
const gdb_byte *buf = nullptr;
if (regnum == -1)
{
for (int i = 0; i < LOONGARCH_LINUX_NUM_LSXREGSET; i++)
{
buf = (const gdb_byte*) lsxrs + lsxrsize * i;
regcache->raw_supply (LOONGARCH_FIRST_LSX_REGNUM + i, (const void *) buf);
}
}
else if (regnum >= LOONGARCH_FIRST_LSX_REGNUM && regnum < LOONGARCH_FIRST_LASX_REGNUM)
{
buf = (const gdb_byte*) lsxrs + lsxrsize * (regnum - LOONGARCH_FIRST_LSX_REGNUM);
regcache->raw_supply (regnum, (const void *) buf);
}
}
/* Pack the GDB's register cache value into an elf_lsxregset_t. */
static void
loongarch_fill_lsxregset (const struct regset *regset,
const struct regcache *regcache, int regnum,
void *lsxrs, size_t len)
{
int lsxrsize = register_size (regcache->arch (), LOONGARCH_FIRST_LSX_REGNUM);
gdb_byte *buf = nullptr;
if (regnum == -1)
{
for (int i = 0; i < LOONGARCH_LINUX_NUM_LSXREGSET; i++)
{
buf = (gdb_byte *) lsxrs + lsxrsize * i;
regcache->raw_collect (LOONGARCH_FIRST_LSX_REGNUM + i, (void *) buf);
}
}
else if (regnum >= LOONGARCH_FIRST_LSX_REGNUM && regnum < LOONGARCH_FIRST_LASX_REGNUM)
{
buf = (gdb_byte *) lsxrs + lsxrsize * (regnum - LOONGARCH_FIRST_LSX_REGNUM);
regcache->raw_collect (regnum, (void *) buf);
}
}
/* Define the Loongson SIMD Extension register regset. */
const struct regset loongarch_lsxregset =
{
nullptr,
loongarch_supply_lsxregset,
loongarch_fill_lsxregset,
};
/* Unpack elf_lasxregset_t into GDB's register cache. */
static void
loongarch_supply_lasxregset (const struct regset *regset,
struct regcache *regcache, int regnum,
const void *lasxrs, size_t len)
{
int lasxrsize = register_size (regcache->arch (), LOONGARCH_FIRST_LASX_REGNUM);
const gdb_byte *buf = nullptr;
if (regnum == -1)
{
for (int i = 0; i < LOONGARCH_LINUX_NUM_LASXREGSET; i++)
{
buf = (const gdb_byte*) lasxrs + lasxrsize * i;
regcache->raw_supply (LOONGARCH_FIRST_LASX_REGNUM + i, (const void *) buf);
}
}
else if (regnum >= LOONGARCH_FIRST_LASX_REGNUM
&& regnum < LOONGARCH_FIRST_LASX_REGNUM + LOONGARCH_LINUX_NUM_LASXREGSET)
{
buf = (const gdb_byte*) lasxrs + lasxrsize * (regnum - LOONGARCH_FIRST_LASX_REGNUM);
regcache->raw_supply (regnum, (const void *) buf);
}
}
/* Pack the GDB's register cache value into an elf_lasxregset_t. */
static void
loongarch_fill_lasxregset (const struct regset *regset,
const struct regcache *regcache, int regnum,
void *lasxrs, size_t len)
{
int lasxrsize = register_size (regcache->arch (), LOONGARCH_FIRST_LASX_REGNUM);
gdb_byte *buf = nullptr;
if (regnum == -1)
{
for (int i = 0; i < LOONGARCH_LINUX_NUM_LASXREGSET; i++)
{
buf = (gdb_byte *) lasxrs + lasxrsize * i;
regcache->raw_collect (LOONGARCH_FIRST_LASX_REGNUM + i, (void *) buf);
}
}
else if (regnum >= LOONGARCH_FIRST_LASX_REGNUM
&& regnum < LOONGARCH_FIRST_LASX_REGNUM + LOONGARCH_LINUX_NUM_LASXREGSET)
{
buf = (gdb_byte *) lasxrs + lasxrsize * (regnum - LOONGARCH_FIRST_LASX_REGNUM);
