mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-12 12:16:04 +08:00
db2534b704
Currently, the Ada expression parser treats 'null' as an integer 0. However, this causes overloading to fail in certain cases. This patch changes the Ada expression parser to use a special type for 'null'. I chose pointer-to-int0, because I think that's not likely to be needed for any other Ada expression. Note this works because a "mod 1" type has an underlying non-zero byte size; the test includes a check for this. The output is changed so that "print null", by default, shows "null". And, ada_type_match is changed both to recognize the special null type and to remove a bit of weird code related to how pointers are treated for overload type matching. Tested on x86-64 Fedora 32. Because this only touches Ada, and Joel already approved it internally at AdaCore, I am checking it in. gdb/ChangeLog 2021-04-28 Tom Tromey <tromey@adacore.com> * ada-exp.y (primary): Use new type for null pointer. * ada-lang.c (ada_type_match): Remove "may_deref" parameter. Handle null pointer. (ada_args_match): Update. * ada-valprint.c (ada_value_print_ptr, ada_value_print): Handle null pointer. gdb/testsuite/ChangeLog 2021-04-28 Tom Tromey <tromey@adacore.com> * gdb.ada/null_overload.exp: New file. * gdb.ada/null_overload/foo.adb: New file.
1814 lines
50 KiB
Plaintext
1814 lines
50 KiB
Plaintext
/* YACC parser for Ada expressions, for GDB.
|
||
Copyright (C) 1986-2021 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
/* Parse an Ada expression from text in a string,
|
||
and return the result as a struct expression pointer.
|
||
That structure contains arithmetic operations in reverse polish,
|
||
with constants represented by operations that are followed by special data.
|
||
See expression.h for the details of the format.
|
||
What is important here is that it can be built up sequentially
|
||
during the process of parsing; the lower levels of the tree always
|
||
come first in the result.
|
||
|
||
malloc's and realloc's in this file are transformed to
|
||
xmalloc and xrealloc respectively by the same sed command in the
|
||
makefile that remaps any other malloc/realloc inserted by the parser
|
||
generator. Doing this with #defines and trying to control the interaction
|
||
with include files (<malloc.h> and <stdlib.h> for example) just became
|
||
too messy, particularly when such includes can be inserted at random
|
||
times by the parser generator. */
|
||
|
||
%{
|
||
|
||
#include "defs.h"
|
||
#include <ctype.h>
|
||
#include "expression.h"
|
||
#include "value.h"
|
||
#include "parser-defs.h"
|
||
#include "language.h"
|
||
#include "ada-lang.h"
|
||
#include "bfd.h" /* Required by objfiles.h. */
|
||
#include "symfile.h" /* Required by objfiles.h. */
|
||
#include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
|
||
#include "frame.h"
|
||
#include "block.h"
|
||
#include "ada-exp.h"
|
||
|
||
#define parse_type(ps) builtin_type (ps->gdbarch ())
|
||
|
||
/* Remap normal yacc parser interface names (yyparse, yylex, yyerror,
|
||
etc). */
|
||
#define GDB_YY_REMAP_PREFIX ada_
|
||
#include "yy-remap.h"
|
||
|
||
struct name_info {
|
||
struct symbol *sym;
|
||
struct minimal_symbol *msym;
|
||
const struct block *block;
|
||
struct stoken stoken;
|
||
};
|
||
|
||
/* The state of the parser, used internally when we are parsing the
|
||
expression. */
|
||
|
||
static struct parser_state *pstate = NULL;
|
||
|
||
/* If expression is in the context of TYPE'(...), then TYPE, else
|
||
* NULL. */
|
||
static struct type *type_qualifier;
|
||
|
||
int yyparse (void);
|
||
|
||
static int yylex (void);
|
||
|
||
static void yyerror (const char *);
|
||
|
||
static void write_int (struct parser_state *, LONGEST, struct type *);
|
||
|
||
static void write_object_renaming (struct parser_state *,
|
||
const struct block *, const char *, int,
|
||
const char *, int);
|
||
|
||
static struct type* write_var_or_type (struct parser_state *,
|
||
const struct block *, struct stoken);
|
||
|
||
static void write_name_assoc (struct parser_state *, struct stoken);
|
||
|
||
static const struct block *block_lookup (const struct block *, const char *);
|
||
|
||
static LONGEST convert_char_literal (struct type *, LONGEST);
|
||
|
||
static void write_ambiguous_var (struct parser_state *,
|
||
const struct block *, char *, int);
|
||
|
||
static struct type *type_int (struct parser_state *);
|
||
|
||
static struct type *type_long (struct parser_state *);
|
||
|
||
static struct type *type_long_long (struct parser_state *);
|
||
|
||
static struct type *type_long_double (struct parser_state *);
|
||
|
||
static struct type *type_char (struct parser_state *);
|
||
|
||
static struct type *type_boolean (struct parser_state *);
|
||
|
||
static struct type *type_system_address (struct parser_state *);
|
||
|
||
using namespace expr;
|
||
|
||
/* Handle Ada type resolution for OP. DEPROCEDURE_P and CONTEXT_TYPE
|
||
are passed to the resolve method, if called. */
|
||
static operation_up
|
||
resolve (operation_up &&op, bool deprocedure_p, struct type *context_type)
|
||
{
|
||
operation_up result = std::move (op);
|
||
ada_resolvable *res = dynamic_cast<ada_resolvable *> (result.get ());
|
||
if (res != nullptr
|
||
&& res->resolve (pstate->expout.get (),
|
||
deprocedure_p,
|
||
pstate->parse_completion,
|
||
pstate->block_tracker,
|
||
context_type))
|
||
result
|
||
= make_operation<ada_funcall_operation> (std::move (result),
|
||
std::vector<operation_up> ());
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Like parser_state::pop, but handles Ada type resolution.
|
||
DEPROCEDURE_P and CONTEXT_TYPE are passed to the resolve method, if
|
||
called. */
|
||
static operation_up
|
||
ada_pop (bool deprocedure_p = true, struct type *context_type = nullptr)
|
||
{
|
||
/* Of course it's ok to call parser_state::pop here... */
|
||
return resolve (pstate->pop (), deprocedure_p, context_type);
|
||
}
|
||
|
||
/* Like parser_state::wrap, but use ada_pop to pop the value. */
|
||
template<typename T>
|
||
void
|
||
ada_wrap ()
|
||
{
|
||
operation_up arg = ada_pop ();
|
||
pstate->push_new<T> (std::move (arg));
|
||
}
|
||
|
||
/* Create and push an address-of operation, as appropriate for Ada.
