mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-12 12:16:04 +08:00
0256da25c0
Now that the WinCE port is gone, all ports map host I/O errors from errno, so this abstraction is no longer necessary. Basically undoes: https://sourceware.org/pipermail/gdb-patches/2008-January/055511.html https://sourceware.org/pipermail/gdb-patches/attachments/20080131/f44e7012/attachment.bin gdbserver/ChangeLog: * Makefile.in (SFILES): Remove hostio-errno.cc. * configure: Regenerate. * configure.ac (GDBSERVER_DEPFILES): No longer add $srv_hostio_err_objs. * configure.srv (srv_hostio_err_objs): Delete. * hostio-errno.cc: Delete. * hostio.cc (hostio_error): Inline hostio_last_error_from_errno here. * hostio.h (hostio_last_error_from_errno): Delete. * target.cc (process_stratum_target::hostio_last_error): Delete. * target.h (class process_stratum_target) <hostio_last_error>: Delete.
708 lines
25 KiB
C++
708 lines
25 KiB
C++
/* Target operations for the remote server for GDB.
|
|
Copyright (C) 2002-2021 Free Software Foundation, Inc.
|
|
|
|
Contributed by MontaVista Software.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#ifndef GDBSERVER_TARGET_H
|
|
#define GDBSERVER_TARGET_H
|
|
|
|
#include <sys/types.h> /* for mode_t */
|
|
#include "target/target.h"
|
|
#include "target/resume.h"
|
|
#include "target/wait.h"
|
|
#include "target/waitstatus.h"
|
|
#include "mem-break.h"
|
|
#include "gdbsupport/array-view.h"
|
|
#include "gdbsupport/btrace-common.h"
|
|
#include <vector>
|
|
#include "gdbsupport/byte-vector.h"
|
|
|
|
struct emit_ops;
|
|
struct buffer;
|
|
struct process_info;
|
|
|
|
/* This structure describes how to resume a particular thread (or all
|
|
threads) based on the client's request. If thread is -1, then this
|
|
entry applies to all threads. These are passed around as an
|
|
array. */
|
|
|
|
struct thread_resume
|
|
{
|
|
ptid_t thread;
|
|
|
|
/* How to "resume". */
|
|
enum resume_kind kind;
|
|
|
|
/* If non-zero, send this signal when we resume, or to stop the
|
|
thread. If stopping a thread, and this is 0, the target should
|
|
stop the thread however it best decides to (e.g., SIGSTOP on
|
|
linux; SuspendThread on win32). This is a host signal value (not
|
|
enum gdb_signal). */
|
|
int sig;
|
|
|
|
/* Range to single step within. Valid only iff KIND is resume_step.
|
|
|
|
Single-step once, and then continuing stepping as long as the
|
|
thread stops in this range. (If the range is empty
|
|
[STEP_RANGE_START == STEP_RANGE_END], then this is a single-step
|
|
request.) */
|
|
CORE_ADDR step_range_start; /* Inclusive */
|
|
CORE_ADDR step_range_end; /* Exclusive */
|
|
};
|
|
|
|
/* GDBserver doesn't have a concept of strata like GDB, but we call
|
|
its target vector "process_stratum" anyway for the benefit of
|
|
shared code. */
|
|
|
|
class process_stratum_target
|
|
{
|
|
public:
|
|
|
|
virtual ~process_stratum_target () = default;
|
|
|
|
/* Start a new process.
|
|
|
|
PROGRAM is a path to the program to execute.
|
|
PROGRAM_ARGS is a standard NULL-terminated array of arguments,
|
|
to be passed to the inferior as ``argv'' (along with PROGRAM).
|
|
|
|
Returns the new PID on success, -1 on failure. Registers the new
|
|
process with the process list. */
|
|
virtual int create_inferior (const char *program,
|
|
const std::vector<char *> &program_args) = 0;
|
|
|
|
/* Do additional setup after a new process is created, including
|
|
exec-wrapper completion. */
|
|
virtual void post_create_inferior ();
|
|
|
|
/* Attach to a running process.
