binutils-gdb/gold/compressed_output.cc
Alan Modra a2c5833233 Update year range in copyright notice of binutils files
The result of running etc/update-copyright.py --this-year, fixing all
the files whose mode is changed by the script, plus a build with
--enable-maintainer-mode --enable-cgen-maint=yes, then checking
out */po/*.pot which we don't update frequently.

The copy of cgen was with commit d1dd5fcc38ead reverted as that commit
breaks building of bfp opcodes files.
2022-01-02 12:04:28 +10:30

343 lines
10 KiB
C++

// compressed_output.cc -- manage compressed debug sections for gold
// Copyright (C) 2007-2022 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <iant@google.com>.
// This file is part of gold.
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.
#include "gold.h"
#include <zlib.h>
#include "parameters.h"
#include "options.h"
#include "compressed_output.h"
namespace gold
{
// Compress UNCOMPRESSED_DATA of size UNCOMPRESSED_SIZE. Returns true
// if it successfully compressed, false if it failed for any reason
// (including not having zlib support in the library). If it returns
// true, it allocates memory for the compressed data using new, and
// sets *COMPRESSED_DATA and *COMPRESSED_SIZE to appropriate values.
// It also writes a header before COMPRESSED_DATA: 4 bytes saying
// "ZLIB", and 8 bytes indicating the uncompressed size, in big-endian
// order.
static bool
zlib_compress(int header_size,
const unsigned char* uncompressed_data,
unsigned long uncompressed_size,
unsigned char** compressed_data,
unsigned long* compressed_size)
{
*compressed_size = uncompressed_size + uncompressed_size / 1000 + 128;
*compressed_data = new unsigned char[*compressed_size + header_size];
int compress_level;
if (parameters->options().optimize() >= 1)
compress_level = 9;
else
compress_level = 1;
int rc = compress2(reinterpret_cast<Bytef*>(*compressed_data) + header_size,
compressed_size,
reinterpret_cast<const Bytef*>(uncompressed_data),
uncompressed_size,
compress_level);
if (rc == Z_OK)
{
*compressed_size += header_size;
return true;
}
else
{
delete[] *compressed_data;
*compressed_data = NULL;
return false;
}
}
// Decompress COMPRESSED_DATA of size COMPRESSED_SIZE, into a buffer
// UNCOMPRESSED_DATA of size UNCOMPRESSED_SIZE. Returns TRUE if it
// decompressed successfully, false if it failed. The buffer, of
// appropriate size, is provided by the caller, and is typically part
// of the memory-mapped output file.
static bool
zlib_decompress(const unsigned char* compressed_data,
unsigned long compressed_size,
unsigned char* uncompressed_data,
unsigned long uncompressed_size)
{
z_stream strm;
int rc;
/* It is possible the section consists of several compressed
buffers concatenated together, so we uncompress in a loop. */
strm.zalloc = NULL;
strm.zfree = NULL;
strm.opaque = NULL;
strm.avail_in = compressed_size;
strm.next_in = const_cast<Bytef*>(compressed_data);
strm.avail_out = uncompressed_size;
rc = inflateInit(&strm);
while (strm.avail_in > 0)
{
if (rc != Z_OK)
return false;
strm.next_out = ((Bytef*) uncompressed_data
+ (uncompressed_size - strm.avail_out));
rc = inflate(&strm, Z_FINISH);
if (rc != Z_STREAM_END)
return false;
rc = inflateReset(&strm);
}
rc = inflateEnd(&strm);
if (rc != Z_OK || strm.avail_out != 0)
return false;
return true;
}
// Read the compression header of a compressed debug section and return
// the uncompressed size.
uint64_t
get_uncompressed_size(const unsigned char* compressed_data,
section_size_type compressed_size)
{
const unsigned int zlib_header_size = 12;
/* Verify the compression header. Currently, we support only zlib
compression, so it should be "ZLIB" followed by the uncompressed
section size, 8 bytes in big-endian order. */
if (compressed_size >= zlib_header_size
&& strncmp(reinterpret_cast<const char*>(compressed_data),
"ZLIB", 4) == 0)
return elfcpp::Swap_unaligned<64, true>::readval(compressed_data + 4);
return -1ULL;
}
// Decompress a compressed debug section directly into the output file.
bool
decompress_input_section(const unsigned char* compressed_data,
unsigned long compressed_size,
unsigned char* uncompressed_data,
unsigned long uncompressed_size,
int size,
bool big_endian,
elfcpp::Elf_Xword sh_flags)
{
if ((sh_flags & elfcpp::SHF_COMPRESSED) != 0)
{
unsigned int compression_header_size;
if (size == 32)
{
compression_header_size = elfcpp::Elf_sizes<32>::chdr_size;
if (big_endian)
{
elfcpp::Chdr<32, true> chdr(compressed_data);
if (chdr.get_ch_type() != elfcpp::ELFCOMPRESS_ZLIB)
return false;
}
else
{
elfcpp::Chdr<32, false> chdr(compressed_data);
if (chdr.get_ch_type() != elfcpp::ELFCOMPRESS_ZLIB)
return false;
}
}
else if (size == 64)
{
compression_header_size = elfcpp::Elf_sizes<64>::chdr_size;