|
||
If TYPE is not NULL, the resulting operation will be wrapped in a
|
||
cast to TYPE. */
|
||
static void
|
||
ada_addrof (struct type *type = nullptr)
|
||
{
|
||
operation_up arg = ada_pop (false);
|
||
operation_up addr = make_operation<unop_addr_operation> (std::move (arg));
|
||
operation_up wrapped
|
||
= make_operation<ada_wrapped_operation> (std::move (addr));
|
||
if (type != nullptr)
|
||
wrapped = make_operation<unop_cast_operation> (std::move (wrapped), type);
|
||
pstate->push (std::move (wrapped));
|
||
}
|
||
|
||
/* Handle operator overloading. Either returns a function all
|
||
operation wrapping the arguments, or it returns null, leaving the
|
||
caller to construct the appropriate operation. If RHS is null, a
|
||
unary operator is assumed. */
|
||
static operation_up
|
||
maybe_overload (enum exp_opcode op, operation_up &lhs, operation_up &rhs)
|
||
{
|
||
struct value *args[2];
|
||
|
||
int nargs = 1;
|
||
args[0] = lhs->evaluate (nullptr, pstate->expout.get (),
|
||
EVAL_AVOID_SIDE_EFFECTS);
|
||
if (rhs == nullptr)
|
||
args[1] = nullptr;
|
||
else
|
||
{
|
||
args[1] = rhs->evaluate (nullptr, pstate->expout.get (),
|
||
EVAL_AVOID_SIDE_EFFECTS);
|
||
++nargs;
|
||
}
|
||
|
||
block_symbol fn = ada_find_operator_symbol (op, pstate->parse_completion,
|
||
nargs, args);
|
||
if (fn.symbol == nullptr)
|
||
return {};
|
||
|
||
if (symbol_read_needs_frame (fn.symbol))
|
||
pstate->block_tracker->update (fn.block, INNERMOST_BLOCK_FOR_SYMBOLS);
|
||
operation_up callee = make_operation<ada_var_value_operation> (fn);
|
||
|
||
std::vector<operation_up> argvec;
|
||
argvec.push_back (std::move (lhs));
|
||
if (rhs != nullptr)
|
||
argvec.push_back (std::move (rhs));
|
||
return make_operation<ada_funcall_operation> (std::move (callee),
|
||
std::move (argvec));
|
||
}
|
||
|
||
/* Like parser_state::wrap, but use ada_pop to pop the value, and
|
||
handle unary overloading. */
|
||
template<typename T>
|
||
void
|
||
ada_wrap_overload (enum exp_opcode op)
|
||
{
|
||
operation_up arg = ada_pop ();
|
||
operation_up empty;
|
||
|
||
operation_up call = maybe_overload (op, arg, empty);
|
||
if (call == nullptr)
|
||
call = make_operation<T> (std::move (arg));
|
||
pstate->push (std::move (call));
|
||
}
|
||
|
||
/* A variant of parser_state::wrap2 that uses ada_pop to pop both
|
||
operands, and then pushes a new Ada-wrapped operation of the
|
||
template type T. */
|
||
template<typename T>
|
||
void
|
||
ada_un_wrap2 (enum exp_opcode op)
|
||
{
|
||
operation_up rhs = ada_pop ();
|
||
operation_up lhs = ada_pop ();
|
||
|
||
operation_up wrapped = maybe_overload (op, lhs, rhs);
|
||
if (wrapped == nullptr)
|
||
{
|
||
wrapped = make_operation<T> (std::move (lhs), std::move (rhs));
|
||
wrapped = make_operation<ada_wrapped_operation> (std::move (wrapped));
|
||
}
|
||
pstate->push (std::move (wrapped));
|
||
}
|
||
|
||
/* A variant of parser_state::wrap2 that uses ada_pop to pop both
|
||
operands. Unlike ada_un_wrap2, ada_wrapped_operation is not
|
||
used. */
|
||
template<typename T>
|
||
void
|
||
ada_wrap2 (enum exp_opcode op)
|
||
{
|
||
operation_up rhs = ada_pop ();
|
||
operation_up lhs = ada_pop ();
|
||
operation_up call = maybe_overload (op, lhs, rhs);
|
||
if (call == nullptr)
|
||
call = make_operation<T> (std::move (lhs), std::move (rhs));
|
||
pstate->push (std::move (call));
|
||
}
|
||
|
||
/* A variant of parser_state::wrap2 that uses ada_pop to pop both
|
||
operands. OP is also passed to the constructor of the new binary
|
||
operation. */
|
||
template<typename T>
|
||
void
|
||
ada_wrap_op (enum exp_opcode op)
|
||
{
|
||
operation_up rhs = ada_pop ();
|
||
operation_up lhs = ada_pop ();
|
||
operation_up call = maybe_overload (op, lhs, rhs);
|
||
if (call == nullptr)
|
||
call = make_operation<T> (op, std::move (lhs), std::move (rhs));
|
||
pstate->push (std::move (call));
|
||
}
|
||
|
||
/* Pop three operands using ada_pop, then construct a new ternary
|
||
operation of type T and push it. */
|
||
template<typename T>
|
||
void
|
||
ada_wrap3 ()
|
||
{
|
||
operation_up rhs = ada_pop ();
|
||
operation_up mid = ada_pop ();
|
||
operation_up lhs = ada_pop ();
|
||
pstate->push_new<T> (std::move (lhs), std::move (mid), std::move (rhs));
|
||
}
|
||
|
||
/* Pop NARGS operands, then a callee operand, and use these to
|
||
construct and push a new Ada function call operation. */
|
||
static void
|
||
ada_funcall (int nargs)
|
||
{
|
||
/* We use the ordinary pop here, because we're going to do
|
||
resolution in a separate step, in order to handle array
|
||
indices. */
|
||
std::vector<operation_up> args = pstate->pop_vector (nargs);
|
||
/* Call parser_state::pop here, because we don't want to
|
||
function-convert the callee slot of a call we're already
|
||
constructing. */
|
||
operation_up callee = pstate->pop ();
|
||
|
||
ada_var_value_operation *vvo
|
||
= dynamic_cast<ada_var_value_operation *> (callee.get ());
|
||
int array_arity = 0;
|
||
struct type *callee_t = nullptr;
|
||
if (vvo == nullptr
|
||
|| SYMBOL_DOMAIN (vvo->get_symbol ()) != UNDEF_DOMAIN)
|
||
{
|
||
struct value *callee_v = callee->evaluate (nullptr,
|
||
pstate->expout.get (),
|
||
EVAL_AVOID_SIDE_EFFECTS);
|
||
callee_t = ada_check_typedef (value_type (callee_v));
|
||
array_arity = ada_array_arity (callee_t);
|
||
}
|
||
|
||
for (int i = 0; i < nargs; ++i)
|
||
{
|
||
struct type *subtype = nullptr;
|
||
if (i < array_arity)
|
||
subtype = ada_index_type (callee_t, i + 1, "array type");
|
||
args[i] = resolve (std::move (args[i]), true, subtype);
|
||
}
|
||
|
||
std::unique_ptr<ada_funcall_operation> funcall
|
||
(new ada_funcall_operation (std::move (callee), std::move (args)));
|
||
funcall->resolve (pstate->expout.get (), true, pstate->parse_completion,
|
||
pstate->block_tracker, nullptr);
|
||
pstate->push (std::move (funcall));
|
||
}
|
||
|
||
/* The components being constructed during this parse. */
|
||
static std::vector<ada_component_up> components;
|
||
|
||
/* Create a new ada_component_up of the indicated type and arguments,
|
||
and push it on the global 'components' vector. */
|
||
template<typename T, typename... Arg>
|
||
void
|
||
push_component (Arg... args)
|
||
{
|
||
components.emplace_back (new T (std::forward<Arg> (args)...));
|
||
}
|
||
|
||
/* Examine the final element of the 'components' vector, and return it
|
||
as a pointer to an ada_choices_component. The caller is
|
||
responsible for ensuring that the final element is in fact an
|
||
ada_choices_component. */
|
||
static ada_choices_component *
|
||
choice_component ()
|
||
{
|
||
ada_component *last = components.back ().get ();
|
||
ada_choices_component *result = dynamic_cast<ada_choices_component *> (last);
|
||
gdb_assert (result != nullptr);
|
||
return result;
|
||
}
|
||
|
||
/* Pop the most recent component from the global stack, and return
|
||
it. */
|
||
static ada_component_up
|
||
pop_component ()
|
||
{
|
||
ada_component_up result = std::move (components.back ());
|
||
components.pop_back ();
|
||
return result;
|
||
}
|
||
|
||
/* Pop the N most recent components from the global stack, and return