|
|
|
|
PID is the process ID to attach to, specified by the user
|
|
or a higher layer.
|
|
|
|
Returns -1 if attaching is unsupported, 0 on success, and calls
|
|
error() otherwise. */
|
|
virtual int attach (unsigned long pid) = 0;
|
|
|
|
/* Kill process PROC. Return -1 on failure, and 0 on success. */
|
|
virtual int kill (process_info *proc) = 0;
|
|
|
|
/* Detach from process PROC. Return -1 on failure, and 0 on
|
|
success. */
|
|
virtual int detach (process_info *proc) = 0;
|
|
|
|
/* The inferior process has died. Do what is right. */
|
|
virtual void mourn (process_info *proc) = 0;
|
|
|
|
/* Wait for process PID to exit. */
|
|
virtual void join (int pid) = 0;
|
|
|
|
/* Return true iff the thread with process ID PID is alive. */
|
|
virtual bool thread_alive (ptid_t pid) = 0;
|
|
|
|
/* Resume the inferior process. */
|
|
virtual void resume (thread_resume *resume_info, size_t n) = 0;
|
|
|
|
/* Wait for the inferior process or thread to change state. Store
|
|
status through argument pointer STATUS.
|
|
|
|
PTID = -1 to wait for any pid to do something, PTID(pid,0,0) to
|
|
wait for any thread of process pid to do something. Return ptid
|
|
of child, or -1 in case of error; store status through argument
|
|
pointer STATUS. OPTIONS is a bit set of options defined as
|
|
TARGET_W* above. If options contains TARGET_WNOHANG and there's
|
|
no child stop to report, return is
|
|
null_ptid/TARGET_WAITKIND_IGNORE. */
|
|
virtual ptid_t wait (ptid_t ptid, target_waitstatus *status,
|
|
target_wait_flags options) = 0;
|
|
|
|
/* Fetch registers from the inferior process.
|
|
|
|
If REGNO is -1, fetch all registers; otherwise, fetch at least REGNO. */
|
|
virtual void fetch_registers (regcache *regcache, int regno) = 0;
|
|
|
|
/* Store registers to the inferior process.
|
|
|
|
If REGNO is -1, store all registers; otherwise, store at least REGNO. */
|
|
virtual void store_registers (regcache *regcache, int regno) = 0;
|
|
|
|
/* Prepare to read or write memory from the inferior process.
|
|
Targets use this to do what is necessary to get the state of the
|
|
inferior such that it is possible to access memory.
|
|
|
|
This should generally only be called from client facing routines,
|
|
such as gdb_read_memory/gdb_write_memory, or the GDB breakpoint
|
|
insertion routine.
|
|
|
|
Like `read_memory' and `write_memory' below, returns 0 on success
|
|
and errno on failure. */
|
|
virtual int prepare_to_access_memory ();
|
|
|
|
/* Undo the effects of prepare_to_access_memory. */
|
|
virtual void done_accessing_memory ();
|
|
|
|
/* Read memory from the inferior process. This should generally be
|
|
called through read_inferior_memory, which handles breakpoint shadowing.
|
|
|
|
Read LEN bytes at MEMADDR into a buffer at MYADDR.
|
|
|
|
Returns 0 on success and errno on failure. */
|
|
virtual int read_memory (CORE_ADDR memaddr, unsigned char *myaddr,
|
|
int len) = 0;
|
|
|
|
/* Write memory to the inferior process. This should generally be
|
|
called through target_write_memory, which handles breakpoint shadowing.
|
|
|
|
Write LEN bytes from the buffer at MYADDR to MEMADDR.
|
|
|
|
Returns 0 on success and errno on failure. */
|
|
virtual int write_memory (CORE_ADDR memaddr, const unsigned char *myaddr,
|
|
int len) = 0;
|
|
|
|
/* Query GDB for the values of any symbols we're interested in.
