mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-21 04:42:53 +08:00
7bc112c1b9
This makes a parameter of to_info_proc const and then fixes up some fallout, including parameters in a couple of gdbarch methods. I could not test the procfs.c change. I verified it by inspection. If this causes an error here, it will be trivial to fix. 2014-06-16 Tom Tromey <tromey@redhat.com> * target.h (struct target_ops) <to_info_proc>: Make parameter const. (target_info_proc): Update. * target.c (target_info_proc): Make "args" const. * procfs.c (procfs_info_proc): Update. * linux-tdep.c (linux_info_proc): Update. (linux_core_info_proc_mappings): Make "args" const. (linux_core_info_proc): Update. * gdbarch.sh (info_proc, core_info_proc): Make "args" const. * gdbarch.c: Rebuild. * gdbarch.h: Rebuild. * corelow.c (core_info_proc): Update.
4308 lines
114 KiB
C
4308 lines
114 KiB
C
/* Select target systems and architectures at runtime for GDB.
|
||
|
||
Copyright (C) 1990-2014 Free Software Foundation, Inc.
|
||
|
||
Contributed by Cygnus Support.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include <errno.h>
|
||
#include <string.h>
|
||
#include "target.h"
|
||
#include "target-dcache.h"
|
||
#include "gdbcmd.h"
|
||
#include "symtab.h"
|
||
#include "inferior.h"
|
||
#include "infrun.h"
|
||
#include "bfd.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "dcache.h"
|
||
#include <signal.h>
|
||
#include "regcache.h"
|
||
#include "gdb_assert.h"
|
||
#include "gdbcore.h"
|
||
#include "exceptions.h"
|
||
#include "target-descriptions.h"
|
||
#include "gdbthread.h"
|
||
#include "solib.h"
|
||
#include "exec.h"
|
||
#include "inline-frame.h"
|
||
#include "tracepoint.h"
|
||
#include "gdb/fileio.h"
|
||
#include "agent.h"
|
||
#include "auxv.h"
|
||
|
||
static void target_info (char *, int);
|
||
|
||
static void default_terminal_info (struct target_ops *, const char *, int);
|
||
|
||
static int default_watchpoint_addr_within_range (struct target_ops *,
|
||
CORE_ADDR, CORE_ADDR, int);
|
||
|
||
static int default_region_ok_for_hw_watchpoint (struct target_ops *,
|
||
CORE_ADDR, int);
|
||
|
||
static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
|
||
|
||
static ptid_t default_get_ada_task_ptid (struct target_ops *self,
|
||
long lwp, long tid);
|
||
|
||
static int default_follow_fork (struct target_ops *self, int follow_child,
|
||
int detach_fork);
|
||
|
||
static void default_mourn_inferior (struct target_ops *self);
|
||
|
||
static int default_search_memory (struct target_ops *ops,
|
||
CORE_ADDR start_addr,
|
||
ULONGEST search_space_len,
|
||
const gdb_byte *pattern,
|
||
ULONGEST pattern_len,
|
||
CORE_ADDR *found_addrp);
|
||
|
||
static int default_verify_memory (struct target_ops *self,
|
||
const gdb_byte *data,
|
||
CORE_ADDR memaddr, ULONGEST size);
|
||
|
||
static struct address_space *default_thread_address_space
|
||
(struct target_ops *self, ptid_t ptid);
|
||
|
||
static void tcomplain (void) ATTRIBUTE_NORETURN;
|
||
|
||
static int return_zero (struct target_ops *);
|
||
|
||
static int return_zero_has_execution (struct target_ops *, ptid_t);
|
||
|
||
static void target_command (char *, int);
|
||
|
||
static struct target_ops *find_default_run_target (char *);
|
||
|
||
static struct gdbarch *default_thread_architecture (struct target_ops *ops,
|
||
ptid_t ptid);
|
||
|
||
static int dummy_find_memory_regions (struct target_ops *self,
|
||
find_memory_region_ftype ignore1,
|
||
void *ignore2);
|
||
|
||
static char *dummy_make_corefile_notes (struct target_ops *self,
|
||
bfd *ignore1, int *ignore2);
|
||
|
||
static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
|
||
|
||
static enum exec_direction_kind default_execution_direction
|
||
(struct target_ops *self);
|
||
|
||
static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
|
||
struct gdbarch *gdbarch);
|
||
|
||
#include "target-delegates.c"
|
||
|
||
static void init_dummy_target (void);
|
||
|
||
static struct target_ops debug_target;
|
||
|
||
static void debug_to_open (char *, int);
|
||
|
||
static void debug_to_prepare_to_store (struct target_ops *self,
|
||
struct regcache *);
|
||
|
||
static void debug_to_files_info (struct target_ops *);
|
||
|
||
static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
|
||
struct bp_target_info *);
|
||
|
||
static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
|
||
struct bp_target_info *);
|
||
|
||
static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
|
||
int, int, int);
|
||
|
||
static int debug_to_insert_hw_breakpoint (struct target_ops *self,
|
||
struct gdbarch *,
|
||
struct bp_target_info *);
|
||
|
||
static int debug_to_remove_hw_breakpoint (struct target_ops *self,
|
||
struct gdbarch *,
|
||
struct bp_target_info *);
|
||
|
||
static int debug_to_insert_watchpoint (struct target_ops *self,
|
||
CORE_ADDR, int, int,
|
||
struct expression *);
|
||
|
||
static int debug_to_remove_watchpoint (struct target_ops *self,
|
||
CORE_ADDR, int, int,
|
||
struct expression *);
|
||
|
||
static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
|
||
|
||
static int debug_to_watchpoint_addr_within_range (struct target_ops *,
|
||
CORE_ADDR, CORE_ADDR, int);
|
||
|
||
static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
|
||
CORE_ADDR, int);
|
||
|
||
static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
|
||
CORE_ADDR, int, int,
|
||
struct expression *);
|
||
|
||
static void debug_to_terminal_init (struct target_ops *self);
|
||
|
||
static void debug_to_terminal_inferior (struct target_ops *self);
|
||
|
||
static void debug_to_terminal_ours_for_output (struct target_ops *self);
|
||
|
||
static void debug_to_terminal_save_ours (struct target_ops *self);
|
||
|
||
static void debug_to_terminal_ours (struct target_ops *self);
|
||
|
||
static void debug_to_load (struct target_ops *self, char *, int);
|
||
|
||
static int debug_to_can_run (struct target_ops *self);
|
||
|
||
static void debug_to_stop (struct target_ops *self, ptid_t);
|
||
|
||
/* Pointer to array of target architecture structures; the size of the
|
||
array; the current index into the array; the allocated size of the
|
||
array. */
|
||
struct target_ops **target_structs;
|
||
unsigned target_struct_size;
|
||
unsigned target_struct_allocsize;
|
||
#define DEFAULT_ALLOCSIZE 10
|
||
|
||
/* The initial current target, so that there is always a semi-valid
|
||
current target. */
|
||
|
||
static struct target_ops dummy_target;
|
||
|
||
/* Top of target stack. */
|
||
|
||
static struct target_ops *target_stack;
|
||
|
||
/* The target structure we are currently using to talk to a process
|
||
or file or whatever "inferior" we have. */
|
||
|
||
struct target_ops current_target;
|
||
|
||
/* Command list for target. */
|
||
|
||
static struct cmd_list_element *targetlist = NULL;
|
||
|
||
/* Nonzero if we should trust readonly sections from the
|
||
executable when reading memory. */
|
||
|
||
static int trust_readonly = 0;
|
||
|
||
/* Nonzero if we should show true memory content including
|
||
memory breakpoint inserted by gdb. */
|
||
|
||
static int show_memory_breakpoints = 0;
|
||
|
||
/* These globals control whether GDB attempts to perform these
|
||
operations; they are useful for targets that need to prevent
|
||
inadvertant disruption, such as in non-stop mode. */
|
||
|
||
int may_write_registers = 1;
|
||
|
||
int may_write_memory = 1;
|
||
|
||
int may_insert_breakpoints = 1;
|
||
|
||
int may_insert_tracepoints = 1;
|
||
|
||
int may_insert_fast_tracepoints = 1;
|
||
|
||
int may_stop = 1;
|
||
|
||
/* Non-zero if we want to see trace of target level stuff. */
|
||
|
||
static unsigned int targetdebug = 0;
|
||
static void
|
||
show_targetdebug (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Target debugging is %s.\n"), value);
|
||
}
|
||
|
||
static void setup_target_debug (void);
|
||
|
||
/* The user just typed 'target' without the name of a target. */
|
||
|
||
static void
|
||
target_command (char *arg, int from_tty)
|
||
{
|
||
fputs_filtered ("Argument required (target name). Try `help target'\n",
|
||
gdb_stdout);
|
||
}
|
||
|
||
/* Default target_has_* methods for process_stratum targets. */
|
||
|
||
int
|
||
default_child_has_all_memory (struct target_ops *ops)
|
||
{
|
||
/* If no inferior selected, then we can't read memory here. */
|
||
if (ptid_equal (inferior_ptid, null_ptid))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
int
|
||
default_child_has_memory (struct target_ops *ops)
|
||
{
|
||
/* If no inferior selected, then we can't read memory here. */
|
||
if (ptid_equal (inferior_ptid, null_ptid))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
int
|
||
default_child_has_stack (struct target_ops *ops)
|
||
{
|
||
/* If no inferior selected, there's no stack. */
|
||
if (ptid_equal (inferior_ptid, null_ptid))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
int
|
||
default_child_has_registers (struct target_ops *ops)
|
||
{
|
||
/* Can't read registers from no inferior. */
|
||
if (ptid_equal (inferior_ptid, null_ptid))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
int
|
||
default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
|
||
{
|
||
/* If there's no thread selected, then we can't make it run through
|
||
hoops. */
|
||
if (ptid_equal (the_ptid, null_ptid))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
|
||
int
|
||
target_has_all_memory_1 (void)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = current_target.beneath; t != NULL; t = t->beneath)
|
||
if (t->to_has_all_memory (t))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
target_has_memory_1 (void)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = current_target.beneath; t != NULL; t = t->beneath)
|
||
if (t->to_has_memory (t))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
target_has_stack_1 (void)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = current_target.beneath; t != NULL; t = t->beneath)
|
||
if (t->to_has_stack (t))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
target_has_registers_1 (void)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = current_target.beneath; t != NULL; t = t->beneath)
|
||
if (t->to_has_registers (t))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
target_has_execution_1 (ptid_t the_ptid)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = current_target.beneath; t != NULL; t = t->beneath)
|
||
if (t->to_has_execution (t, the_ptid))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
target_has_execution_current (void)
|
||
{
|
||
return target_has_execution_1 (inferior_ptid);
|
||
}
|
||
|
||
/* Complete initialization of T. This ensures that various fields in
|
||
T are set, if needed by the target implementation. */
|
||
|
||
void
|
||
complete_target_initialization (struct target_ops *t)
|
||
{
|
||
/* Provide default values for all "must have" methods. */
|
||
|
||
if (t->to_has_all_memory == NULL)
|
||
t->to_has_all_memory = return_zero;
|
||
|
||
if (t->to_has_memory == NULL)
|
||
t->to_has_memory = return_zero;
|
||
|
||
if (t->to_has_stack == NULL)
|
||
t->to_has_stack = return_zero;
|
||
|
||
if (t->to_has_registers == NULL)
|
||
t->to_has_registers = return_zero;
|
||
|
||
if (t->to_has_execution == NULL)
|
||
t->to_has_execution = return_zero_has_execution;
|
||
|
||
/* These methods can be called on an unpushed target and so require
|
||
a default implementation if the target might plausibly be the
|
||
default run target. */
|
||
gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
|
||
&& t->to_supports_non_stop != NULL));
|
||
|
||
install_delegators (t);
|
||
}
|
||
|
||
/* Add possible target architecture T to the list and add a new
|
||
command 'target T->to_shortname'. Set COMPLETER as the command's
|
||
completer if not NULL. */
|
||
|
||
void
|
||
add_target_with_completer (struct target_ops *t,
|
||
completer_ftype *completer)
|
||
{
|
||
struct cmd_list_element *c;
|
||
|
||
complete_target_initialization (t);
|
||
|
||
if (!target_structs)
|
||
{
|
||
target_struct_allocsize = DEFAULT_ALLOCSIZE;
|
||
target_structs = (struct target_ops **) xmalloc
|
||
(target_struct_allocsize * sizeof (*target_structs));
|
||
}
|
||
if (target_struct_size >= target_struct_allocsize)
|
||
{
|
||
target_struct_allocsize *= 2;
|
||
target_structs = (struct target_ops **)
|
||
xrealloc ((char *) target_structs,
|
||
target_struct_allocsize * sizeof (*target_structs));
|
||
}
|
||
target_structs[target_struct_size++] = t;
|
||
|
||
if (targetlist == NULL)
|
||
add_prefix_cmd ("target", class_run, target_command, _("\
|
||
Connect to a target machine or process.\n\
|
||
The first argument is the type or protocol of the target machine.\n\
|
||
Remaining arguments are interpreted by the target protocol. For more\n\
|
||
information on the arguments for a particular protocol, type\n\
|
||
`help target ' followed by the protocol name."),
|
||
&targetlist, "target ", 0, &cmdlist);
|
||
c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
|
||
&targetlist);
|
||
if (completer != NULL)
|
||
set_cmd_completer (c, completer);
|
||
}
|
||
|
||
/* Add a possible target architecture to the list. */
|
||
|
||
void
|
||
add_target (struct target_ops *t)
|
||
{
|
||
add_target_with_completer (t, NULL);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
add_deprecated_target_alias (struct target_ops *t, char *alias)
|
||
{
|
||
struct cmd_list_element *c;
|
||
char *alt;
|
||
|
||
/* If we use add_alias_cmd, here, we do not get the deprecated warning,
|
||
see PR cli/15104. */
|
||
c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
|
||
alt = xstrprintf ("target %s", t->to_shortname);
|
||
deprecate_cmd (c, alt);
|
||
}
|
||
|
||
/* Stub functions */
|
||
|
||
void
|
||
target_kill (void)
|
||
{
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
|
||
|
||
current_target.to_kill (¤t_target);
|
||
}
|
||
|
||
void
|
||
target_load (char *arg, int from_tty)
|
||
{
|
||
target_dcache_invalidate ();
|
||
(*current_target.to_load) (¤t_target, arg, from_tty);
|
||
}
|
||
|
||
void
|
||
target_terminal_inferior (void)
|
||
{
|
||
/* A background resume (``run&'') should leave GDB in control of the
|
||
terminal. Use target_can_async_p, not target_is_async_p, since at
|
||
this point the target is not async yet. However, if sync_execution
|
||
is not set, we know it will become async prior to resume. */
|
||
if (target_can_async_p () && !sync_execution)
|
||
return;
|
||
|
||
/* If GDB is resuming the inferior in the foreground, install
|
||
inferior's terminal modes. */
|
||
(*current_target.to_terminal_inferior) (¤t_target);
|
||
}
|
||
|
||
static void
|
||
tcomplain (void)
|
||
{
|
||
error (_("You can't do that when your target is `%s'"),
|
||
current_target.to_shortname);
|
||
}
|
||
|
||
void
|
||
noprocess (void)
|
||
{
|
||
error (_("You can't do that without a process to debug."));
|
||
}
|
||
|
||
static void
|
||
default_terminal_info (struct target_ops *self, const char *args, int from_tty)
|
||
{
|
||
printf_unfiltered (_("No saved terminal information.\n"));
|
||
}
|
||
|
||
/* A default implementation for the to_get_ada_task_ptid target method.
|
||
|
||
This function builds the PTID by using both LWP and TID as part of
|
||
the PTID lwp and tid elements. The pid used is the pid of the
|
||
inferior_ptid. */
|
||
|
||
static ptid_t
|
||
default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
|
||
{
|
||
return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
|
||
}
|
||
|
||
static enum exec_direction_kind
|
||
default_execution_direction (struct target_ops *self)
|
||
{
|
||
if (!target_can_execute_reverse)
|
||
return EXEC_FORWARD;
|
||
else if (!target_can_async_p ())
|
||
return EXEC_FORWARD;
|
||
else
|
||
gdb_assert_not_reached ("\
|
||
to_execution_direction must be implemented for reverse async");
|
||
}
|
||
|
||
/* Go through the target stack from top to bottom, copying over zero
|
||
entries in current_target, then filling in still empty entries. In
|
||
effect, we are doing class inheritance through the pushed target
|
||
vectors.