|
||
them in a vector. */
|
||
static std::vector<ada_component_up>
|
||
pop_components (int n)
|
||
{
|
||
std::vector<ada_component_up> result (n);
|
||
for (int i = 1; i <= n; ++i)
|
||
result[n - i] = pop_component ();
|
||
return result;
|
||
}
|
||
|
||
/* The associations being constructed during this parse. */
|
||
static std::vector<ada_association_up> associations;
|
||
|
||
/* Create a new ada_association_up of the indicated type and
|
||
arguments, and push it on the global 'associations' vector. */
|
||
template<typename T, typename... Arg>
|
||
void
|
||
push_association (Arg... args)
|
||
{
|
||
associations.emplace_back (new T (std::forward<Arg> (args)...));
|
||
}
|
||
|
||
/* Pop the most recent association from the global stack, and return
|
||
it. */
|
||
static ada_association_up
|
||
pop_association ()
|
||
{
|
||
ada_association_up result = std::move (associations.back ());
|
||
associations.pop_back ();
|
||
return result;
|
||
}
|
||
|
||
/* Pop the N most recent associations from the global stack, and
|
||
return them in a vector. */
|
||
static std::vector<ada_association_up>
|
||
pop_associations (int n)
|
||
{
|
||
std::vector<ada_association_up> result (n);
|
||
for (int i = 1; i <= n; ++i)
|
||
result[n - i] = pop_association ();
|
||
return result;
|
||
}
|
||
|
||
%}
|
||
|
||
%union
|
||
{
|
||
LONGEST lval;
|
||
struct {
|
||
LONGEST val;
|
||
struct type *type;
|
||
} typed_val;
|
||
struct {
|
||
gdb_byte val[16];
|
||
struct type *type;
|
||
} typed_val_float;
|
||
struct type *tval;
|
||
struct stoken sval;
|
||
const struct block *bval;
|
||
struct internalvar *ivar;
|
||
}
|
||
|
||
%type <lval> positional_list component_groups component_associations
|
||
%type <lval> aggregate_component_list
|
||
%type <tval> var_or_type type_prefix opt_type_prefix
|
||
|
||
%token <typed_val> INT NULL_PTR CHARLIT
|
||
%token <typed_val_float> FLOAT
|
||
%token TRUEKEYWORD FALSEKEYWORD
|
||
%token COLONCOLON
|
||
%token <sval> STRING NAME DOT_ID
|
||
%type <bval> block
|
||
%type <lval> arglist tick_arglist
|
||
|
||
%type <tval> save_qualifier
|
||
|
||
%token DOT_ALL
|
||
|
||
/* Special type cases, put in to allow the parser to distinguish different
|
||
legal basetypes. */
|
||
%token <sval> DOLLAR_VARIABLE
|
||
|
||
%nonassoc ASSIGN
|
||
%left _AND_ OR XOR THEN ELSE
|
||
%left '=' NOTEQUAL '<' '>' LEQ GEQ IN DOTDOT
|
||
%left '@'
|
||
%left '+' '-' '&'
|
||
%left UNARY
|
||
%left '*' '/' MOD REM
|
||
%right STARSTAR ABS NOT
|
||
|
||
/* Artificial token to give NAME => ... and NAME | priority over reducing
|
||
NAME to <primary> and to give <primary>' priority over reducing <primary>
|
||
to <simple_exp>. */
|
||
%nonassoc VAR
|
||
|
||
%nonassoc ARROW '|'
|
||
|
||
%right TICK_ACCESS TICK_ADDRESS TICK_FIRST TICK_LAST TICK_LENGTH
|
||
%right TICK_MAX TICK_MIN TICK_MODULUS
|
||
%right TICK_POS TICK_RANGE TICK_SIZE TICK_TAG TICK_VAL
|
||
/* The following are right-associative only so that reductions at this
|
||
precedence have lower precedence than '.' and '('. The syntax still
|
||
forces a.b.c, e.g., to be LEFT-associated. */
|
||
%right '.' '(' '[' DOT_ID DOT_ALL
|
||
|
||
%token NEW OTHERS
|
||
|
||
|
||
%%
|
||
|
||
start : exp1
|
||
;
|
||
|
||
/* Expressions, including the sequencing operator. */
|
||
exp1 : exp
|
||
| exp1 ';' exp
|
||
{ ada_wrap2<comma_operation> (BINOP_COMMA); }
|
||
| primary ASSIGN exp /* Extension for convenience */
|
||
{
|
||
operation_up rhs = pstate->pop ();
|
||
operation_up lhs = ada_pop ();
|
||
value *lhs_val
|
||
= lhs->evaluate (nullptr, pstate->expout.get (),
|
||
EVAL_AVOID_SIDE_EFFECTS);
|
||
rhs = resolve (std::move (rhs), true,
|
||
value_type (lhs_val));
|
||
pstate->push_new<ada_assign_operation>
|
||
(std::move (lhs), std::move (rhs));
|
||
}
|
||
;
|
||
|
||
/* Expressions, not including the sequencing operator. */
|
||
primary : primary DOT_ALL
|
||
{ ada_wrap<ada_unop_ind_operation> (); }
|
||
;
|
||
|
||
primary : primary DOT_ID
|
||
{
|
||
operation_up arg = ada_pop ();
|
||
pstate->push_new<ada_structop_operation>
|
||
(std::move (arg), copy_name ($2));
|
||
}
|
||
;
|
||
|
||
primary : primary '(' arglist ')'
|
||
{ ada_funcall ($3); }
|
||
| var_or_type '(' arglist ')'
|
||
{
|
||
if ($1 != NULL)
|
||
{
|
||
if ($3 != 1)
|
||
error (_("Invalid conversion"));
|
||
operation_up arg = ada_pop ();
|
||
pstate->push_new<unop_cast_operation>
|
||
(std::move (arg), $1);
|
||
}
|
||
else
|
||
ada_funcall ($3);
|
||
}
|
||
;
|
||
|
||
primary : var_or_type '\'' save_qualifier { type_qualifier = $1; }
|
||
'(' exp ')'
|
||
{
|
||
if ($1 == NULL)
|
||
error (_("Type required for qualification"));
|
||
operation_up arg = ada_pop (true,
|
||
check_typedef ($1));
|
||
pstate->push_new<ada_qual_operation>
|
||
(std::move (arg), $1);
|
||
type_qualifier = $3;
|
||
}
|
||
;
|
||
|
||
save_qualifier : { $$ = type_qualifier; }
|
||
;
|
||
|
||
primary :
|
||
primary '(' simple_exp DOTDOT simple_exp ')'
|
||
{ ada_wrap3<ada_ternop_slice_operation> (); }
|
||
| var_or_type '(' simple_exp DOTDOT simple_exp ')'
|
||
{ if ($1 == NULL)
|
||
ada_wrap3<ada_ternop_slice_operation> ();
|
||
else
|
||
error (_("Cannot slice a type"));
|
||
}
|
||
;
|
||
|
||
primary : '(' exp1 ')' { }
|
||
;
|
||
|
||
/* The following rule causes a conflict with the type conversion
|
||
var_or_type (exp)
|
||
To get around it, we give '(' higher priority and add bridge rules for
|
||
var_or_type (exp, exp, ...)
|
||
var_or_type (exp .. exp)
|
||
We also have the action for var_or_type(exp) generate a function call
|
||
when the first symbol does not denote a type. */
|
||
|
||
primary : var_or_type %prec VAR
|
||
{ if ($1 != NULL)
|
||
pstate->push_new<type_operation> ($1);
|
||
}
|
||
;
|
||
|
||
primary : DOLLAR_VARIABLE /* Various GDB extensions */
|
||
{ pstate->push_dollar ($1); }
|
||
;
|
||
|
||
primary : aggregate
|
||
{
|
||
pstate->push_new<ada_aggregate_operation>
|
||
(pop_component ());
|
||
}
|
||
;
|
||
|
||
simple_exp : primary
|
||
;
|
||
|
||
simple_exp : '-' simple_exp %prec UNARY
|
||
{ ada_wrap_overload<ada_neg_operation> (UNOP_NEG); }
|
||
;
|
||
|
||
simple_exp : '+' simple_exp %prec UNARY
|
||
{
|
||
operation_up arg = ada_pop ();
|
||
operation_up empty;
|
||
|
||
/* If an overloaded operator was found, use
|
||
it. Otherwise, unary + has no effect and
|
||
the argument can be pushed instead. */
|
||
operation_up call = maybe_overload (UNOP_PLUS, arg,
|
||
empty);
|
||
if (call != nullptr)
|
||
arg = std::move (call);
|
||
pstate->push (std::move (arg));
|
||
}
|
||
;
|
||
|
||
simple_exp : NOT simple_exp %prec UNARY
|
||
{
|
||
ada_wrap_overload<unary_logical_not_operation>
|
||
(UNOP_LOGICAL_NOT);
|
||
}
|
||
;
|
||
|
||
simple_exp : ABS simple_exp %prec UNARY
|
||
{ ada_wrap_overload<ada_abs_operation> (UNOP_ABS); }
|
||
;
|
||
|
||
arglist : { $$ = 0; }
|
||
;
|
||
|
||
arglist : exp
|
||
{ $$ = 1; }
|
||
| NAME ARROW exp
|
||
{ $$ = 1; }
|
||
| arglist ',' exp
|
||
{ $$ = $1 + 1; }
|
||
| arglist ',' NAME ARROW exp
|
||
{ $$ = $1 + 1; }
|
||
;
|
||
|
||
primary : '{' var_or_type '}' primary %prec '.'