|
|
This function is called whenever we receive a "qSymbols::"
|
|
query, which corresponds to every time more symbols (might)
|
|
become available. */
|
|
virtual void look_up_symbols ();
|
|
|
|
/* Send an interrupt request to the inferior process,
|
|
however is appropriate. */
|
|
virtual void request_interrupt () = 0;
|
|
|
|
/* Return true if the read_auxv target op is supported. */
|
|
virtual bool supports_read_auxv ();
|
|
|
|
/* Read auxiliary vector data from the inferior process.
|
|
|
|
Read LEN bytes at OFFSET into a buffer at MYADDR. */
|
|
virtual int read_auxv (CORE_ADDR offset, unsigned char *myaddr,
|
|
unsigned int len);
|
|
|
|
/* Returns true if GDB Z breakpoint type TYPE is supported, false
|
|
otherwise. The type is coded as follows:
|
|
'0' - software-breakpoint
|
|
'1' - hardware-breakpoint
|
|
'2' - write watchpoint
|
|
'3' - read watchpoint
|
|
'4' - access watchpoint
|
|
*/
|
|
virtual bool supports_z_point_type (char z_type);
|
|
|
|
/* Insert and remove a break or watchpoint.
|
|
Returns 0 on success, -1 on failure and 1 on unsupported. */
|
|
virtual int insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
|
|
int size, raw_breakpoint *bp);
|
|
|
|
virtual int remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
|
|
int size, raw_breakpoint *bp);
|
|
|
|
/* Returns true if the target stopped because it executed a software
|
|
breakpoint instruction, false otherwise. */
|
|
virtual bool stopped_by_sw_breakpoint ();
|
|
|
|
/* Returns true if the target knows whether a trap was caused by a
|
|
SW breakpoint triggering. */
|
|
virtual bool supports_stopped_by_sw_breakpoint ();
|
|
|
|
/* Returns true if the target stopped for a hardware breakpoint. */
|
|
virtual bool stopped_by_hw_breakpoint ();
|
|
|
|
/* Returns true if the target knows whether a trap was caused by a
|
|
HW breakpoint triggering. */
|
|
virtual bool supports_stopped_by_hw_breakpoint ();
|
|
|
|
/* Returns true if the target can do hardware single step. */
|
|
virtual bool supports_hardware_single_step ();
|
|
|
|
/* Returns true if target was stopped due to a watchpoint hit, false
|
|
otherwise. */
|
|
virtual bool stopped_by_watchpoint ();
|
|
|
|
/* Returns the address associated with the watchpoint that hit, if any;
|
|
returns 0 otherwise. */
|
|
virtual CORE_ADDR stopped_data_address ();
|
|
|
|
/* Return true if the read_offsets target op is supported. */
|
|
virtual bool supports_read_offsets ();
|
|
|
|
/* Reports the text, data offsets of the executable. This is
|
|
needed for uclinux where the executable is relocated during load
|
|
time. */
|
|
virtual int read_offsets (CORE_ADDR *text, CORE_ADDR *data);
|
|
|
|
/* Return true if the get_tls_address target op is supported. */
|
|
virtual bool supports_get_tls_address ();
|
|
|
|
/* Fetch the address associated with a specific thread local storage
|
|
area, determined by the specified THREAD, OFFSET, and LOAD_MODULE.