|
||
|
||
NOTE: cagney/2003-10-17: The problem with this inheritance, as it
|
||
is currently implemented, is that it discards any knowledge of
|
||
which target an inherited method originally belonged to.
|
||
Consequently, new new target methods should instead explicitly and
|
||
locally search the target stack for the target that can handle the
|
||
request. */
|
||
|
||
static void
|
||
update_current_target (void)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
/* First, reset current's contents. */
|
||
memset (¤t_target, 0, sizeof (current_target));
|
||
|
||
/* Install the delegators. */
|
||
install_delegators (¤t_target);
|
||
|
||
current_target.to_stratum = target_stack->to_stratum;
|
||
|
||
#define INHERIT(FIELD, TARGET) \
|
||
if (!current_target.FIELD) \
|
||
current_target.FIELD = (TARGET)->FIELD
|
||
|
||
/* Do not add any new INHERITs here. Instead, use the delegation
|
||
mechanism provided by make-target-delegates. */
|
||
for (t = target_stack; t; t = t->beneath)
|
||
{
|
||
INHERIT (to_shortname, t);
|
||
INHERIT (to_longname, t);
|
||
INHERIT (to_attach_no_wait, t);
|
||
INHERIT (to_have_steppable_watchpoint, t);
|
||
INHERIT (to_have_continuable_watchpoint, t);
|
||
INHERIT (to_has_thread_control, t);
|
||
}
|
||
#undef INHERIT
|
||
|
||
/* Finally, position the target-stack beneath the squashed
|
||
"current_target". That way code looking for a non-inherited
|
||
target method can quickly and simply find it. */
|
||
current_target.beneath = target_stack;
|
||
|
||
if (targetdebug)
|
||
setup_target_debug ();
|
||
}
|
||
|
||
/* Push a new target type into the stack of the existing target accessors,
|
||
possibly superseding some of the existing accessors.
|
||
|
||
Rather than allow an empty stack, we always have the dummy target at
|
||
the bottom stratum, so we can call the function vectors without
|
||
checking them. */
|
||
|
||
void
|
||
push_target (struct target_ops *t)
|
||
{
|
||
struct target_ops **cur;
|
||
|
||
/* Check magic number. If wrong, it probably means someone changed
|
||
the struct definition, but not all the places that initialize one. */
|
||
if (t->to_magic != OPS_MAGIC)
|
||
{
|
||
fprintf_unfiltered (gdb_stderr,
|
||
"Magic number of %s target struct wrong\n",
|
||
t->to_shortname);
|
||
internal_error (__FILE__, __LINE__,
|
||
_("failed internal consistency check"));
|
||
}
|
||
|
||
/* Find the proper stratum to install this target in. */
|
||
for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
|
||
{
|
||
if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
|
||
break;
|
||
}
|
||
|
||
/* If there's already targets at this stratum, remove them. */
|
||
/* FIXME: cagney/2003-10-15: I think this should be popping all
|
||
targets to CUR, and not just those at this stratum level. */
|
||
while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
|
||
{
|
||
/* There's already something at this stratum level. Close it,
|
||
and un-hook it from the stack. */
|
||
struct target_ops *tmp = (*cur);
|
||
|
||
(*cur) = (*cur)->beneath;
|
||
tmp->beneath = NULL;
|
||
target_close (tmp);
|
||
}
|
||
|
||
/* We have removed all targets in our stratum, now add the new one. */
|
||
t->beneath = (*cur);
|
||
(*cur) = t;
|
||
|
||
update_current_target ();
|
||
}
|
||
|
||
/* Remove a target_ops vector from the stack, wherever it may be.
|
||
Return how many times it was removed (0 or 1). */
|
||
|
||
int
|
||
unpush_target (struct target_ops *t)
|
||
{
|
||
struct target_ops **cur;
|
||
struct target_ops *tmp;
|
||
|
||
if (t->to_stratum == dummy_stratum)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("Attempt to unpush the dummy target"));
|
||
|
||
/* Look for the specified target. Note that we assume that a target
|
||
can only occur once in the target stack. */
|
||
|
||
for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
|
||
{
|
||
if ((*cur) == t)
|
||
break;
|
||
}
|
||
|
||
/* If we don't find target_ops, quit. Only open targets should be
|
||
closed. */
|
||
if ((*cur) == NULL)
|
||
return 0;
|
||
|
||
/* Unchain the target. */
|
||
tmp = (*cur);
|
||
(*cur) = (*cur)->beneath;
|
||
tmp->beneath = NULL;
|
||
|
||
update_current_target ();
|
||
|
||
/* Finally close the target. Note we do this after unchaining, so
|
||
any target method calls from within the target_close
|
||
implementation don't end up in T anymore. */
|
||
target_close (t);
|
||
|
||
return 1;
|
||
}
|
||
|
||
void
|
||
pop_all_targets_above (enum strata above_stratum)
|
||
{
|
||
while ((int) (current_target.to_stratum) > (int) above_stratum)
|
||
{
|
||
if (!unpush_target (target_stack))
|
||
{
|
||
fprintf_unfiltered (gdb_stderr,
|
||
"pop_all_targets couldn't find target %s\n",
|
||
target_stack->to_shortname);
|
||
internal_error (__FILE__, __LINE__,
|
||
_("failed internal consistency check"));
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
pop_all_targets (void)
|
||
{
|
||
pop_all_targets_above (dummy_stratum);
|
||
}
|
||
|
||
/* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
|
||
|
||
int
|
||
target_is_pushed (struct target_ops *t)
|
||
{
|
||
struct target_ops **cur;
|
||
|
||
/* Check magic number. If wrong, it probably means someone changed
|
||
the struct definition, but not all the places that initialize one. */
|
||
if (t->to_magic != OPS_MAGIC)
|
||
{
|
||
fprintf_unfiltered (gdb_stderr,
|
||
"Magic number of %s target struct wrong\n",
|
||
t->to_shortname);
|
||
internal_error (__FILE__, __LINE__,
|
||
_("failed internal consistency check"));
|
||
}
|
||
|
||
for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
|
||
if (*cur == t)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Using the objfile specified in OBJFILE, find the address for the
|
||
current thread's thread-local storage with offset OFFSET. */
|
||
CORE_ADDR
|
||
target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
|
||
{
|
||
volatile CORE_ADDR addr = 0;
|
||
struct target_ops *target;
|
||
|
||
for (target = current_target.beneath;
|
||
target != NULL;
|
||
target = target->beneath)
|
||
{
|
||
if (target->to_get_thread_local_address != NULL)
|
||
break;
|
||
}
|
||
|
||
if (target != NULL
|
||
&& gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
|
||
{
|
||
ptid_t ptid = inferior_ptid;
|
||
volatile struct gdb_exception ex;
|
||
|
||
TRY_CATCH (ex, RETURN_MASK_ALL)
|
||
{
|
||
CORE_ADDR lm_addr;
|
||
|
||
/* Fetch the load module address for this objfile. */
|
||
lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
|
||
objfile);
|
||
|
||
addr = target->to_get_thread_local_address (target, ptid,
|
||
lm_addr, offset);
|
||
}
|
||
/* If an error occurred, print TLS related messages here. Otherwise,
|
||
throw the error to some higher catcher. */
|
||
if (ex.reason < 0)
|
||
{
|
||
int objfile_is_library = (objfile->flags & OBJF_SHARED);
|
||
|
||
switch (ex.error)
|
||
{
|
||
case TLS_NO_LIBRARY_SUPPORT_ERROR:
|
||
error (_("Cannot find thread-local variables "
|
||
"in this thread library."));
|
||
break;
|
||
case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
|
||
if (objfile_is_library)
|
||
error (_("Cannot find shared library `%s' in dynamic"
|
||
" linker's load module list"), objfile_name (objfile));
|
||
else
|
||
error (_("Cannot find executable file `%s' in dynamic"
|
||
" linker's load module list"), objfile_name (objfile));
|
||
break;
|
||
case TLS_NOT_ALLOCATED_YET_ERROR:
|
||
if (objfile_is_library)
|
||
error (_("The inferior has not yet allocated storage for"
|
||
" thread-local variables in\n"
|
||
"the shared library `%s'\n"
|
||
"for %s"),
|
||
objfile_name (objfile), target_pid_to_str (ptid));
|
||
else
|
||
error (_("The inferior has not yet allocated storage for"
|
||
" thread-local variables in\n"
|
||
"the executable `%s'\n"
|
||
"for %s"),
|
||
objfile_name (objfile), target_pid_to_str (ptid));
|
||
break;
|
||
case TLS_GENERIC_ERROR:
|
||
if (objfile_is_library)
|
||
error (_("Cannot find thread-local storage for %s, "
|
||
"shared library %s:\n%s"),
|
||
target_pid_to_str (ptid),
|
||
objfile_name (objfile), ex.message);
|
||
else
|
||
error (_("Cannot find thread-local storage for %s, "
|
||
"executable file %s:\n%s"),
|
||
target_pid_to_str (ptid),
|
||
objfile_name (objfile), ex.message);
|
||
break;
|
||
default:
|
||
throw_exception (ex);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
/* It wouldn't be wrong here to try a gdbarch method, too; finding
|
||
TLS is an ABI-specific thing. But we don't do that yet. */
|
||
else
|
||
error (_("Cannot find thread-local variables on this target"));
|
||
|
||
return addr;
|
||
}
|
||
|
||
const char *
|
||
target_xfer_status_to_string (enum target_xfer_status status)
|
||
{
|
||
#define CASE(X) case X: return #X
|
||
switch (status)
|
||
{
|
||
CASE(TARGET_XFER_E_IO);
|
||
CASE(TARGET_XFER_UNAVAILABLE);
|
||
default:
|
||
return "<unknown>";
|
||
}
|
||
#undef CASE
|
||
};
|
||
|
||
|
||
#undef MIN
|
||
#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
|
||
|
||
/* target_read_string -- read a null terminated string, up to LEN bytes,
|
||
from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
|
||
Set *STRING to a pointer to malloc'd memory containing the data; the caller
|
||
is responsible for freeing it. Return the number of bytes successfully
|
||
read. */
|
||
|
||
int
|
||
target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
|
||
{
|
||
int tlen, offset, i;
|
||
gdb_byte buf[4];
|
||
int errcode = 0;
|
||
char *buffer;
|
||
int buffer_allocated;
|
||
char *bufptr;
|
||
unsigned int nbytes_read = 0;
|
||
|
||
gdb_assert (string);
|
||
|
||
/* Small for testing. */
|
||
buffer_allocated = 4;
|
||
buffer = xmalloc (buffer_allocated);
|
||
bufptr = buffer;
|
||
|
||
while (len > 0)
|
||
{
|
||
tlen = MIN (len, 4 - (memaddr & 3));
|
||
offset = memaddr & 3;
|
||
|
||
errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
|
||
if (errcode != 0)
|
||
{
|
||
/* The transfer request might have crossed the boundary to an
|
||
unallocated region of memory. Retry the transfer, requesting
|
||
a single byte. */
|
||
tlen = 1;
|
||
offset = 0;
|
||
errcode = target_read_memory (memaddr, buf, 1);
|
||
if (errcode != 0)
|
||
goto done;
|
||
}
|
||
|
||
if (bufptr - buffer + tlen > buffer_allocated)
|
||
{
|
||
unsigned int bytes;
|
||
|
||
bytes = bufptr - buffer;
|
||
buffer_allocated *= 2;
|
||
buffer = xrealloc (buffer, buffer_allocated);
|
||
bufptr = buffer + bytes;
|
||
}
|
||
|
||
for (i = 0; i < tlen; i++)
|
||
{
|
||
*bufptr++ = buf[i + offset];
|
||
if (buf[i + offset] == '\000')
|
||
{
|
||
nbytes_read += i + 1;
|
||
goto done;
|
||
}
|
||
}
|
||
|
||
memaddr += tlen;
|
||
len -= tlen;
|
||
nbytes_read += tlen;
|
||
}
|
||
done:
|
||
*string = buffer;
|
||
if (errnop != NULL)
|
||
*errnop = errcode;
|
||
return nbytes_read;
|
||
}
|
||
|
||
struct target_section_table *
|
||
target_get_section_table (struct target_ops *target)
|
||
{
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
|
||
|
||
return (*target->to_get_section_table) (target);
|
||
}
|
||
|
||
/* Find a section containing ADDR. */
|
||
|
||
struct target_section *
|
||
target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
|
||
{
|
||
struct target_section_table *table = target_get_section_table (target);
|
||
struct target_section *secp;
|
||
|
||
if (table == NULL)
|
||
return NULL;
|
||
|
||
for (secp = table->sections; secp < table->sections_end; secp++)
|
||
{
|
||
if (addr >= secp->addr && addr < secp->endaddr)
|
||
return secp;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* Read memory from more than one valid target. A core file, for
|
||
instance, could have some of memory but delegate other bits to
|
||
the target below it. So, we must manually try all targets. */
|
||
|
||
static enum target_xfer_status
|
||
raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
|
||
const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
|
||
ULONGEST *xfered_len)
|
||
{
|
||
enum target_xfer_status res;
|
||
|
||
do
|
||
{
|
||
res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
|
||
readbuf, writebuf, memaddr, len,
|
||
xfered_len);
|
||
if (res == TARGET_XFER_OK)
|
||
break;
|
||
|
||
/* Stop if the target reports that the memory is not available. */
|
||
if (res == TARGET_XFER_UNAVAILABLE)
|
||
break;
|
||
|
||
/* We want to continue past core files to executables, but not
|
||
past a running target's memory. */
|
||
if (ops->to_has_all_memory (ops))
|
||
break;
|
||
|
||
ops = ops->beneath;
|
||
}
|
||
while (ops != NULL);
|
||
|
||
/* The cache works at the raw memory level. Make sure the cache
|
||
gets updated with raw contents no matter what kind of memory
|
||
object was originally being written. Note we do write-through
|
||
first, so that if it fails, we don't write to the cache contents
|
||
that never made it to the target. */
|
||
if (writebuf != NULL
|
||
&& !ptid_equal (inferior_ptid, null_ptid)
|
||
&& target_dcache_init_p ()
|
||
&& (stack_cache_enabled_p () || code_cache_enabled_p ()))
|
||
{
|
||
DCACHE *dcache = target_dcache_get ();
|
||
|
||
/* Note that writing to an area of memory which wasn't present
|
||
in the cache doesn't cause it to be loaded in. */
|
||
dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Perform a partial memory transfer.
