mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-27 04:52:05 +08:00
d2f7dcb218
This is just to make sure one of the parameters doesn't end past the 80 characters limit. And while at it, since all parameters were on their own line except the first two that were listed on the same line, it felf more consistent to just split them to have each and every parameter on their own line. gdb/ChangeLog: * psymtab.c (recursively_search_psymtabs): Reformat parameters to avoid exceeding 80 characters per line limit. Tested by rebuilding GDB on x86_64-linux.
2260 lines
65 KiB
C
2260 lines
65 KiB
C
/* Partial symbol tables.
|
||
|
||
Copyright (C) 2009-2018 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "symtab.h"
|
||
#include "psympriv.h"
|
||
#include "objfiles.h"
|
||
#include "block.h"
|
||
#include "filenames.h"
|
||
#include "source.h"
|
||
#include "addrmap.h"
|
||
#include "gdbtypes.h"
|
||
#include "bcache.h"
|
||
#include "ui-out.h"
|
||
#include "command.h"
|
||
#include "readline/readline.h"
|
||
#include "gdb_regex.h"
|
||
#include "dictionary.h"
|
||
#include "language.h"
|
||
#include "cp-support.h"
|
||
#include "gdbcmd.h"
|
||
#include <algorithm>
|
||
#include <set>
|
||
|
||
struct psymbol_bcache
|
||
{
|
||
struct bcache *bcache;
|
||
};
|
||
|
||
static struct partial_symbol *match_partial_symbol (struct objfile *,
|
||
struct partial_symtab *,
|
||
int,
|
||
const char *, domain_enum,
|
||
symbol_name_match_type,
|
||
symbol_compare_ftype *);
|
||
|
||
static struct partial_symbol *lookup_partial_symbol (struct objfile *,
|
||
struct partial_symtab *,
|
||
const char *, int,
|
||
domain_enum);
|
||
|
||
static const char *psymtab_to_fullname (struct partial_symtab *ps);
|
||
|
||
static struct partial_symbol *find_pc_sect_psymbol (struct objfile *,
|
||
struct partial_symtab *,
|
||
CORE_ADDR,
|
||
struct obj_section *);
|
||
|
||
static struct compunit_symtab *psymtab_to_symtab (struct objfile *objfile,
|
||
struct partial_symtab *pst);
|
||
|
||
/* Ensure that the partial symbols for OBJFILE have been loaded. This
|
||
function always returns its argument, as a convenience. */
|
||
|
||
struct objfile *
|
||
require_partial_symbols (struct objfile *objfile, int verbose)
|
||
{
|
||
if ((objfile->flags & OBJF_PSYMTABS_READ) == 0)
|
||
{
|
||
objfile->flags |= OBJF_PSYMTABS_READ;
|
||
|
||
if (objfile->sf->sym_read_psymbols)
|
||
{
|
||
if (verbose)
|
||
printf_filtered (_("Reading symbols from %s...\n"),
|
||
objfile_name (objfile));
|
||
(*objfile->sf->sym_read_psymbols) (objfile);
|
||
|
||
/* Partial symbols list are not expected to changed after this
|
||
point. */
|
||
objfile->global_psymbols.shrink_to_fit ();
|
||
objfile->static_psymbols.shrink_to_fit ();
|
||
|
||
if (verbose && !objfile_has_symbols (objfile))
|
||
printf_filtered (_("(No debugging symbols found in %s)\n"),
|
||
objfile_name (objfile));
|
||
}
|
||
}
|
||
|
||
return objfile;
|
||
}
|
||
|
||
/* Traverse all psymtabs in one objfile, requiring that the psymtabs
|
||
be read in. */
|
||
|
||
#define ALL_OBJFILE_PSYMTABS_REQUIRED(objfile, p) \
|
||
for ((p) = require_partial_symbols (objfile, 1)->psymtabs; \
|
||
(p) != NULL; \
|
||
(p) = (p)->next)
|
||
|
||
/* We want to make sure this file always requires psymtabs. */
|
||
|
||
#undef ALL_OBJFILE_PSYMTABS
|
||
|
||
/* Traverse all psymtabs in all objfiles. */
|
||
|
||
#define ALL_PSYMTABS(objfile, p) \
|
||
ALL_OBJFILES (objfile) \
|
||
ALL_OBJFILE_PSYMTABS_REQUIRED (objfile, p)
|
||
|
||
/* Helper function for psym_map_symtabs_matching_filename that
|
||
expands the symtabs and calls the iterator. */
|
||
|
||
static bool
|
||
partial_map_expand_apply (struct objfile *objfile,
|
||
const char *name,
|
||
const char *real_path,
|
||
struct partial_symtab *pst,
|
||
gdb::function_view<bool (symtab *)> callback)
|
||
{
|
||
struct compunit_symtab *last_made = objfile->compunit_symtabs;
|
||
|
||
/* Shared psymtabs should never be seen here. Instead they should
|
||
be handled properly by the caller. */
|
||
gdb_assert (pst->user == NULL);
|
||
|
||
/* Don't visit already-expanded psymtabs. */
|
||
if (pst->readin)
|
||
return 0;
|
||
|
||
/* This may expand more than one symtab, and we want to iterate over
|
||
all of them. */
|
||
psymtab_to_symtab (objfile, pst);
|
||
|
||
return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
|
||
last_made, callback);
|
||
}
|
||
|
||
/* Psymtab version of map_symtabs_matching_filename. See its definition in
|
||
the definition of quick_symbol_functions in symfile.h. */
|
||
|
||
static bool
|
||
psym_map_symtabs_matching_filename
|
||
(struct objfile *objfile,
|
||
const char *name,
|
||
const char *real_path,
|
||
gdb::function_view<bool (symtab *)> callback)
|
||
{
|
||
struct partial_symtab *pst;
|
||
const char *name_basename = lbasename (name);
|
||
|
||
ALL_OBJFILE_PSYMTABS_REQUIRED (objfile, pst)
|
||
{
|
||
/* We can skip shared psymtabs here, because any file name will be
|
||
attached to the unshared psymtab. */
|
||
if (pst->user != NULL)
|
||
continue;
|
||
|
||
/* Anonymous psymtabs don't have a file name. */
|
||
if (pst->anonymous)
|
||
continue;
|
||
|
||
if (compare_filenames_for_search (pst->filename, name))
|
||
{
|
||
if (partial_map_expand_apply (objfile, name, real_path,
|
||
pst, callback))
|
||
return true;
|
||
continue;
|
||
}
|
||
|
||
/* Before we invoke realpath, which can get expensive when many
|
||
files are involved, do a quick comparison of the basenames. */
|
||
if (! basenames_may_differ
|
||
&& FILENAME_CMP (name_basename, lbasename (pst->filename)) != 0)
|
||
continue;
|
||
|
||
if (compare_filenames_for_search (psymtab_to_fullname (pst), name))
|
||
{
|
||
if (partial_map_expand_apply (objfile, name, real_path,
|
||
pst, callback))
|
||
return true;
|
||
continue;
|
||
}
|
||
|
||
/* If the user gave us an absolute path, try to find the file in
|
||
this symtab and use its absolute path. */
|
||
if (real_path != NULL)
|
||
{
|
||
gdb_assert (IS_ABSOLUTE_PATH (real_path));
|
||
gdb_assert (IS_ABSOLUTE_PATH (name));
|
||
if (filename_cmp (psymtab_to_fullname (pst), real_path) == 0)
|
||
{
|
||
if (partial_map_expand_apply (objfile, name, real_path,
|
||
pst, callback))
|
||
return true;
|
||
continue;
|
||
}
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Find which partial symtab contains PC and SECTION starting at psymtab PST.
|
||
We may find a different psymtab than PST. See FIND_PC_SECT_PSYMTAB. */
|
||
|
||
static struct partial_symtab *
|
||
find_pc_sect_psymtab_closer (struct objfile *objfile,
|
||
CORE_ADDR pc, struct obj_section *section,
|
||
struct partial_symtab *pst,
|
||
struct bound_minimal_symbol msymbol)
|
||
{
|
||
struct partial_symtab *tpst;
|
||
struct partial_symtab *best_pst = pst;
|
||
CORE_ADDR best_addr = pst->text_low (objfile);
|
||
|
||
gdb_assert (!pst->psymtabs_addrmap_supported);
|
||
|
||
/* An objfile that has its functions reordered might have
|
||
many partial symbol tables containing the PC, but
|
||
we want the partial symbol table that contains the
|
||
function containing the PC. */
|
||
if (!(objfile->flags & OBJF_REORDERED)
|
||
&& section == NULL) /* Can't validate section this way. */
|
||
return pst;
|
||
|
||
if (msymbol.minsym == NULL)
|
||
return pst;
|
||
|
||
/* The code range of partial symtabs sometimes overlap, so, in
|
||
the loop below, we need to check all partial symtabs and
|
||
find the one that fits better for the given PC address. We
|
||
select the partial symtab that contains a symbol whose
|
||
address is closest to the PC address. By closest we mean
|
||
that find_pc_sect_symbol returns the symbol with address
|
||
that is closest and still less than the given PC. */
|
||
for (tpst = pst; tpst != NULL; tpst = tpst->next)
|
||
{
|
||
if (pc >= tpst->text_low (objfile) && pc < tpst->text_high (objfile))
|
||
{
|
||
struct partial_symbol *p;
|
||
CORE_ADDR this_addr;
|
||
|
||
/* NOTE: This assumes that every psymbol has a
|
||
corresponding msymbol, which is not necessarily
|
||
true; the debug info might be much richer than the
|
||
object's symbol table. */
|
||
p = find_pc_sect_psymbol (objfile, tpst, pc, section);
|
||
if (p != NULL
|
||
&& (p->address (objfile) == BMSYMBOL_VALUE_ADDRESS (msymbol)))
|
||
return tpst;
|
||
|
||
/* Also accept the textlow value of a psymtab as a
|
||
"symbol", to provide some support for partial
|
||
symbol tables with line information but no debug
|
||
symbols (e.g. those produced by an assembler). */
|
||
if (p != NULL)
|
||
this_addr = p->address (objfile);
|
||
else
|
||
this_addr = tpst->text_low (objfile);
|
||
|
||
/* Check whether it is closer than our current
|
||
BEST_ADDR. Since this symbol address is
|
||
necessarily lower or equal to PC, the symbol closer
|
||
to PC is the symbol which address is the highest.