|
|
Stores it in *ADDRESS and returns zero on success; otherwise returns
|
|
an error code. A return value of -1 means this system does not
|
|
support the operation. */
|
|
virtual int get_tls_address (thread_info *thread, CORE_ADDR offset,
|
|
CORE_ADDR load_module, CORE_ADDR *address);
|
|
|
|
/* Return true if the qxfer_osdata target op is supported. */
|
|
virtual bool supports_qxfer_osdata ();
|
|
|
|
/* Read/Write OS data using qXfer packets. */
|
|
virtual int qxfer_osdata (const char *annex, unsigned char *readbuf,
|
|
unsigned const char *writebuf,
|
|
CORE_ADDR offset, int len);
|
|
|
|
/* Return true if the qxfer_siginfo target op is supported. */
|
|
virtual bool supports_qxfer_siginfo ();
|
|
|
|
/* Read/Write extra signal info. */
|
|
virtual int qxfer_siginfo (const char *annex, unsigned char *readbuf,
|
|
unsigned const char *writebuf,
|
|
CORE_ADDR offset, int len);
|
|
|
|
/* Return true if non-stop mode is supported. */
|
|
virtual bool supports_non_stop ();
|
|
|
|
/* Enables async target events. Returns the previous enable
|
|
state. */
|
|
virtual bool async (bool enable);
|
|
|
|
/* Switch to non-stop (ENABLE == true) or all-stop (ENABLE == false)
|
|
mode. Return 0 on success, -1 otherwise. */
|
|
virtual int start_non_stop (bool enable);
|
|
|
|
/* Returns true if the target supports multi-process debugging. */
|
|
virtual bool supports_multi_process ();
|
|
|
|
/* Returns true if fork events are supported. */
|
|
virtual bool supports_fork_events ();
|
|
|
|
/* Returns true if vfork events are supported. */
|
|
virtual bool supports_vfork_events ();
|
|
|
|
/* Returns true if exec events are supported. */
|
|
virtual bool supports_exec_events ();
|
|
|
|
/* Allows target to re-initialize connection-specific settings. */
|
|
virtual void handle_new_gdb_connection ();
|
|
|
|
/* The target-specific routine to process monitor command.
|
|
Returns 1 if handled, or 0 to perform default processing. */
|
|
virtual int handle_monitor_command (char *mon);
|
|
|
|
/* Returns the core given a thread, or -1 if not known. */
|
|
virtual int core_of_thread (ptid_t ptid);
|
|
|
|
/* Returns true if the read_loadmap target op is supported. */
|
|
virtual bool supports_read_loadmap ();
|
|
|
|
/* Read loadmaps. Read LEN bytes at OFFSET into a buffer at MYADDR. */
|
|
virtual int read_loadmap (const char *annex, CORE_ADDR offset,
|
|
unsigned char *myaddr, unsigned int len);
|
|
|
|
/* Target specific qSupported support. FEATURES is an array of
|
|
features unsupported by the core of GDBserver. */
|
|
virtual void process_qsupported
|
|
(gdb::array_view<const char * const> features);
|
|
|
|
/* Return true if the target supports tracepoints, false otherwise. */
|
|
virtual bool supports_tracepoints ();
|
|
|
|
/* Read PC from REGCACHE. */
|
|
virtual CORE_ADDR read_pc (regcache *regcache);
|
|
|
|
/* Write PC to REGCACHE. */
|
|
virtual void write_pc (regcache *regcache, CORE_ADDR pc);
|
|
|
|
/* Return true if the thread_stopped op is supported. */
|
|
virtual bool supports_thread_stopped ();
|
|
|
|
/* Return true if THREAD is known to be stopped now. */
|
|
virtual bool thread_stopped (thread_info *thread);
|
|
|
|
/* Return true if the get_tib_address op is supported. */
|
|
virtual bool supports_get_tib_address ();
|
|
|
|
/* Read Thread Information Block address. */
|
|
virtual int get_tib_address (ptid_t ptid, CORE_ADDR *address);
|
|
|
|
/* Pause all threads. If FREEZE, arrange for any resume attempt to
|
|
be ignored until an unpause_all call unfreezes threads again.