if (big_endian)
{
elfcpp::Chdr<64, true> chdr(compressed_data);
if (chdr.get_ch_type() != elfcpp::ELFCOMPRESS_ZLIB)
return false;
}
else
{
elfcpp::Chdr<64, false> chdr(compressed_data);
if (chdr.get_ch_type() != elfcpp::ELFCOMPRESS_ZLIB)
return false;
}
}
else
gold_unreachable();
return zlib_decompress(compressed_data + compression_header_size,
compressed_size - compression_header_size,
uncompressed_data,
uncompressed_size);
}
const unsigned int zlib_header_size = 12;
/* Verify the compression header. Currently, we support only zlib
compression, so it should be "ZLIB" followed by the uncompressed
section size, 8 bytes in big-endian order. */
if (compressed_size >= zlib_header_size
&& strncmp(reinterpret_cast<const char*>(compressed_data),
"ZLIB", 4) == 0)
{
unsigned long uncompressed_size_check =
elfcpp::Swap_unaligned<64, true>::readval(compressed_data + 4);
gold_assert(uncompressed_size_check == uncompressed_size);
return zlib_decompress(compressed_data + zlib_header_size,
compressed_size - zlib_header_size,
uncompressed_data,
uncompressed_size);
}
return false;
}
// Class Output_compressed_section.
// Set the final data size of a compressed section. This is where
// we actually compress the section data.
void
Output_compressed_section::set_final_data_size()
{
off_t uncompressed_size = this->postprocessing_buffer_size();
// (Try to) compress the data.
unsigned long compressed_size;
unsigned char* uncompressed_data = this->postprocessing_buffer();
// At this point the contents of all regular input sections will
// have been copied into the postprocessing buffer, and relocations
// will have been applied. Now we need to copy in the contents of
// anything other than a regular input section.
this->write_to_postprocessing_buffer();
bool success = false;
enum { none, gnu_zlib, gabi_zlib } compress;
int compression_header_size = 12;
const int size = parameters->target().get_size();
if (strcmp(this->options_->compress_debug_sections(), "zlib-gnu") == 0)
compress = gnu_zlib;
else if (strcmp(this->options_->compress_debug_sections(), "zlib-gabi") == 0
|| strcmp(this->options_->compress_debug_sections(), "zlib") == 0)
{
compress = gabi_zlib;
if (size == 32)
compression_header_size = elfcpp::Elf_sizes<32>::chdr_size;
else if (size == 64)
compression_header_size = elfcpp::Elf_sizes<64>::chdr_size;
else
gold_unreachable();
}
else
compress = none;
if (compress != none)
success = zlib_compress(compression_header_size, uncompressed_data,
uncompressed_size, &this->data_,
&compressed_size);
if (success)
{
elfcpp::Elf_Xword flags = this->flags();
if (compress == gabi_zlib)
{
// Set the SHF_COMPRESSED bit.
flags |= elfcpp::SHF_COMPRESSED;
const bool is_big_endian = parameters->target().is_big_endian();
uint64_t addralign = this->addralign();
if (size == 32)
{
if (is_big_endian)
{
elfcpp::Chdr_write<32, true> chdr(this->data_);
chdr.put_ch_type(elfcpp::ELFCOMPRESS_ZLIB);
chdr.put_ch_size(uncompressed_size);
chdr.put_ch_addralign(addralign);
}
else
{
elfcpp::Chdr_write<32, false> chdr(this->data_);
chdr.put_ch_type(elfcpp::ELFCOMPRESS_ZLIB);
chdr.put_ch_size(uncompressed_size);
chdr.put_ch_addralign(addralign);
}
}
else if (size == 64)
{
if (is_big_endian)
{
elfcpp::Chdr_write<64, true> chdr(this->data_);
chdr.put_ch_type(elfcpp::ELFCOMPRESS_ZLIB);
chdr.put_ch_size(uncompressed_size);
chdr.put_ch_addralign(addralign);
// Clear the reserved field.
chdr.put_ch_reserved(0);
}
else
{
elfcpp::Chdr_write<64, false> chdr(this->data_);
chdr.put_ch_type(elfcpp::ELFCOMPRESS_ZLIB);
chdr.put_ch_size(uncompressed_size);
chdr.put_ch_addralign(addralign);
// Clear the reserved field.
chdr.put_ch_reserved(0);
}
}
else
gold_unreachable();
}
else
{
// Write out the zlib header.
memcpy(this->data_, "ZLIB", 4);
elfcpp::Swap_unaligned<64, true>::writeval(this->data_ + 4,
uncompressed_size);
// This converts .debug_foo to .zdebug_foo
this->new_section_name_ = std::string(".z") + (this->name() + 1);
this->set_name(this->new_section_name_.c_str());
}
this->set_flags(flags);
this->set_data_size(compressed_size);
}
else
{
gold_warning(_("not compressing section data: zlib error"));
gold_assert(this->data_ == NULL);
this->set_data_size(uncompressed_size);
}
}
// Write out a compressed section. If we couldn't compress, we just
// write it out as normal, uncompressed data.
void
Output_compressed_section::do_write(Output_file* of)
{
off_t offset = this->offset();
off_t data_size = this->data_size();
unsigned char* view = of->get_output_view(offset, data_size);
if (this->data_ == NULL)
memcpy(view, this->postprocessing_buffer(), data_size);
else
memcpy(view, this->data_, data_size);
of->write_output_view(offset, data_size, view);
}
} // End namespace gold.