regcache->raw_collect (regnum, (void *) buf);
}
}
/* Define the Loongson Advanced SIMD Extension register regset. */
const struct regset loongarch_lasxregset =
{
nullptr,
loongarch_supply_lasxregset,
loongarch_fill_lasxregset,
};
/* Unpack an lbt regset into GDB's register cache. */
static void
loongarch_supply_lbtregset (const struct regset *regset,
struct regcache *regcache, int regnum,
const void *regs, size_t len)
{
int scrsize = register_size (regcache->arch (), LOONGARCH_FIRST_SCR_REGNUM);
int eflagssize = register_size (regcache->arch (), LOONGARCH_EFLAGS_REGNUM);
const gdb_byte *buf = nullptr;
if (regnum == -1)
{
for (int i = 0; i < LOONGARCH_LINUX_NUM_SCR; i++)
{
buf = (const gdb_byte *) regs + scrsize * i;
regcache->raw_supply (LOONGARCH_FIRST_SCR_REGNUM + i,
(const void *) buf);
}
buf = (const gdb_byte*) regs + scrsize * LOONGARCH_LINUX_NUM_SCR;
regcache->raw_supply (LOONGARCH_EFLAGS_REGNUM, (const void *) buf);
buf = (const gdb_byte*) regs
+ scrsize * LOONGARCH_LINUX_NUM_SCR
+ eflagssize;
regcache->raw_supply (LOONGARCH_FTOP_REGNUM, (const void *) buf);
}
else if (regnum >= LOONGARCH_FIRST_SCR_REGNUM
&& regnum <= LOONGARCH_LAST_SCR_REGNUM)
{
buf = (const gdb_byte*) regs
+ scrsize * (regnum - LOONGARCH_FIRST_SCR_REGNUM);
regcache->raw_supply (regnum, (const void *) buf);
}
else if (regnum == LOONGARCH_EFLAGS_REGNUM)
{
buf = (const gdb_byte*) regs + scrsize * LOONGARCH_LINUX_NUM_SCR;
regcache->raw_supply (regnum, (const void *) buf);
}
else if (regnum == LOONGARCH_FTOP_REGNUM)
{
buf = (const gdb_byte*) regs
+ scrsize * LOONGARCH_LINUX_NUM_SCR
+ eflagssize;
regcache->raw_supply (regnum, (const void *) buf);
}
}
/* Pack the GDB's register cache value into an lbt regset. */
static void
loongarch_fill_lbtregset (const struct regset *regset,
const struct regcache *regcache, int regnum,
void *regs, size_t len)
{
int scrsize = register_size (regcache->arch (), LOONGARCH_FIRST_SCR_REGNUM);
int eflagssize = register_size (regcache->arch (), LOONGARCH_EFLAGS_REGNUM);
gdb_byte *buf = nullptr;
if (regnum == -1)
{
for (int i = 0; i < LOONGARCH_LINUX_NUM_SCR; i++)
{
buf = (gdb_byte *) regs + scrsize * i;
regcache->raw_collect (LOONGARCH_FIRST_SCR_REGNUM + i, (void *) buf);
}
buf = (gdb_byte *) regs + scrsize * LOONGARCH_LINUX_NUM_SCR;
regcache->raw_collect (LOONGARCH_EFLAGS_REGNUM, (void *) buf);
buf = (gdb_byte *) regs + scrsize * LOONGARCH_LINUX_NUM_SCR + eflagssize;
regcache->raw_collect (LOONGARCH_FTOP_REGNUM, (void *) buf);
}
else if (regnum >= LOONGARCH_FIRST_SCR_REGNUM
&& regnum <= LOONGARCH_LAST_SCR_REGNUM)
{
buf = (gdb_byte *) regs + scrsize * (regnum - LOONGARCH_FIRST_SCR_REGNUM);
regcache->raw_collect (regnum, (void *) buf);
}
else if (regnum == LOONGARCH_EFLAGS_REGNUM)
{
buf = (gdb_byte *) regs + scrsize * LOONGARCH_LINUX_NUM_SCR;
regcache->raw_collect (regnum, (void *) buf);
}
else if (regnum == LOONGARCH_FTOP_REGNUM)
{