|
||
For docs see target.h, to_xfer_partial. */
|
||
|
||
static enum target_xfer_status
|
||
memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
|
||
gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
|
||
ULONGEST len, ULONGEST *xfered_len)
|
||
{
|
||
enum target_xfer_status res;
|
||
int reg_len;
|
||
struct mem_region *region;
|
||
struct inferior *inf;
|
||
|
||
/* For accesses to unmapped overlay sections, read directly from
|
||
files. Must do this first, as MEMADDR may need adjustment. */
|
||
if (readbuf != NULL && overlay_debugging)
|
||
{
|
||
struct obj_section *section = find_pc_overlay (memaddr);
|
||
|
||
if (pc_in_unmapped_range (memaddr, section))
|
||
{
|
||
struct target_section_table *table
|
||
= target_get_section_table (ops);
|
||
const char *section_name = section->the_bfd_section->name;
|
||
|
||
memaddr = overlay_mapped_address (memaddr, section);
|
||
return section_table_xfer_memory_partial (readbuf, writebuf,
|
||
memaddr, len, xfered_len,
|
||
table->sections,
|
||
table->sections_end,
|
||
section_name);
|
||
}
|
||
}
|
||
|
||
/* Try the executable files, if "trust-readonly-sections" is set. */
|
||
if (readbuf != NULL && trust_readonly)
|
||
{
|
||
struct target_section *secp;
|
||
struct target_section_table *table;
|
||
|
||
secp = target_section_by_addr (ops, memaddr);
|
||
if (secp != NULL
|
||
&& (bfd_get_section_flags (secp->the_bfd_section->owner,
|
||
secp->the_bfd_section)
|
||
& SEC_READONLY))
|
||
{
|
||
table = target_get_section_table (ops);
|
||
return section_table_xfer_memory_partial (readbuf, writebuf,
|
||
memaddr, len, xfered_len,
|
||
table->sections,
|
||
table->sections_end,
|
||
NULL);
|
||
}
|
||
}
|
||
|
||
/* Try GDB's internal data cache. */
|
||
region = lookup_mem_region (memaddr);
|
||
/* region->hi == 0 means there's no upper bound. */
|
||
if (memaddr + len < region->hi || region->hi == 0)
|
||
reg_len = len;
|
||
else
|
||
reg_len = region->hi - memaddr;
|
||
|
||
switch (region->attrib.mode)
|
||
{
|
||
case MEM_RO:
|
||
if (writebuf != NULL)
|
||
return TARGET_XFER_E_IO;
|
||
break;
|
||
|
||
case MEM_WO:
|
||
if (readbuf != NULL)
|
||
return TARGET_XFER_E_IO;
|
||
break;
|
||
|
||
case MEM_FLASH:
|
||
/* We only support writing to flash during "load" for now. */
|
||
if (writebuf != NULL)
|
||
error (_("Writing to flash memory forbidden in this context"));
|
||
break;
|
||
|
||
case MEM_NONE:
|
||
return TARGET_XFER_E_IO;
|
||
}
|
||
|
||
if (!ptid_equal (inferior_ptid, null_ptid))
|
||
inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
|
||
else
|
||
inf = NULL;
|
||
|
||
if (inf != NULL
|
||
&& readbuf != NULL
|
||
/* The dcache reads whole cache lines; that doesn't play well
|
||
with reading from a trace buffer, because reading outside of
|
||
the collected memory range fails. */
|
||
&& get_traceframe_number () == -1
|
||
&& (region->attrib.cache
|
||
|| (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
|
||
|| (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
|
||
{
|
||
DCACHE *dcache = target_dcache_get_or_init ();
|
||
|
||
return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
|
||
reg_len, xfered_len);
|
||
}
|
||
|
||
/* If none of those methods found the memory we wanted, fall back
|
||
to a target partial transfer. Normally a single call to
|
||
to_xfer_partial is enough; if it doesn't recognize an object
|
||
it will call the to_xfer_partial of the next target down.
|
||
But for memory this won't do. Memory is the only target
|
||
object which can be read from more than one valid target.
|
||
A core file, for instance, could have some of memory but
|
||
delegate other bits to the target below it. So, we must
|
||
manually try all targets. */
|
||
|
||
res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
|
||
xfered_len);
|
||
|
||
/* If we still haven't got anything, return the last error. We
|
||
give up. */
|
||
return res;
|
||
}
|
||
|
||
/* Perform a partial memory transfer. For docs see target.h,
|
||
to_xfer_partial. */
|
||
|
||
static enum target_xfer_status
|
||
memory_xfer_partial (struct target_ops *ops, enum target_object object,
|
||
gdb_byte *readbuf, const gdb_byte *writebuf,
|
||
ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
|
||
{
|
||
enum target_xfer_status res;
|
||
|
||
/* Zero length requests are ok and require no work. */
|
||
if (len == 0)
|
||
return TARGET_XFER_EOF;
|
||
|
||
/* Fill in READBUF with breakpoint shadows, or WRITEBUF with
|
||
breakpoint insns, thus hiding out from higher layers whether
|
||
there are software breakpoints inserted in the code stream. */
|
||
if (readbuf != NULL)
|
||
{
|
||
res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
|
||
xfered_len);
|
||
|
||
if (res == TARGET_XFER_OK && !show_memory_breakpoints)
|
||
breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
|
||
}
|
||
else
|
||
{
|
||
void *buf;
|
||
struct cleanup *old_chain;
|
||
|
||
/* A large write request is likely to be partially satisfied
|
||
by memory_xfer_partial_1. We will continually malloc
|
||
and free a copy of the entire write request for breakpoint
|
||
shadow handling even though we only end up writing a small
|
||
subset of it. Cap writes to 4KB to mitigate this. */
|
||
len = min (4096, len);
|
||
|
||
buf = xmalloc (len);
|
||
old_chain = make_cleanup (xfree, buf);
|
||
memcpy (buf, writebuf, len);
|
||
|
||
breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
|
||
res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
|
||
xfered_len);
|
||
|
||
do_cleanups (old_chain);
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
static void
|
||
restore_show_memory_breakpoints (void *arg)
|
||
{
|
||
show_memory_breakpoints = (uintptr_t) arg;
|
||
}
|
||
|
||
struct cleanup *
|
||
make_show_memory_breakpoints_cleanup (int show)
|
||
{
|
||
int current = show_memory_breakpoints;
|
||
|
||
show_memory_breakpoints = show;
|
||
return make_cleanup (restore_show_memory_breakpoints,
|
||
(void *) (uintptr_t) current);
|
||
}
|
||
|
||
/* For docs see target.h, to_xfer_partial. */
|
||
|
||
enum target_xfer_status
|
||
target_xfer_partial (struct target_ops *ops,
|
||
enum target_object object, const char *annex,
|
||
gdb_byte *readbuf, const gdb_byte *writebuf,
|
||
ULONGEST offset, ULONGEST len,
|
||
ULONGEST *xfered_len)
|
||
{
|
||
enum target_xfer_status retval;
|
||
|
||
gdb_assert (ops->to_xfer_partial != NULL);
|
||
|
||
/* Transfer is done when LEN is zero. */
|
||
if (len == 0)
|
||
return TARGET_XFER_EOF;
|
||
|
||
if (writebuf && !may_write_memory)
|
||
error (_("Writing to memory is not allowed (addr %s, len %s)"),
|
||
core_addr_to_string_nz (offset), plongest (len));
|
||
|
||
*xfered_len = 0;
|
||
|
||
/* If this is a memory transfer, let the memory-specific code
|
||
have a look at it instead. Memory transfers are more
|
||
complicated. */
|
||
if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
|
||
|| object == TARGET_OBJECT_CODE_MEMORY)
|
||
retval = memory_xfer_partial (ops, object, readbuf,
|
||
writebuf, offset, len, xfered_len);
|
||
else if (object == TARGET_OBJECT_RAW_MEMORY)
|
||
{
|
||
/* Request the normal memory object from other layers. */
|
||
retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
|
||
xfered_len);
|
||
}
|
||
else
|
||
retval = ops->to_xfer_partial (ops, object, annex, readbuf,
|
||
writebuf, offset, len, xfered_len);
|
||
|
||
if (targetdebug)
|
||
{
|
||
const unsigned char *myaddr = NULL;
|
||
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"%s:target_xfer_partial "
|
||
"(%d, %s, %s, %s, %s, %s) = %d, %s",
|
||
ops->to_shortname,
|
||
(int) object,
|
||
(annex ? annex : "(null)"),
|
||
host_address_to_string (readbuf),
|
||
host_address_to_string (writebuf),
|
||
core_addr_to_string_nz (offset),
|
||
pulongest (len), retval,
|
||
pulongest (*xfered_len));
|
||
|
||
if (readbuf)
|
||
myaddr = readbuf;
|
||
if (writebuf)
|
||
myaddr = writebuf;
|
||
if (retval == TARGET_XFER_OK && myaddr != NULL)
|
||
{
|
||
int i;
|
||
|
||
fputs_unfiltered (", bytes =", gdb_stdlog);
|
||
for (i = 0; i < *xfered_len; i++)
|
||
{
|
||
if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
|
||
{
|
||
if (targetdebug < 2 && i > 0)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog, " ...");
|
||
break;
|
||
}
|
||
fprintf_unfiltered (gdb_stdlog, "\n");
|
||
}
|
||
|
||
fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
|
||
}
|
||
}
|
||
|
||
fputc_unfiltered ('\n', gdb_stdlog);
|
||
}
|
||
|
||
/* Check implementations of to_xfer_partial update *XFERED_LEN
|
||
properly. Do assertion after printing debug messages, so that we
|
||
can find more clues on assertion failure from debugging messages. */
|
||
if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
|
||
gdb_assert (*xfered_len > 0);
|
||
|
||
return retval;
|
||
}
|
||
|
||
/* Read LEN bytes of target memory at address MEMADDR, placing the
|
||
results in GDB's memory at MYADDR. Returns either 0 for success or
|
||
TARGET_XFER_E_IO if any error occurs.
|
||
|
||
If an error occurs, no guarantee is made about the contents of the data at
|
||
MYADDR. In particular, the caller should not depend upon partial reads
|
||
filling the buffer with good data. There is no way for the caller to know
|
||
how much good data might have been transfered anyway. Callers that can
|
||
deal with partial reads should call target_read (which will retry until
|
||
it makes no progress, and then return how much was transferred). */
|
||
|
||
int
|
||
target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
|
||
{
|
||
/* Dispatch to the topmost target, not the flattened current_target.
|
||
Memory accesses check target->to_has_(all_)memory, and the
|
||
flattened target doesn't inherit those. */
|
||
if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
|
||
myaddr, memaddr, len) == len)
|
||
return 0;
|
||
else
|
||
return TARGET_XFER_E_IO;
|
||
}
|
||
|
||
/* Like target_read_memory, but specify explicitly that this is a read
|
||
from the target's raw memory. That is, this read bypasses the
|
||
dcache, breakpoint shadowing, etc. */
|
||
|
||
int
|
||
target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
|
||
{
|
||
/* See comment in target_read_memory about why the request starts at
|
||
current_target.beneath. */
|
||
if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
|
||
myaddr, memaddr, len) == len)
|
||
return 0;
|
||
else
|
||
return TARGET_XFER_E_IO;
|
||
}
|
||
|
||
/* Like target_read_memory, but specify explicitly that this is a read from
|
||
the target's stack. This may trigger different cache behavior. */
|
||
|
||
int
|
||
target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
|
||
{
|
||
/* See comment in target_read_memory about why the request starts at
|
||
current_target.beneath. */
|
||
if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
|
||
myaddr, memaddr, len) == len)
|
||
return 0;
|
||
else
|
||
return TARGET_XFER_E_IO;
|
||
}
|
||
|
||
/* Like target_read_memory, but specify explicitly that this is a read from
|
||
the target's code. This may trigger different cache behavior. */
|
||
|
||
int
|
||
target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
|
||
{
|
||
/* See comment in target_read_memory about why the request starts at
|
||
current_target.beneath. */
|
||
if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
|
||
myaddr, memaddr, len) == len)
|
||
return 0;
|
||
else
|
||
return TARGET_XFER_E_IO;
|
||
}
|
||
|
||
/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
|
||
Returns either 0 for success or TARGET_XFER_E_IO if any
|
||
error occurs. If an error occurs, no guarantee is made about how
|
||
much data got written. Callers that can deal with partial writes
|
||
should call target_write. */
|
||
|
||
int
|
||
target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
|
||
{
|
||
/* See comment in target_read_memory about why the request starts at
|
||
current_target.beneath. */
|
||
if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
|
||
myaddr, memaddr, len) == len)
|
||
return 0;
|
||
else
|
||
return TARGET_XFER_E_IO;
|
||
}
|
||
|
||
/* Write LEN bytes from MYADDR to target raw memory at address
|
||
MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
|
||
if any error occurs. If an error occurs, no guarantee is made
|
||
about how much data got written. Callers that can deal with
|
||
partial writes should call target_write. */
|
||
|
||
int
|
||
target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
|
||
{
|
||
/* See comment in target_read_memory about why the request starts at
|
||
current_target.beneath. */
|
||
if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
|
||
myaddr, memaddr, len) == len)
|
||
return 0;
|
||
else
|
||
return TARGET_XFER_E_IO;
|
||
}
|
||
|
||
/* Fetch the target's memory map. */
|
||
|
||
VEC(mem_region_s) *
|
||
target_memory_map (void)
|
||
{
|
||
VEC(mem_region_s) *result;
|
||
struct mem_region *last_one, *this_one;
|
||
int ix;
|
||
struct target_ops *t;
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
|
||
|
||
result = current_target.to_memory_map (¤t_target);
|
||
if (result == NULL)
|
||
return NULL;
|
||
|
||
qsort (VEC_address (mem_region_s, result),
|
||
VEC_length (mem_region_s, result),
|
||
sizeof (struct mem_region), mem_region_cmp);
|
||
|
||
/* Check that regions do not overlap. Simultaneously assign
|
||
a numbering for the "mem" commands to use to refer to
|
||
each region. */
|
||
last_one = NULL;
|
||
for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
|
||
{
|
||
this_one->number = ix;
|
||
|
||
if (last_one && last_one->hi > this_one->lo)
|
||
{
|
||
warning (_("Overlapping regions in memory map: ignoring"));
|
||
VEC_free (mem_region_s, result);
|
||
return NULL;
|
||
}
|
||
last_one = this_one;
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
void
|
||
target_flash_erase (ULONGEST address, LONGEST length)
|
||
{
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
|
||
hex_string (address), phex (length, 0));
|
||
current_target.to_flash_erase (¤t_target, address, length);
|
||
}
|
||
|
||
void
|
||
target_flash_done (void)
|
||
{
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
|
||
current_target.to_flash_done (¤t_target);
|
||
}
|
||
|
||
static void
|
||
show_trust_readonly (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Mode for reading from readonly sections is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* Target vector read/write partial wrapper functions. */
|
||
|
||
static enum target_xfer_status
|
||
target_read_partial (struct target_ops *ops,
|
||
enum target_object object,
|
||
const char *annex, gdb_byte *buf,
|
||
ULONGEST offset, ULONGEST len,
|
||
ULONGEST *xfered_len)
|
||
{
|
||
return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
|
||
xfered_len);
|
||
}
|
||
|
||
static enum target_xfer_status
|
||
target_write_partial (struct target_ops *ops,
|
||
enum target_object object,
|
||
const char *annex, const gdb_byte *buf,
|
||
ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
|
||
{
|
||
return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
|
||
xfered_len);
|
||
}
|
||
|
||
/* Wrappers to perform the full transfer. */
|
||
|
||
/* For docs on target_read see target.h. */
|
||
|
||
LONGEST
|
||
target_read (struct target_ops *ops,
|
||
enum target_object object,
|
||
const char *annex, gdb_byte *buf,
|
||
ULONGEST offset, LONGEST len)
|
||
{
|
||
LONGEST xfered = 0;
|
||
|
||
while (xfered < len)
|
||
{
|
||
ULONGEST xfered_len;
|
||
enum target_xfer_status status;
|
||
|
||
status = target_read_partial (ops, object, annex,
|
||
(gdb_byte *) buf + xfered,
|
||
offset + xfered, len - xfered,
|
||
&xfered_len);
|
||
|
||
/* Call an observer, notifying them of the xfer progress? */
|
||
if (status == TARGET_XFER_EOF)
|
||
return xfered;
|
||
else if (status == TARGET_XFER_OK)
|
||
{
|
||
xfered += xfered_len;
|
||
QUIT;
|
||
}
|
||
else
|
||
return -1;
|
||
|
||
}
|
||
return len;
|
||
}
|
||
|
||
/* Assuming that the entire [begin, end) range of memory cannot be
|
||
read, try to read whatever subrange is possible to read.
|
||
|
||
The function returns, in RESULT, either zero or one memory block.
|
||
If there's a readable subrange at the beginning, it is completely
|
||
read and returned. Any further readable subrange will not be read.
|
||
Otherwise, if there's a readable subrange at the end, it will be
|
||
completely read and returned. Any readable subranges before it
|
||
(obviously, not starting at the beginning), will be ignored. In
|
||
other cases -- either no readable subrange, or readable subrange(s)
|
||
that is neither at the beginning, or end, nothing is returned.
|
||
|
||
The purpose of this function is to handle a read across a boundary
|
||
of accessible memory in a case when memory map is not available.