|
||
/* GDB extension */
|
||
{
|
||
if ($2 == NULL)
|
||
error (_("Type required within braces in coercion"));
|
||
operation_up arg = ada_pop ();
|
||
pstate->push_new<unop_memval_operation>
|
||
(std::move (arg), $2);
|
||
}
|
||
;
|
||
|
||
/* Binary operators in order of decreasing precedence. */
|
||
|
||
simple_exp : simple_exp STARSTAR simple_exp
|
||
{ ada_wrap2<ada_binop_exp_operation> (BINOP_EXP); }
|
||
;
|
||
|
||
simple_exp : simple_exp '*' simple_exp
|
||
{ ada_wrap2<ada_binop_mul_operation> (BINOP_MUL); }
|
||
;
|
||
|
||
simple_exp : simple_exp '/' simple_exp
|
||
{ ada_wrap2<ada_binop_div_operation> (BINOP_DIV); }
|
||
;
|
||
|
||
simple_exp : simple_exp REM simple_exp /* May need to be fixed to give correct Ada REM */
|
||
{ ada_wrap2<ada_binop_rem_operation> (BINOP_REM); }
|
||
;
|
||
|
||
simple_exp : simple_exp MOD simple_exp
|
||
{ ada_wrap2<ada_binop_mod_operation> (BINOP_MOD); }
|
||
;
|
||
|
||
simple_exp : simple_exp '@' simple_exp /* GDB extension */
|
||
{ ada_wrap2<repeat_operation> (BINOP_REPEAT); }
|
||
;
|
||
|
||
simple_exp : simple_exp '+' simple_exp
|
||
{ ada_wrap_op<ada_binop_addsub_operation> (BINOP_ADD); }
|
||
;
|
||
|
||
simple_exp : simple_exp '&' simple_exp
|
||
{ ada_wrap2<concat_operation> (BINOP_CONCAT); }
|
||
;
|
||
|
||
simple_exp : simple_exp '-' simple_exp
|
||
{ ada_wrap_op<ada_binop_addsub_operation> (BINOP_SUB); }
|
||
;
|
||
|
||
relation : simple_exp
|
||
;
|
||
|
||
relation : simple_exp '=' simple_exp
|
||
{ ada_wrap_op<ada_binop_equal_operation> (BINOP_EQUAL); }
|
||
;
|
||
|
||
relation : simple_exp NOTEQUAL simple_exp
|
||
{ ada_wrap_op<ada_binop_equal_operation> (BINOP_NOTEQUAL); }
|
||
;
|
||
|
||
relation : simple_exp LEQ simple_exp
|
||
{ ada_un_wrap2<leq_operation> (BINOP_LEQ); }
|
||
;
|
||
|
||
relation : simple_exp IN simple_exp DOTDOT simple_exp
|
||
{ ada_wrap3<ada_ternop_range_operation> (); }
|
||
| simple_exp IN primary TICK_RANGE tick_arglist
|
||
{
|
||
operation_up rhs = ada_pop ();
|
||
operation_up lhs = ada_pop ();
|
||
pstate->push_new<ada_binop_in_bounds_operation>
|
||
(std::move (lhs), std::move (rhs), $5);
|
||
}
|
||
| simple_exp IN var_or_type %prec TICK_ACCESS
|
||
{
|
||
if ($3 == NULL)
|
||
error (_("Right operand of 'in' must be type"));
|
||
operation_up arg = ada_pop ();
|
||
pstate->push_new<ada_unop_range_operation>
|
||
(std::move (arg), $3);
|
||
}
|
||
| simple_exp NOT IN simple_exp DOTDOT simple_exp
|
||
{ ada_wrap3<ada_ternop_range_operation> ();
|
||
ada_wrap<unary_logical_not_operation> (); }
|
||
| simple_exp NOT IN primary TICK_RANGE tick_arglist
|
||
{
|
||
operation_up rhs = ada_pop ();
|
||
operation_up lhs = ada_pop ();
|
||
pstate->push_new<ada_binop_in_bounds_operation>
|
||
(std::move (lhs), std::move (rhs), $6);
|
||
ada_wrap<unary_logical_not_operation> ();
|
||
}
|
||
| simple_exp NOT IN var_or_type %prec TICK_ACCESS
|
||
{
|
||
if ($4 == NULL)
|
||
error (_("Right operand of 'in' must be type"));
|
||
operation_up arg = ada_pop ();
|
||
pstate->push_new<ada_unop_range_operation>
|
||
(std::move (arg), $4);
|
||
ada_wrap<unary_logical_not_operation> ();
|
||
}
|
||
;
|
||
|
||
relation : simple_exp GEQ simple_exp
|
||
{ ada_un_wrap2<geq_operation> (BINOP_GEQ); }
|
||
;
|
||
|
||
relation : simple_exp '<' simple_exp
|
||
{ ada_un_wrap2<less_operation> (BINOP_LESS); }
|
||
;
|
||
|
||
relation : simple_exp '>' simple_exp
|
||
{ ada_un_wrap2<gtr_operation> (BINOP_GTR); }
|
||
;
|
||
|
||
exp : relation
|
||
| and_exp
|
||
| and_then_exp
|
||
| or_exp
|
||
| or_else_exp
|
||
| xor_exp
|
||
;
|
||
|
||
and_exp :
|
||
relation _AND_ relation
|
||
{ ada_wrap2<ada_bitwise_and_operation>
|
||
(BINOP_BITWISE_AND); }
|
||
| and_exp _AND_ relation
|
||
{ ada_wrap2<ada_bitwise_and_operation>
|
||
(BINOP_BITWISE_AND); }
|
||
;
|
||
|
||
and_then_exp :
|
||
relation _AND_ THEN relation
|
||
{ ada_wrap2<logical_and_operation>
|
||
(BINOP_LOGICAL_AND); }
|
||
| and_then_exp _AND_ THEN relation
|
||
{ ada_wrap2<logical_and_operation>
|
||
(BINOP_LOGICAL_AND); }
|
||
;
|
||
|
||
or_exp :
|
||
relation OR relation
|
||
{ ada_wrap2<ada_bitwise_ior_operation>
|
||
(BINOP_BITWISE_IOR); }
|
||
| or_exp OR relation
|
||
{ ada_wrap2<ada_bitwise_ior_operation>
|
||
(BINOP_BITWISE_IOR); }
|
||
;
|
||
|
||
or_else_exp :
|
||
relation OR ELSE relation
|
||
{ ada_wrap2<logical_or_operation> (BINOP_LOGICAL_OR); }
|
||
| or_else_exp OR ELSE relation
|
||
{ ada_wrap2<logical_or_operation> (BINOP_LOGICAL_OR); }
|
||
;
|
||
|
||
xor_exp : relation XOR relation
|
||
{ ada_wrap2<ada_bitwise_xor_operation>
|
||
(BINOP_BITWISE_XOR); }
|
||
| xor_exp XOR relation
|
||
{ ada_wrap2<ada_bitwise_xor_operation>
|
||
(BINOP_BITWISE_XOR); }
|
||
;
|
||
|
||
/* Primaries can denote types (OP_TYPE). In cases such as
|
||
primary TICK_ADDRESS, where a type would be invalid, it will be
|
||
caught when evaluate_subexp in ada-lang.c tries to evaluate the
|
||
primary, expecting a value. Precedence rules resolve the ambiguity
|
||
in NAME TICK_ACCESS in favor of shifting to form a var_or_type. A
|
||
construct such as aType'access'access will again cause an error when
|
||
aType'access evaluates to a type that evaluate_subexp attempts to
|
||
evaluate. */
|
||
primary : primary TICK_ACCESS
|
||
{ ada_addrof (); }
|
||
| primary TICK_ADDRESS
|
||
{ ada_addrof (type_system_address (pstate)); }
|
||
| primary TICK_FIRST tick_arglist
|
||
{
|
||
operation_up arg = ada_pop ();
|
||
pstate->push_new<ada_unop_atr_operation>
|
||
(std::move (arg), OP_ATR_FIRST, $3);
|
||
}
|
||
| primary TICK_LAST tick_arglist
|
||
{
|
||
operation_up arg = ada_pop ();
|
||
pstate->push_new<ada_unop_atr_operation>
|
||
(std::move (arg), OP_ATR_LAST, $3);
|
||
}
|
||
| primary TICK_LENGTH tick_arglist
|
||
{
|
||
operation_up arg = ada_pop ();
|
||
pstate->push_new<ada_unop_atr_operation>
|
||
(std::move (arg), OP_ATR_LENGTH, $3);
|
||
}
|
||
| primary TICK_SIZE
|
||
{ ada_wrap<ada_atr_size_operation> (); }
|
||
| primary TICK_TAG
|
||
{ ada_wrap<ada_atr_tag_operation> (); }
|
||
| opt_type_prefix TICK_MIN '(' exp ',' exp ')'
|
||
{ ada_wrap2<ada_binop_min_operation> (BINOP_MIN); }
|
||
| opt_type_prefix TICK_MAX '(' exp ',' exp ')'
|
||
{ ada_wrap2<ada_binop_max_operation> (BINOP_MAX); }
|
||
| opt_type_prefix TICK_POS '(' exp ')'
|
||
{ ada_wrap<ada_pos_operation> (); }
|
||
| type_prefix TICK_VAL '(' exp ')'
|
||
{
|
||
operation_up arg = ada_pop ();
|
||
pstate->push_new<ada_atr_val_operation>
|
||
($1, std::move (arg));
|
||
}
|
||
| type_prefix TICK_MODULUS
|
||
{
|
||
struct type *type_arg = check_typedef ($1);
|
||
if (!ada_is_modular_type (type_arg))
|
||
error (_("'modulus must be applied to modular type"));
|
||
write_int (pstate, ada_modulus (type_arg),
|
||
TYPE_TARGET_TYPE (type_arg));
|
||
}
|
||
;
|
||
|
||
tick_arglist : %prec '('
|
||
{ $$ = 1; }
|
||
| '(' INT ')'
|
||
{ $$ = $2.val; }
|
||
;
|
||
|
||
type_prefix :
|
||
var_or_type
|
||
{
|
||
if ($1 == NULL)
|
||
error (_("Prefix must be type"));
|
||
$$ = $1;
|
||
}
|
||
;
|
||
|
||
opt_type_prefix :
|
||
type_prefix
|
||
{ $$ = $1; }
|
||
| /* EMPTY */
|
||
{ $$ = parse_type (pstate)->builtin_void; }
|
||
;
|
||
|
||
|
||
primary : INT
|
||
{ write_int (pstate, (LONGEST) $1.val, $1.type); }
|
||
;
|
||
|
||
primary : CHARLIT
|
||
{ write_int (pstate,
|
||
convert_char_literal (type_qualifier, $1.val),
|
||
(type_qualifier == NULL)
|
||
? $1.type : type_qualifier);
|
||
}
|
||
;
|
||
|
||
primary : FLOAT
|
||
{
|
||
float_data data;
|
||
std::copy (std::begin ($1.val), std::end ($1.val),
|
||
std::begin (data));
|
||