buf = (gdb_byte *) regs + scrsize * LOONGARCH_LINUX_NUM_SCR + eflagssize;
regcache->raw_collect (regnum, (void *) buf);
}
}
/* Define the lbt register regset. */
const struct regset loongarch_lbtregset =
{
nullptr,
loongarch_supply_lbtregset,
loongarch_fill_lbtregset,
};
/* Implement the "init" method of struct tramp_frame. */
#define LOONGARCH_RT_SIGFRAME_UCONTEXT_OFFSET 128
#define LOONGARCH_UCONTEXT_SIGCONTEXT_OFFSET 176
static void
loongarch_linux_rt_sigframe_init (const struct tramp_frame *self,
const frame_info_ptr &this_frame,
struct trad_frame_cache *this_cache,
CORE_ADDR func)
{
CORE_ADDR frame_sp = get_frame_sp (this_frame);
CORE_ADDR sigcontext_base = (frame_sp + LOONGARCH_RT_SIGFRAME_UCONTEXT_OFFSET
+ LOONGARCH_UCONTEXT_SIGCONTEXT_OFFSET);
trad_frame_set_reg_addr (this_cache, LOONGARCH_PC_REGNUM, sigcontext_base);
for (int i = 0; i < 32; i++)
trad_frame_set_reg_addr (this_cache, i, sigcontext_base + 8 + i * 8);
trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
}
/* li.w a7, __NR_rt_sigreturn */
#define LOONGARCH_INST_LIW_A7_RT_SIGRETURN 0x03822c0b
/* syscall 0 */
#define LOONGARCH_INST_SYSCALL 0x002b0000
static const struct tramp_frame loongarch_linux_rt_sigframe =
{
SIGTRAMP_FRAME,
4,
{
{ LOONGARCH_INST_LIW_A7_RT_SIGRETURN, ULONGEST_MAX },
{ LOONGARCH_INST_SYSCALL, ULONGEST_MAX },
{ TRAMP_SENTINEL_INSN, ULONGEST_MAX }
},
loongarch_linux_rt_sigframe_init,
nullptr
};
/* Implement the "iterate_over_regset_sections" gdbarch method. */
static void
loongarch_iterate_over_regset_sections (struct gdbarch *gdbarch,
iterate_over_regset_sections_cb *cb,
void *cb_data,
const struct regcache *regcache)
{
int gprsize = register_size (gdbarch, 0);
int fprsize = register_size (gdbarch, LOONGARCH_FIRST_FP_REGNUM);
int fccsize = register_size (gdbarch, LOONGARCH_FIRST_FCC_REGNUM);
int fcsrsize = register_size (gdbarch, LOONGARCH_FCSR_REGNUM);
int fpsize = fprsize * LOONGARCH_LINUX_NUM_FPREGSET +
fccsize * LOONGARCH_LINUX_NUM_FCC + fcsrsize;
int lsxrsize = register_size (gdbarch, LOONGARCH_FIRST_LSX_REGNUM);
int lasxrsize = register_size (gdbarch, LOONGARCH_FIRST_LASX_REGNUM);
int scrsize = register_size (gdbarch, LOONGARCH_FIRST_SCR_REGNUM);
int eflagssize = register_size (gdbarch, LOONGARCH_EFLAGS_REGNUM);
int ftopsize = register_size (gdbarch, LOONGARCH_FTOP_REGNUM);
int lbtsize = scrsize * LOONGARCH_LINUX_NUM_SCR + eflagssize + ftopsize;
cb (".reg", LOONGARCH_LINUX_NUM_GREGSET * gprsize,
LOONGARCH_LINUX_NUM_GREGSET * gprsize, &loongarch_gregset, nullptr, cb_data);
cb (".reg2", fpsize, fpsize, &loongarch_fpregset, nullptr, cb_data);
cb (".reg-loongarch-lsx", lsxrsize, lsxrsize,
&loongarch_lsxregset, nullptr, cb_data);
cb (".reg-loongarch-lasx", lasxrsize, lasxrsize,
&loongarch_lasxregset, nullptr, cb_data);
cb (".reg-loongarch-lbt", lbtsize, lbtsize,
&loongarch_lbtregset, nullptr, cb_data);
}