|
|
There can be nested calls to pause_all, so a freeze counter
|
|
should be maintained. */
|
|
virtual void pause_all (bool freeze);
|
|
|
|
/* Unpause all threads. Threads that hadn't been resumed by the
|
|
client should be left stopped. Basically a pause/unpause call
|
|
pair should not end up resuming threads that were stopped before
|
|
the pause call. */
|
|
virtual void unpause_all (bool unfreeze);
|
|
|
|
/* Stabilize all threads. That is, force them out of jump pads. */
|
|
virtual void stabilize_threads ();
|
|
|
|
/* Return true if the install_fast_tracepoint_jump_pad op is
|
|
supported. */
|
|
virtual bool supports_fast_tracepoints ();
|
|
|
|
/* Install a fast tracepoint jump pad. TPOINT is the address of the
|
|
tracepoint internal object as used by the IPA agent. TPADDR is
|
|
the address of tracepoint. COLLECTOR is address of the function
|
|
the jump pad redirects to. LOCKADDR is the address of the jump
|
|
pad lock object. ORIG_SIZE is the size in bytes of the
|
|
instruction at TPADDR. JUMP_ENTRY points to the address of the
|
|
jump pad entry, and on return holds the address past the end of
|
|
the created jump pad. If a trampoline is created by the function,
|
|
then TRAMPOLINE and TRAMPOLINE_SIZE return the address and size of
|
|
the trampoline, else they remain unchanged. JJUMP_PAD_INSN is a
|
|
buffer containing a copy of the instruction at TPADDR.
|
|
ADJUST_INSN_ADDR and ADJUST_INSN_ADDR_END are output parameters that
|
|
return the address range where the instruction at TPADDR was relocated
|
|
to. If an error occurs, the ERR may be used to pass on an error
|
|
message. */
|
|
virtual int install_fast_tracepoint_jump_pad
|
|
(CORE_ADDR tpoint, CORE_ADDR tpaddr, CORE_ADDR collector,
|
|
CORE_ADDR lockaddr, ULONGEST orig_size, CORE_ADDR *jump_entry,
|
|
CORE_ADDR *trampoline, ULONGEST *trampoline_size,
|
|
unsigned char *jjump_pad_insn, ULONGEST *jjump_pad_insn_size,
|
|
CORE_ADDR *adjusted_insn_addr, CORE_ADDR *adjusted_insn_addr_end,
|
|
char *err);
|
|
|
|
/* Return the minimum length of an instruction that can be safely
|
|
overwritten for use as a fast tracepoint. */
|
|
virtual int get_min_fast_tracepoint_insn_len ();
|
|
|
|
/* Return the bytecode operations vector for the current inferior.
|
|
Returns nullptr if bytecode compilation is not supported. */
|
|
virtual struct emit_ops *emit_ops ();
|
|
|
|
/* Returns true if the target supports disabling randomization. */
|
|
virtual bool supports_disable_randomization ();
|
|
|
|
/* Return true if the qxfer_libraries_svr4 op is supported. */
|
|
virtual bool supports_qxfer_libraries_svr4 ();
|
|
|
|
/* Read solib info on SVR4 platforms. */
|
|
virtual int qxfer_libraries_svr4 (const char *annex,
|
|
unsigned char *readbuf,
|
|
unsigned const char *writebuf,
|
|
CORE_ADDR offset, int len);
|
|
|
|
/* Return true if target supports debugging agent. */
|
|
virtual bool supports_agent ();
|
|
|
|
/* Enable branch tracing for PTID based on CONF and allocate a branch trace
|
|
target information struct for reading and for disabling branch trace. */
|
|
virtual btrace_target_info *enable_btrace (ptid_t ptid,
|
|
const btrace_config *conf);
|
|
|
|
/* Disable branch tracing.
|
|
Returns zero on success, non-zero otherwise. */
|
|
virtual int disable_btrace (btrace_target_info *tinfo);
|
|
|
|
/* Read branch trace data into buffer.
|
|
Return 0 on success; print an error message into BUFFER and return -1,
|
|
otherwise. */
|
|
virtual int read_btrace (btrace_target_info *tinfo, buffer *buf,
|
|
enum btrace_read_type type);
|
|
|
|
/* Read the branch trace configuration into BUFFER.