pstate->push_new<float_const_operation>
|
||
($1.type, data);
|
||
ada_wrap<ada_wrapped_operation> ();
|
||
}
|
||
;
|
||
|
||
primary : NULL_PTR
|
||
{
|
||
struct type *null_ptr_type
|
||
= lookup_pointer_type (parse_type (pstate)->builtin_int0);
|
||
write_int (pstate, 0, null_ptr_type);
|
||
}
|
||
;
|
||
|
||
primary : STRING
|
||
{
|
||
pstate->push_new<ada_string_operation>
|
||
(copy_name ($1));
|
||
}
|
||
;
|
||
|
||
primary : TRUEKEYWORD
|
||
{ write_int (pstate, 1, type_boolean (pstate)); }
|
||
| FALSEKEYWORD
|
||
{ write_int (pstate, 0, type_boolean (pstate)); }
|
||
;
|
||
|
||
primary : NEW NAME
|
||
{ error (_("NEW not implemented.")); }
|
||
;
|
||
|
||
var_or_type: NAME %prec VAR
|
||
{ $$ = write_var_or_type (pstate, NULL, $1); }
|
||
| block NAME %prec VAR
|
||
{ $$ = write_var_or_type (pstate, $1, $2); }
|
||
| NAME TICK_ACCESS
|
||
{
|
||
$$ = write_var_or_type (pstate, NULL, $1);
|
||
if ($$ == NULL)
|
||
ada_addrof ();
|
||
else
|
||
$$ = lookup_pointer_type ($$);
|
||
}
|
||
| block NAME TICK_ACCESS
|
||
{
|
||
$$ = write_var_or_type (pstate, $1, $2);
|
||
if ($$ == NULL)
|
||
ada_addrof ();
|
||
else
|
||
$$ = lookup_pointer_type ($$);
|
||
}
|
||
;
|
||
|
||
/* GDB extension */
|
||
block : NAME COLONCOLON
|
||
{ $$ = block_lookup (NULL, $1.ptr); }
|
||
| block NAME COLONCOLON
|
||
{ $$ = block_lookup ($1, $2.ptr); }
|
||
;
|
||
|
||
aggregate :
|
||
'(' aggregate_component_list ')'
|
||
{
|
||
std::vector<ada_component_up> components
|
||
= pop_components ($2);
|
||
|
||
push_component<ada_aggregate_component>
|
||
(std::move (components));
|
||
}
|
||
;
|
||
|
||
aggregate_component_list :
|
||
component_groups { $$ = $1; }
|
||
| positional_list exp
|
||
{
|
||
push_component<ada_positional_component>
|
||
($1, ada_pop ());
|
||
$$ = $1 + 1;
|
||
}
|
||
| positional_list component_groups
|
||
{ $$ = $1 + $2; }
|
||
;
|
||
|
||
positional_list :
|
||
exp ','
|
||
{
|
||
push_component<ada_positional_component>
|
||
(0, ada_pop ());
|
||
$$ = 1;
|
||
}
|
||
| positional_list exp ','
|
||
{
|
||
push_component<ada_positional_component>
|
||
($1, ada_pop ());
|
||
$$ = $1 + 1;
|
||
}
|
||
;
|
||
|
||
component_groups:
|
||
others { $$ = 1; }
|
||
| component_group { $$ = 1; }
|
||
| component_group ',' component_groups
|
||
{ $$ = $3 + 1; }
|
||
;
|
||
|
||
others : OTHERS ARROW exp
|
||
{
|
||
push_component<ada_others_component> (ada_pop ());
|
||
}
|
||
;
|
||
|
||
component_group :
|
||
component_associations
|
||
{
|
||
ada_choices_component *choices = choice_component ();
|
||
choices->set_associations (pop_associations ($1));
|
||
}
|
||
;
|
||
|
||
/* We use this somewhat obscure definition in order to handle NAME => and
|
||
NAME | differently from exp => and exp |. ARROW and '|' have a precedence
|
||
above that of the reduction of NAME to var_or_type. By delaying
|
||
decisions until after the => or '|', we convert the ambiguity to a
|
||
resolved shift/reduce conflict. */
|
||
component_associations :
|
||
NAME ARROW exp
|
||
{
|
||
push_component<ada_choices_component> (ada_pop ());
|
||
write_name_assoc (pstate, $1);
|
||
$$ = 1;
|
||
}
|
||
| simple_exp ARROW exp
|
||
{
|
||
push_component<ada_choices_component> (ada_pop ());
|
||
push_association<ada_name_association> (ada_pop ());
|
||
$$ = 1;
|
||
}
|
||
| simple_exp DOTDOT simple_exp ARROW exp
|
||
{
|
||
push_component<ada_choices_component> (ada_pop ());
|
||
operation_up rhs = ada_pop ();
|
||
operation_up lhs = ada_pop ();
|
||
push_association<ada_discrete_range_association>
|
||
(std::move (lhs), std::move (rhs));
|
||
$$ = 1;
|
||
}
|
||
| NAME '|' component_associations
|
||
{
|
||
write_name_assoc (pstate, $1);
|
||
$$ = $3 + 1;
|
||
}
|
||
| simple_exp '|' component_associations
|
||
{
|
||
push_association<ada_name_association> (ada_pop ());
|
||
$$ = $3 + 1;
|
||
}
|
||
| simple_exp DOTDOT simple_exp '|' component_associations
|
||
|
||
{
|
||
operation_up rhs = ada_pop ();
|
||
operation_up lhs = ada_pop ();
|
||
push_association<ada_discrete_range_association>
|
||
(std::move (lhs), std::move (rhs));
|
||
$$ = $5 + 1;
|
||
}
|
||
;
|
||
|
||
/* Some extensions borrowed from C, for the benefit of those who find they
|
||
can't get used to Ada notation in GDB. */
|
||
|
||
primary : '*' primary %prec '.'
|
||
{ ada_wrap<ada_unop_ind_operation> (); }
|
||
| '&' primary %prec '.'
|
||
{ ada_addrof (); }
|
||
| primary '[' exp ']'
|
||
{
|
||
ada_wrap2<subscript_operation> (BINOP_SUBSCRIPT);
|
||
ada_wrap<ada_wrapped_operation> ();
|
||
}
|
||
;
|
||
|
||
%%
|
||
|
||
/* yylex defined in ada-lex.c: Reads one token, getting characters */
|
||
/* through lexptr. */
|
||
|
||
/* Remap normal flex interface names (yylex) as well as gratuitiously */
|
||
/* global symbol names, so we can have multiple flex-generated parsers */
|
||
/* in gdb. */
|
||
|
||
/* (See note above on previous definitions for YACC.) */
|
||
|
||
#define yy_create_buffer ada_yy_create_buffer
|
||
#define yy_delete_buffer ada_yy_delete_buffer
|
||
#define yy_init_buffer ada_yy_init_buffer
|
||
#define yy_load_buffer_state ada_yy_load_buffer_state
|
||
#define yy_switch_to_buffer ada_yy_switch_to_buffer
|
||
#define yyrestart ada_yyrestart
|
||
#define yytext ada_yytext
|
||
|
||
static struct obstack temp_parse_space;
|
||
|
||
/* The following kludge was found necessary to prevent conflicts between */
|
||
/* defs.h and non-standard stdlib.h files. */
|
||
#define qsort __qsort__dummy
|
||
#include "ada-lex.c"
|
||
|
||
int
|
||
ada_parse (struct parser_state *par_state)
|
||
{
|
||
/* Setting up the parser state. */
|
||
scoped_restore pstate_restore = make_scoped_restore (&pstate);
|
||
gdb_assert (par_state != NULL);
|
||
pstate = par_state;
|
||
|
||
lexer_init (yyin); /* (Re-)initialize lexer. */
|
||
type_qualifier = NULL;
|
||
obstack_free (&temp_parse_space, NULL);
|
||
obstack_init (&temp_parse_space);
|
||
components.clear ();
|
||
associations.clear ();
|
||
|
||
int result = yyparse ();
|
||
if (!result)
|
||
{
|
||
struct type *context_type = nullptr;
|
||
if (par_state->void_context_p)
|
||
context_type = parse_type (par_state)->builtin_void;
|
||
pstate->set_operation (ada_pop (true, context_type));
|
||
}
|
||
return result;
|
||
}
|
||
|
||
static void
|
||
yyerror (const char *msg)
|
||
{
|
||
error (_("Error in expression, near `%s'."), pstate->lexptr);
|
||
}
|
||
|
||
/* Emit expression to access an instance of SYM, in block BLOCK (if
|
||
non-NULL). */
|
||
|
||
static void
|
||
write_var_from_sym (struct parser_state *par_state, block_symbol sym)
|
||
{
|
||
if (symbol_read_needs_frame (sym.symbol))
|
||
par_state->block_tracker->update (sym.block, INNERMOST_BLOCK_FOR_SYMBOLS);
|
||
|
||
par_state->push_new<ada_var_value_operation> (sym);
|
||
}
|
||
|
||
/* Write integer or boolean constant ARG of type TYPE. */
|
||
|
||
static void
|
||
write_int (struct parser_state *par_state, LONGEST arg, struct type *type)
|
||
{
|
||
pstate->push_new<long_const_operation> (type, arg);
|
||
ada_wrap<ada_wrapped_operation> ();
|
||
}
|
||
|
||
/* Emit expression corresponding to the renamed object named
|
||
* designated by RENAMED_ENTITY[0 .. RENAMED_ENTITY_LEN-1] in the
|
||
* context of ORIG_LEFT_CONTEXT, to which is applied the operations
|
||
* encoded by RENAMING_EXPR. MAX_DEPTH is the maximum number of
|
||
* cascaded renamings to allow. If ORIG_LEFT_CONTEXT is null, it
|
||
* defaults to the currently selected block. ORIG_SYMBOL is the
|
||
* symbol that originally encoded the renaming. It is needed only
|
||
* because its prefix also qualifies any index variables used to index
