binutils-gdb/gdb/gdbarch-selftests.c
Andrew Burgess 1d506c26d9 Update copyright year range in header of all files managed by GDB
This commit is the result of the following actions:

  - Running gdb/copyright.py to update all of the copyright headers to
    include 2024,

  - Manually updating a few files the copyright.py script told me to
    update, these files had copyright headers embedded within the
    file,

  - Regenerating gdbsupport/Makefile.in to refresh it's copyright
    date,

  - Using grep to find other files that still mentioned 2023.  If
    these files were updated last year from 2022 to 2023 then I've
    updated them this year to 2024.

I'm sure I've probably missed some dates.  Feel free to fix them up as
you spot them.
2024-01-12 15:49:57 +00:00

180 lines
5.4 KiB
C

/* Self tests for gdbarch for GDB, the GNU debugger.
Copyright (C) 2017-2024 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "gdbsupport/selftest.h"
#include "selftest-arch.h"
#include "target.h"
#include "test-target.h"
#include "target-float.h"
#include "gdbsupport/def-vector.h"
#include "gdbarch.h"
#include "scoped-mock-context.h"
#include <map>
namespace selftests {
/* Test gdbarch methods register_to_value and value_to_register. */
static void
register_to_value_test (struct gdbarch *gdbarch)
{
const struct builtin_type *builtin = builtin_type (gdbarch);
struct type *types[] =
{
builtin->builtin_void,
builtin->builtin_char,
builtin->builtin_short,
builtin->builtin_int,
builtin->builtin_long,
builtin->builtin_signed_char,
builtin->builtin_unsigned_short,
builtin->builtin_unsigned_int,
builtin->builtin_unsigned_long,
builtin->builtin_float,
builtin->builtin_double,
builtin->builtin_long_double,
builtin->builtin_complex,
builtin->builtin_double_complex,
builtin->builtin_string,
builtin->builtin_bool,
builtin->builtin_long_long,
builtin->builtin_unsigned_long_long,
builtin->builtin_int8,
builtin->builtin_uint8,
builtin->builtin_int16,
builtin->builtin_uint16,
builtin->builtin_int32,
builtin->builtin_uint32,
builtin->builtin_int64,
builtin->builtin_uint64,
builtin->builtin_int128,
builtin->builtin_uint128,
builtin->builtin_char16,
builtin->builtin_char32,
};
scoped_mock_context<test_target_ops> mockctx (gdbarch);
frame_info_ptr frame = get_current_frame ();
const int num_regs = gdbarch_num_cooked_regs (gdbarch);
/* Test gdbarch methods register_to_value and value_to_register with
different combinations of register numbers and types. */
for (const auto &type : types)
{
for (auto regnum = 0; regnum < num_regs; regnum++)
{
if (gdbarch_convert_register_p (gdbarch, regnum, type))
{
std::vector<gdb_byte> expected (type->length (), 0);
if (type->code () == TYPE_CODE_FLT)
{
/* Generate valid float format. */
target_float_from_string (expected.data (), type, "1.25");
}
else
{
for (auto j = 0; j < expected.size (); j++)
expected[j] = (regnum + j) % 16;
}
gdbarch_value_to_register (gdbarch, frame, regnum, type,
expected.data ());
/* Allocate two bytes more for overflow check. */
std::vector<gdb_byte> buf (type->length () + 2, 0);
int optim, unavail, ok;
/* Set the fingerprint in the last two bytes. */
buf [type->length ()]= 'w';
buf [type->length () + 1]= 'l';
ok = gdbarch_register_to_value (gdbarch, frame, regnum, type,
buf.data (), &optim, &unavail);
SELF_CHECK (ok);
SELF_CHECK (!optim);
SELF_CHECK (!unavail);
SELF_CHECK (buf[type->length ()] == 'w');
SELF_CHECK (buf[type->length () + 1] == 'l');
for (auto k = 0; k < type->length (); k++)
SELF_CHECK (buf[k] == expected[k]);
}
}
}
}
/* Test function gdbarch_register_name. */
static void
register_name_test (struct gdbarch *gdbarch)
{
scoped_mock_context<test_target_ops> mockctx (gdbarch);
/* Track the number of times each register name appears. */
std::map<const std::string, int> name_counts;
const int num_regs = gdbarch_num_cooked_regs (gdbarch);
for (auto regnum = 0; regnum < num_regs; regnum++)
{
/* If a register is to be hidden from the user then we should get
back an empty string, not nullptr. Every other register should
return a non-empty string. */
const char *name = gdbarch_register_name (gdbarch, regnum);
if (run_verbose() && name == nullptr)
debug_printf ("arch: %s, register: %d returned nullptr\n",
gdbarch_bfd_arch_info (gdbarch)->printable_name,
regnum);
SELF_CHECK (name != nullptr);
/* Every register name, that is not the empty string, should be
unique. If this is not the case then the user will see duplicate
copies of the register in e.g. 'info registers' output, but will
only be able to interact with one of the copies. */
if (*name != '\0')
{
std::string s (name);
name_counts[s]++;
if (run_verbose() && name_counts[s] > 1)
debug_printf ("arch: %s, register: %d (%s) is a duplicate\n",
gdbarch_bfd_arch_info (gdbarch)->printable_name,
regnum, name);
SELF_CHECK (name_counts[s] == 1);
}
}
}
} // namespace selftests
void _initialize_gdbarch_selftests ();
void
_initialize_gdbarch_selftests ()
{
selftests::register_test_foreach_arch ("register_to_value",
selftests::register_to_value_test);
selftests::register_test_foreach_arch ("register_name",
selftests::register_name_test);
}