|
||
The above restrictions are fine for this case, but will give
|
||
incorrect results if the memory is 'patchy'. However, supporting
|
||
'patchy' memory would require trying to read every single byte,
|
||
and it seems unacceptable solution. Explicit memory map is
|
||
recommended for this case -- and target_read_memory_robust will
|
||
take care of reading multiple ranges then. */
|
||
|
||
static void
|
||
read_whatever_is_readable (struct target_ops *ops,
|
||
ULONGEST begin, ULONGEST end,
|
||
VEC(memory_read_result_s) **result)
|
||
{
|
||
gdb_byte *buf = xmalloc (end - begin);
|
||
ULONGEST current_begin = begin;
|
||
ULONGEST current_end = end;
|
||
int forward;
|
||
memory_read_result_s r;
|
||
ULONGEST xfered_len;
|
||
|
||
/* If we previously failed to read 1 byte, nothing can be done here. */
|
||
if (end - begin <= 1)
|
||
{
|
||
xfree (buf);
|
||
return;
|
||
}
|
||
|
||
/* Check that either first or the last byte is readable, and give up
|
||
if not. This heuristic is meant to permit reading accessible memory
|
||
at the boundary of accessible region. */
|
||
if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
|
||
buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
|
||
{
|
||
forward = 1;
|
||
++current_begin;
|
||
}
|
||
else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
|
||
buf + (end-begin) - 1, end - 1, 1,
|
||
&xfered_len) == TARGET_XFER_OK)
|
||
{
|
||
forward = 0;
|
||
--current_end;
|
||
}
|
||
else
|
||
{
|
||
xfree (buf);
|
||
return;
|
||
}
|
||
|
||
/* Loop invariant is that the [current_begin, current_end) was previously
|
||
found to be not readable as a whole.
|
||
|
||
Note loop condition -- if the range has 1 byte, we can't divide the range
|
||
so there's no point trying further. */
|
||
while (current_end - current_begin > 1)
|
||
{
|
||
ULONGEST first_half_begin, first_half_end;
|
||
ULONGEST second_half_begin, second_half_end;
|
||
LONGEST xfer;
|
||
ULONGEST middle = current_begin + (current_end - current_begin)/2;
|
||
|
||
if (forward)
|
||
{
|
||
first_half_begin = current_begin;
|
||
first_half_end = middle;
|
||
second_half_begin = middle;
|
||
second_half_end = current_end;
|
||
}
|
||
else
|
||
{
|
||
first_half_begin = middle;
|
||
first_half_end = current_end;
|
||
second_half_begin = current_begin;
|
||
second_half_end = middle;
|
||
}
|
||
|
||
xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
|
||
buf + (first_half_begin - begin),
|
||
first_half_begin,
|
||
first_half_end - first_half_begin);
|
||
|
||
if (xfer == first_half_end - first_half_begin)
|
||
{
|
||
/* This half reads up fine. So, the error must be in the
|
||
other half. */
|
||
current_begin = second_half_begin;
|
||
current_end = second_half_end;
|
||
}
|
||
else
|
||
{
|
||
/* This half is not readable. Because we've tried one byte, we
|
||
know some part of this half if actually redable. Go to the next
|
||
iteration to divide again and try to read.
|
||
|
||
We don't handle the other half, because this function only tries
|
||
to read a single readable subrange. */
|
||
current_begin = first_half_begin;
|
||
current_end = first_half_end;
|
||
}
|
||
}
|
||
|
||
if (forward)
|
||
{
|
||
/* The [begin, current_begin) range has been read. */
|
||
r.begin = begin;
|
||
r.end = current_begin;
|
||
r.data = buf;
|
||
}
|
||
else
|
||
{
|
||
/* The [current_end, end) range has been read. */
|
||
LONGEST rlen = end - current_end;
|
||
|
||
r.data = xmalloc (rlen);
|
||
memcpy (r.data, buf + current_end - begin, rlen);
|
||
r.begin = current_end;
|
||
r.end = end;
|
||
xfree (buf);
|
||
}
|
||
VEC_safe_push(memory_read_result_s, (*result), &r);
|
||
}
|
||
|
||
void
|
||
free_memory_read_result_vector (void *x)
|
||
{
|
||
VEC(memory_read_result_s) *v = x;
|
||
memory_read_result_s *current;
|
||
int ix;
|
||
|
||
for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
|
||
{
|
||
xfree (current->data);
|
||
}
|
||
VEC_free (memory_read_result_s, v);
|
||
}
|
||
|
||
VEC(memory_read_result_s) *
|
||
read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
|
||
{
|
||
VEC(memory_read_result_s) *result = 0;
|
||
|
||
LONGEST xfered = 0;
|
||
while (xfered < len)
|
||
{
|
||
struct mem_region *region = lookup_mem_region (offset + xfered);
|
||
LONGEST rlen;
|
||
|
||
/* If there is no explicit region, a fake one should be created. */
|
||
gdb_assert (region);
|
||
|
||
if (region->hi == 0)
|
||
rlen = len - xfered;
|
||
else
|
||
rlen = region->hi - offset;
|
||
|
||
if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
|
||
{
|
||
/* Cannot read this region. Note that we can end up here only
|
||
if the region is explicitly marked inaccessible, or
|
||
'inaccessible-by-default' is in effect. */
|
||
xfered += rlen;
|
||
}
|
||
else
|
||
{
|
||
LONGEST to_read = min (len - xfered, rlen);
|
||
gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
|
||
|
||
LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
|
||
(gdb_byte *) buffer,
|
||
offset + xfered, to_read);
|
||
/* Call an observer, notifying them of the xfer progress? */
|
||
if (xfer <= 0)
|
||
{
|
||
/* Got an error reading full chunk. See if maybe we can read
|
||
some subrange. */
|
||
xfree (buffer);
|
||
read_whatever_is_readable (ops, offset + xfered,
|
||
offset + xfered + to_read, &result);
|
||
xfered += to_read;
|
||
}
|
||
else
|
||
{
|
||
struct memory_read_result r;
|
||
r.data = buffer;
|
||
r.begin = offset + xfered;
|
||
r.end = r.begin + xfer;
|
||
VEC_safe_push (memory_read_result_s, result, &r);
|
||
xfered += xfer;
|
||
}
|
||
QUIT;
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
|
||
|
||
/* An alternative to target_write with progress callbacks. */
|
||
|
||
LONGEST
|
||
target_write_with_progress (struct target_ops *ops,
|
||
enum target_object object,
|
||
const char *annex, const gdb_byte *buf,
|
||
ULONGEST offset, LONGEST len,
|
||
void (*progress) (ULONGEST, void *), void *baton)
|
||
{
|
||
LONGEST xfered = 0;
|
||
|
||
/* Give the progress callback a chance to set up. */
|
||
if (progress)
|
||
(*progress) (0, baton);
|
||
|
||
while (xfered < len)
|
||
{
|
||
ULONGEST xfered_len;
|
||
enum target_xfer_status status;
|
||
|
||
status = target_write_partial (ops, object, annex,
|
||
(gdb_byte *) buf + xfered,
|
||
offset + xfered, len - xfered,
|
||
&xfered_len);
|
||
|
||
if (status != TARGET_XFER_OK)
|
||
return status == TARGET_XFER_EOF ? xfered : -1;
|
||
|
||
if (progress)
|
||
(*progress) (xfered_len, baton);
|
||
|
||
xfered += xfered_len;
|
||
QUIT;
|
||
}
|
||
return len;
|
||
}
|
||
|
||
/* For docs on target_write see target.h. */
|
||
|
||
LONGEST
|
||
target_write (struct target_ops *ops,
|
||
enum target_object object,
|
||
const char *annex, const gdb_byte *buf,
|
||
ULONGEST offset, LONGEST len)
|
||
{
|
||
return target_write_with_progress (ops, object, annex, buf, offset, len,
|
||
NULL, NULL);
|
||
}
|
||
|
||
/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
|
||
the size of the transferred data. PADDING additional bytes are
|
||
available in *BUF_P. This is a helper function for
|
||
target_read_alloc; see the declaration of that function for more
|
||
information. */
|
||
|
||
static LONGEST
|
||
target_read_alloc_1 (struct target_ops *ops, enum target_object object,
|
||
const char *annex, gdb_byte **buf_p, int padding)
|
||
{
|
||
size_t buf_alloc, buf_pos;
|
||
gdb_byte *buf;
|
||
|
||
/* This function does not have a length parameter; it reads the
|
||
entire OBJECT). Also, it doesn't support objects fetched partly
|
||
from one target and partly from another (in a different stratum,
|
||
e.g. a core file and an executable). Both reasons make it
|
||
unsuitable for reading memory. */
|
||
gdb_assert (object != TARGET_OBJECT_MEMORY);
|
||
|
||
/* Start by reading up to 4K at a time. The target will throttle
|
||
this number down if necessary. */
|
||
buf_alloc = 4096;
|
||
buf = xmalloc (buf_alloc);
|
||
buf_pos = 0;
|
||
while (1)
|
||
{
|
||
ULONGEST xfered_len;
|
||
enum target_xfer_status status;
|
||
|
||
status = target_read_partial (ops, object, annex, &buf[buf_pos],
|
||
buf_pos, buf_alloc - buf_pos - padding,
|
||
&xfered_len);
|
||
|
||
if (status == TARGET_XFER_EOF)
|
||
{
|
||
/* Read all there was. */
|
||
if (buf_pos == 0)
|
||
xfree (buf);
|
||
else
|
||
*buf_p = buf;
|
||
return buf_pos;
|
||
}
|
||
else if (status != TARGET_XFER_OK)
|
||
{
|
||
/* An error occurred. */
|
||
xfree (buf);
|
||
return TARGET_XFER_E_IO;
|
||
}
|
||
|
||
buf_pos += xfered_len;
|
||
|
||
/* If the buffer is filling up, expand it. */
|
||
if (buf_alloc < buf_pos * 2)
|
||
{
|
||
buf_alloc *= 2;
|
||
buf = xrealloc (buf, buf_alloc);
|
||
}
|
||
|
||
QUIT;
|
||
}
|
||
}
|
||
|
||
/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
|
||
the size of the transferred data. See the declaration in "target.h"
|
||
function for more information about the return value. */
|
||
|
||
LONGEST
|
||
target_read_alloc (struct target_ops *ops, enum target_object object,
|
||
const char *annex, gdb_byte **buf_p)
|
||
{
|
||
return target_read_alloc_1 (ops, object, annex, buf_p, 0);
|
||
}
|
||
|
||
/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
|
||
returned as a string, allocated using xmalloc. If an error occurs
|
||
or the transfer is unsupported, NULL is returned. Empty objects
|
||
are returned as allocated but empty strings. A warning is issued
|
||
if the result contains any embedded NUL bytes. */
|
||
|
||
char *
|
||
target_read_stralloc (struct target_ops *ops, enum target_object object,
|
||
const char *annex)
|
||
{
|
||
gdb_byte *buffer;
|
||
char *bufstr;
|
||
LONGEST i, transferred;
|
||
|
||
transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
|
||
bufstr = (char *) buffer;
|
||
|
||
if (transferred < 0)
|
||
return NULL;
|
||
|
||
if (transferred == 0)
|
||
return xstrdup ("");
|
||
|
||
bufstr[transferred] = 0;
|
||
|
||
/* Check for embedded NUL bytes; but allow trailing NULs. */
|
||
for (i = strlen (bufstr); i < transferred; i++)
|
||
if (bufstr[i] != 0)
|
||
{
|
||
warning (_("target object %d, annex %s, "
|
||
"contained unexpected null characters"),
|
||
(int) object, annex ? annex : "(none)");
|
||
break;
|
||
}
|
||
|
||
return bufstr;
|
||
}
|
||
|
||
/* Memory transfer methods. */
|
||
|
||
void
|
||
get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
|
||
LONGEST len)
|
||
{
|
||
/* This method is used to read from an alternate, non-current
|
||
target. This read must bypass the overlay support (as symbols
|
||
don't match this target), and GDB's internal cache (wrong cache
|
||
for this target). */
|
||
if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
|
||
!= len)
|
||
memory_error (TARGET_XFER_E_IO, addr);
|
||
}
|
||
|
||
ULONGEST
|
||
get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
|
||
int len, enum bfd_endian byte_order)
|
||
{
|
||
gdb_byte buf[sizeof (ULONGEST)];
|
||
|
||
gdb_assert (len <= sizeof (buf));
|
||
get_target_memory (ops, addr, buf, len);
|
||
return extract_unsigned_integer (buf, len, byte_order);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_insert_breakpoint (struct gdbarch *gdbarch,
|
||
struct bp_target_info *bp_tgt)
|
||
{
|
||
if (!may_insert_breakpoints)
|
||
{
|
||
warning (_("May not insert breakpoints"));
|
||
return 1;
|
||
}
|
||
|
||
return current_target.to_insert_breakpoint (¤t_target,
|
||
gdbarch, bp_tgt);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_remove_breakpoint (struct gdbarch *gdbarch,
|
||
struct bp_target_info *bp_tgt)
|
||
{
|
||
/* This is kind of a weird case to handle, but the permission might
|
||
have been changed after breakpoints were inserted - in which case
|
||
we should just take the user literally and assume that any
|
||
breakpoints should be left in place. */
|
||
if (!may_insert_breakpoints)
|
||
{
|
||
warning (_("May not remove breakpoints"));
|
||
return 1;
|
||
}
|
||
|
||
return current_target.to_remove_breakpoint (¤t_target,
|
||
gdbarch, bp_tgt);
|
||
}
|
||
|
||
static void
|
||
target_info (char *args, int from_tty)
|
||
{
|
||
struct target_ops *t;
|
||
int has_all_mem = 0;
|
||
|
||
if (symfile_objfile != NULL)
|
||
printf_unfiltered (_("Symbols from \"%s\".\n"),
|
||
objfile_name (symfile_objfile));
|
||
|
||
for (t = target_stack; t != NULL; t = t->beneath)
|
||
{
|
||
if (!(*t->to_has_memory) (t))
|
||
continue;
|
||
|
||
if ((int) (t->to_stratum) <= (int) dummy_stratum)
|
||
continue;
|
||
if (has_all_mem)
|
||
printf_unfiltered (_("\tWhile running this, "
|
||
"GDB does not access memory from...\n"));
|
||
printf_unfiltered ("%s:\n", t->to_longname);
|
||
(t->to_files_info) (t);
|
||
has_all_mem = (*t->to_has_all_memory) (t);
|
||
}
|
||
}
|
||
|
||
/* This function is called before any new inferior is created, e.g.
|
||
by running a program, attaching, or connecting to a target.
|
||
It cleans up any state from previous invocations which might
|
||
change between runs. This is a subset of what target_preopen
|
||
resets (things which might change between targets). */
|
||
|
||
void
|
||
target_pre_inferior (int from_tty)
|
||
{
|
||
/* Clear out solib state. Otherwise the solib state of the previous
|
||
inferior might have survived and is entirely wrong for the new
|
||
target. This has been observed on GNU/Linux using glibc 2.3. How
|
||
to reproduce:
|
||
|
||
bash$ ./foo&
|
||
[1] 4711
|
||
bash$ ./foo&
|
||
[1] 4712
|
||
bash$ gdb ./foo
|
||
[...]