|
||
* or slice an array. It should not be necessary once we go to the
|
||
* new encoding entirely (FIXME pnh 7/20/2007). */
|
||
|
||
static void
|
||
write_object_renaming (struct parser_state *par_state,
|
||
const struct block *orig_left_context,
|
||
const char *renamed_entity, int renamed_entity_len,
|
||
const char *renaming_expr, int max_depth)
|
||
{
|
||
char *name;
|
||
enum { SIMPLE_INDEX, LOWER_BOUND, UPPER_BOUND } slice_state;
|
||
struct block_symbol sym_info;
|
||
|
||
if (max_depth <= 0)
|
||
error (_("Could not find renamed symbol"));
|
||
|
||
if (orig_left_context == NULL)
|
||
orig_left_context = get_selected_block (NULL);
|
||
|
||
name = obstack_strndup (&temp_parse_space, renamed_entity,
|
||
renamed_entity_len);
|
||
ada_lookup_encoded_symbol (name, orig_left_context, VAR_DOMAIN, &sym_info);
|
||
if (sym_info.symbol == NULL)
|
||
error (_("Could not find renamed variable: %s"), ada_decode (name).c_str ());
|
||
else if (SYMBOL_CLASS (sym_info.symbol) == LOC_TYPEDEF)
|
||
/* We have a renaming of an old-style renaming symbol. Don't
|
||
trust the block information. */
|
||
sym_info.block = orig_left_context;
|
||
|
||
{
|
||
const char *inner_renamed_entity;
|
||
int inner_renamed_entity_len;
|
||
const char *inner_renaming_expr;
|
||
|
||
switch (ada_parse_renaming (sym_info.symbol, &inner_renamed_entity,
|
||
&inner_renamed_entity_len,
|
||
&inner_renaming_expr))
|
||
{
|
||
case ADA_NOT_RENAMING:
|
||
write_var_from_sym (par_state, sym_info);
|
||
break;
|
||
case ADA_OBJECT_RENAMING:
|
||
write_object_renaming (par_state, sym_info.block,
|
||
inner_renamed_entity, inner_renamed_entity_len,
|
||
inner_renaming_expr, max_depth - 1);
|
||
break;
|
||
default:
|
||
goto BadEncoding;
|
||
}
|
||
}
|
||
|
||
slice_state = SIMPLE_INDEX;
|
||
while (*renaming_expr == 'X')
|
||
{
|
||
renaming_expr += 1;
|
||
|
||
switch (*renaming_expr) {
|
||
case 'A':
|
||
renaming_expr += 1;
|
||
ada_wrap<ada_unop_ind_operation> ();
|
||
break;
|
||
case 'L':
|
||
slice_state = LOWER_BOUND;
|
||
/* FALLTHROUGH */
|
||
case 'S':
|
||
renaming_expr += 1;
|
||
if (isdigit (*renaming_expr))
|
||
{
|
||
char *next;
|
||
long val = strtol (renaming_expr, &next, 10);
|
||
if (next == renaming_expr)
|
||
goto BadEncoding;
|
||
renaming_expr = next;
|
||
write_int (par_state, val, type_int (par_state));
|
||
}
|
||
else
|
||
{
|
||
const char *end;
|
||
char *index_name;
|
||
struct block_symbol index_sym_info;
|
||
|
||
end = strchr (renaming_expr, 'X');
|
||
if (end == NULL)
|
||
end = renaming_expr + strlen (renaming_expr);
|
||
|
||
index_name = obstack_strndup (&temp_parse_space, renaming_expr,
|
||
end - renaming_expr);
|
||
renaming_expr = end;
|
||
|
||
ada_lookup_encoded_symbol (index_name, orig_left_context,
|
||
VAR_DOMAIN, &index_sym_info);
|
||
if (index_sym_info.symbol == NULL)
|
||
error (_("Could not find %s"), index_name);
|
||
else if (SYMBOL_CLASS (index_sym_info.symbol) == LOC_TYPEDEF)
|
||
/* Index is an old-style renaming symbol. */
|
||
index_sym_info.block = orig_left_context;
|
||
write_var_from_sym (par_state, index_sym_info);
|
||
}
|
||
if (slice_state == SIMPLE_INDEX)
|
||
ada_funcall (1);
|
||
else if (slice_state == LOWER_BOUND)
|
||
slice_state = UPPER_BOUND;
|
||
else if (slice_state == UPPER_BOUND)
|
||
{
|
||
ada_wrap3<ada_ternop_slice_operation> ();
|
||
slice_state = SIMPLE_INDEX;
|
||
}
|
||
break;
|
||
|
||
case 'R':
|
||
{
|
||
const char *end;
|
||
|
||
renaming_expr += 1;
|
||
|
||
if (slice_state != SIMPLE_INDEX)
|
||
goto BadEncoding;
|
||
end = strchr (renaming_expr, 'X');
|
||
if (end == NULL)
|
||
end = renaming_expr + strlen (renaming_expr);
|
||
|
||
operation_up arg = ada_pop ();
|
||
pstate->push_new<ada_structop_operation>
|
||
(std::move (arg), std::string (renaming_expr,
|
||
end - renaming_expr));
|
||
renaming_expr = end;
|
||
break;
|
||
}
|
||
|
||
default:
|
||
goto BadEncoding;
|
||
}
|
||
}
|
||
if (slice_state == SIMPLE_INDEX)
|
||
return;
|
||
|
||
BadEncoding:
|
||
error (_("Internal error in encoding of renaming declaration"));
|
||
}
|
||
|
||
static const struct block*
|
||
block_lookup (const struct block *context, const char *raw_name)
|
||
{
|
||
const char *name;
|
||
struct symtab *symtab;
|
||
const struct block *result = NULL;
|
||
|
||
std::string name_storage;
|
||
if (raw_name[0] == '\'')
|
||
{
|
||
raw_name += 1;
|
||
name = raw_name;
|
||
}
|
||
else
|
||
{
|
||
name_storage = ada_encode (raw_name);
|
||
name = name_storage.c_str ();
|
||
}
|
||
|
||
std::vector<struct block_symbol> syms
|
||
= ada_lookup_symbol_list (name, context, VAR_DOMAIN);
|
||
|
||
if (context == NULL
|
||
&& (syms.empty () || SYMBOL_CLASS (syms[0].symbol) != LOC_BLOCK))
|
||
symtab = lookup_symtab (name);
|
||
else
|
||
symtab = NULL;
|
||
|
||
if (symtab != NULL)
|
||
result = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symtab), STATIC_BLOCK);
|
||
else if (syms.empty () || SYMBOL_CLASS (syms[0].symbol) != LOC_BLOCK)
|
||
{
|
||
if (context == NULL)
|
||
error (_("No file or function \"%s\"."), raw_name);
|
||
else
|
||
error (_("No function \"%s\" in specified context."), raw_name);
|
||
}
|
||
else
|
||
{
|
||
if (syms.size () > 1)
|
||
warning (_("Function name \"%s\" ambiguous here"), raw_name);
|
||
result = SYMBOL_BLOCK_VALUE (syms[0].symbol);
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
static struct symbol*
|
||
select_possible_type_sym (const std::vector<struct block_symbol> &syms)
|
||
{
|
||
int i;
|
||
int preferred_index;
|
||
struct type *preferred_type;
|
||
|
||
preferred_index = -1; preferred_type = NULL;
|
||
for (i = 0; i < syms.size (); i += 1)
|
||
switch (SYMBOL_CLASS (syms[i].symbol))
|
||
{
|
||
case LOC_TYPEDEF:
|
||
if (ada_prefer_type (SYMBOL_TYPE (syms[i].symbol), preferred_type))
|
||
{
|
||
preferred_index = i;
|
||
preferred_type = SYMBOL_TYPE (syms[i].symbol);
|
||
}
|
||
break;
|
||
case LOC_REGISTER:
|
||
case LOC_ARG:
|
||
case LOC_REF_ARG:
|
||
case LOC_REGPARM_ADDR:
|
||
case LOC_LOCAL:
|
||
case LOC_COMPUTED:
|
||
return NULL;
|
||
default:
|
||
break;
|
||
}
|
||
if (preferred_type == NULL)
|
||
return NULL;
|
||
return syms[preferred_index].symbol;
|
||
}
|
||
|
||
static struct type*
|
||
find_primitive_type (struct parser_state *par_state, const char *name)
|
||
{
|
||
struct type *type;
|
||
type = language_lookup_primitive_type (par_state->language (),
|
||
par_state->gdbarch (),
|
||
name);
|
||
if (type == NULL && strcmp ("system__address", name) == 0)
|
||
type = type_system_address (par_state);
|
||
|
||
if (type != NULL)
|
||
{
|
||
/* Check to see if we have a regular definition of this
|
||
type that just didn't happen to have been read yet. */
|
||
struct symbol *sym;
|
||
char *expanded_name =
|
||
(char *) alloca (strlen (name) + sizeof ("standard__"));
|
||
strcpy (expanded_name, "standard__");
|
||
strcat (expanded_name, name);
|
||
sym = ada_lookup_symbol (expanded_name, NULL, VAR_DOMAIN).symbol;
|
||
if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
|
||
type = SYMBOL_TYPE (sym);
|
||
}
|
||
|
||
return type;
|
||
}
|
||
|
||
static int
|
||
chop_selector (char *name, int end)
|
||
{
|
||
int i;
|
||
for (i = end - 1; i > 0; i -= 1)
|
||
if (name[i] == '.' || (name[i] == '_' && name[i+1] == '_'))
|
||
return i;
|
||
return -1;
|
||
}
|
||
|
||
/* If NAME is a string beginning with a separator (either '__', or
|
||
'.'), chop this separator and return the result; else, return
|
||
NAME. */
|
||
|
||
static char *
|
||
chop_separator (char *name)
|
||
{
|
||
if (*name == '.')