|
||
This way we return the psymtab which contains such
|
||
best match symbol. This can help in cases where the
|
||
symbol information/debuginfo is not complete, like
|
||
for instance on IRIX6 with gcc, where no debug info
|
||
is emitted for statics. (See also the nodebug.exp
|
||
testcase.) */
|
||
if (this_addr > best_addr)
|
||
{
|
||
best_addr = this_addr;
|
||
best_pst = tpst;
|
||
}
|
||
}
|
||
}
|
||
return best_pst;
|
||
}
|
||
|
||
/* Find which partial symtab contains PC and SECTION. Return NULL if
|
||
none. We return the psymtab that contains a symbol whose address
|
||
exactly matches PC, or, if we cannot find an exact match, the
|
||
psymtab that contains a symbol whose address is closest to PC. */
|
||
|
||
static struct partial_symtab *
|
||
find_pc_sect_psymtab (struct objfile *objfile, CORE_ADDR pc,
|
||
struct obj_section *section,
|
||
struct bound_minimal_symbol msymbol)
|
||
{
|
||
struct partial_symtab *pst;
|
||
CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
|
||
SECT_OFF_TEXT (objfile));
|
||
|
||
/* Try just the PSYMTABS_ADDRMAP mapping first as it has better granularity
|
||
than the later used TEXTLOW/TEXTHIGH one. */
|
||
|
||
if (objfile->psymtabs_addrmap != NULL)
|
||
{
|
||
pst = ((struct partial_symtab *)
|
||
addrmap_find (objfile->psymtabs_addrmap, pc - baseaddr));
|
||
if (pst != NULL)
|
||
{
|
||
/* FIXME: addrmaps currently do not handle overlayed sections,
|
||
so fall back to the non-addrmap case if we're debugging
|
||
overlays and the addrmap returned the wrong section. */
|
||
if (overlay_debugging && msymbol.minsym != NULL && section != NULL)
|
||
{
|
||
struct partial_symbol *p;
|
||
|
||
/* NOTE: This assumes that every psymbol has a
|
||
corresponding msymbol, which is not necessarily
|
||
true; the debug info might be much richer than the
|
||
object's symbol table. */
|
||
p = find_pc_sect_psymbol (objfile, pst, pc, section);
|
||
if (p == NULL
|
||
|| (p->address (objfile)
|
||
!= BMSYMBOL_VALUE_ADDRESS (msymbol)))
|
||
goto next;
|
||
}
|
||
|
||
/* We do not try to call FIND_PC_SECT_PSYMTAB_CLOSER as
|
||
PSYMTABS_ADDRMAP we used has already the best 1-byte
|
||
granularity and FIND_PC_SECT_PSYMTAB_CLOSER may mislead us into
|
||
a worse chosen section due to the TEXTLOW/TEXTHIGH ranges
|
||
overlap. */
|
||
|
||
return pst;
|
||
}
|
||
}
|
||
|
||
next:
|
||
|
||
/* Existing PSYMTABS_ADDRMAP mapping is present even for PARTIAL_SYMTABs
|
||
which still have no corresponding full SYMTABs read. But it is not
|
||
present for non-DWARF2 debug infos not supporting PSYMTABS_ADDRMAP in GDB
|
||
so far. */
|
||
|
||
/* Check even OBJFILE with non-zero PSYMTABS_ADDRMAP as only several of
|
||
its CUs may be missing in PSYMTABS_ADDRMAP as they may be varying
|
||
debug info type in single OBJFILE. */
|
||
|
||
ALL_OBJFILE_PSYMTABS_REQUIRED (objfile, pst)
|
||
if (!pst->psymtabs_addrmap_supported
|
||
&& pc >= pst->text_low (objfile) && pc < pst->text_high (objfile))
|
||
{
|
||
struct partial_symtab *best_pst;
|
||
|
||
best_pst = find_pc_sect_psymtab_closer (objfile, pc, section, pst,
|
||
msymbol);
|
||
if (best_pst != NULL)
|
||
return best_pst;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Psymtab version of find_pc_sect_compunit_symtab. See its definition in
|
||
the definition of quick_symbol_functions in symfile.h. */
|
||
|
||
static struct compunit_symtab *
|
||
psym_find_pc_sect_compunit_symtab (struct objfile *objfile,
|
||
struct bound_minimal_symbol msymbol,
|
||
CORE_ADDR pc,
|
||
struct obj_section *section,
|
||
int warn_if_readin)
|
||
{
|
||
struct partial_symtab *ps = find_pc_sect_psymtab (objfile, pc, section,
|
||
msymbol);
|
||
if (ps != NULL)
|
||
{
|
||
if (warn_if_readin && ps->readin)
|
||
/* Might want to error() here (in case symtab is corrupt and
|
||
will cause a core dump), but maybe we can successfully
|
||
continue, so let's not. */
|
||
warning (_("\
|
||
(Internal error: pc %s in read in psymtab, but not in symtab.)\n"),
|
||
paddress (get_objfile_arch (objfile), pc));
|
||
psymtab_to_symtab (objfile, ps);
|
||
return ps->compunit_symtab;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* Find which partial symbol within a psymtab matches PC and SECTION.
|
||
Return NULL if none. */
|
||
|
||
static struct partial_symbol *
|
||
find_pc_sect_psymbol (struct objfile *objfile,
|
||
struct partial_symtab *psymtab, CORE_ADDR pc,
|
||
struct obj_section *section)
|
||
{
|
||
struct partial_symbol *best = NULL;
|
||
CORE_ADDR best_pc;
|
||
const CORE_ADDR textlow = psymtab->text_low (objfile);
|
||
|
||
gdb_assert (psymtab != NULL);
|
||
|
||
/* Cope with programs that start at address 0. */
|
||
best_pc = (textlow != 0) ? textlow - 1 : 0;
|
||
|
||
/* Search the global symbols as well as the static symbols, so that
|
||
find_pc_partial_function doesn't use a minimal symbol and thus
|
||
cache a bad endaddr. */
|
||
for (int i = 0; i < psymtab->n_global_syms; i++)
|
||
{
|
||
partial_symbol *p = objfile->global_psymbols[psymtab->globals_offset + i];
|
||
|
||
if (p->domain == VAR_DOMAIN
|
||
&& p->aclass == LOC_BLOCK
|
||
&& pc >= p->address (objfile)
|
||
&& (p->address (objfile) > best_pc
|
||
|| (psymtab->text_low (objfile) == 0
|
||
&& best_pc == 0 && p->address (objfile) == 0)))
|
||
{
|
||
if (section != NULL) /* Match on a specific section. */
|
||
{
|
||
if (!matching_obj_sections (p->obj_section (objfile),
|
||
section))
|
||
continue;
|
||
}
|
||
best_pc = p->address (objfile);
|
||
best = p;
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i < psymtab->n_static_syms; i++)
|
||
{
|
||
partial_symbol *p = objfile->static_psymbols[psymtab->statics_offset + i];
|
||
|
||
if (p->domain == VAR_DOMAIN
|
||
&& p->aclass == LOC_BLOCK
|
||
&& pc >= p->address (objfile)
|
||
&& (p->address (objfile) > best_pc
|
||
|| (psymtab->text_low (objfile) == 0
|
||
&& best_pc == 0 && p->address (objfile) == 0)))
|
||
{
|
||
if (section != NULL) /* Match on a specific section. */
|
||
{
|
||
if (!matching_obj_sections (p->obj_section (objfile),
|
||
section))
|
||
continue;
|
||
}
|
||
best_pc = p->address (objfile);
|
||
best = p;
|
||
}
|
||
}
|
||
|
||
return best;
|
||
}
|
||
|
||
/* Psymtab version of lookup_symbol. See its definition in
|
||
the definition of quick_symbol_functions in symfile.h. */
|
||
|
||
static struct compunit_symtab *
|
||
psym_lookup_symbol (struct objfile *objfile,
|
||
int block_index, const char *name,
|
||
const domain_enum domain)
|
||
{
|
||
struct partial_symtab *ps;
|
||
const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
|
||
struct compunit_symtab *stab_best = NULL;
|
||
|
||
lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
|
||
|
||
ALL_OBJFILE_PSYMTABS_REQUIRED (objfile, ps)
|
||
{
|
||
if (!ps->readin && lookup_partial_symbol (objfile, ps, name,
|
||
psymtab_index, domain))
|
||
{
|
||
struct symbol *sym, *with_opaque = NULL;
|
||
struct compunit_symtab *stab = psymtab_to_symtab (objfile, ps);
|
||
/* Note: While psymtab_to_symtab can return NULL if the partial symtab
|
||
is empty, we can assume it won't here because lookup_partial_symbol
|
||
succeeded. */
|
||
const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
|
||
struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
|
||
|
||
sym = block_find_symbol (block, name, domain,
|
||
block_find_non_opaque_type_preferred,
|
||
&with_opaque);
|
||
|
||
/* Some caution must be observed with overloaded functions
|
||
and methods, since the index will not contain any overload
|
||
information (but NAME might contain it). */
|
||
|
||
if (sym != NULL
|
||
&& SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
|
||
return stab;
|
||
if (with_opaque != NULL
|
||
&& SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
|
||
stab_best = stab;
|
||
|
||
/* Keep looking through other psymtabs. */
|
||
}
|
||
}
|
||
|
||
return stab_best;
|
||
}
|
||
|
||
/* Returns true if PSYM matches LOOKUP_NAME. */
|
||
|
||
static bool
|
||
psymbol_name_matches (partial_symbol *psym,
|
||
const lookup_name_info &lookup_name)
|
||
{
|
||
const language_defn *lang = language_def (psym->language);
|
||
symbol_name_matcher_ftype *name_match
|
||
= get_symbol_name_matcher (lang, lookup_name);
|
||
return name_match (symbol_search_name (psym), lookup_name, NULL);
|
||
}
|
||
|
||
/* Look in PST for a symbol in DOMAIN whose name matches NAME. Search
|
||
the global block of PST if GLOBAL, and otherwise the static block.