|
||
(gdb) attach 4711
|
||
(gdb) detach
|
||
(gdb) attach 4712
|
||
Cannot access memory at address 0xdeadbeef
|
||
*/
|
||
|
||
/* In some OSs, the shared library list is the same/global/shared
|
||
across inferiors. If code is shared between processes, so are
|
||
memory regions and features. */
|
||
if (!gdbarch_has_global_solist (target_gdbarch ()))
|
||
{
|
||
no_shared_libraries (NULL, from_tty);
|
||
|
||
invalidate_target_mem_regions ();
|
||
|
||
target_clear_description ();
|
||
}
|
||
|
||
agent_capability_invalidate ();
|
||
}
|
||
|
||
/* Callback for iterate_over_inferiors. Gets rid of the given
|
||
inferior. */
|
||
|
||
static int
|
||
dispose_inferior (struct inferior *inf, void *args)
|
||
{
|
||
struct thread_info *thread;
|
||
|
||
thread = any_thread_of_process (inf->pid);
|
||
if (thread)
|
||
{
|
||
switch_to_thread (thread->ptid);
|
||
|
||
/* Core inferiors actually should be detached, not killed. */
|
||
if (target_has_execution)
|
||
target_kill ();
|
||
else
|
||
target_detach (NULL, 0);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* This is to be called by the open routine before it does
|
||
anything. */
|
||
|
||
void
|
||
target_preopen (int from_tty)
|
||
{
|
||
dont_repeat ();
|
||
|
||
if (have_inferiors ())
|
||
{
|
||
if (!from_tty
|
||
|| !have_live_inferiors ()
|
||
|| query (_("A program is being debugged already. Kill it? ")))
|
||
iterate_over_inferiors (dispose_inferior, NULL);
|
||
else
|
||
error (_("Program not killed."));
|
||
}
|
||
|
||
/* Calling target_kill may remove the target from the stack. But if
|
||
it doesn't (which seems like a win for UDI), remove it now. */
|
||
/* Leave the exec target, though. The user may be switching from a
|
||
live process to a core of the same program. */
|
||
pop_all_targets_above (file_stratum);
|
||
|
||
target_pre_inferior (from_tty);
|
||
}
|
||
|
||
/* Detach a target after doing deferred register stores. */
|
||
|
||
void
|
||
target_detach (const char *args, int from_tty)
|
||
{
|
||
struct target_ops* t;
|
||
|
||
if (gdbarch_has_global_breakpoints (target_gdbarch ()))
|
||
/* Don't remove global breakpoints here. They're removed on
|
||
disconnection from the target. */
|
||
;
|
||
else
|
||
/* If we're in breakpoints-always-inserted mode, have to remove
|
||
them before detaching. */
|
||
remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
|
||
|
||
prepare_for_detach ();
|
||
|
||
current_target.to_detach (¤t_target, args, from_tty);
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
|
||
args, from_tty);
|
||
}
|
||
|
||
void
|
||
target_disconnect (const char *args, int from_tty)
|
||
{
|
||
/* If we're in breakpoints-always-inserted mode or if breakpoints
|
||
are global across processes, we have to remove them before
|
||
disconnecting. */
|
||
remove_breakpoints ();
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
|
||
args, from_tty);
|
||
current_target.to_disconnect (¤t_target, args, from_tty);
|
||
}
|
||
|
||
ptid_t
|
||
target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
|
||
{
|
||
struct target_ops *t;
|
||
ptid_t retval = (current_target.to_wait) (¤t_target, ptid,
|
||
status, options);
|
||
|
||
if (targetdebug)
|
||
{
|
||
char *status_string;
|
||
char *options_string;
|
||
|
||
status_string = target_waitstatus_to_string (status);
|
||
options_string = target_options_to_string (options);
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_wait (%d, status, options={%s})"
|
||
" = %d, %s\n",
|
||
ptid_get_pid (ptid), options_string,
|
||
ptid_get_pid (retval), status_string);
|
||
xfree (status_string);
|
||
xfree (options_string);
|
||
}
|
||
|
||
return retval;
|
||
}
|
||
|
||
char *
|
||
target_pid_to_str (ptid_t ptid)
|
||
{
|
||
return (*current_target.to_pid_to_str) (¤t_target, ptid);
|
||
}
|
||
|
||
char *
|
||
target_thread_name (struct thread_info *info)
|
||
{
|
||
return current_target.to_thread_name (¤t_target, info);
|
||
}
|
||
|
||
void
|
||
target_resume (ptid_t ptid, int step, enum gdb_signal signal)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
target_dcache_invalidate ();
|
||
|
||
current_target.to_resume (¤t_target, ptid, step, signal);
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
|
||
ptid_get_pid (ptid),
|
||
step ? "step" : "continue",
|
||
gdb_signal_to_name (signal));
|
||
|
||
registers_changed_ptid (ptid);
|
||
/* We only set the internal executing state here. The user/frontend
|
||
running state is set at a higher level. */
|
||
set_executing (ptid, 1);
|
||
clear_inline_frame_state (ptid);
|
||
}
|
||
|
||
void
|
||
target_pass_signals (int numsigs, unsigned char *pass_signals)
|
||
{
|
||
if (targetdebug)
|
||
{
|
||
int i;
|
||
|
||
fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
|
||
numsigs);
|
||
|
||
for (i = 0; i < numsigs; i++)
|
||
if (pass_signals[i])
|
||
fprintf_unfiltered (gdb_stdlog, " %s",
|
||
gdb_signal_to_name (i));
|
||
|
||
fprintf_unfiltered (gdb_stdlog, " })\n");
|
||
}
|
||
|
||
(*current_target.to_pass_signals) (¤t_target, numsigs, pass_signals);
|
||
}
|
||
|
||
void
|
||
target_program_signals (int numsigs, unsigned char *program_signals)
|
||
{
|
||
if (targetdebug)
|
||
{
|
||
int i;
|
||
|
||
fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
|
||
numsigs);
|
||
|
||
for (i = 0; i < numsigs; i++)
|
||
if (program_signals[i])
|
||
fprintf_unfiltered (gdb_stdlog, " %s",
|
||
gdb_signal_to_name (i));
|
||
|
||
fprintf_unfiltered (gdb_stdlog, " })\n");
|
||
}
|
||
|
||
(*current_target.to_program_signals) (¤t_target,
|
||
numsigs, program_signals);
|
||
}
|
||
|
||
static int
|
||
default_follow_fork (struct target_ops *self, int follow_child,
|
||
int detach_fork)
|
||
{
|
||
/* Some target returned a fork event, but did not know how to follow it. */
|
||
internal_error (__FILE__, __LINE__,
|
||
_("could not find a target to follow fork"));
|
||
}
|
||
|
||
/* Look through the list of possible targets for a target that can
|
||
follow forks. */
|
||
|
||
int
|
||
target_follow_fork (int follow_child, int detach_fork)
|
||
{
|
||
int retval = current_target.to_follow_fork (¤t_target,
|
||
follow_child, detach_fork);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_follow_fork (%d, %d) = %d\n",
|
||
follow_child, detach_fork, retval);
|
||
return retval;
|
||
}
|
||
|
||
static void
|
||
default_mourn_inferior (struct target_ops *self)
|
||
{
|
||
internal_error (__FILE__, __LINE__,
|
||
_("could not find a target to follow mourn inferior"));
|
||
}
|
||
|
||
void
|
||
target_mourn_inferior (void)
|
||
{
|
||
current_target.to_mourn_inferior (¤t_target);
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
|
||
|
||
/* We no longer need to keep handles on any of the object files.
|
||
Make sure to release them to avoid unnecessarily locking any
|
||
of them while we're not actually debugging. */
|
||
bfd_cache_close_all ();
|
||
}
|
||
|
||
/* Look for a target which can describe architectural features, starting
|
||
from TARGET. If we find one, return its description. */
|
||
|
||
const struct target_desc *
|
||
target_read_description (struct target_ops *target)
|
||
{
|
||
return target->to_read_description (target);
|
||
}
|
||
|
||
/* This implements a basic search of memory, reading target memory and
|
||
performing the search here (as opposed to performing the search in on the
|
||
target side with, for example, gdbserver). */
|
||
|
||
int
|
||
simple_search_memory (struct target_ops *ops,
|
||
CORE_ADDR start_addr, ULONGEST search_space_len,
|
||
const gdb_byte *pattern, ULONGEST pattern_len,
|
||
CORE_ADDR *found_addrp)
|
||
{
|
||
/* NOTE: also defined in find.c testcase. */
|
||
#define SEARCH_CHUNK_SIZE 16000
|
||
const unsigned chunk_size = SEARCH_CHUNK_SIZE;
|
||
/* Buffer to hold memory contents for searching. */
|
||
gdb_byte *search_buf;
|
||
unsigned search_buf_size;
|
||
struct cleanup *old_cleanups;
|
||
|
||
search_buf_size = chunk_size + pattern_len - 1;
|
||
|
||
/* No point in trying to allocate a buffer larger than the search space. */
|
||
if (search_space_len < search_buf_size)
|
||
search_buf_size = search_space_len;
|
||
|
||
search_buf = malloc (search_buf_size);
|
||
if (search_buf == NULL)
|
||
error (_("Unable to allocate memory to perform the search."));
|
||
old_cleanups = make_cleanup (free_current_contents, &search_buf);
|
||
|
||
/* Prime the search buffer. */
|
||
|
||
if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
|
||
search_buf, start_addr, search_buf_size) != search_buf_size)
|
||
{
|
||
warning (_("Unable to access %s bytes of target "
|
||
"memory at %s, halting search."),
|
||
pulongest (search_buf_size), hex_string (start_addr));
|
||
do_cleanups (old_cleanups);
|
||
return -1;
|
||
}
|
||
|
||
/* Perform the search.
|
||
|
||
The loop is kept simple by allocating [N + pattern-length - 1] bytes.
|
||
When we've scanned N bytes we copy the trailing bytes to the start and
|
||
read in another N bytes. */
|
||
|
||
while (search_space_len >= pattern_len)
|
||
{
|
||
gdb_byte *found_ptr;
|
||
unsigned nr_search_bytes = min (search_space_len, search_buf_size);
|
||
|
||
found_ptr = memmem (search_buf, nr_search_bytes,
|
||
pattern, pattern_len);
|
||
|
||
if (found_ptr != NULL)
|
||
{
|
||
CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
|
||
|
||
*found_addrp = found_addr;
|
||
do_cleanups (old_cleanups);
|
||
return 1;
|
||
}
|
||
|
||
/* Not found in this chunk, skip to next chunk. */
|
||
|
||
/* Don't let search_space_len wrap here, it's unsigned. */
|
||
if (search_space_len >= chunk_size)
|
||
search_space_len -= chunk_size;
|
||
else
|
||
search_space_len = 0;
|
||
|
||
if (search_space_len >= pattern_len)
|
||
{
|
||
unsigned keep_len = search_buf_size - chunk_size;
|
||
CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
|
||
int nr_to_read;
|
||
|
||
/* Copy the trailing part of the previous iteration to the front
|
||
of the buffer for the next iteration. */
|
||
gdb_assert (keep_len == pattern_len - 1);
|
||
memcpy (search_buf, search_buf + chunk_size, keep_len);
|
||
|
||
nr_to_read = min (search_space_len - keep_len, chunk_size);
|
||
|
||
if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
|
||
search_buf + keep_len, read_addr,
|
||
nr_to_read) != nr_to_read)
|
||
{
|
||
warning (_("Unable to access %s bytes of target "
|
||
"memory at %s, halting search."),
|
||
plongest (nr_to_read),
|
||
hex_string (read_addr));
|
||
do_cleanups (old_cleanups);
|
||
return -1;
|
||
}
|
||
|
||
start_addr += chunk_size;
|
||
}
|
||
}
|
||
|
||
/* Not found. */
|
||
|
||
do_cleanups (old_cleanups);
|
||
return 0;
|
||
}
|
||
|
||
/* Default implementation of memory-searching. */
|
||
|
||
static int
|
||
default_search_memory (struct target_ops *self,
|
||
CORE_ADDR start_addr, ULONGEST search_space_len,
|
||
const gdb_byte *pattern, ULONGEST pattern_len,
|
||
CORE_ADDR *found_addrp)
|
||
{
|
||
/* Start over from the top of the target stack. */
|
||
return simple_search_memory (current_target.beneath,
|
||
start_addr, search_space_len,
|
||
pattern, pattern_len, found_addrp);
|
||
}
|
||
|
||
/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
|
||
sequence of bytes in PATTERN with length PATTERN_LEN.
|
||
|
||
The result is 1 if found, 0 if not found, and -1 if there was an error
|
||
requiring halting of the search (e.g. memory read error).
|
||
If the pattern is found the address is recorded in FOUND_ADDRP. */
|
||
|
||
int
|
||
target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
|
||
const gdb_byte *pattern, ULONGEST pattern_len,
|
||
CORE_ADDR *found_addrp)
|
||
{
|
||
int found;
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
|
||
hex_string (start_addr));
|
||
|
||
found = current_target.to_search_memory (¤t_target, start_addr,
|
||
search_space_len,
|
||
pattern, pattern_len, found_addrp);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
|
||
|
||
return found;
|
||
}
|
||
|
||
/* Look through the currently pushed targets. If none of them will
|
||
be able to restart the currently running process, issue an error
|
||
message. */
|
||
|
||
void
|
||
target_require_runnable (void)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = target_stack; t != NULL; t = t->beneath)
|
||
{
|
||
/* If this target knows how to create a new program, then
|
||
assume we will still be able to after killing the current
|
||
one. Either killing and mourning will not pop T, or else
|
||
find_default_run_target will find it again. */
|
||
if (t->to_create_inferior != NULL)
|
||
return;
|
||
|
||
/* Do not worry about thread_stratum targets that can not
|
||
create inferiors. Assume they will be pushed again if
|
||
necessary, and continue to the process_stratum. */
|
||
if (t->to_stratum == thread_stratum
|
||
|| t->to_stratum == arch_stratum)
|
||
continue;
|
||
|
||
error (_("The \"%s\" target does not support \"run\". "
|
||
"Try \"help target\" or \"continue\"."),
|
||
t->to_shortname);
|
||
}
|
||
|
||
/* This function is only called if the target is running. In that
|
||
case there should have been a process_stratum target and it
|
||
should either know how to create inferiors, or not... */
|
||
internal_error (__FILE__, __LINE__, _("No targets found"));
|
||
}
|
||
|
||
/* Whether GDB is allowed to fall back to the default run target for
|
||
"run", "attach", etc. when no target is connected yet. */
|
||
static int auto_connect_native_target = 1;
|
||
|
||
static void
|
||
show_auto_connect_native_target (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Whether GDB may automatically connect to the "
|
||
"native target is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* Look through the list of possible targets for a target that can
|
||
execute a run or attach command without any other data. This is
|
||
used to locate the default process stratum.