/* The following value is derived from __NR_rt_sigreturn in
<include/uapi/asm-generic/unistd.h> from the Linux source tree. */
#define LOONGARCH_NR_rt_sigreturn 139
/* When FRAME is at a syscall instruction, return the PC of the next
instruction to be executed. */
static CORE_ADDR
loongarch_linux_syscall_next_pc (const frame_info_ptr &frame)
{
const CORE_ADDR pc = get_frame_pc (frame);
ULONGEST a7 = get_frame_register_unsigned (frame, LOONGARCH_A7_REGNUM);
/* If we are about to make a sigreturn syscall, use the unwinder to
decode the signal frame. */
if (a7 == LOONGARCH_NR_rt_sigreturn)
return frame_unwind_caller_pc (frame);
return pc + 4;
}
/* Implement the "get_syscall_number" gdbarch method. */
static LONGEST
loongarch_linux_get_syscall_number (struct gdbarch *gdbarch, thread_info *thread)
{
struct regcache *regcache = get_thread_regcache (thread);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
int regsize = register_size (gdbarch, LOONGARCH_A7_REGNUM);
/* The content of a register. */
gdb_byte buf[8];
/* The result. */
LONGEST ret;
gdb_assert (regsize <= sizeof (buf));
/* Getting the system call number from the register.
When dealing with the LoongArch architecture, this information
is stored at the a7 register. */
regcache->cooked_read (LOONGARCH_A7_REGNUM, buf);
ret = extract_signed_integer (buf, regsize, byte_order);
return ret;
}
/* Initialize LoongArch Linux ABI info. */
static void
loongarch_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
loongarch_gdbarch_tdep *tdep = gdbarch_tdep<loongarch_gdbarch_tdep> (gdbarch);
linux_init_abi (info, gdbarch, 0);
set_solib_svr4_fetch_link_map_offsets (gdbarch,
info.bfd_arch_info->bits_per_address == 32
? linux_ilp32_fetch_link_map_offsets
: linux_lp64_fetch_link_map_offsets);
/* GNU/Linux uses SVR4-style shared libraries. */
set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
/* GNU/Linux uses the dynamic linker included in the GNU C Library. */
set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
/* Enable TLS support. */
set_gdbarch_fetch_tls_load_module_address (gdbarch, svr4_fetch_objfile_link_map);
/* Prepend tramp frame unwinder for signal. */
tramp_frame_prepend_unwinder (gdbarch, &loongarch_linux_rt_sigframe);
/* Core file support. */
set_gdbarch_iterate_over_regset_sections (gdbarch, loongarch_iterate_over_regset_sections);
tdep->syscall_next_pc = loongarch_linux_syscall_next_pc;
/* Get the syscall number from the arch's register. */
set_gdbarch_get_syscall_number (gdbarch, loongarch_linux_get_syscall_number);
}
/* Initialize LoongArch Linux target support. */
void _initialize_loongarch_linux_tdep ();
void
_initialize_loongarch_linux_tdep ()
{
gdbarch_register_osabi (bfd_arch_loongarch, bfd_mach_loongarch32,
GDB_OSABI_LINUX, loongarch_linux_init_abi);
gdbarch_register_osabi (bfd_arch_loongarch, bfd_mach_loongarch64,
GDB_OSABI_LINUX, loongarch_linux_init_abi);
}