|
||
MATCH is the comparison operation that returns true iff MATCH (s,
|
||
NAME), where s is a SYMBOL_SEARCH_NAME. If ORDERED_COMPARE is
|
||
non-null, the symbols in the block are assumed to be ordered
|
||
according to it (allowing binary search). It must be compatible
|
||
with MATCH. Returns the symbol, if found, and otherwise NULL. */
|
||
|
||
static struct partial_symbol *
|
||
match_partial_symbol (struct objfile *objfile,
|
||
struct partial_symtab *pst, int global,
|
||
const char *name, domain_enum domain,
|
||
symbol_name_match_type match_type,
|
||
symbol_compare_ftype *ordered_compare)
|
||
{
|
||
struct partial_symbol **start, **psym;
|
||
struct partial_symbol **top, **real_top, **bottom, **center;
|
||
int length = (global ? pst->n_global_syms : pst->n_static_syms);
|
||
int do_linear_search = 1;
|
||
|
||
if (length == 0)
|
||
return NULL;
|
||
|
||
lookup_name_info lookup_name (name, match_type);
|
||
|
||
start = (global ?
|
||
&objfile->global_psymbols[pst->globals_offset] :
|
||
&objfile->static_psymbols[pst->statics_offset]);
|
||
|
||
if (global && ordered_compare) /* Can use a binary search. */
|
||
{
|
||
do_linear_search = 0;
|
||
|
||
/* Binary search. This search is guaranteed to end with center
|
||
pointing at the earliest partial symbol whose name might be
|
||
correct. At that point *all* partial symbols with an
|
||
appropriate name will be checked against the correct
|
||
domain. */
|
||
|
||
bottom = start;
|
||
top = start + length - 1;
|
||
real_top = top;
|
||
while (top > bottom)
|
||
{
|
||
center = bottom + (top - bottom) / 2;
|
||
gdb_assert (center < top);
|
||
|
||
enum language lang = (*center)->language;
|
||
const char *lang_ln
|
||
= lookup_name.language_lookup_name (lang).c_str ();
|
||
|
||
if (ordered_compare (symbol_search_name (*center), lang_ln) >= 0)
|
||
top = center;
|
||
else
|
||
bottom = center + 1;
|
||
}
|
||
gdb_assert (top == bottom);
|
||
|
||
while (top <= real_top
|
||
&& psymbol_name_matches (*top, lookup_name))
|
||
{
|
||
if (symbol_matches_domain ((*top)->language,
|
||
(*top)->domain, domain))
|
||
return *top;
|
||
top++;
|
||
}
|
||
}
|
||
|
||
/* Can't use a binary search or else we found during the binary search that
|
||
we should also do a linear search. */
|
||
|
||
if (do_linear_search)
|
||
{
|
||
for (psym = start; psym < start + length; psym++)
|
||
{
|
||
if (symbol_matches_domain ((*psym)->language,
|
||
(*psym)->domain, domain)
|
||
&& psymbol_name_matches (*psym, lookup_name))
|
||
return *psym;
|
||
}
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Returns the name used to search psymtabs. Unlike symtabs, psymtabs do
|
||
not contain any method/function instance information (since this would
|
||
force reading type information while reading psymtabs). Therefore,
|
||
if NAME contains overload information, it must be stripped before searching
|
||
psymtabs. */
|
||
|
||
static gdb::unique_xmalloc_ptr<char>
|
||
psymtab_search_name (const char *name)
|
||
{
|
||
switch (current_language->la_language)
|
||
{
|
||
case language_cplus:
|
||
{
|
||
if (strchr (name, '('))
|
||
{
|
||
gdb::unique_xmalloc_ptr<char> ret = cp_remove_params (name);
|
||
|
||
if (ret)
|
||
return ret;
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return gdb::unique_xmalloc_ptr<char> (xstrdup (name));
|
||
}
|
||
|
||
/* Look, in partial_symtab PST, for symbol whose natural name is NAME.
|
||
Check the global symbols if GLOBAL, the static symbols if not. */
|
||
|
||
static struct partial_symbol *
|
||
lookup_partial_symbol (struct objfile *objfile,
|
||
struct partial_symtab *pst, const char *name,
|
||
int global, domain_enum domain)
|
||
{
|
||
struct partial_symbol **start, **psym;
|
||
struct partial_symbol **top, **real_top, **bottom, **center;
|
||
int length = (global ? pst->n_global_syms : pst->n_static_syms);
|
||
int do_linear_search = 1;
|
||
|
||
if (length == 0)
|
||
return NULL;
|
||
|
||
gdb::unique_xmalloc_ptr<char> search_name = psymtab_search_name (name);
|
||
|
||
lookup_name_info lookup_name (search_name.get (), symbol_name_match_type::FULL);
|
||
|
||
start = (global ?
|
||
&objfile->global_psymbols[pst->globals_offset] :
|
||
&objfile->static_psymbols[pst->statics_offset]);
|
||
|
||
if (global) /* This means we can use a binary search. */
|
||
{
|
||
do_linear_search = 0;
|
||
|
||
/* Binary search. This search is guaranteed to end with center
|
||
pointing at the earliest partial symbol whose name might be
|
||
correct. At that point *all* partial symbols with an
|
||
appropriate name will be checked against the correct
|
||
domain. */
|
||
|
||
bottom = start;
|
||
top = start + length - 1;
|
||
real_top = top;
|
||
while (top > bottom)
|
||
{
|
||
center = bottom + (top - bottom) / 2;
|
||
if (!(center < top))
|
||
internal_error (__FILE__, __LINE__,
|
||
_("failed internal consistency check"));
|
||
if (strcmp_iw_ordered (symbol_search_name (*center),
|
||
search_name.get ()) >= 0)
|
||
{
|
||
top = center;
|
||
}
|
||
else
|
||
{
|
||
bottom = center + 1;
|
||
}
|
||
}
|
||
if (!(top == bottom))
|
||
internal_error (__FILE__, __LINE__,
|
||
_("failed internal consistency check"));
|
||
|
||
/* For `case_sensitivity == case_sensitive_off' strcmp_iw_ordered will
|
||
search more exactly than what matches SYMBOL_MATCHES_SEARCH_NAME. */
|
||
while (top >= start && symbol_matches_search_name (*top, lookup_name))
|
||
top--;
|
||
|
||
/* Fixup to have a symbol which matches SYMBOL_MATCHES_SEARCH_NAME. */
|
||
top++;
|
||
|
||
while (top <= real_top && symbol_matches_search_name (*top, lookup_name))
|
||
{
|
||
if (symbol_matches_domain ((*top)->language,
|
||
(*top)->domain, domain))
|
||
return *top;
|
||
top++;
|
||
}
|
||
}
|
||
|
||
/* Can't use a binary search or else we found during the binary search that
|
||
we should also do a linear search. */
|
||
|
||
if (do_linear_search)
|
||
{
|
||
for (psym = start; psym < start + length; psym++)
|
||
{
|
||
if (symbol_matches_domain ((*psym)->language,
|
||
(*psym)->domain, domain)
|
||
&& symbol_matches_search_name (*psym, lookup_name))
|
||
return *psym;
|
||
}
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Get the symbol table that corresponds to a partial_symtab.
|
||
This is fast after the first time you do it.
|
||
The result will be NULL if the primary symtab has no symbols,
|
||
which can happen. Otherwise the result is the primary symtab
|
||
that contains PST. */
|
||
|
||
static struct compunit_symtab *
|
||
psymtab_to_symtab (struct objfile *objfile, struct partial_symtab *pst)
|
||
{
|
||
/* If it is a shared psymtab, find an unshared psymtab that includes
|
||
it. Any such psymtab will do. */
|
||
while (pst->user != NULL)
|
||
pst = pst->user;
|
||
|
||
/* If it's been looked up before, return it. */
|
||
if (pst->compunit_symtab)
|
||
return pst->compunit_symtab;
|
||
|
||
/* If it has not yet been read in, read it. */
|
||
if (!pst->readin)
|
||
{
|
||
scoped_restore decrementer = increment_reading_symtab ();
|
||
|
||
(*pst->read_symtab) (pst, objfile);
|
||
}
|
||
|
||
return pst->compunit_symtab;
|
||
}
|
||
|
||
/* Psymtab version of find_last_source_symtab. See its definition in
|
||
the definition of quick_symbol_functions in symfile.h. */
|
||
|
||
static struct symtab *
|
||
psym_find_last_source_symtab (struct objfile *ofp)
|
||
{
|
||
struct partial_symtab *ps;
|
||
struct partial_symtab *cs_pst = NULL;
|
||
|
||
ALL_OBJFILE_PSYMTABS_REQUIRED (ofp, ps)
|
||
{
|
||
const char *name = ps->filename;
|
||
int len = strlen (name);
|
||
|
||
if (!(len > 2 && (strcmp (&name[len - 2], ".h") == 0
|
||
|| strcmp (name, "<<C++-namespaces>>") == 0)))
|
||
cs_pst = ps;
|
||
}
|
||
|
||
if (cs_pst)
|
||
{
|
||
if (cs_pst->readin)
|
||
{
|
||
internal_error (__FILE__, __LINE__,
|
||
_("select_source_symtab: "
|
||
"readin pst found and no symtabs."));
|
||
}
|
||
else
|
||
{
|
||
struct compunit_symtab *cust = psymtab_to_symtab (ofp, cs_pst);
|
||
|
||
if (cust == NULL)
|
||
return NULL;
|
||
return compunit_primary_filetab (cust);
|
||
}
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* Psymtab version of forget_cached_source_info. See its definition in