|
|
Return 0 on success; print an error message into BUFFER and return -1
|
|
otherwise. */
|
|
virtual int read_btrace_conf (const btrace_target_info *tinfo,
|
|
buffer *buf);
|
|
|
|
/* Return true if target supports range stepping. */
|
|
virtual bool supports_range_stepping ();
|
|
|
|
/* Return true if the pid_to_exec_file op is supported. */
|
|
virtual bool supports_pid_to_exec_file ();
|
|
|
|
/* Return the full absolute name of the executable file that was
|
|
run to create the process PID. If the executable file cannot
|
|
be determined, NULL is returned. Otherwise, a pointer to a
|
|
character string containing the pathname is returned. This
|
|
string should be copied into a buffer by the client if the string
|
|
will not be immediately used, or if it must persist. */
|
|
virtual const char *pid_to_exec_file (int pid);
|
|
|
|
/* Return true if any of the multifs ops is supported. */
|
|
virtual bool supports_multifs ();
|
|
|
|
/* Multiple-filesystem-aware open. Like open(2), but operating in
|
|
the filesystem as it appears to process PID. Systems where all
|
|
processes share a common filesystem should not override this.
|
|
The default behavior is to use open(2). */
|
|
virtual int multifs_open (int pid, const char *filename,
|
|
int flags, mode_t mode);
|
|
|
|
/* Multiple-filesystem-aware unlink. Like unlink(2), but operates
|
|
in the filesystem as it appears to process PID. Systems where
|
|
all processes share a common filesystem should not override this.
|
|
The default behavior is to use unlink(2). */
|
|
virtual int multifs_unlink (int pid, const char *filename);
|
|
|
|
/* Multiple-filesystem-aware readlink. Like readlink(2), but
|
|
operating in the filesystem as it appears to process PID.
|
|
Systems where all processes share a common filesystem should
|
|
not override this. The default behavior is to use readlink(2). */
|
|
virtual ssize_t multifs_readlink (int pid, const char *filename,
|
|
char *buf, size_t bufsiz);
|
|
|
|
/* Return the breakpoint kind for this target based on PC. The
|
|
PCPTR is adjusted to the real memory location in case a flag
|
|
(e.g., the Thumb bit on ARM) was present in the PC. */
|
|
virtual int breakpoint_kind_from_pc (CORE_ADDR *pcptr);
|
|
|
|
/* Return the software breakpoint from KIND. KIND can have target
|
|
specific meaning like the Z0 kind parameter.
|
|
SIZE is set to the software breakpoint's length in memory. */
|
|
virtual const gdb_byte *sw_breakpoint_from_kind (int kind, int *size) = 0;
|
|
|
|
/* Return the breakpoint kind for this target based on the current
|
|
processor state (e.g. the current instruction mode on ARM) and the
|
|
PC. The PCPTR is adjusted to the real memory location in case a
|
|
flag (e.g., the Thumb bit on ARM) is present in the PC. */
|
|
virtual int breakpoint_kind_from_current_state (CORE_ADDR *pcptr);
|
|
|
|
/* Return the thread's name, or NULL if the target is unable to
|
|
determine it. The returned value must not be freed by the
|
|
caller. */
|
|
virtual const char *thread_name (ptid_t thread);
|
|
|
|
/* Thread ID to (numeric) thread handle: Return true on success and
|
|
false for failure. Return pointer to thread handle via HANDLE
|
|
and the handle's length via HANDLE_LEN. */
|
|
virtual bool thread_handle (ptid_t ptid, gdb_byte **handle,
|
|
int *handle_len);
|
|
|
|
/* Returns true if the target can software single step. */
|
|
virtual bool supports_software_single_step ();
|
|
|
|
/* Return true if the target supports catch syscall. */
|
|
virtual bool supports_catch_syscall ();
|
|
|
|
/* Return tdesc index for IPA. */
|
|
virtual int get_ipa_tdesc_idx ();
|
|
|
|
/* Returns true if the target supports memory tagging facilities. */
|
|
virtual bool supports_memory_tagging ();
|
|
|
|
/* Return the allocated memory tags of type TYPE associated with
|
|
[ADDRESS, ADDRESS + LEN) in TAGS.