|
||
|
||
If DO_MESG is not NULL, the result is always valid (error() is
|
||
called for errors); else, return NULL on error. */
|
||
|
||
static struct target_ops *
|
||
find_default_run_target (char *do_mesg)
|
||
{
|
||
struct target_ops *runable = NULL;
|
||
|
||
if (auto_connect_native_target)
|
||
{
|
||
struct target_ops **t;
|
||
int count = 0;
|
||
|
||
for (t = target_structs; t < target_structs + target_struct_size;
|
||
++t)
|
||
{
|
||
if ((*t)->to_can_run != delegate_can_run && target_can_run (*t))
|
||
{
|
||
runable = *t;
|
||
++count;
|
||
}
|
||
}
|
||
|
||
if (count != 1)
|
||
runable = NULL;
|
||
}
|
||
|
||
if (runable == NULL)
|
||
{
|
||
if (do_mesg)
|
||
error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
return runable;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
struct target_ops *
|
||
find_attach_target (void)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
/* If a target on the current stack can attach, use it. */
|
||
for (t = current_target.beneath; t != NULL; t = t->beneath)
|
||
{
|
||
if (t->to_attach != NULL)
|
||
break;
|
||
}
|
||
|
||
/* Otherwise, use the default run target for attaching. */
|
||
if (t == NULL)
|
||
t = find_default_run_target ("attach");
|
||
|
||
return t;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
struct target_ops *
|
||
find_run_target (void)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
/* If a target on the current stack can attach, use it. */
|
||
for (t = current_target.beneath; t != NULL; t = t->beneath)
|
||
{
|
||
if (t->to_create_inferior != NULL)
|
||
break;
|
||
}
|
||
|
||
/* Otherwise, use the default run target. */
|
||
if (t == NULL)
|
||
t = find_default_run_target ("run");
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Implement the "info proc" command. */
|
||
|
||
int
|
||
target_info_proc (const char *args, enum info_proc_what what)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
/* If we're already connected to something that can get us OS
|
||
related data, use it. Otherwise, try using the native
|
||
target. */
|
||
if (current_target.to_stratum >= process_stratum)
|
||
t = current_target.beneath;
|
||
else
|
||
t = find_default_run_target (NULL);
|
||
|
||
for (; t != NULL; t = t->beneath)
|
||
{
|
||
if (t->to_info_proc != NULL)
|
||
{
|
||
t->to_info_proc (t, args, what);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_info_proc (\"%s\", %d)\n", args, what);
|
||
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
find_default_supports_disable_randomization (struct target_ops *self)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
t = find_default_run_target (NULL);
|
||
if (t && t->to_supports_disable_randomization)
|
||
return (t->to_supports_disable_randomization) (t);
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
target_supports_disable_randomization (void)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = ¤t_target; t != NULL; t = t->beneath)
|
||
if (t->to_supports_disable_randomization)
|
||
return t->to_supports_disable_randomization (t);
|
||
|
||
return 0;
|
||
}
|
||
|
||
char *
|
||
target_get_osdata (const char *type)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
/* If we're already connected to something that can get us OS
|
||
related data, use it. Otherwise, try using the native
|
||
target. */
|
||
if (current_target.to_stratum >= process_stratum)
|
||
t = current_target.beneath;
|
||
else
|
||
t = find_default_run_target ("get OS data");
|
||
|
||
if (!t)
|
||
return NULL;
|
||
|
||
return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
|
||
}
|
||
|
||
static struct address_space *
|
||
default_thread_address_space (struct target_ops *self, ptid_t ptid)
|
||
{
|
||
struct inferior *inf;
|
||
|
||
/* Fall-back to the "main" address space of the inferior. */
|
||
inf = find_inferior_pid (ptid_get_pid (ptid));
|
||
|
||
if (inf == NULL || inf->aspace == NULL)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("Can't determine the current "
|
||
"address space of thread %s\n"),
|
||
target_pid_to_str (ptid));
|
||
|
||
return inf->aspace;
|
||
}
|
||
|
||
/* Determine the current address space of thread PTID. */
|
||
|
||
struct address_space *
|
||
target_thread_address_space (ptid_t ptid)
|
||
{
|
||
struct address_space *aspace;
|
||
|
||
aspace = current_target.to_thread_address_space (¤t_target, ptid);
|
||
gdb_assert (aspace != NULL);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_thread_address_space (%s) = %d\n",
|
||
target_pid_to_str (ptid),
|
||
address_space_num (aspace));
|
||
|
||
return aspace;
|
||
}
|
||
|
||
|
||
/* Target file operations. */
|
||
|
||
static struct target_ops *
|
||
default_fileio_target (void)
|
||
{
|
||
/* If we're already connected to something that can perform
|
||
file I/O, use it. Otherwise, try using the native target. */
|
||
if (current_target.to_stratum >= process_stratum)
|
||
return current_target.beneath;
|
||
else
|
||
return find_default_run_target ("file I/O");
|
||
}
|
||
|
||
/* Open FILENAME on the target, using FLAGS and MODE. Return a
|
||
target file descriptor, or -1 if an error occurs (and set
|
||
*TARGET_ERRNO). */
|
||
int
|
||
target_fileio_open (const char *filename, int flags, int mode,
|
||
int *target_errno)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = default_fileio_target (); t != NULL; t = t->beneath)
|
||
{
|
||
if (t->to_fileio_open != NULL)
|
||
{
|
||
int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
|
||
filename, flags, mode,
|
||
fd, fd != -1 ? 0 : *target_errno);
|
||
return fd;
|
||
}
|
||
}
|
||
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return -1;
|
||
}
|
||
|
||
/* Write up to LEN bytes from WRITE_BUF to FD on the target.
|
||
Return the number of bytes written, or -1 if an error occurs
|
||
(and set *TARGET_ERRNO). */
|
||
int
|
||
target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
|
||
ULONGEST offset, int *target_errno)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = default_fileio_target (); t != NULL; t = t->beneath)
|
||
{
|
||
if (t->to_fileio_pwrite != NULL)
|
||
{
|
||
int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
|
||
target_errno);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_fileio_pwrite (%d,...,%d,%s) "
|
||
"= %d (%d)\n",
|
||
fd, len, pulongest (offset),
|
||
ret, ret != -1 ? 0 : *target_errno);
|
||
return ret;
|
||
}
|
||
}
|
||
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return -1;
|
||
}
|
||
|
||
/* Read up to LEN bytes FD on the target into READ_BUF.
|
||
Return the number of bytes read, or -1 if an error occurs
|
||
(and set *TARGET_ERRNO). */
|
||
int
|
||
target_fileio_pread (int fd, gdb_byte *read_buf, int len,
|
||
ULONGEST offset, int *target_errno)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = default_fileio_target (); t != NULL; t = t->beneath)
|
||
{
|
||
if (t->to_fileio_pread != NULL)
|
||
{
|
||
int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
|
||
target_errno);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_fileio_pread (%d,...,%d,%s) "
|
||
"= %d (%d)\n",
|
||
fd, len, pulongest (offset),
|
||
ret, ret != -1 ? 0 : *target_errno);
|
||
return ret;
|
||
}
|
||
}
|
||
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return -1;
|
||
}
|
||
|
||
/* Close FD on the target. Return 0, or -1 if an error occurs
|
||
(and set *TARGET_ERRNO). */
|
||
int
|
||
target_fileio_close (int fd, int *target_errno)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = default_fileio_target (); t != NULL; t = t->beneath)
|
||
{
|
||
if (t->to_fileio_close != NULL)
|
||
{
|
||
int ret = t->to_fileio_close (t, fd, target_errno);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_fileio_close (%d) = %d (%d)\n",
|
||
fd, ret, ret != -1 ? 0 : *target_errno);
|
||
return ret;
|
||
}
|
||
}
|
||
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return -1;
|
||
}
|
||
|
||
/* Unlink FILENAME on the target. Return 0, or -1 if an error
|
||
occurs (and set *TARGET_ERRNO). */
|
||
int
|
||
target_fileio_unlink (const char *filename, int *target_errno)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = default_fileio_target (); t != NULL; t = t->beneath)
|
||
{
|
||
if (t->to_fileio_unlink != NULL)
|
||
{
|
||
int ret = t->to_fileio_unlink (t, filename, target_errno);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_fileio_unlink (%s) = %d (%d)\n",
|
||
filename, ret, ret != -1 ? 0 : *target_errno);
|
||
return ret;
|
||
}
|
||
}
|
||
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return -1;
|
||
}
|
||
|
||
/* Read value of symbolic link FILENAME on the target. Return a
|
||
null-terminated string allocated via xmalloc, or NULL if an error
|
||
occurs (and set *TARGET_ERRNO). */
|
||
char *
|
||
target_fileio_readlink (const char *filename, int *target_errno)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = default_fileio_target (); t != NULL; t = t->beneath)
|
||
{
|
||
if (t->to_fileio_readlink != NULL)
|
||
{
|
||
char *ret = t->to_fileio_readlink (t, filename, target_errno);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_fileio_readlink (%s) = %s (%d)\n",
|
||
filename, ret? ret : "(nil)",
|
||
ret? 0 : *target_errno);
|
||
return ret;
|
||
}
|
||
}
|
||
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return NULL;
|
||
}
|
||
|
||
static void
|
||
target_fileio_close_cleanup (void *opaque)
|
||
{
|
||
int fd = *(int *) opaque;
|
||
int target_errno;
|
||
|
||
target_fileio_close (fd, &target_errno);
|
||
}
|
||
|
||
/* Read target file FILENAME. Store the result in *BUF_P and
|
||
return the size of the transferred data. PADDING additional bytes are
|
||
available in *BUF_P. This is a helper function for
|
||
target_fileio_read_alloc; see the declaration of that function for more
|
||
information. */
|
||
|
||
static LONGEST
|
||
target_fileio_read_alloc_1 (const char *filename,
|
||
gdb_byte **buf_p, int padding)
|
||
{
|
||
struct cleanup *close_cleanup;
|
||
size_t buf_alloc, buf_pos;
|
||
gdb_byte *buf;
|
||
LONGEST n;
|
||
int fd;
|
||
int target_errno;
|
||
|
||
fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
|
||
if (fd == -1)
|
||
return -1;
|
||
|
||
close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
|
||
|
||
/* Start by reading up to 4K at a time. The target will throttle
|
||
this number down if necessary. */
|
||
buf_alloc = 4096;
|
||
buf = xmalloc (buf_alloc);
|
||
buf_pos = 0;
|
||
while (1)
|
||
{
|
||
n = target_fileio_pread (fd, &buf[buf_pos],
|
||
buf_alloc - buf_pos - padding, buf_pos,
|
||
&target_errno);
|
||
if (n < 0)
|
||
{
|
||
/* An error occurred. */
|
||
do_cleanups (close_cleanup);
|
||
xfree (buf);
|
||
return -1;
|
||
}
|
||
else if (n == 0)
|
||
{
|
||
/* Read all there was. */
|
||
do_cleanups (close_cleanup);
|
||
if (buf_pos == 0)
|
||
xfree (buf);
|
||
else
|
||
*buf_p = buf;
|
||
return buf_pos;
|
||
}
|
||
|
||
buf_pos += n;
|
||
|
||
/* If the buffer is filling up, expand it. */
|
||
if (buf_alloc < buf_pos * 2)
|
||
{
|
||
buf_alloc *= 2;
|
||
buf = xrealloc (buf, buf_alloc);
|
||
}
|
||
|
||
QUIT;
|
||
}
|
||
}
|
||
|
||
/* Read target file FILENAME. Store the result in *BUF_P and return
|
||
the size of the transferred data. See the declaration in "target.h"
|
||
function for more information about the return value. */
|
||
|
||
LONGEST
|
||
target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
|
||
{
|
||
return target_fileio_read_alloc_1 (filename, buf_p, 0);
|
||
}
|
||
|
||
/* Read target file FILENAME. The result is NUL-terminated and
|
||
returned as a string, allocated using xmalloc. If an error occurs
|
||
or the transfer is unsupported, NULL is returned. Empty objects
|
||
are returned as allocated but empty strings. A warning is issued
|
||
if the result contains any embedded NUL bytes. */
|
||
|
||
char *
|
||
target_fileio_read_stralloc (const char *filename)
|
||
{
|
||
gdb_byte *buffer;
|
||
char *bufstr;
|
||
LONGEST i, transferred;
|
||
|
||
transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
|
||
bufstr = (char *) buffer;
|
||
|
||
if (transferred < 0)
|
||
return NULL;
|
||
|
||
if (transferred == 0)
|
||
return xstrdup ("");
|
||
|
||
bufstr[transferred] = 0;
|
||
|
||
/* Check for embedded NUL bytes; but allow trailing NULs. */
|
||
for (i = strlen (bufstr); i < transferred; i++)
|
||
if (bufstr[i] != 0)
|
||
{
|
||
warning (_("target file %s "
|
||
"contained unexpected null characters"),
|
||
filename);
|
||
break;
|
||
}
|
||
|
||
return bufstr;
|
||
}
|
||
|
||
|
||
static int
|
||
default_region_ok_for_hw_watchpoint (struct target_ops *self,
|
||
CORE_ADDR addr, int len)
|
||
{
|
||
return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
|
||
}
|
||
|
||
static int
|
||
default_watchpoint_addr_within_range (struct target_ops *target,
|
||
CORE_ADDR addr,
|
||
CORE_ADDR start, int length)
|
||
{
|
||
return addr >= start && addr < start + length;
|
||
}
|
||
|
||
static struct gdbarch *
|
||
default_thread_architecture (struct target_ops *ops, ptid_t ptid)
|
||
{
|
||
return target_gdbarch ();
|
||
}
|
||
|
||
static int
|
||
return_zero (struct target_ops *ignore)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* Find the next target down the stack from the specified target.