|
||
the definition of quick_symbol_functions in symfile.h. */
|
||
|
||
static void
|
||
psym_forget_cached_source_info (struct objfile *objfile)
|
||
{
|
||
struct partial_symtab *pst;
|
||
|
||
ALL_OBJFILE_PSYMTABS_REQUIRED (objfile, pst)
|
||
{
|
||
if (pst->fullname != NULL)
|
||
{
|
||
xfree (pst->fullname);
|
||
pst->fullname = NULL;
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
print_partial_symbols (struct gdbarch *gdbarch, struct objfile *objfile,
|
||
struct partial_symbol **p, int count, const char *what,
|
||
struct ui_file *outfile)
|
||
{
|
||
fprintf_filtered (outfile, " %s partial symbols:\n", what);
|
||
while (count-- > 0)
|
||
{
|
||
QUIT;
|
||
fprintf_filtered (outfile, " `%s'", (*p)->name);
|
||
if (symbol_demangled_name (*p) != NULL)
|
||
{
|
||
fprintf_filtered (outfile, " `%s'", symbol_demangled_name (*p));
|
||
}
|
||
fputs_filtered (", ", outfile);
|
||
switch ((*p)->domain)
|
||
{
|
||
case UNDEF_DOMAIN:
|
||
fputs_filtered ("undefined domain, ", outfile);
|
||
break;
|
||
case VAR_DOMAIN:
|
||
/* This is the usual thing -- don't print it. */
|
||
break;
|
||
case STRUCT_DOMAIN:
|
||
fputs_filtered ("struct domain, ", outfile);
|
||
break;
|
||
case LABEL_DOMAIN:
|
||
fputs_filtered ("label domain, ", outfile);
|
||
break;
|
||
default:
|
||
fputs_filtered ("<invalid domain>, ", outfile);
|
||
break;
|
||
}
|
||
switch ((*p)->aclass)
|
||
{
|
||
case LOC_UNDEF:
|
||
fputs_filtered ("undefined", outfile);
|
||
break;
|
||
case LOC_CONST:
|
||
fputs_filtered ("constant int", outfile);
|
||
break;
|
||
case LOC_STATIC:
|
||
fputs_filtered ("static", outfile);
|
||
break;
|
||
case LOC_REGISTER:
|
||
fputs_filtered ("register", outfile);
|
||
break;
|
||
case LOC_ARG:
|
||
fputs_filtered ("pass by value", outfile);
|
||
break;
|
||
case LOC_REF_ARG:
|
||
fputs_filtered ("pass by reference", outfile);
|
||
break;
|
||
case LOC_REGPARM_ADDR:
|
||
fputs_filtered ("register address parameter", outfile);
|
||
break;
|
||
case LOC_LOCAL:
|
||
fputs_filtered ("stack parameter", outfile);
|
||
break;
|
||
case LOC_TYPEDEF:
|
||
fputs_filtered ("type", outfile);
|
||
break;
|
||
case LOC_LABEL:
|
||
fputs_filtered ("label", outfile);
|
||
break;
|
||
case LOC_BLOCK:
|
||
fputs_filtered ("function", outfile);
|
||
break;
|
||
case LOC_CONST_BYTES:
|
||
fputs_filtered ("constant bytes", outfile);
|
||
break;
|
||
case LOC_UNRESOLVED:
|
||
fputs_filtered ("unresolved", outfile);
|
||
break;
|
||
case LOC_OPTIMIZED_OUT:
|
||
fputs_filtered ("optimized out", outfile);
|
||
break;
|
||
case LOC_COMPUTED:
|
||
fputs_filtered ("computed at runtime", outfile);
|
||
break;
|
||
default:
|
||
fputs_filtered ("<invalid location>", outfile);
|
||
break;
|
||
}
|
||
fputs_filtered (", ", outfile);
|
||
fputs_filtered (paddress (gdbarch, (*p)->unrelocated_address ()), outfile);
|
||
fprintf_filtered (outfile, "\n");
|
||
p++;
|
||
}
|
||
}
|
||
|
||
static void
|
||
dump_psymtab (struct objfile *objfile, struct partial_symtab *psymtab,
|
||
struct ui_file *outfile)
|
||
{
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
int i;
|
||
|
||
if (psymtab->anonymous)
|
||
{
|
||
fprintf_filtered (outfile, "\nAnonymous partial symtab (%s) ",
|
||
psymtab->filename);
|
||
}
|
||
else
|
||
{
|
||
fprintf_filtered (outfile, "\nPartial symtab for source file %s ",
|
||
psymtab->filename);
|
||
}
|
||
fprintf_filtered (outfile, "(object ");
|
||
gdb_print_host_address (psymtab, outfile);
|
||
fprintf_filtered (outfile, ")\n\n");
|
||
fprintf_filtered (outfile, " Read from object file %s (",
|
||
objfile_name (objfile));
|
||
gdb_print_host_address (objfile, outfile);
|
||
fprintf_filtered (outfile, ")\n");
|
||
|
||
if (psymtab->readin)
|
||
{
|
||
fprintf_filtered (outfile,
|
||
" Full symtab was read (at ");
|
||
gdb_print_host_address (psymtab->compunit_symtab, outfile);
|
||
fprintf_filtered (outfile, " by function at ");
|
||
gdb_print_host_address (psymtab->read_symtab, outfile);
|
||
fprintf_filtered (outfile, ")\n");
|
||
}
|
||
|
||
fprintf_filtered (outfile, " Symbols cover text addresses ");
|
||
fputs_filtered (paddress (gdbarch, psymtab->text_low (objfile)), outfile);
|
||
fprintf_filtered (outfile, "-");
|
||
fputs_filtered (paddress (gdbarch, psymtab->text_high (objfile)), outfile);
|
||
fprintf_filtered (outfile, "\n");
|
||
fprintf_filtered (outfile, " Address map supported - %s.\n",
|
||
psymtab->psymtabs_addrmap_supported ? "yes" : "no");
|
||
fprintf_filtered (outfile, " Depends on %d other partial symtabs.\n",
|
||
psymtab->number_of_dependencies);
|
||
for (i = 0; i < psymtab->number_of_dependencies; i++)
|
||
{
|
||
fprintf_filtered (outfile, " %d ", i);
|
||
gdb_print_host_address (psymtab->dependencies[i], outfile);
|
||
fprintf_filtered (outfile, " %s\n",
|
||
psymtab->dependencies[i]->filename);
|
||
}
|
||
if (psymtab->user != NULL)
|
||
{
|
||
fprintf_filtered (outfile, " Shared partial symtab with user ");
|
||
gdb_print_host_address (psymtab->user, outfile);
|
||
fprintf_filtered (outfile, "\n");
|
||
}
|
||
if (psymtab->n_global_syms > 0)
|
||
{
|
||
print_partial_symbols (gdbarch, objfile,
|
||
&objfile->global_psymbols[psymtab->globals_offset],
|
||
psymtab->n_global_syms, "Global", outfile);
|
||
}
|
||
if (psymtab->n_static_syms > 0)
|
||
{
|
||
print_partial_symbols (gdbarch, objfile,
|
||
&objfile->static_psymbols[psymtab->statics_offset],
|
||
psymtab->n_static_syms, "Static", outfile);
|
||
}
|
||
fprintf_filtered (outfile, "\n");
|
||
}
|
||
|
||
/* Psymtab version of print_stats. See its definition in
|
||
the definition of quick_symbol_functions in symfile.h. */
|
||
|
||
static void
|
||
psym_print_stats (struct objfile *objfile)
|
||
{
|
||
int i;
|
||
struct partial_symtab *ps;
|
||
|
||
i = 0;
|
||
ALL_OBJFILE_PSYMTABS_REQUIRED (objfile, ps)
|
||
{
|
||
if (ps->readin == 0)
|
||
i++;
|
||
}
|
||
printf_filtered (_(" Number of psym tables (not yet expanded): %d\n"), i);
|
||
}
|
||
|
||
/* Psymtab version of dump. See its definition in
|
||
the definition of quick_symbol_functions in symfile.h. */
|
||
|
||
static void
|
||
psym_dump (struct objfile *objfile)
|
||
{
|
||
struct partial_symtab *psymtab;
|
||
|
||
if (objfile->psymtabs)
|
||
{
|
||
printf_filtered ("Psymtabs:\n");
|
||
for (psymtab = objfile->psymtabs;
|
||
psymtab != NULL;
|
||
psymtab = psymtab->next)
|
||
{
|
||
printf_filtered ("%s at ",
|
||
psymtab->filename);
|
||
gdb_print_host_address (psymtab, gdb_stdout);
|
||
printf_filtered (", ");
|
||
wrap_here (" ");
|
||
}
|
||
printf_filtered ("\n\n");
|
||
}
|
||
}
|
||
|
||
/* Psymtab version of expand_symtabs_for_function. See its definition in
|
||
the definition of quick_symbol_functions in symfile.h. */
|
||
|
||
static void
|
||
psym_expand_symtabs_for_function (struct objfile *objfile,
|
||
const char *func_name)
|
||
{
|
||
struct partial_symtab *ps;
|
||
|
||
ALL_OBJFILE_PSYMTABS_REQUIRED (objfile, ps)
|
||
{
|
||
if (ps->readin)
|
||
continue;
|
||
|
||
if ((lookup_partial_symbol (objfile, ps, func_name, 1, VAR_DOMAIN)
|
||
!= NULL)
|
||
|| (lookup_partial_symbol (objfile, ps, func_name, 0, VAR_DOMAIN)
|
||
!= NULL))
|
||
psymtab_to_symtab (objfile, ps);
|
||
}
|
||
}
|
||
|
||
/* Psymtab version of expand_all_symtabs. See its definition in
|
||
the definition of quick_symbol_functions in symfile.h. */
|
||
|
||
static void
|
||
psym_expand_all_symtabs (struct objfile *objfile)
|
||
{
|
||
struct partial_symtab *psymtab;
|
||
|
||
ALL_OBJFILE_PSYMTABS_REQUIRED (objfile, psymtab)
|
||
{
|
||
psymtab_to_symtab (objfile, psymtab);
|
||
}
|
||
}
|
||
|
||
/* Psymtab version of expand_symtabs_with_fullname. See its definition in
|
||
the definition of quick_symbol_functions in symfile.h. */
|
||
|
||
static void
|
||
psym_expand_symtabs_with_fullname (struct objfile *objfile,
|
||
const char *fullname)
|
||
{
|
||
struct partial_symtab *p;
|
||
|
||
ALL_OBJFILE_PSYMTABS_REQUIRED (objfile, p)
|
||
{
|
||
/* Anonymous psymtabs don't have a name of a source file. */
|
||
if (p->anonymous)
|
||
continue;
|
||
|
||
/* psymtab_to_fullname tries to open the file which is slow.