|
|
|
|
Returns true if successful and false otherwise. */
|
|
virtual bool fetch_memtags (CORE_ADDR address, size_t len,
|
|
gdb::byte_vector &tags, int type);
|
|
|
|
/* Write the allocation tags of type TYPE contained in TAGS to the
|
|
memory range [ADDRESS, ADDRESS + LEN).
|
|
|
|
Returns true if successful and false otherwise. */
|
|
virtual bool store_memtags (CORE_ADDR address, size_t len,
|
|
const gdb::byte_vector &tags, int type);
|
|
};
|
|
|
|
extern process_stratum_target *the_target;
|
|
|
|
void set_target_ops (process_stratum_target *);
|
|
|
|
#define target_create_inferior(program, program_args) \
|
|
the_target->create_inferior (program, program_args)
|
|
|
|
#define target_post_create_inferior() \
|
|
the_target->post_create_inferior ()
|
|
|
|
#define myattach(pid) \
|
|
the_target->attach (pid)
|
|
|
|
int kill_inferior (process_info *proc);
|
|
|
|
#define target_supports_fork_events() \
|
|
the_target->supports_fork_events ()
|
|
|
|
#define target_supports_vfork_events() \
|
|
the_target->supports_vfork_events ()
|
|
|
|
#define target_supports_exec_events() \
|
|
the_target->supports_exec_events ()
|
|
|
|
#define target_supports_memory_tagging() \
|
|
the_target->supports_memory_tagging ()
|
|
|
|
#define target_handle_new_gdb_connection() \
|
|
the_target->handle_new_gdb_connection ()
|
|
|
|
#define detach_inferior(proc) \
|
|
the_target->detach (proc)
|
|
|
|
#define mythread_alive(pid) \
|
|
the_target->thread_alive (pid)
|
|
|
|
#define fetch_inferior_registers(regcache, regno) \
|
|
the_target->fetch_registers (regcache, regno)
|
|
|
|
#define store_inferior_registers(regcache, regno) \
|
|
the_target->store_registers (regcache, regno)
|
|
|
|
#define join_inferior(pid) \
|
|
the_target->join (pid)
|
|
|
|
#define target_supports_non_stop() \
|
|
the_target->supports_non_stop ()
|
|
|
|
#define target_async(enable) \
|
|
the_target->async (enable)
|
|
|
|
#define target_process_qsupported(features) \
|
|
the_target->process_qsupported (features)
|
|
|
|
#define target_supports_catch_syscall() \
|
|
the_target->supports_catch_syscall ()
|
|
|
|
#define target_get_ipa_tdesc_idx() \
|
|
the_target->get_ipa_tdesc_idx ()
|
|
|
|
#define target_supports_tracepoints() \
|
|
the_target->supports_tracepoints ()
|
|
|
|
#define target_supports_fast_tracepoints() \
|
|
the_target->supports_fast_tracepoints ()
|
|
|
|
#define target_get_min_fast_tracepoint_insn_len() \
|
|
the_target->get_min_fast_tracepoint_insn_len ()
|
|
|
|
#define target_thread_stopped(thread) \
|
|
the_target->thread_stopped (thread)
|
|
|
|
#define target_pause_all(freeze) \
|
|
the_target->pause_all (freeze)
|
|
|
|
#define target_unpause_all(unfreeze) \
|
|
the_target->unpause_all (unfreeze)
|
|
|
|
#define target_stabilize_threads() \
|
|
the_target->stabilize_threads ()
|
|
|
|
#define target_install_fast_tracepoint_jump_pad(tpoint, tpaddr, \
|
|
collector, lockaddr, \
|
|
orig_size, \
|
|
jump_entry, \
|
|
trampoline, trampoline_size, \
|
|
jjump_pad_insn, \
|
|
jjump_pad_insn_size, \
|
|
adjusted_insn_addr, \
|
|