|
||
*/
|
||
|
||
struct target_ops *
|
||
find_target_beneath (struct target_ops *t)
|
||
{
|
||
return t->beneath;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
struct target_ops *
|
||
find_target_at (enum strata stratum)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = current_target.beneath; t != NULL; t = t->beneath)
|
||
if (t->to_stratum == stratum)
|
||
return t;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* The inferior process has died. Long live the inferior! */
|
||
|
||
void
|
||
generic_mourn_inferior (void)
|
||
{
|
||
ptid_t ptid;
|
||
|
||
ptid = inferior_ptid;
|
||
inferior_ptid = null_ptid;
|
||
|
||
/* Mark breakpoints uninserted in case something tries to delete a
|
||
breakpoint while we delete the inferior's threads (which would
|
||
fail, since the inferior is long gone). */
|
||
mark_breakpoints_out ();
|
||
|
||
if (!ptid_equal (ptid, null_ptid))
|
||
{
|
||
int pid = ptid_get_pid (ptid);
|
||
exit_inferior (pid);
|
||
}
|
||
|
||
/* Note this wipes step-resume breakpoints, so needs to be done
|
||
after exit_inferior, which ends up referencing the step-resume
|
||
breakpoints through clear_thread_inferior_resources. */
|
||
breakpoint_init_inferior (inf_exited);
|
||
|
||
registers_changed ();
|
||
|
||
reopen_exec_file ();
|
||
reinit_frame_cache ();
|
||
|
||
if (deprecated_detach_hook)
|
||
deprecated_detach_hook ();
|
||
}
|
||
|
||
/* Convert a normal process ID to a string. Returns the string in a
|
||
static buffer. */
|
||
|
||
char *
|
||
normal_pid_to_str (ptid_t ptid)
|
||
{
|
||
static char buf[32];
|
||
|
||
xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
|
||
return buf;
|
||
}
|
||
|
||
static char *
|
||
default_pid_to_str (struct target_ops *ops, ptid_t ptid)
|
||
{
|
||
return normal_pid_to_str (ptid);
|
||
}
|
||
|
||
/* Error-catcher for target_find_memory_regions. */
|
||
static int
|
||
dummy_find_memory_regions (struct target_ops *self,
|
||
find_memory_region_ftype ignore1, void *ignore2)
|
||
{
|
||
error (_("Command not implemented for this target."));
|
||
return 0;
|
||
}
|
||
|
||
/* Error-catcher for target_make_corefile_notes. */
|
||
static char *
|
||
dummy_make_corefile_notes (struct target_ops *self,
|
||
bfd *ignore1, int *ignore2)
|
||
{
|
||
error (_("Command not implemented for this target."));
|
||
return NULL;
|
||
}
|
||
|
||
/* Set up the handful of non-empty slots needed by the dummy target
|
||
vector. */
|
||
|
||
static void
|
||
init_dummy_target (void)
|
||
{
|
||
dummy_target.to_shortname = "None";
|
||
dummy_target.to_longname = "None";
|
||
dummy_target.to_doc = "";
|
||
dummy_target.to_supports_disable_randomization
|
||
= find_default_supports_disable_randomization;
|
||
dummy_target.to_stratum = dummy_stratum;
|
||
dummy_target.to_has_all_memory = return_zero;
|
||
dummy_target.to_has_memory = return_zero;
|
||
dummy_target.to_has_stack = return_zero;
|
||
dummy_target.to_has_registers = return_zero;
|
||
dummy_target.to_has_execution = return_zero_has_execution;
|
||
dummy_target.to_magic = OPS_MAGIC;
|
||
|
||
install_dummy_methods (&dummy_target);
|
||
}
|
||
|
||
static void
|
||
debug_to_open (char *args, int from_tty)
|
||
{
|
||
debug_target.to_open (args, from_tty);
|
||
|
||
fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
|
||
}
|
||
|
||
void
|
||
target_close (struct target_ops *targ)
|
||
{
|
||
gdb_assert (!target_is_pushed (targ));
|
||
|
||
if (targ->to_xclose != NULL)
|
||
targ->to_xclose (targ);
|
||
else if (targ->to_close != NULL)
|
||
targ->to_close (targ);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
|
||
}
|
||
|
||
int
|
||
target_thread_alive (ptid_t ptid)
|
||
{
|
||
int retval;
|
||
|
||
retval = current_target.to_thread_alive (¤t_target, ptid);
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
|
||
ptid_get_pid (ptid), retval);
|
||
|
||
return retval;
|
||
}
|
||
|
||
void
|
||
target_find_new_threads (void)
|
||
{
|
||
current_target.to_find_new_threads (¤t_target);
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
|
||
}
|
||
|
||
void
|
||
target_stop (ptid_t ptid)
|
||
{
|
||
if (!may_stop)
|
||
{
|
||
warning (_("May not interrupt or stop the target, ignoring attempt"));
|
||
return;
|
||
}
|
||
|
||
(*current_target.to_stop) (¤t_target, ptid);
|
||
}
|
||
|
||
static void
|
||
debug_to_post_attach (struct target_ops *self, int pid)
|
||
{
|
||
debug_target.to_post_attach (&debug_target, pid);
|
||
|
||
fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
|
||
}
|
||
|
||
/* Concatenate ELEM to LIST, a comma separate list, and return the
|
||
result. The LIST incoming argument is released. */
|
||
|
||
static char *
|
||
str_comma_list_concat_elem (char *list, const char *elem)
|
||
{
|
||
if (list == NULL)
|
||
return xstrdup (elem);
|
||
else
|
||
return reconcat (list, list, ", ", elem, (char *) NULL);
|
||
}
|
||
|
||
/* Helper for target_options_to_string. If OPT is present in
|
||
TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
|
||
Returns the new resulting string. OPT is removed from
|
||
TARGET_OPTIONS. */
|
||
|
||
static char *
|
||
do_option (int *target_options, char *ret,
|
||
int opt, char *opt_str)
|
||
{
|
||
if ((*target_options & opt) != 0)
|
||
{
|
||
ret = str_comma_list_concat_elem (ret, opt_str);
|
||
*target_options &= ~opt;
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
char *
|
||
target_options_to_string (int target_options)
|
||
{
|
||
char *ret = NULL;
|
||
|
||
#define DO_TARG_OPTION(OPT) \
|
||
ret = do_option (&target_options, ret, OPT, #OPT)
|
||
|
||
DO_TARG_OPTION (TARGET_WNOHANG);
|
||
|
||
if (target_options != 0)
|
||
ret = str_comma_list_concat_elem (ret, "unknown???");
|
||
|
||
if (ret == NULL)
|
||
ret = xstrdup ("");
|
||
return ret;
|
||
}
|
||
|
||
static void
|
||
debug_print_register (const char * func,
|
||
struct regcache *regcache, int regno)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
|
||
fprintf_unfiltered (gdb_stdlog, "%s ", func);
|
||
if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
|
||
&& gdbarch_register_name (gdbarch, regno) != NULL
|
||
&& gdbarch_register_name (gdbarch, regno)[0] != '\0')
|
||
fprintf_unfiltered (gdb_stdlog, "(%s)",
|
||
gdbarch_register_name (gdbarch, regno));
|
||
else
|
||
fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
|
||
if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
int i, size = register_size (gdbarch, regno);
|
||
gdb_byte buf[MAX_REGISTER_SIZE];
|
||
|
||
regcache_raw_collect (regcache, regno, buf);
|
||
fprintf_unfiltered (gdb_stdlog, " = ");
|
||
for (i = 0; i < size; i++)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
|
||
}
|
||
if (size <= sizeof (LONGEST))
|
||
{
|
||
ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
|
||
|
||
fprintf_unfiltered (gdb_stdlog, " %s %s",
|
||
core_addr_to_string_nz (val), plongest (val));
|
||
}
|
||
}
|
||
fprintf_unfiltered (gdb_stdlog, "\n");
|
||
}
|
||
|
||
void
|
||
target_fetch_registers (struct regcache *regcache, int regno)
|
||
{
|
||
current_target.to_fetch_registers (¤t_target, regcache, regno);
|
||
if (targetdebug)
|
||
debug_print_register ("target_fetch_registers", regcache, regno);
|
||
}
|
||
|
||
void
|
||
target_store_registers (struct regcache *regcache, int regno)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
if (!may_write_registers)
|
||
error (_("Writing to registers is not allowed (regno %d)"), regno);
|
||
|
||
current_target.to_store_registers (¤t_target, regcache, regno);
|
||
if (targetdebug)
|
||
{
|
||
debug_print_register ("target_store_registers", regcache, regno);
|
||
}
|
||
}
|
||
|
||
int
|
||
target_core_of_thread (ptid_t ptid)
|
||
{
|
||
int retval = current_target.to_core_of_thread (¤t_target, ptid);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_core_of_thread (%d) = %d\n",
|
||
ptid_get_pid (ptid), retval);
|
||
return retval;
|
||
}
|
||
|
||
int
|
||
simple_verify_memory (struct target_ops *ops,
|
||
const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
|
||
{
|
||
LONGEST total_xfered = 0;
|
||
|
||
while (total_xfered < size)
|
||
{
|
||
ULONGEST xfered_len;
|
||
enum target_xfer_status status;
|
||
gdb_byte buf[1024];
|
||
ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
|
||
|
||
status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
|
||
buf, NULL, lma + total_xfered, howmuch,
|
||
&xfered_len);
|
||
if (status == TARGET_XFER_OK
|
||
&& memcmp (data + total_xfered, buf, xfered_len) == 0)
|
||
{
|
||
total_xfered += xfered_len;
|
||
QUIT;
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Default implementation of memory verification. */
|
||
|
||
static int
|
||
default_verify_memory (struct target_ops *self,
|
||
const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
|
||
{
|
||
/* Start over from the top of the target stack. */
|
||
return simple_verify_memory (current_target.beneath,
|
||
data, memaddr, size);
|
||
}
|
||
|
||
int
|
||
target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
|
||
{
|
||
int retval = current_target.to_verify_memory (¤t_target,
|
||
data, memaddr, size);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_verify_memory (%s, %s) = %d\n",
|
||
paddress (target_gdbarch (), memaddr),
|
||
pulongest (size),
|
||
retval);
|
||
return retval;
|
||
}
|
||
|
||
/* The documentation for this function is in its prototype declaration in
|
||
target.h. */
|
||
|
||
int
|
||
target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
|
||
{
|
||
int ret;
|
||
|
||
ret = current_target.to_insert_mask_watchpoint (¤t_target,
|
||
addr, mask, rw);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog, "\
|
||
target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
|
||
core_addr_to_string (addr),
|
||
core_addr_to_string (mask), rw, ret);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* The documentation for this function is in its prototype declaration in
|
||
target.h. */
|
||
|
||
int
|
||
target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
|
||
{
|
||
int ret;
|
||
|
||
ret = current_target.to_remove_mask_watchpoint (¤t_target,
|
||
addr, mask, rw);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog, "\
|
||
target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
|
||
core_addr_to_string (addr),
|
||
core_addr_to_string (mask), rw, ret);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* The documentation for this function is in its prototype declaration
|
||
in target.h. */
|
||
|
||
int
|
||
target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
|
||
{
|
||
return current_target.to_masked_watch_num_registers (¤t_target,
|
||
addr, mask);
|
||
}
|
||
|
||
/* The documentation for this function is in its prototype declaration
|
||
in target.h. */
|
||
|
||
int
|
||
target_ranged_break_num_registers (void)
|
||
{
|
||
return current_target.to_ranged_break_num_registers (¤t_target);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
struct btrace_target_info *
|
||
target_enable_btrace (ptid_t ptid)
|
||
{
|
||
return current_target.to_enable_btrace (¤t_target, ptid);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_disable_btrace (struct btrace_target_info *btinfo)
|
||
{
|
||
current_target.to_disable_btrace (¤t_target, btinfo);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_teardown_btrace (struct btrace_target_info *btinfo)
|
||
{
|
||
current_target.to_teardown_btrace (¤t_target, btinfo);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
enum btrace_error
|
||
target_read_btrace (VEC (btrace_block_s) **btrace,
|
||
struct btrace_target_info *btinfo,
|
||
enum btrace_read_type type)
|
||
{
|
||
return current_target.to_read_btrace (¤t_target, btrace, btinfo, type);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_stop_recording (void)
|
||
{
|
||
current_target.to_stop_recording (¤t_target);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_info_record (void)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = current_target.beneath; t != NULL; t = t->beneath)
|
||
if (t->to_info_record != NULL)
|
||
{
|
||
t->to_info_record (t);
|
||
return;
|
||
}
|
||
|
||
tcomplain ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_save_record (const char *filename)
|
||
{
|
||
current_target.to_save_record (¤t_target, filename);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_supports_delete_record (void)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = current_target.beneath; t != NULL; t = t->beneath)
|
||
if (t->to_delete_record != NULL)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_delete_record (void)
|
||
{
|
||
current_target.to_delete_record (¤t_target);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_record_is_replaying (void)
|
||
{
|
||
return current_target.to_record_is_replaying (¤t_target);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_goto_record_begin (void)
|
||
{
|
||
current_target.to_goto_record_begin (¤t_target);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_goto_record_end (void)
|
||
{
|
||
current_target.to_goto_record_end (¤t_target);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_goto_record (ULONGEST insn)
|
||
{
|
||
current_target.to_goto_record (¤t_target, insn);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_insn_history (int size, int flags)
|
||
{
|
||
current_target.to_insn_history (¤t_target, size, flags);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_insn_history_from (ULONGEST from, int size, int flags)
|
||
{
|
||
current_target.to_insn_history_from (¤t_target, from, size, flags);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
|
||
{
|
||
current_target.to_insn_history_range (¤t_target, begin, end, flags);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_call_history (int size, int flags)
|
||
{
|
||
current_target.to_call_history (¤t_target, size, flags);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_call_history_from (ULONGEST begin, int size, int flags)
|
||
{
|
||
current_target.to_call_history_from (¤t_target, begin, size, flags);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
|
||
{
|
||
current_target.to_call_history_range (¤t_target, begin, end, flags);
|
||
}
|
||
|
||
static void
|
||
debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
|
||
{
|
||
debug_target.to_prepare_to_store (&debug_target, regcache);
|
||
|
||
fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
const struct frame_unwind *
|
||
target_get_unwinder (void)
|
||
{
|
||
return current_target.to_get_unwinder (¤t_target);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
const struct frame_unwind *
|
||
target_get_tailcall_unwinder (void)
|
||
{
|
||
return current_target.to_get_tailcall_unwinder (¤t_target);
|
||
}
|
||
|
||
/* Default implementation of to_decr_pc_after_break. */
|
||
|
||
static CORE_ADDR
|
||
default_target_decr_pc_after_break (struct target_ops *ops,
|
||
struct gdbarch *gdbarch)
|
||
{
|
||
return gdbarch_decr_pc_after_break (gdbarch);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
CORE_ADDR
|
||
target_decr_pc_after_break (struct gdbarch *gdbarch)
|
||
{
|
||
return current_target.to_decr_pc_after_break (¤t_target, gdbarch);
|
||
}
|
||
|
||
static void
|
||
debug_to_files_info (struct target_ops *target)
|
||
{
|
||
debug_target.to_files_info (target);
|
||
|
||
fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
|
||
}
|
||
|
||
static int
|
||
debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
|
||
struct bp_target_info *bp_tgt)
|
||
{
|
||
int retval;
|
||
|
||
retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
|
||
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_insert_breakpoint (%s, xxx) = %ld\n",
|
||
core_addr_to_string (bp_tgt->placed_address),
|
||
(unsigned long) retval);
|
||
return retval;
|
||
}
|
||
|
||
static int
|
||
debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
|
||
struct bp_target_info *bp_tgt)
|
||
{
|
||
int retval;
|
||
|
||
retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
|
||
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_remove_breakpoint (%s, xxx) = %ld\n",
|
||
core_addr_to_string (bp_tgt->placed_address),
|
||
(unsigned long) retval);
|
||
return retval;
|
||
}
|
||
|
||
static int
|
||
debug_to_can_use_hw_breakpoint (struct target_ops *self,
|
||
int type, int cnt, int from_tty)
|
||
{
|
||
int retval;
|
||
|
||
retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
|
||
type, cnt, from_tty);
|
||
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
|
||
(unsigned long) type,
|
||
(unsigned long) cnt,
|
||
(unsigned long) from_tty,
|
||
(unsigned long) retval);
|
||
return retval;
|
||
}
|
||
|
||
static int
|
||
debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
|
||
CORE_ADDR addr, int len)
|
||
{
|
||
CORE_ADDR retval;
|
||
|
||
retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
|
||
addr, len);
|
||
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
|
||
core_addr_to_string (addr), (unsigned long) len,
|
||
core_addr_to_string (retval));
|
||
return retval;
|
||
}
|
||
|
||
static int
|
||
debug_to_can_accel_watchpoint_condition (struct target_ops *self,
|
||
CORE_ADDR addr, int len, int rw,
|
||
struct expression *cond)
|
||
{
|
||
int retval;
|
||
|
||
retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
|
||
addr, len,
|
||
rw, cond);
|
||
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_can_accel_watchpoint_condition "
|
||
"(%s, %d, %d, %s) = %ld\n",
|
||
core_addr_to_string (addr), len, rw,
|
||
host_address_to_string (cond), (unsigned long) retval);
|
||
return retval;
|
||
}
|
||
|
||
static int
|
||
debug_to_stopped_by_watchpoint (struct target_ops *ops)
|
||
{
|
||
int retval;
|
||
|
||
retval = debug_target.to_stopped_by_watchpoint (&debug_target);
|
||
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_stopped_by_watchpoint () = %ld\n",
|
||
(unsigned long) retval);
|
||
return retval;
|
||
}
|
||
|
||
static int
|
||
debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
|
||
{
|
||
int retval;
|
||
|
||
retval = debug_target.to_stopped_data_address (target, addr);
|
||
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_stopped_data_address ([%s]) = %ld\n",
|
||
core_addr_to_string (*addr),
|
||
(unsigned long)retval);
|
||
return retval;
|
||
}
|
||
|
||
static int
|
||
debug_to_watchpoint_addr_within_range (struct target_ops *target,
|
||
CORE_ADDR addr,
|
||
CORE_ADDR start, int length)
|
||
{
|
||
int retval;
|
||
|
||
retval = debug_target.to_watchpoint_addr_within_range (target, addr,
|
||
start, length);
|
||
|
||
fprintf_filtered (gdb_stdlog,
|
||
"target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
|
||
core_addr_to_string (addr), core_addr_to_string (start),
|
||
length, retval);