|
||
Don't call it if we know the basenames don't match. */
|
||
if ((basenames_may_differ
|
||
|| filename_cmp (lbasename (fullname), lbasename (p->filename)) == 0)
|
||
&& filename_cmp (fullname, psymtab_to_fullname (p)) == 0)
|
||
psymtab_to_symtab (objfile, p);
|
||
}
|
||
}
|
||
|
||
/* Psymtab version of map_symbol_filenames. See its definition in
|
||
the definition of quick_symbol_functions in symfile.h. */
|
||
|
||
static void
|
||
psym_map_symbol_filenames (struct objfile *objfile,
|
||
symbol_filename_ftype *fun, void *data,
|
||
int need_fullname)
|
||
{
|
||
struct partial_symtab *ps;
|
||
|
||
ALL_OBJFILE_PSYMTABS_REQUIRED (objfile, ps)
|
||
{
|
||
const char *fullname;
|
||
|
||
if (ps->readin)
|
||
continue;
|
||
|
||
/* We can skip shared psymtabs here, because any file name will be
|
||
attached to the unshared psymtab. */
|
||
if (ps->user != NULL)
|
||
continue;
|
||
|
||
/* Anonymous psymtabs don't have a file name. */
|
||
if (ps->anonymous)
|
||
continue;
|
||
|
||
QUIT;
|
||
if (need_fullname)
|
||
fullname = psymtab_to_fullname (ps);
|
||
else
|
||
fullname = NULL;
|
||
(*fun) (ps->filename, fullname, data);
|
||
}
|
||
}
|
||
|
||
/* Finds the fullname that a partial_symtab represents.
|
||
|
||
If this functions finds the fullname, it will save it in ps->fullname
|
||
and it will also return the value.
|
||
|
||
If this function fails to find the file that this partial_symtab represents,
|
||
NULL will be returned and ps->fullname will be set to NULL. */
|
||
|
||
static const char *
|
||
psymtab_to_fullname (struct partial_symtab *ps)
|
||
{
|
||
gdb_assert (!ps->anonymous);
|
||
|
||
/* Use cached copy if we have it.
|
||
We rely on forget_cached_source_info being called appropriately
|
||
to handle cases like the file being moved. */
|
||
if (ps->fullname == NULL)
|
||
{
|
||
gdb::unique_xmalloc_ptr<char> fullname;
|
||
int fd = find_and_open_source (ps->filename, ps->dirname, &fullname);
|
||
ps->fullname = fullname.release ();
|
||
|
||
if (fd >= 0)
|
||
close (fd);
|
||
else
|
||
{
|
||
/* rewrite_source_path would be applied by find_and_open_source, we
|
||
should report the pathname where GDB tried to find the file. */
|
||
|
||
if (ps->dirname == NULL || IS_ABSOLUTE_PATH (ps->filename))
|
||
fullname.reset (xstrdup (ps->filename));
|
||
else
|
||
fullname.reset (concat (ps->dirname, SLASH_STRING,
|
||
ps->filename, (char *) NULL));
|
||
|
||
ps->fullname = rewrite_source_path (fullname.get ()).release ();
|
||
if (ps->fullname == NULL)
|
||
ps->fullname = fullname.release ();
|
||
}
|
||
}
|
||
|
||
return ps->fullname;
|
||
}
|
||
|
||
/* For all symbols, s, in BLOCK that are in DOMAIN and match NAME
|
||
according to the function MATCH, call CALLBACK(BLOCK, s, DATA).
|
||
BLOCK is assumed to come from OBJFILE. Returns 1 iff CALLBACK
|
||
ever returns non-zero, and otherwise returns 0. */
|
||
|
||
static int
|
||
map_block (const char *name, domain_enum domain, struct objfile *objfile,
|
||
struct block *block,
|
||
int (*callback) (struct block *, struct symbol *, void *),
|
||
void *data, symbol_name_match_type match)
|
||
{
|
||
struct block_iterator iter;
|
||
struct symbol *sym;
|
||
|
||
lookup_name_info lookup_name (name, match);
|
||
|
||
for (sym = block_iter_match_first (block, lookup_name, &iter);
|
||
sym != NULL;
|
||
sym = block_iter_match_next (lookup_name, &iter))
|
||
{
|
||
if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
|
||
SYMBOL_DOMAIN (sym), domain))
|
||
{
|
||
if (callback (block, sym, data))
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Psymtab version of map_matching_symbols. See its definition in
|
||
the definition of quick_symbol_functions in symfile.h. */
|
||
|
||
static void
|
||
psym_map_matching_symbols (struct objfile *objfile,
|
||
const char *name, domain_enum domain,
|
||
int global,
|
||
int (*callback) (struct block *,
|
||
struct symbol *, void *),
|
||
void *data,
|
||
symbol_name_match_type match,
|
||
symbol_compare_ftype *ordered_compare)
|
||
{
|
||
const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
|
||
struct partial_symtab *ps;
|
||
|
||
ALL_OBJFILE_PSYMTABS_REQUIRED (objfile, ps)
|
||
{
|
||
QUIT;
|
||
if (ps->readin
|
||
|| match_partial_symbol (objfile, ps, global, name, domain, match,
|
||
ordered_compare))
|
||
{
|
||
struct compunit_symtab *cust = psymtab_to_symtab (objfile, ps);
|
||
struct block *block;
|
||
|
||
if (cust == NULL)
|
||
continue;
|
||
block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
|
||
if (map_block (name, domain, objfile, block,
|
||
callback, data, match))
|
||
return;
|
||
if (callback (block, NULL, data))
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* A helper for psym_expand_symtabs_matching that handles searching
|
||
included psymtabs. This returns true if a symbol is found, and
|
||
false otherwise. It also updates the 'searched_flag' on the
|
||
various psymtabs that it searches. */
|
||
|
||
static bool
|
||
recursively_search_psymtabs
|
||
(struct partial_symtab *ps,
|
||
struct objfile *objfile,
|
||
enum search_domain domain,
|
||
const lookup_name_info &lookup_name,
|
||
gdb::function_view<expand_symtabs_symbol_matcher_ftype> sym_matcher)
|
||
{
|
||
int keep_going = 1;
|
||
enum psymtab_search_status result = PST_SEARCHED_AND_NOT_FOUND;
|
||
int i;
|
||
|
||
if (ps->searched_flag != PST_NOT_SEARCHED)
|
||
return ps->searched_flag == PST_SEARCHED_AND_FOUND;
|
||
|
||
/* Recurse into shared psymtabs first, because they may have already
|
||
been searched, and this could save some time. */
|
||
for (i = 0; i < ps->number_of_dependencies; ++i)
|
||
{
|
||
int r;
|
||
|
||
/* Skip non-shared dependencies, these are handled elsewhere. */
|
||
if (ps->dependencies[i]->user == NULL)
|
||
continue;
|
||
|
||
r = recursively_search_psymtabs (ps->dependencies[i],
|
||
objfile, domain, lookup_name,
|
||
sym_matcher);
|
||
if (r != 0)
|
||
{
|
||
ps->searched_flag = PST_SEARCHED_AND_FOUND;
|
||
return true;
|
||
}
|
||
}
|
||
|
||
partial_symbol **gbound
|
||
= objfile->global_psymbols.data () + ps->globals_offset + ps->n_global_syms;
|
||
partial_symbol **sbound
|
||
= objfile->static_psymbols.data () + ps->statics_offset + ps->n_static_syms;
|
||
partial_symbol **bound = gbound;
|
||
|
||
/* Go through all of the symbols stored in a partial
|
||
symtab in one loop. */
|
||
partial_symbol **psym = objfile->global_psymbols.data () + ps->globals_offset;
|
||
while (keep_going)
|
||
{
|
||
if (psym >= bound)
|
||
{
|
||
if (bound == gbound && ps->n_static_syms != 0)
|
||
{
|
||
psym = objfile->static_psymbols.data () + ps->statics_offset;
|
||
bound = sbound;
|
||
}
|
||
else
|
||
keep_going = 0;
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
QUIT;
|
||
|
||
if ((domain == ALL_DOMAIN
|
||
|| (domain == VARIABLES_DOMAIN
|
||
&& (*psym)->aclass != LOC_TYPEDEF
|
||
&& (*psym)->aclass != LOC_BLOCK)
|
||
|| (domain == FUNCTIONS_DOMAIN
|
||
&& (*psym)->aclass == LOC_BLOCK)
|
||
|| (domain == TYPES_DOMAIN
|
||
&& (*psym)->aclass == LOC_TYPEDEF))
|
||
&& psymbol_name_matches (*psym, lookup_name)
|
||
&& (sym_matcher == NULL || sym_matcher (symbol_search_name (*psym))))
|
||
{
|
||
/* Found a match, so notify our caller. */
|
||
result = PST_SEARCHED_AND_FOUND;
|
||
keep_going = 0;
|
||
}
|
||
}
|
||
psym++;
|
||
}
|
||
|
||
ps->searched_flag = result;
|
||
return result == PST_SEARCHED_AND_FOUND;
|
||
}
|
||
|
||
/* Psymtab version of expand_symtabs_matching. See its definition in
|
||
the definition of quick_symbol_functions in symfile.h. */
|
||
|
||
static void
|
||
psym_expand_symtabs_matching
|
||
(struct objfile *objfile,
|
||
gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
|
||
const lookup_name_info &lookup_name_in,
|
||
gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
|
||
gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
|
||
enum search_domain domain)
|
||
{
|
||
struct partial_symtab *ps;
|
||
|
||
lookup_name_info lookup_name = lookup_name_in.make_ignore_params ();
|
||
|
||
/* Clear the search flags. */
|
||
ALL_OBJFILE_PSYMTABS_REQUIRED (objfile, ps)
|
||
{
|
||
ps->searched_flag = PST_NOT_SEARCHED;
|
||
}
|
||
|
||
ALL_OBJFILE_PSYMTABS_REQUIRED (objfile, ps)
|
||
{
|
||
QUIT;
|
||
|
||
if (ps->readin)
|
||
continue;
|
||
|
||
/* We skip shared psymtabs because file-matching doesn't apply
|
||
to them; but we search them later in the loop. */
|
||
if (ps->user != NULL)
|
||
continue;
|
||
|
||
if (file_matcher)
|
||
{
|
||
bool match;
|
||
|
||
if (ps->anonymous)
|
||
continue;
|
||
|
||
match = file_matcher (ps->filename, false);
|
||
if (!match)
|
||
{
|
||
/* Before we invoke realpath, which can get expensive when many
|
||
files are involved, do a quick comparison of the basenames. */
|
||
if (basenames_may_differ
|
||
|| file_matcher (lbasename (ps->filename), true))
|
||
match = file_matcher (psymtab_to_fullname (ps), false);
|
||
}
|
||
if (!match)
|
||
continue;
|
||
}
|
||
|
||
if (recursively_search_psymtabs (ps, objfile, domain,
|
||
lookup_name, symbol_matcher))
|
||
{
|
||
struct compunit_symtab *symtab =
|
||
psymtab_to_symtab (objfile, ps);
|
||
|
||
if (expansion_notify != NULL)
|
||
expansion_notify (symtab);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Psymtab version of has_symbols. See its definition in
|
||
the definition of quick_symbol_functions in symfile.h. */
|
||
|
||
static int
|