|
||
return name + 1;
|
||
|
||
if (name[0] == '_' && name[1] == '_')
|
||
return name + 2;
|
||
|
||
return name;
|
||
}
|
||
|
||
/* Given that SELS is a string of the form (<sep><identifier>)*, where
|
||
<sep> is '__' or '.', write the indicated sequence of
|
||
STRUCTOP_STRUCT expression operators. */
|
||
static void
|
||
write_selectors (struct parser_state *par_state, char *sels)
|
||
{
|
||
while (*sels != '\0')
|
||
{
|
||
char *p = chop_separator (sels);
|
||
sels = p;
|
||
while (*sels != '\0' && *sels != '.'
|
||
&& (sels[0] != '_' || sels[1] != '_'))
|
||
sels += 1;
|
||
operation_up arg = ada_pop ();
|
||
pstate->push_new<ada_structop_operation>
|
||
(std::move (arg), std::string (p, sels - p));
|
||
}
|
||
}
|
||
|
||
/* Write a variable access (OP_VAR_VALUE) to ambiguous encoded name
|
||
NAME[0..LEN-1], in block context BLOCK, to be resolved later. Writes
|
||
a temporary symbol that is valid until the next call to ada_parse.
|
||
*/
|
||
static void
|
||
write_ambiguous_var (struct parser_state *par_state,
|
||
const struct block *block, char *name, int len)
|
||
{
|
||
struct symbol *sym = new (&temp_parse_space) symbol ();
|
||
|
||
SYMBOL_DOMAIN (sym) = UNDEF_DOMAIN;
|
||
sym->set_linkage_name (obstack_strndup (&temp_parse_space, name, len));
|
||
sym->set_language (language_ada, nullptr);
|
||
|
||
block_symbol bsym { sym, block };
|
||
par_state->push_new<ada_var_value_operation> (bsym);
|
||
}
|
||
|
||
/* A convenient wrapper around ada_get_field_index that takes
|
||
a non NUL-terminated FIELD_NAME0 and a FIELD_NAME_LEN instead
|
||
of a NUL-terminated field name. */
|
||
|
||
static int
|
||
ada_nget_field_index (const struct type *type, const char *field_name0,
|
||
int field_name_len, int maybe_missing)
|
||
{
|
||
char *field_name = (char *) alloca ((field_name_len + 1) * sizeof (char));
|
||
|
||
strncpy (field_name, field_name0, field_name_len);
|
||
field_name[field_name_len] = '\0';
|
||
return ada_get_field_index (type, field_name, maybe_missing);
|
||
}
|
||
|
||
/* If encoded_field_name is the name of a field inside symbol SYM,
|
||
then return the type of that field. Otherwise, return NULL.
|
||
|
||
This function is actually recursive, so if ENCODED_FIELD_NAME
|
||
doesn't match one of the fields of our symbol, then try to see
|
||
if ENCODED_FIELD_NAME could not be a succession of field names
|
||
(in other words, the user entered an expression of the form
|
||
TYPE_NAME.FIELD1.FIELD2.FIELD3), in which case we evaluate
|
||
each field name sequentially to obtain the desired field type.
|
||
In case of failure, we return NULL. */
|
||
|
||
static struct type *
|
||
get_symbol_field_type (struct symbol *sym, char *encoded_field_name)
|
||
{
|
||
char *field_name = encoded_field_name;
|
||
char *subfield_name;
|
||
struct type *type = SYMBOL_TYPE (sym);
|
||
int fieldno;
|
||
|
||
if (type == NULL || field_name == NULL)
|
||
return NULL;
|
||
type = check_typedef (type);
|
||
|
||
while (field_name[0] != '\0')
|
||
{
|
||
field_name = chop_separator (field_name);
|
||
|
||
fieldno = ada_get_field_index (type, field_name, 1);
|
||
if (fieldno >= 0)
|
||
return type->field (fieldno).type ();
|
||
|
||
subfield_name = field_name;
|
||
while (*subfield_name != '\0' && *subfield_name != '.'
|
||
&& (subfield_name[0] != '_' || subfield_name[1] != '_'))
|
||
subfield_name += 1;
|
||
|
||
if (subfield_name[0] == '\0')
|
||
return NULL;
|
||
|
||
fieldno = ada_nget_field_index (type, field_name,
|
||
subfield_name - field_name, 1);
|
||
if (fieldno < 0)
|
||
return NULL;
|
||
|
||
type = type->field (fieldno).type ();
|
||
field_name = subfield_name;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Look up NAME0 (an unencoded identifier or dotted name) in BLOCK (or
|
||
expression_block_context if NULL). If it denotes a type, return
|
||
that type. Otherwise, write expression code to evaluate it as an
|
||
object and return NULL. In this second case, NAME0 will, in general,
|
||
have the form <name>(.<selector_name>)*, where <name> is an object
|
||
or renaming encoded in the debugging data. Calls error if no
|
||
prefix <name> matches a name in the debugging data (i.e., matches
|
||
either a complete name or, as a wild-card match, the final
|
||
identifier). */
|
||
|
||
static struct type*
|
||
write_var_or_type (struct parser_state *par_state,
|
||
const struct block *block, struct stoken name0)
|
||
{
|
||
int depth;
|
||
char *encoded_name;
|
||
int name_len;
|
||
|
||
if (block == NULL)
|
||
block = par_state->expression_context_block;
|
||
|
||
std::string name_storage = ada_encode (name0.ptr);
|
||
name_len = name_storage.size ();
|
||
encoded_name = obstack_strndup (&temp_parse_space, name_storage.c_str (),
|
||
name_len);
|
||
for (depth = 0; depth < MAX_RENAMING_CHAIN_LENGTH; depth += 1)
|
||
{
|
||
int tail_index;
|
||
|
||
tail_index = name_len;
|
||
while (tail_index > 0)
|
||
{
|
||
struct symbol *type_sym;
|
||
struct symbol *renaming_sym;
|
||
const char* renaming;
|
||
int renaming_len;
|
||
const char* renaming_expr;
|
||
int terminator = encoded_name[tail_index];
|
||
|
||
encoded_name[tail_index] = '\0';
|
||
std::vector<struct block_symbol> syms
|
||
= ada_lookup_symbol_list (encoded_name, block, VAR_DOMAIN);
|
||
encoded_name[tail_index] = terminator;
|
||
|
||
type_sym = select_possible_type_sym (syms);
|
||
|
||
if (type_sym != NULL)
|
||
renaming_sym = type_sym;
|
||
else if (syms.size () == 1)
|
||
renaming_sym = syms[0].symbol;
|
||
else
|
||
renaming_sym = NULL;
|
||
|
||
switch (ada_parse_renaming (renaming_sym, &renaming,
|
||
&renaming_len, &renaming_expr))
|
||
{
|
||
case ADA_NOT_RENAMING:
|
||
break;
|
||
case ADA_PACKAGE_RENAMING:
|
||
case ADA_EXCEPTION_RENAMING:
|
||
case ADA_SUBPROGRAM_RENAMING:
|
||
{
|
||
int alloc_len = renaming_len + name_len - tail_index + 1;
|
||
char *new_name
|
||
= (char *) obstack_alloc (&temp_parse_space, alloc_len);
|
||
strncpy (new_name, renaming, renaming_len);
|
||
strcpy (new_name + renaming_len, encoded_name + tail_index);
|
||
encoded_name = new_name;
|
||
name_len = renaming_len + name_len - tail_index;
|
||
goto TryAfterRenaming;
|
||
}
|
||
case ADA_OBJECT_RENAMING:
|
||
write_object_renaming (par_state, block, renaming, renaming_len,
|
||
renaming_expr, MAX_RENAMING_CHAIN_LENGTH);
|
||
write_selectors (par_state, encoded_name + tail_index);
|
||
return NULL;
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
_("impossible value from ada_parse_renaming"));
|
||
}
|
||
|
||
if (type_sym != NULL)
|
||
{
|
||
struct type *field_type;
|
||
|
||
if (tail_index == name_len)
|
||
return SYMBOL_TYPE (type_sym);
|
||
|
||
/* We have some extraneous characters after the type name.