adjusted_insn_addr_end, \
|
|
err) \
|
|
the_target->install_fast_tracepoint_jump_pad (tpoint, tpaddr, \
|
|
collector,lockaddr, \
|
|
orig_size, jump_entry, \
|
|
trampoline, \
|
|
trampoline_size, \
|
|
jjump_pad_insn, \
|
|
jjump_pad_insn_size, \
|
|
adjusted_insn_addr, \
|
|
adjusted_insn_addr_end, \
|
|
err)
|
|
|
|
#define target_emit_ops() \
|
|
the_target->emit_ops ()
|
|
|
|
#define target_supports_disable_randomization() \
|
|
the_target->supports_disable_randomization ()
|
|
|
|
#define target_supports_agent() \
|
|
the_target->supports_agent ()
|
|
|
|
static inline struct btrace_target_info *
|
|
target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
|
|
{
|
|
return the_target->enable_btrace (ptid, conf);
|
|
}
|
|
|
|
static inline int
|
|
target_disable_btrace (struct btrace_target_info *tinfo)
|
|
{
|
|
return the_target->disable_btrace (tinfo);
|
|
}
|
|
|
|
static inline int
|
|
target_read_btrace (struct btrace_target_info *tinfo,
|
|
struct buffer *buffer,
|
|
enum btrace_read_type type)
|
|
{
|
|
return the_target->read_btrace (tinfo, buffer, type);
|
|
}
|
|
|
|
static inline int
|
|
target_read_btrace_conf (struct btrace_target_info *tinfo,
|
|
struct buffer *buffer)
|
|
{
|
|
return the_target->read_btrace_conf (tinfo, buffer);
|
|
}
|
|
|
|
#define target_supports_range_stepping() \
|
|
the_target->supports_range_stepping ()
|
|
|
|
#define target_supports_stopped_by_sw_breakpoint() \
|
|
the_target->supports_stopped_by_sw_breakpoint ()
|
|
|
|
#define target_stopped_by_sw_breakpoint() \
|
|
the_target->stopped_by_sw_breakpoint ()
|
|
|
|
#define target_supports_stopped_by_hw_breakpoint() \
|
|
the_target->supports_stopped_by_hw_breakpoint ()
|
|
|
|
#define target_supports_hardware_single_step() \
|
|
the_target->supports_hardware_single_step ()
|
|
|
|
#define target_stopped_by_hw_breakpoint() \
|
|
the_target->stopped_by_hw_breakpoint ()
|
|
|
|
#define target_breakpoint_kind_from_pc(pcptr) \
|
|
the_target->breakpoint_kind_from_pc (pcptr)
|
|
|
|
#define target_breakpoint_kind_from_current_state(pcptr) \
|
|
the_target->breakpoint_kind_from_current_state (pcptr)
|
|
|
|
#define target_supports_software_single_step() \
|
|
the_target->supports_software_single_step ()
|
|
|
|
ptid_t mywait (ptid_t ptid, struct target_waitstatus *ourstatus,
|
|
target_wait_flags options, int connected_wait);
|
|
|
|
/* Prepare to read or write memory from the inferior process. See the
|
|
corresponding process_stratum_target methods for more details. */
|
|
|
|
int prepare_to_access_memory (void);
|
|
void done_accessing_memory (void);
|
|
|
|
#define target_core_of_thread(ptid) \
|
|
the_target->core_of_thread (ptid)
|
|
|
|
#define target_thread_name(ptid) \
|
|
the_target->thread_name (ptid)
|
|
|
|
#define target_thread_handle(ptid, handle, handle_len) \
|
|
the_target->thread_handle (ptid, handle, handle_len)
|
|
|
|
int read_inferior_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len);
|
|
|
|
int set_desired_thread ();
|
|
|
|
const char *target_pid_to_str (ptid_t);
|
|
|
|
#endif /* GDBSERVER_TARGET_H */
|