||
psym_has_symbols (struct objfile *objfile)
|
||
{
|
||
return objfile->psymtabs != NULL;
|
||
}
|
||
|
||
/* Helper function for psym_find_compunit_symtab_by_address that fills
|
||
in psymbol_map for a given range of psymbols. */
|
||
|
||
static void
|
||
psym_fill_psymbol_map (struct objfile *objfile,
|
||
struct partial_symtab *psymtab,
|
||
std::set<CORE_ADDR> *seen_addrs,
|
||
const std::vector<partial_symbol *> &symbols,
|
||
int start,
|
||
int length)
|
||
{
|
||
for (int i = 0; i < length; ++i)
|
||
{
|
||
struct partial_symbol *psym = symbols[start + i];
|
||
|
||
if (psym->aclass == LOC_STATIC)
|
||
{
|
||
CORE_ADDR addr = psym->address (objfile);
|
||
if (seen_addrs->find (addr) == seen_addrs->end ())
|
||
{
|
||
seen_addrs->insert (addr);
|
||
objfile->psymbol_map.emplace_back (addr, psymtab);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* See find_compunit_symtab_by_address in quick_symbol_functions, in
|
||
symfile.h. */
|
||
|
||
static compunit_symtab *
|
||
psym_find_compunit_symtab_by_address (struct objfile *objfile,
|
||
CORE_ADDR address)
|
||
{
|
||
if (objfile->psymbol_map.empty ())
|
||
{
|
||
struct partial_symtab *pst;
|
||
|
||
std::set<CORE_ADDR> seen_addrs;
|
||
|
||
ALL_OBJFILE_PSYMTABS_REQUIRED (objfile, pst)
|
||
{
|
||
psym_fill_psymbol_map (objfile, pst,
|
||
&seen_addrs,
|
||
objfile->global_psymbols,
|
||
pst->globals_offset,
|
||
pst->n_global_syms);
|
||
psym_fill_psymbol_map (objfile, pst,
|
||
&seen_addrs,
|
||
objfile->static_psymbols,
|
||
pst->statics_offset,
|
||
pst->n_static_syms);
|
||
}
|
||
|
||
objfile->psymbol_map.shrink_to_fit ();
|
||
|
||
std::sort (objfile->psymbol_map.begin (), objfile->psymbol_map.end (),
|
||
[] (const std::pair<CORE_ADDR, partial_symtab *> &a,
|
||
const std::pair<CORE_ADDR, partial_symtab *> &b)
|
||
{
|
||
return a.first < b.first;
|
||
});
|
||
}
|
||
|
||
auto iter = std::lower_bound
|
||
(objfile->psymbol_map.begin (), objfile->psymbol_map.end (), address,
|
||
[] (const std::pair<CORE_ADDR, partial_symtab *> &a,
|
||
CORE_ADDR b)
|
||
{
|
||
return a.first < b;
|
||
});
|
||
|
||
if (iter == objfile->psymbol_map.end () || iter->first != address)
|
||
return NULL;
|
||
|
||
return psymtab_to_symtab (objfile, iter->second);
|
||
}
|
||
|
||
const struct quick_symbol_functions psym_functions =
|
||
{
|
||
psym_has_symbols,
|
||
psym_find_last_source_symtab,
|
||
psym_forget_cached_source_info,
|
||
psym_map_symtabs_matching_filename,
|
||
psym_lookup_symbol,
|
||
psym_print_stats,
|
||
psym_dump,
|
||
psym_expand_symtabs_for_function,
|
||
psym_expand_all_symtabs,
|
||
psym_expand_symtabs_with_fullname,
|
||
psym_map_matching_symbols,
|
||
psym_expand_symtabs_matching,
|
||
psym_find_pc_sect_compunit_symtab,
|
||
psym_find_compunit_symtab_by_address,
|
||
psym_map_symbol_filenames
|
||
};
|
||
|
||
|
||
|
||
static void
|
||
sort_pst_symbols (struct objfile *objfile, struct partial_symtab *pst)
|
||
{
|
||
/* Sort the global list; don't sort the static list. */
|
||
auto begin = objfile->global_psymbols.begin ();
|
||
std::advance (begin, pst->globals_offset);
|
||
|
||
/* The psymbols for this partial_symtab are currently at the end of the
|
||
vector. */
|
||
auto end = objfile->global_psymbols.end ();
|
||
|
||
std::sort (begin, end, [] (partial_symbol *s1, partial_symbol *s2)
|
||
{
|
||
return strcmp_iw_ordered (symbol_search_name (s1),
|
||
symbol_search_name (s2)) < 0;
|
||
});
|
||
}
|
||
|
||
/* Allocate and partially fill a partial symtab. It will be
|
||
completely filled at the end of the symbol list.
|
||
|
||
FILENAME is the name of the symbol-file we are reading from. */
|
||
|
||
struct partial_symtab *
|
||
start_psymtab_common (struct objfile *objfile,
|
||
const char *filename,
|
||
CORE_ADDR textlow,
|
||
std::vector<partial_symbol *> &global_psymbols,
|
||
std::vector<partial_symbol *> &static_psymbols)
|
||
{
|
||
struct partial_symtab *psymtab;
|
||
|
||
psymtab = allocate_psymtab (filename, objfile);
|
||
psymtab->set_text_low (textlow);
|
||
psymtab->set_text_high (psymtab->raw_text_low ()); /* default */
|
||
psymtab->globals_offset = global_psymbols.size ();
|
||
psymtab->statics_offset = static_psymbols.size ();
|
||
return psymtab;
|
||
}
|
||
|
||
/* Perform "finishing up" operations of a partial symtab. */
|
||
|
||
void
|
||
end_psymtab_common (struct objfile *objfile, struct partial_symtab *pst)
|
||
{
|
||
pst->n_global_syms = objfile->global_psymbols.size () - pst->globals_offset;
|
||
pst->n_static_syms = objfile->static_psymbols.size () - pst->statics_offset;
|
||
|
||
sort_pst_symbols (objfile, pst);
|
||
}
|
||
|
||
/* Calculate a hash code for the given partial symbol. The hash is
|
||
calculated using the symbol's value, language, domain, class
|
||
and name. These are the values which are set by
|
||
add_psymbol_to_bcache. */
|
||
|
||
static unsigned long
|
||
psymbol_hash (const void *addr, int length)
|
||
{
|
||
unsigned long h = 0;
|
||
struct partial_symbol *psymbol = (struct partial_symbol *) addr;
|
||
unsigned int lang = psymbol->language;
|
||
unsigned int domain = psymbol->domain;
|
||
unsigned int theclass = psymbol->aclass;
|
||
|
||
h = hash_continue (&psymbol->value, sizeof (psymbol->value), h);
|
||
h = hash_continue (&lang, sizeof (unsigned int), h);
|
||
h = hash_continue (&domain, sizeof (unsigned int), h);
|
||
h = hash_continue (&theclass, sizeof (unsigned int), h);
|
||
/* Note that psymbol names are interned via symbol_set_names, so
|
||
there's no need to hash the contents of the name here. */
|
||
h = hash_continue (&psymbol->name,
|
||
sizeof (psymbol->name), h);
|
||
|
||
return h;
|
||
}
|
||
|
||
/* Returns true if the symbol at addr1 equals the symbol at addr2.
|
||
For the comparison this function uses a symbols value,
|
||
language, domain, class and name. */
|
||
|
||
static int
|
||
psymbol_compare (const void *addr1, const void *addr2, int length)
|
||
{
|
||
struct partial_symbol *sym1 = (struct partial_symbol *) addr1;
|
||
struct partial_symbol *sym2 = (struct partial_symbol *) addr2;
|
||
|
||
return (memcmp (&sym1->value, &sym2->value,
|
||
sizeof (sym1->value)) == 0
|
||
&& sym1->language == sym2->language
|
||
&& sym1->domain == sym2->domain
|
||
&& sym1->aclass == sym2->aclass
|
||
/* Note that psymbol names are interned via
|
||
symbol_set_names, so there's no need to compare the
|
||
contents of the name here. */
|
||
&& sym1->name == sym2->name);
|
||
}
|
||
|
||
/* Initialize a partial symbol bcache. */
|
||
|
||
struct psymbol_bcache *
|
||
psymbol_bcache_init (void)
|
||
{
|
||
struct psymbol_bcache *bcache = XCNEW (struct psymbol_bcache);
|
||
|
||
bcache->bcache = bcache_xmalloc (psymbol_hash, psymbol_compare);
|
||
return bcache;
|
||
}
|
||
|
||
/* Free a partial symbol bcache. */
|
||
|
||
void
|
||
psymbol_bcache_free (struct psymbol_bcache *bcache)
|
||
{
|
||
if (bcache == NULL)
|
||
return;
|
||
|
||
bcache_xfree (bcache->bcache);
|
||
xfree (bcache);
|
||
}
|
||
|
||
/* Return the internal bcache of the psymbol_bcache BCACHE. */
|
||
|
||
struct bcache *
|
||
psymbol_bcache_get_bcache (struct psymbol_bcache *bcache)
|
||
{
|
||
return bcache->bcache;
|
||
}
|
||
|
||
/* Find a copy of the SYM in BCACHE. If BCACHE has never seen this
|
||
symbol before, add a copy to BCACHE. In either case, return a pointer
|
||
to BCACHE's copy of the symbol. If optional ADDED is not NULL, return
|
||
1 in case of new entry or 0 if returning an old entry. */
|
||
|
||
static struct partial_symbol *
|
||
psymbol_bcache_full (struct partial_symbol *sym,
|
||
struct psymbol_bcache *bcache,
|
||
int *added)
|
||
{
|
||
return ((struct partial_symbol *)
|
||
bcache_full (sym, sizeof (struct partial_symbol), bcache->bcache,
|
||
added));
|
||
}
|
||
|
||
/* Helper function, initialises partial symbol structure and stashes
|
||
it into objfile's bcache. Note that our caching mechanism will
|
||
use all fields of struct partial_symbol to determine hash value of the
|
||
structure. In other words, having two symbols with the same name but
|
||
different domain (or address) is possible and correct. */
|
||
|
||
static struct partial_symbol *
|
||
add_psymbol_to_bcache (const char *name, int namelength, int copy_name,
|
||
domain_enum domain,
|
||
enum address_class theclass,
|
||
short section,
|
||
CORE_ADDR coreaddr,
|
||
enum language language, struct objfile *objfile,
|
||
int *added)
|
||
{
|
||
struct partial_symbol psymbol;
|
||
|
||
psymbol.set_unrelocated_address (coreaddr);
|
||
psymbol.section = section;
|
||
psymbol.domain = domain;
|
||
psymbol.aclass = theclass;
|
||
|
||
memset (&psymbol.language_specific, 0, sizeof (psymbol.language_specific));
|
||
psymbol.ada_mangled = 0;
|
||
symbol_set_language (&psymbol, language, &objfile->objfile_obstack);
|
||
symbol_set_names (&psymbol, name, namelength, copy_name, objfile);
|
||
|
||
/* Stash the partial symbol away in the cache. */
|
||
return psymbol_bcache_full (&psymbol, objfile->psymbol_cache, added);
|
||
}
|
||
|
||
/* Helper function, adds partial symbol to the given partial symbol list. */
|
||
|
||
static void
|
||
append_psymbol_to_list (std::vector<partial_symbol *> *list,
|
||
struct partial_symbol *psym,
|
||
struct objfile *objfile)
|
||
{
|
||
list->push_back (psym);
|
||
OBJSTAT (objfile, n_psyms++);
|
||
}
|
||
|
||
/* Add a symbol with a long value to a psymtab.
