mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-06 12:09:26 +08:00
1d506c26d9
This commit is the result of the following actions: - Running gdb/copyright.py to update all of the copyright headers to include 2024, - Manually updating a few files the copyright.py script told me to update, these files had copyright headers embedded within the file, - Regenerating gdbsupport/Makefile.in to refresh it's copyright date, - Using grep to find other files that still mentioned 2023. If these files were updated last year from 2022 to 2023 then I've updated them this year to 2024. I'm sure I've probably missed some dates. Feel free to fix them up as you spot them.
140 lines
4.0 KiB
C
140 lines
4.0 KiB
C
/* Common target dependent code for GNU/Linux on ARM systems.
|
|
|
|
Copyright (C) 1999-2024 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "gdbsupport/common-defs.h"
|
|
#include "gdbsupport/common-regcache.h"
|
|
#include "arch/arm.h"
|
|
#include "arm-linux.h"
|
|
#include "arch/arm-get-next-pcs.h"
|
|
|
|
/* Calculate the offset from stack pointer of the pc register on the stack
|
|
in the case of a sigreturn or sigreturn_rt syscall. */
|
|
int
|
|
arm_linux_sigreturn_next_pc_offset (unsigned long sp,
|
|
unsigned long sp_data,
|
|
unsigned long svc_number,
|
|
int is_sigreturn)
|
|
{
|
|
/* Offset of R0 register. */
|
|
int r0_offset = 0;
|
|
/* Offset of PC register. */
|
|
int pc_offset = 0;
|
|
|
|
if (is_sigreturn)
|
|
{
|
|
if (sp_data == ARM_NEW_SIGFRAME_MAGIC)
|
|
r0_offset = ARM_UCONTEXT_SIGCONTEXT + ARM_SIGCONTEXT_R0;
|
|
else
|
|
r0_offset = ARM_SIGCONTEXT_R0;
|
|
}
|
|
else
|
|
{
|
|
if (sp_data == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
|
|
r0_offset = ARM_OLD_RT_SIGFRAME_UCONTEXT;
|
|
else
|
|
r0_offset = ARM_NEW_RT_SIGFRAME_UCONTEXT;
|
|
|
|
r0_offset += ARM_UCONTEXT_SIGCONTEXT + ARM_SIGCONTEXT_R0;
|
|
}
|
|
|
|
pc_offset = r0_offset + ARM_INT_REGISTER_SIZE * ARM_PC_REGNUM;
|
|
|
|
return pc_offset;
|
|
}
|
|
|
|
/* Implementation of "fixup" method of struct arm_get_next_pcs_ops
|
|
for arm-linux. */
|
|
|
|
CORE_ADDR
|
|
arm_linux_get_next_pcs_fixup (struct arm_get_next_pcs *self,
|
|
CORE_ADDR nextpc)
|
|
{
|
|
/* The Linux kernel offers some user-mode helpers in a high page. We can
|
|
not read this page (as of 2.6.23), and even if we could then we
|
|
couldn't set breakpoints in it, and even if we could then the atomic
|
|
operations would fail when interrupted. They are all (tail) called
|
|
as functions and return to the address in LR. However, when GDB single
|
|
step this instruction, this instruction isn't executed yet, and LR
|
|
may not be updated yet. In other words, GDB can get the target
|
|
address from LR if this instruction isn't BL or BLX. */
|
|
if (nextpc > 0xffff0000)
|
|
{
|
|
int bl_blx_p = 0;
|
|
CORE_ADDR pc = regcache_read_pc (self->regcache);
|
|
int pc_incr = 0;
|
|
|
|
if (self->ops->is_thumb (self))
|
|
{
|
|
unsigned short inst1
|
|
= self->ops->read_mem_uint (pc, 2, self->byte_order_for_code);
|
|
|
|
if (bits (inst1, 8, 15) == 0x47 && bit (inst1, 7))
|
|
{
|
|
/* BLX Rm */
|
|
bl_blx_p = 1;
|
|
pc_incr = 2;
|
|
}
|
|
else if (thumb_insn_size (inst1) == 4)
|
|
{
|
|
unsigned short inst2;
|
|
|
|
inst2 = self->ops->read_mem_uint (pc + 2, 2,
|
|
self->byte_order_for_code);
|
|
|
|
if ((inst1 & 0xf800) == 0xf000 && bits (inst2, 14, 15) == 0x3)
|
|
{
|
|
/* BL <label> and BLX <label> */
|
|
bl_blx_p = 1;
|
|
pc_incr = 4;
|
|
}
|
|
}
|
|
|
|
pc_incr = MAKE_THUMB_ADDR (pc_incr);
|
|
}
|
|
else
|
|
{
|
|
unsigned int insn
|
|
= self->ops->read_mem_uint (pc, 4, self->byte_order_for_code);
|
|
|
|
if (bits (insn, 28, 31) == INST_NV)
|
|
{
|
|
if (bits (insn, 25, 27) == 0x5) /* BLX <label> */
|
|
bl_blx_p = 1;
|
|
}
|
|
else
|
|
{
|
|
if (bits (insn, 24, 27) == 0xb /* BL <label> */
|
|
|| bits (insn, 4, 27) == 0x12fff3 /* BLX Rm */)
|
|
bl_blx_p = 1;
|
|
}
|
|
|
|
pc_incr = 4;
|
|
}
|
|
|
|
/* If the instruction BL or BLX, the target address is the following
|
|
instruction of BL or BLX, otherwise, the target address is in LR
|
|
already. */
|
|
if (bl_blx_p)
|
|
nextpc = pc + pc_incr;
|
|
else
|
|
nextpc = regcache_raw_get_unsigned (self->regcache, ARM_LR_REGNUM);
|
|
}
|
|
return nextpc;
|
|
}
|