|
||
return retval;
|
||
}
|
||
|
||
static int
|
||
debug_to_insert_hw_breakpoint (struct target_ops *self,
|
||
struct gdbarch *gdbarch,
|
||
struct bp_target_info *bp_tgt)
|
||
{
|
||
int retval;
|
||
|
||
retval = debug_target.to_insert_hw_breakpoint (&debug_target,
|
||
gdbarch, bp_tgt);
|
||
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_insert_hw_breakpoint (%s, xxx) = %ld\n",
|
||
core_addr_to_string (bp_tgt->placed_address),
|
||
(unsigned long) retval);
|
||
return retval;
|
||
}
|
||
|
||
static int
|
||
debug_to_remove_hw_breakpoint (struct target_ops *self,
|
||
struct gdbarch *gdbarch,
|
||
struct bp_target_info *bp_tgt)
|
||
{
|
||
int retval;
|
||
|
||
retval = debug_target.to_remove_hw_breakpoint (&debug_target,
|
||
gdbarch, bp_tgt);
|
||
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_remove_hw_breakpoint (%s, xxx) = %ld\n",
|
||
core_addr_to_string (bp_tgt->placed_address),
|
||
(unsigned long) retval);
|
||
return retval;
|
||
}
|
||
|
||
static int
|
||
debug_to_insert_watchpoint (struct target_ops *self,
|
||
CORE_ADDR addr, int len, int type,
|
||
struct expression *cond)
|
||
{
|
||
int retval;
|
||
|
||
retval = debug_target.to_insert_watchpoint (&debug_target,
|
||
addr, len, type, cond);
|
||
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
|
||
core_addr_to_string (addr), len, type,
|
||
host_address_to_string (cond), (unsigned long) retval);
|
||
return retval;
|
||
}
|
||
|
||
static int
|
||
debug_to_remove_watchpoint (struct target_ops *self,
|
||
CORE_ADDR addr, int len, int type,
|
||
struct expression *cond)
|
||
{
|
||
int retval;
|
||
|
||
retval = debug_target.to_remove_watchpoint (&debug_target,
|
||
addr, len, type, cond);
|
||
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
|
||
core_addr_to_string (addr), len, type,
|
||
host_address_to_string (cond), (unsigned long) retval);
|
||
return retval;
|
||
}
|
||
|
||
static void
|
||
debug_to_terminal_init (struct target_ops *self)
|
||
{
|
||
debug_target.to_terminal_init (&debug_target);
|
||
|
||
fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
|
||
}
|
||
|
||
static void
|
||
debug_to_terminal_inferior (struct target_ops *self)
|
||
{
|
||
debug_target.to_terminal_inferior (&debug_target);
|
||
|
||
fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
|
||
}
|
||
|
||
static void
|
||
debug_to_terminal_ours_for_output (struct target_ops *self)
|
||
{
|
||
debug_target.to_terminal_ours_for_output (&debug_target);
|
||
|
||
fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
|
||
}
|
||
|
||
static void
|
||
debug_to_terminal_ours (struct target_ops *self)
|
||
{
|
||
debug_target.to_terminal_ours (&debug_target);
|
||
|
||
fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
|
||
}
|
||
|
||
static void
|
||
debug_to_terminal_save_ours (struct target_ops *self)
|
||
{
|
||
debug_target.to_terminal_save_ours (&debug_target);
|
||
|
||
fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
|
||
}
|
||
|
||
static void
|
||
debug_to_terminal_info (struct target_ops *self,
|
||
const char *arg, int from_tty)
|
||
{
|
||
debug_target.to_terminal_info (&debug_target, arg, from_tty);
|
||
|
||
fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
|
||
from_tty);
|
||
}
|
||
|
||
static void
|
||
debug_to_load (struct target_ops *self, char *args, int from_tty)
|
||
{
|
||
debug_target.to_load (&debug_target, args, from_tty);
|
||
|
||
fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
|
||
}
|
||
|
||
static void
|
||
debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
|
||
{
|
||
debug_target.to_post_startup_inferior (&debug_target, ptid);
|
||
|
||
fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
|
||
ptid_get_pid (ptid));
|
||
}
|
||
|
||
static int
|
||
debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
|
||
{
|
||
int retval;
|
||
|
||
retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
|
||
|
||
fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
|
||
pid, retval);
|
||
|
||
return retval;
|
||
}
|
||
|
||
static int
|
||
debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
|
||
{
|
||
int retval;
|
||
|
||
retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
|
||
|
||
fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
|
||
pid, retval);
|
||
|
||
return retval;
|
||
}
|
||
|
||
static int
|
||
debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
|
||
{
|
||
int retval;
|
||
|
||
retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
|
||
|
||
fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
|
||
pid, retval);
|
||
|
||
return retval;
|
||
}
|
||
|
||
static int
|
||
debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
|
||
{
|
||
int retval;
|
||
|
||
retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
|
||
|
||
fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
|
||
pid, retval);
|
||
|
||
return retval;
|
||
}
|
||
|
||
static int
|
||
debug_to_insert_exec_catchpoint (struct target_ops *self, int pid)
|
||
{
|
||
int retval;
|
||
|
||
retval = debug_target.to_insert_exec_catchpoint (&debug_target, pid);
|
||
|
||
fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
|
||
pid, retval);
|
||
|
||
return retval;
|
||
}
|
||
|
||
static int
|
||
debug_to_remove_exec_catchpoint (struct target_ops *self, int pid)
|
||
{
|
||
int retval;
|
||
|
||
retval = debug_target.to_remove_exec_catchpoint (&debug_target, pid);
|
||
|
||
fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
|
||
pid, retval);
|
||
|
||
return retval;
|
||
}
|
||
|
||
static int
|
||
debug_to_has_exited (struct target_ops *self,
|
||
int pid, int wait_status, int *exit_status)
|
||
{
|
||
int has_exited;
|
||
|
||
has_exited = debug_target.to_has_exited (&debug_target,
|
||
pid, wait_status, exit_status);
|
||
|
||
fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
|
||
pid, wait_status, *exit_status, has_exited);
|
||
|
||
return has_exited;
|
||
}
|
||
|
||
static int
|
||
debug_to_can_run (struct target_ops *self)
|
||
{
|
||
int retval;
|
||
|
||
retval = debug_target.to_can_run (&debug_target);
|
||
|
||
fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
|
||
|
||
return retval;
|
||
}
|
||
|
||
static struct gdbarch *
|
||
debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
|
||
{
|
||
struct gdbarch *retval;
|
||
|
||
retval = debug_target.to_thread_architecture (ops, ptid);
|
||
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_thread_architecture (%s) = %s [%s]\n",
|
||
target_pid_to_str (ptid),
|
||
host_address_to_string (retval),
|
||
gdbarch_bfd_arch_info (retval)->printable_name);
|
||
return retval;
|
||
}
|
||
|
||
static void
|
||
debug_to_stop (struct target_ops *self, ptid_t ptid)
|
||
{
|
||
debug_target.to_stop (&debug_target, ptid);
|
||
|
||
fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
|
||
target_pid_to_str (ptid));
|
||
}
|
||
|
||
static void
|
||
debug_to_rcmd (struct target_ops *self, const char *command,
|
||
struct ui_file *outbuf)
|
||
{
|
||
debug_target.to_rcmd (&debug_target, command, outbuf);
|
||
fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
|
||
}
|
||
|
||
static char *
|
||
debug_to_pid_to_exec_file (struct target_ops *self, int pid)
|
||
{
|
||
char *exec_file;
|
||
|
||
exec_file = debug_target.to_pid_to_exec_file (&debug_target, pid);
|
||
|
||
fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
|
||
pid, exec_file);
|
||
|
||
return exec_file;
|
||
}
|
||
|
||
static void
|
||
setup_target_debug (void)
|
||
{
|
||
memcpy (&debug_target, ¤t_target, sizeof debug_target);
|
||
|
||
current_target.to_open = debug_to_open;
|
||
current_target.to_post_attach = debug_to_post_attach;
|
||
current_target.to_prepare_to_store = debug_to_prepare_to_store;
|
||
current_target.to_files_info = debug_to_files_info;
|
||
current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
|
||
current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
|
||
current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
|
||
current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
|
||
current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
|
||
current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
|
||
current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
|
||
current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
|
||
current_target.to_stopped_data_address = debug_to_stopped_data_address;
|
||
current_target.to_watchpoint_addr_within_range
|
||
= debug_to_watchpoint_addr_within_range;
|
||
current_target.to_region_ok_for_hw_watchpoint
|
||
= debug_to_region_ok_for_hw_watchpoint;
|
||
current_target.to_can_accel_watchpoint_condition
|
||
= debug_to_can_accel_watchpoint_condition;
|
||
current_target.to_terminal_init = debug_to_terminal_init;
|
||
current_target.to_terminal_inferior = debug_to_terminal_inferior;
|
||
current_target.to_terminal_ours_for_output
|
||
= debug_to_terminal_ours_for_output;
|
||
current_target.to_terminal_ours = debug_to_terminal_ours;
|
||
current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
|
||
current_target.to_terminal_info = debug_to_terminal_info;
|
||
current_target.to_load = debug_to_load;
|
||
current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
|
||
current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
|
||
current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
|
||
current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
|
||
current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
|
||
current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
|
||
current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
|
||
current_target.to_has_exited = debug_to_has_exited;
|
||
current_target.to_can_run = debug_to_can_run;
|
||
current_target.to_stop = debug_to_stop;
|
||
current_target.to_rcmd = debug_to_rcmd;
|
||
current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
|
||
current_target.to_thread_architecture = debug_to_thread_architecture;
|
||
}
|
||
|
||
|
||
static char targ_desc[] =
|
||
"Names of targets and files being debugged.\nShows the entire \
|
||
stack of targets currently in use (including the exec-file,\n\
|
||
core-file, and process, if any), as well as the symbol file name.";
|
||
|
||
static void
|
||
default_rcmd (struct target_ops *self, const char *command,
|
||
struct ui_file *output)
|
||
{
|
||
error (_("\"monitor\" command not supported by this target."));
|
||
}
|
||
|
||
static void
|
||
do_monitor_command (char *cmd,
|
||
int from_tty)
|
||
{
|
||
target_rcmd (cmd, gdb_stdtarg);
|
||
}
|
||
|
||
/* Print the name of each layers of our target stack. */
|
||
|
||
static void
|
||
maintenance_print_target_stack (char *cmd, int from_tty)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
printf_filtered (_("The current target stack is:\n"));
|
||
|
||
for (t = target_stack; t != NULL; t = t->beneath)
|
||
{
|
||
printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
|
||
}
|
||
}
|
||
|
||
/* Controls if targets can report that they can/are async. This is
|
||
just for maintainers to use when debugging gdb. */
|
||
int target_async_permitted = 1;
|
||
|
||
/* The set command writes to this variable. If the inferior is
|
||
executing, target_async_permitted is *not* updated. */
|
||
static int target_async_permitted_1 = 1;
|
||
|
||
static void
|
||
maint_set_target_async_command (char *args, int from_tty,
|
||
struct cmd_list_element *c)
|
||
{
|
||
if (have_live_inferiors ())
|
||
{
|
||
target_async_permitted_1 = target_async_permitted;
|
||
error (_("Cannot change this setting while the inferior is running."));
|
||
}
|
||
|
||
target_async_permitted = target_async_permitted_1;
|
||
}
|
||
|
||
static void
|
||
maint_show_target_async_command (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c,
|
||
const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Controlling the inferior in "
|
||
"asynchronous mode is %s.\n"), value);
|
||
}
|
||
|
||
/* Temporary copies of permission settings. */
|
||
|
||
static int may_write_registers_1 = 1;
|
||
static int may_write_memory_1 = 1;
|
||
static int may_insert_breakpoints_1 = 1;
|
||
static int may_insert_tracepoints_1 = 1;
|
||
static int may_insert_fast_tracepoints_1 = 1;
|
||
static int may_stop_1 = 1;
|
||
|
||
/* Make the user-set values match the real values again. */
|
||
|
||
void
|
||
update_target_permissions (void)
|
||
{
|
||
may_write_registers_1 = may_write_registers;
|
||
may_write_memory_1 = may_write_memory;
|
||
may_insert_breakpoints_1 = may_insert_breakpoints;
|
||
may_insert_tracepoints_1 = may_insert_tracepoints;
|
||
may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
|
||
may_stop_1 = may_stop;
|
||
}
|
||
|
||
/* The one function handles (most of) the permission flags in the same
|
||
way. */
|
||
|
||
static void
|
||
set_target_permissions (char *args, int from_tty,
|
||
struct cmd_list_element *c)
|
||
{
|
||
if (target_has_execution)
|
||
{
|
||
update_target_permissions ();
|
||
error (_("Cannot change this setting while the inferior is running."));
|
||
}
|
||
|
||
/* Make the real values match the user-changed values. */
|
||
may_write_registers = may_write_registers_1;
|
||
may_insert_breakpoints = may_insert_breakpoints_1;
|
||
may_insert_tracepoints = may_insert_tracepoints_1;
|
||
may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
|
||
may_stop = may_stop_1;
|
||
update_observer_mode ();
|
||
}
|
||
|
||
/* Set memory write permission independently of observer mode. */
|
||
|
||
static void
|
||
set_write_memory_permission (char *args, int from_tty,
|
||
struct cmd_list_element *c)
|
||
{
|
||
/* Make the real values match the user-changed values. */
|
||
may_write_memory = may_write_memory_1;
|
||
update_observer_mode ();
|
||
}
|
||
|
||
|
||
void
|
||
initialize_targets (void)
|
||
{
|
||
init_dummy_target ();
|
||
push_target (&dummy_target);
|
||
|
||
add_info ("target", target_info, targ_desc);
|
||
add_info ("files", target_info, targ_desc);
|
||
|
||
add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
|
||
Set target debugging."), _("\
|
||
Show target debugging."), _("\
|
||
When non-zero, target debugging is enabled. Higher numbers are more\n\
|
||
verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
|
||
command."),
|
||
NULL,
|
||
show_targetdebug,
|
||
&setdebuglist, &showdebuglist);
|
||
|
||
add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
|
||
&trust_readonly, _("\
|
||
Set mode for reading from readonly sections."), _("\
|
||
Show mode for reading from readonly sections."), _("\
|
||
When this mode is on, memory reads from readonly sections (such as .text)\n\
|
||
will be read from the object file instead of from the target. This will\n\
|
||
result in significant performance improvement for remote targets."),
|
||
NULL,
|
||
show_trust_readonly,
|
||
&setlist, &showlist);
|
||
|
||
add_com ("monitor", class_obscure, do_monitor_command,
|
||
_("Send a command to the remote monitor (remote targets only)."));
|
||
|
||
add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
|
||
_("Print the name of each layer of the internal target stack."),
|
||
&maintenanceprintlist);
|
||
|
||
add_setshow_boolean_cmd ("target-async", no_class,
|
||
&target_async_permitted_1, _("\
|
||
Set whether gdb controls the inferior in asynchronous mode."), _("\
|
||
Show whether gdb controls the inferior in asynchronous mode."), _("\
|
||
Tells gdb whether to control the inferior in asynchronous mode."),
|
||
maint_set_target_async_command,
|
||
maint_show_target_async_command,
|
||
&maintenance_set_cmdlist,
|
||
&maintenance_show_cmdlist);
|
||
|
||
add_setshow_boolean_cmd ("may-write-registers", class_support,
|
||
&may_write_registers_1, _("\
|
||
Set permission to write into registers."), _("\
|
||
Show permission to write into registers."), _("\
|
||
When this permission is on, GDB may write into the target's registers.\n\
|
||
Otherwise, any sort of write attempt will result in an error."),
|
||
set_target_permissions, NULL,
|
||
&setlist, &showlist);
|
||
|
||
add_setshow_boolean_cmd ("may-write-memory", class_support,
|
||
&may_write_memory_1, _("\
|
||
Set permission to write into target memory."), _("\
|
||
Show permission to write into target memory."), _("\
|
||
When this permission is on, GDB may write into the target's memory.\n\
|
||
Otherwise, any sort of write attempt will result in an error."),
|
||
set_write_memory_permission, NULL,
|
||
&setlist, &showlist);
|
||
|
||
add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
|
||
&may_insert_breakpoints_1, _("\
|
||
Set permission to insert breakpoints in the target."), _("\
|
||
Show permission to insert breakpoints in the target."), _("\
|
||
When this permission is on, GDB may insert breakpoints in the program.\n\
|
||
Otherwise, any sort of insertion attempt will result in an error."),
|
||
set_target_permissions, NULL,
|
||
&setlist, &showlist);
|
||
|
||
add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
|
||
&may_insert_tracepoints_1, _("\
|
||
Set permission to insert tracepoints in the target."), _("\
|
||
Show permission to insert tracepoints in the target."), _("\
|
||
When this permission is on, GDB may insert tracepoints in the program.\n\
|
||
Otherwise, any sort of insertion attempt will result in an error."),
|
||
set_target_permissions, NULL,
|
||
&setlist, &showlist);
|
||
|
||
add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
|
||
&may_insert_fast_tracepoints_1, _("\
|
||
Set permission to insert fast tracepoints in the target."), _("\
|
||
Show permission to insert fast tracepoints in the target."), _("\
|
||
When this permission is on, GDB may insert fast tracepoints.\n\
|
||
Otherwise, any sort of insertion attempt will result in an error."),
|
||
set_target_permissions, NULL,
|
||
&setlist, &showlist);
|
||
|
||
add_setshow_boolean_cmd ("may-interrupt", class_support,
|
||
&may_stop_1, _("\
|
||
Set permission to interrupt or signal the target."), _("\
|
||
Show permission to interrupt or signal the target."), _("\
|
||
When this permission is on, GDB may interrupt/stop the target's execution.\n\
|
||
Otherwise, any attempt to interrupt or stop will be ignored."),
|
||
set_target_permissions, NULL,
|
||
&setlist, &showlist);
|
||
|
||
add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
|
||
&auto_connect_native_target, _("\
|
||
Set whether GDB may automatically connect to the native target."), _("\
|
||
Show whether GDB may automatically connect to the native target."), _("\
|
||
When on, and GDB is not connected to a target yet, GDB\n\
|
||
attempts \"run\" and other commands with the native target."),
|
||
NULL, show_auto_connect_native_target,
|
||
&setlist, &showlist);
|
||
}
|