|
||
Since one arg is a struct, we pass in a ptr and deref it (sigh).
|
||
The only value we need to store for psyms is an address.
|
||
For all other psyms pass zero for COREADDR.
|
||
Return the partial symbol that has been added. */
|
||
|
||
void
|
||
add_psymbol_to_list (const char *name, int namelength, int copy_name,
|
||
domain_enum domain,
|
||
enum address_class theclass,
|
||
short section,
|
||
std::vector<partial_symbol *> *list,
|
||
CORE_ADDR coreaddr,
|
||
enum language language, struct objfile *objfile)
|
||
{
|
||
struct partial_symbol *psym;
|
||
|
||
int added;
|
||
|
||
/* Stash the partial symbol away in the cache. */
|
||
psym = add_psymbol_to_bcache (name, namelength, copy_name, domain, theclass,
|
||
section, coreaddr, language, objfile, &added);
|
||
|
||
/* Do not duplicate global partial symbols. */
|
||
if (list == &objfile->global_psymbols
|
||
&& !added)
|
||
return;
|
||
|
||
/* Save pointer to partial symbol in psymtab, growing symtab if needed. */
|
||
append_psymbol_to_list (list, psym, objfile);
|
||
}
|
||
|
||
/* Initialize storage for partial symbols. */
|
||
|
||
void
|
||
init_psymbol_list (struct objfile *objfile, int total_symbols)
|
||
{
|
||
/* Free any previously allocated psymbol lists. */
|
||
objfile->global_psymbols.clear ();
|
||
objfile->static_psymbols.clear ();
|
||
|
||
/* Current best guess is that approximately a twentieth
|
||
of the total symbols (in a debugging file) are global or static
|
||
oriented symbols, then multiply that by slop factor of two. */
|
||
objfile->global_psymbols.reserve (total_symbols / 10);
|
||
objfile->static_psymbols.reserve (total_symbols / 10);
|
||
}
|
||
|
||
struct partial_symtab *
|
||
allocate_psymtab (const char *filename, struct objfile *objfile)
|
||
{
|
||
struct partial_symtab *psymtab;
|
||
|
||
if (objfile->free_psymtabs)
|
||
{
|
||
psymtab = objfile->free_psymtabs;
|
||
objfile->free_psymtabs = psymtab->next;
|
||
}
|
||
else
|
||
psymtab = XOBNEW (&objfile->objfile_obstack, partial_symtab);
|
||
|
||
memset (psymtab, 0, sizeof (struct partial_symtab));
|
||
psymtab->filename
|
||
= (const char *) bcache (filename, strlen (filename) + 1,
|
||
objfile->per_bfd->filename_cache);
|
||
psymtab->compunit_symtab = NULL;
|
||
|
||
/* Prepend it to the psymtab list for the objfile it belongs to.
|
||
Psymtabs are searched in most recent inserted -> least recent
|
||
inserted order. */
|
||
|
||
psymtab->next = objfile->psymtabs;
|
||
objfile->psymtabs = psymtab;
|
||
|
||
if (symtab_create_debug)
|
||
{
|
||
/* Be a bit clever with debugging messages, and don't print objfile
|
||
every time, only when it changes. */
|
||
static char *last_objfile_name = NULL;
|
||
|
||
if (last_objfile_name == NULL
|
||
|| strcmp (last_objfile_name, objfile_name (objfile)) != 0)
|
||
{
|
||
xfree (last_objfile_name);
|
||
last_objfile_name = xstrdup (objfile_name (objfile));
|
||
fprintf_filtered (gdb_stdlog,
|
||
"Creating one or more psymtabs for objfile %s ...\n",
|
||
last_objfile_name);
|
||
}
|
||
fprintf_filtered (gdb_stdlog,
|
||
"Created psymtab %s for module %s.\n",
|
||
host_address_to_string (psymtab), filename);
|
||
}
|
||
|
||
return psymtab;
|
||
}
|
||
|
||
void
|
||
discard_psymtab (struct objfile *objfile, struct partial_symtab *pst)
|
||
{
|
||
struct partial_symtab **prev_pst;
|
||
|
||
/* From dbxread.c:
|
||
Empty psymtabs happen as a result of header files which don't
|
||
have any symbols in them. There can be a lot of them. But this
|
||
check is wrong, in that a psymtab with N_SLINE entries but
|
||
nothing else is not empty, but we don't realize that. Fixing
|
||
that without slowing things down might be tricky. */
|
||
|
||
/* First, snip it out of the psymtab chain. */
|
||
|
||
prev_pst = &(objfile->psymtabs);
|
||
while ((*prev_pst) != pst)
|
||
prev_pst = &((*prev_pst)->next);
|
||
(*prev_pst) = pst->next;
|
||
|
||
/* Next, put it on a free list for recycling. */
|
||
|
||
pst->next = objfile->free_psymtabs;
|
||
objfile->free_psymtabs = pst;
|
||
}
|
||
|
||
|
||
|
||
/* We need to pass a couple of items to the addrmap_foreach function,
|
||
so use a struct. */
|
||
|
||
struct dump_psymtab_addrmap_data
|
||
{
|
||
struct objfile *objfile;
|
||
struct partial_symtab *psymtab;
|
||
struct ui_file *outfile;
|
||
|
||
/* Non-zero if the previously printed addrmap entry was for PSYMTAB.
|
||
If so, we want to print the next one as well (since the next addrmap
|
||
entry defines the end of the range). */
|
||
int previous_matched;
|
||
};
|
||
|
||
/* Helper function for dump_psymtab_addrmap to print an addrmap entry. */
|
||
|
||
static int
|
||
dump_psymtab_addrmap_1 (void *datap, CORE_ADDR start_addr, void *obj)
|
||
{
|
||
struct dump_psymtab_addrmap_data *data
|
||
= (struct dump_psymtab_addrmap_data *) datap;
|
||
struct gdbarch *gdbarch = get_objfile_arch (data->objfile);
|
||
struct partial_symtab *addrmap_psymtab = (struct partial_symtab *) obj;
|
||
const char *psymtab_address_or_end = NULL;
|
||
|
||
QUIT;
|
||
|
||
if (data->psymtab == NULL
|
||
|| data->psymtab == addrmap_psymtab)
|
||
psymtab_address_or_end = host_address_to_string (addrmap_psymtab);
|
||
else if (data->previous_matched)
|
||
psymtab_address_or_end = "<ends here>";
|
||
|
||
if (data->psymtab == NULL
|
||
|| data->psymtab == addrmap_psymtab
|
||
|| data->previous_matched)
|
||
{
|
||
fprintf_filtered (data->outfile, " %s%s %s\n",
|
||
data->psymtab != NULL ? " " : "",
|
||
paddress (gdbarch, start_addr),
|
||
psymtab_address_or_end);
|
||
}
|
||
|
||
data->previous_matched = (data->psymtab == NULL
|
||
|| data->psymtab == addrmap_psymtab);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Helper function for maintenance_print_psymbols to print the addrmap
|
||
of PSYMTAB. If PSYMTAB is NULL print the entire addrmap. */
|
||
|
||
static void
|
||
dump_psymtab_addrmap (struct objfile *objfile, struct partial_symtab *psymtab,
|
||
struct ui_file *outfile)
|
||
{
|
||
struct dump_psymtab_addrmap_data addrmap_dump_data;
|
||
|
||
if ((psymtab == NULL
|
||
|| psymtab->psymtabs_addrmap_supported)
|
||
&& objfile->psymtabs_addrmap != NULL)
|
||
{
|
||
addrmap_dump_data.objfile = objfile;
|
||
addrmap_dump_data.psymtab = psymtab;
|
||
addrmap_dump_data.outfile = outfile;
|
||
addrmap_dump_data.previous_matched = 0;
|
||
fprintf_filtered (outfile, "%sddress map:\n",
|
||
psymtab == NULL ? "Entire a" : " A");
|
||
addrmap_foreach (objfile->psymtabs_addrmap, dump_psymtab_addrmap_1,
|
||
&addrmap_dump_data);
|
||
}
|
||
}
|
||
|
||
static void
|
||
maintenance_print_psymbols (const char *args, int from_tty)
|
||
{
|
||
struct ui_file *outfile = gdb_stdout;
|
||
char *address_arg = NULL, *source_arg = NULL, *objfile_arg = NULL;
|
||
struct objfile *objfile;
|
||
struct partial_symtab *ps;
|
||
int i, outfile_idx, found;
|
||
CORE_ADDR pc = 0;
|
||
struct obj_section *section = NULL;
|
||
|
||
dont_repeat ();
|
||
|
||
gdb_argv argv (args);
|
||
|
||
for (i = 0; argv != NULL && argv[i] != NULL; ++i)
|
||
{
|
||
if (strcmp (argv[i], "-pc") == 0)
|
||
{
|
||
if (argv[i + 1] == NULL)
|
||
error (_("Missing pc value"));
|
||
address_arg = argv[++i];
|
||
}
|
||
else if (strcmp (argv[i], "-source") == 0)
|
||
{
|
||
if (argv[i + 1] == NULL)
|
||
error (_("Missing source file"));
|
||
source_arg = argv[++i];
|
||
}
|
||
else if (strcmp (argv[i], "-objfile") == 0)
|
||
{
|
||
if (argv[i + 1] == NULL)
|
||
error (_("Missing objfile name"));
|
||
objfile_arg = argv[++i];
|
||
}
|
||
else if (strcmp (argv[i], "--") == 0)
|
||
{
|
||
/* End of options. */
|
||
++i;
|
||
break;
|
||
}
|
||
else if (argv[i][0] == '-')
|
||
{
|
||