|
||
If this is an expression "TYPE_NAME.FIELD0.[...].FIELDN",
|
||
then try to get the type of FIELDN. */
|
||
field_type
|
||
= get_symbol_field_type (type_sym, encoded_name + tail_index);
|
||
if (field_type != NULL)
|
||
return field_type;
|
||
else
|
||
error (_("Invalid attempt to select from type: \"%s\"."),
|
||
name0.ptr);
|
||
}
|
||
else if (tail_index == name_len && syms.empty ())
|
||
{
|
||
struct type *type = find_primitive_type (par_state,
|
||
encoded_name);
|
||
|
||
if (type != NULL)
|
||
return type;
|
||
}
|
||
|
||
if (syms.size () == 1)
|
||
{
|
||
write_var_from_sym (par_state, syms[0]);
|
||
write_selectors (par_state, encoded_name + tail_index);
|
||
return NULL;
|
||
}
|
||
else if (syms.empty ())
|
||
{
|
||
struct bound_minimal_symbol msym
|
||
= ada_lookup_simple_minsym (encoded_name);
|
||
if (msym.minsym != NULL)
|
||
{
|
||
par_state->push_new<ada_var_msym_value_operation> (msym);
|
||
/* Maybe cause error here rather than later? FIXME? */
|
||
write_selectors (par_state, encoded_name + tail_index);
|
||
return NULL;
|
||
}
|
||
|
||
if (tail_index == name_len
|
||
&& strncmp (encoded_name, "standard__",
|
||
sizeof ("standard__") - 1) == 0)
|
||
error (_("No definition of \"%s\" found."), name0.ptr);
|
||
|
||
tail_index = chop_selector (encoded_name, tail_index);
|
||
}
|
||
else
|
||
{
|
||
write_ambiguous_var (par_state, block, encoded_name,
|
||
tail_index);
|
||
write_selectors (par_state, encoded_name + tail_index);
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
if (!have_full_symbols () && !have_partial_symbols () && block == NULL)
|
||
error (_("No symbol table is loaded. Use the \"file\" command."));
|
||
if (block == par_state->expression_context_block)
|
||
error (_("No definition of \"%s\" in current context."), name0.ptr);
|
||
else
|
||
error (_("No definition of \"%s\" in specified context."), name0.ptr);
|
||
|
||
TryAfterRenaming: ;
|
||
}
|
||
|
||
error (_("Could not find renamed symbol \"%s\""), name0.ptr);
|
||
|
||
}
|
||
|
||
/* Write a left side of a component association (e.g., NAME in NAME =>
|
||
exp). If NAME has the form of a selected component, write it as an
|
||
ordinary expression. If it is a simple variable that unambiguously
|
||
corresponds to exactly one symbol that does not denote a type or an
|
||
object renaming, also write it normally as an OP_VAR_VALUE.
|
||
Otherwise, write it as an OP_NAME.
|
||
|
||
Unfortunately, we don't know at this point whether NAME is supposed
|
||
to denote a record component name or the value of an array index.
|
||
Therefore, it is not appropriate to disambiguate an ambiguous name
|
||
as we normally would, nor to replace a renaming with its referent.
|
||
As a result, in the (one hopes) rare case that one writes an
|
||
aggregate such as (R => 42) where R renames an object or is an
|
||
ambiguous name, one must write instead ((R) => 42). */
|
||
|
||
static void
|
||
write_name_assoc (struct parser_state *par_state, struct stoken name)
|
||
{
|
||
if (strchr (name.ptr, '.') == NULL)
|
||
{
|
||
std::vector<struct block_symbol> syms
|
||
= ada_lookup_symbol_list (name.ptr,
|
||
par_state->expression_context_block,
|
||
VAR_DOMAIN);
|
||
|
||
if (syms.size () != 1 || SYMBOL_CLASS (syms[0].symbol) == LOC_TYPEDEF)
|
||
pstate->push_new<ada_string_operation> (copy_name (name));
|
||
else
|
||
write_var_from_sym (par_state, syms[0]);
|
||
}
|
||
else
|
||
if (write_var_or_type (par_state, NULL, name) != NULL)
|
||
error (_("Invalid use of type."));
|
||
|
||
push_association<ada_name_association> (ada_pop ());
|
||
}
|
||
|
||
/* Convert the character literal whose ASCII value would be VAL to the
|
||
appropriate value of type TYPE, if there is a translation.
|
||
Otherwise return VAL. Hence, in an enumeration type ('A', 'B'),
|
||
the literal 'A' (VAL == 65), returns 0. */
|
||
|
||
static LONGEST
|
||
convert_char_literal (struct type *type, LONGEST val)
|
||
{
|
||
char name[7];
|
||
int f;
|
||
|
||
if (type == NULL)
|
||
return val;
|
||
type = check_typedef (type);
|
||
if (type->code () != TYPE_CODE_ENUM)
|
||
return val;
|
||
|
||
if ((val >= 'a' && val <= 'z') || (val >= '0' && val <= '9'))
|
||
xsnprintf (name, sizeof (name), "Q%c", (int) val);
|
||
else
|
||
xsnprintf (name, sizeof (name), "QU%02x", (int) val);
|
||
size_t len = strlen (name);
|
||
for (f = 0; f < type->num_fields (); f += 1)
|
||
{
|
||
/* Check the suffix because an enum constant in a package will
|
||
have a name like "pkg__QUxx". This is safe enough because we
|
||
already have the correct type, and because mangling means
|
||
there can't be clashes. */
|
||
const char *ename = TYPE_FIELD_NAME (type, f);
|
||
size_t elen = strlen (ename);
|
||
|
||
if (elen >= len && strcmp (name, ename + elen - len) == 0)
|
||
return TYPE_FIELD_ENUMVAL (type, f);
|
||
}
|
||
return val;
|
||
}
|
||
|
||
static struct type *
|
||
type_int (struct parser_state *par_state)
|
||
{
|
||
return parse_type (par_state)->builtin_int;
|
||
}
|
||
|
||
static struct type *
|
||
type_long (struct parser_state *par_state)
|
||
{
|
||
return parse_type (par_state)->builtin_long;
|
||
}
|
||
|
||
static struct type *
|
||
type_long_long (struct parser_state *par_state)
|
||
{
|
||
return parse_type (par_state)->builtin_long_long;
|
||
}
|
||
|
||
static struct type *
|
||
type_long_double (struct parser_state *par_state)
|
||
{
|
||
return parse_type (par_state)->builtin_long_double;
|
||
}
|
||
|
||
static struct type *
|
||
type_char (struct parser_state *par_state)
|
||
{
|
||
return language_string_char_type (par_state->language (),
|
||
par_state->gdbarch ());
|
||
}
|
||
|
||
static struct type *
|
||
type_boolean (struct parser_state *par_state)
|
||
{
|
||
return parse_type (par_state)->builtin_bool;
|
||
}
|
||
|
||
static struct type *
|
||
type_system_address (struct parser_state *par_state)
|
||
{
|
||
struct type *type
|
||
= language_lookup_primitive_type (par_state->language (),
|
||
par_state->gdbarch (),
|
||
"system__address");
|
||
return type != NULL ? type : parse_type (par_state)->builtin_data_ptr;
|
||
}
|
||
|
||
void _initialize_ada_exp ();
|
||
void
|
||
_initialize_ada_exp ()
|
||
{
|
||
obstack_init (&temp_parse_space);
|
||
}
|