/* Future proofing: Don't allow OUTFILE to begin with "-". */
|
||
error (_("Unknown option: %s"), argv[i]);
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
outfile_idx = i;
|
||
|
||
if (address_arg != NULL && source_arg != NULL)
|
||
error (_("Must specify at most one of -pc and -source"));
|
||
|
||
stdio_file arg_outfile;
|
||
|
||
if (argv != NULL && argv[outfile_idx] != NULL)
|
||
{
|
||
if (argv[outfile_idx + 1] != NULL)
|
||
error (_("Junk at end of command"));
|
||
gdb::unique_xmalloc_ptr<char> outfile_name
|
||
(tilde_expand (argv[outfile_idx]));
|
||
if (!arg_outfile.open (outfile_name.get (), FOPEN_WT))
|
||
perror_with_name (outfile_name.get ());
|
||
outfile = &arg_outfile;
|
||
}
|
||
|
||
if (address_arg != NULL)
|
||
{
|
||
pc = parse_and_eval_address (address_arg);
|
||
/* If we fail to find a section, that's ok, try the lookup anyway. */
|
||
section = find_pc_section (pc);
|
||
}
|
||
|
||
found = 0;
|
||
ALL_OBJFILES (objfile)
|
||
{
|
||
int printed_objfile_header = 0;
|
||
int print_for_objfile = 1;
|
||
|
||
QUIT;
|
||
if (objfile_arg != NULL)
|
||
print_for_objfile
|
||
= compare_filenames_for_search (objfile_name (objfile),
|
||
objfile_arg);
|
||
if (!print_for_objfile)
|
||
continue;
|
||
|
||
if (address_arg != NULL)
|
||
{
|
||
struct bound_minimal_symbol msymbol = { NULL, NULL };
|
||
|
||
/* We don't assume each pc has a unique objfile (this is for
|
||
debugging). */
|
||
ps = find_pc_sect_psymtab (objfile, pc, section, msymbol);
|
||
if (ps != NULL)
|
||
{
|
||
if (!printed_objfile_header)
|
||
{
|
||
outfile->printf ("\nPartial symtabs for objfile %s\n",
|
||
objfile_name (objfile));
|
||
printed_objfile_header = 1;
|
||
}
|
||
dump_psymtab (objfile, ps, outfile);
|
||
dump_psymtab_addrmap (objfile, ps, outfile);
|
||
found = 1;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
ALL_OBJFILE_PSYMTABS_REQUIRED (objfile, ps)
|
||
{
|
||
int print_for_source = 0;
|
||
|
||
QUIT;
|
||
if (source_arg != NULL)
|
||
{
|
||
print_for_source
|
||
= compare_filenames_for_search (ps->filename, source_arg);
|
||
found = 1;
|
||
}
|
||
if (source_arg == NULL
|
||
|| print_for_source)
|
||
{
|
||
if (!printed_objfile_header)
|
||
{
|
||
outfile->printf ("\nPartial symtabs for objfile %s\n",
|
||
objfile_name (objfile));
|
||
printed_objfile_header = 1;
|
||
}
|
||
dump_psymtab (objfile, ps, outfile);
|
||
dump_psymtab_addrmap (objfile, ps, outfile);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If we're printing all the objfile's symbols dump the full addrmap. */
|
||
|
||
if (address_arg == NULL
|
||
&& source_arg == NULL
|
||
&& objfile->psymtabs_addrmap != NULL)
|
||
{
|
||
outfile->puts ("\n");
|
||
dump_psymtab_addrmap (objfile, NULL, outfile);
|
||
}
|
||
}
|
||
|
||
if (!found)
|
||
{
|
||
if (address_arg != NULL)
|
||
error (_("No partial symtab for address: %s"), address_arg);
|
||
if (source_arg != NULL)
|
||
error (_("No partial symtab for source file: %s"), source_arg);
|
||
}
|
||
}
|
||
|
||
/* List all the partial symbol tables whose names match REGEXP (optional). */
|
||
|
||
static void
|
||
maintenance_info_psymtabs (const char *regexp, int from_tty)
|
||
{
|
||
struct program_space *pspace;
|
||
struct objfile *objfile;
|
||
|
||
if (regexp)
|
||
re_comp (regexp);
|
||
|
||
ALL_PSPACES (pspace)
|
||
ALL_PSPACE_OBJFILES (pspace, objfile)
|
||
{
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
struct partial_symtab *psymtab;
|
||
|
||
/* We don't want to print anything for this objfile until we
|
||
actually find a symtab whose name matches. */
|
||
int printed_objfile_start = 0;
|
||
|
||
ALL_OBJFILE_PSYMTABS_REQUIRED (objfile, psymtab)
|
||
{
|
||
QUIT;
|
||
|
||
if (! regexp
|
||
|| re_exec (psymtab->filename))
|
||
{
|
||
if (! printed_objfile_start)
|
||
{
|
||
printf_filtered ("{ objfile %s ", objfile_name (objfile));
|
||
wrap_here (" ");
|
||
printf_filtered ("((struct objfile *) %s)\n",
|
||
host_address_to_string (objfile));
|
||
printed_objfile_start = 1;
|
||
}
|
||
|
||
printf_filtered (" { psymtab %s ", psymtab->filename);
|
||
wrap_here (" ");
|
||
printf_filtered ("((struct partial_symtab *) %s)\n",
|
||
host_address_to_string (psymtab));
|
||
|
||
printf_filtered (" readin %s\n",
|
||
psymtab->readin ? "yes" : "no");
|
||
printf_filtered (" fullname %s\n",
|
||
psymtab->fullname
|
||
? psymtab->fullname : "(null)");
|
||
printf_filtered (" text addresses ");
|
||
fputs_filtered (paddress (gdbarch, psymtab->text_low (objfile)),
|
||
gdb_stdout);
|
||
printf_filtered (" -- ");
|
||
fputs_filtered (paddress (gdbarch, psymtab->text_high (objfile)),
|
||
gdb_stdout);
|
||
printf_filtered ("\n");
|
||
printf_filtered (" psymtabs_addrmap_supported %s\n",
|
||
(psymtab->psymtabs_addrmap_supported
|
||
? "yes" : "no"));
|
||
printf_filtered (" globals ");
|
||
if (psymtab->n_global_syms)
|
||
{
|
||
auto p = &objfile->global_psymbols[psymtab->globals_offset];
|
||
|
||
printf_filtered ("(* (struct partial_symbol **) %s @ %d)\n",
|
||
host_address_to_string (p),
|
||
psymtab->n_global_syms);
|
||
}
|
||
else
|
||
printf_filtered ("(none)\n");
|
||
printf_filtered (" statics ");
|
||
if (psymtab->n_static_syms)
|
||
{
|
||
auto p = &objfile->static_psymbols[psymtab->statics_offset];
|
||
|
||
printf_filtered ("(* (struct partial_symbol **) %s @ %d)\n",
|
||
host_address_to_string (p),
|
||
psymtab->n_static_syms);
|
||
}
|
||
else
|
||
printf_filtered ("(none)\n");
|
||
printf_filtered (" dependencies ");
|
||
if (psymtab->number_of_dependencies)
|
||
{
|
||
int i;
|
||
|
||
printf_filtered ("{\n");
|
||
for (i = 0; i < psymtab->number_of_dependencies; i++)
|
||
{
|
||
struct partial_symtab *dep = psymtab->dependencies[i];
|
||
|
||
/* Note the string concatenation there --- no comma. */
|
||
printf_filtered (" psymtab %s "
|
||
"((struct partial_symtab *) %s)\n",
|
||
dep->filename,
|
||
host_address_to_string (dep));
|
||
}
|
||
printf_filtered (" }\n");
|
||
}
|
||
else
|
||
printf_filtered ("(none)\n");
|
||
printf_filtered (" }\n");
|
||
}
|
||
}
|
||
|
||
if (printed_objfile_start)
|
||
printf_filtered ("}\n");
|
||
}
|
||
}
|
||
|
||
/* Check consistency of currently expanded psymtabs vs symtabs. */
|
||
|
||
static void
|
||
maintenance_check_psymtabs (const char *ignore, int from_tty)
|
||
{
|
||
struct symbol *sym;
|
||
struct compunit_symtab *cust = NULL;
|
||
struct partial_symtab *ps;
|
||
const struct blockvector *bv;
|
||
struct objfile *objfile;
|
||
struct block *b;
|
||
int length;
|
||
|
||
ALL_PSYMTABS (objfile, ps)
|
||
{
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
|
||
/* We don't call psymtab_to_symtab here because that may cause symtab
|
||
expansion. When debugging a problem it helps if checkers leave
|
||
things unchanged. */
|
||
cust = ps->compunit_symtab;
|
||
|
||
/* First do some checks that don't require the associated symtab. */
|
||
if (ps->text_high (objfile) < ps->text_low (objfile))
|
||
{
|
||
printf_filtered ("Psymtab ");
|
||
puts_filtered (ps->filename);
|
||
printf_filtered (" covers bad range ");
|
||
fputs_filtered (paddress (gdbarch, ps->text_low (objfile)),
|
||
gdb_stdout);
|
||
printf_filtered (" - ");
|
||
fputs_filtered (paddress (gdbarch, ps->text_high (objfile)),
|
||
gdb_stdout);
|
||
printf_filtered ("\n");
|
||
continue;
|
||
}
|
||
|
||
/* Now do checks requiring the associated symtab. */
|
||
if (cust == NULL)
|
||
continue;
|
||
bv = COMPUNIT_BLOCKVECTOR (cust);
|
||
b = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
|
||
partial_symbol **psym = &objfile->static_psymbols[ps->statics_offset];
|
||
length = ps->n_static_syms;
|
||
while (length--)
|
||
{
|
||
sym = block_lookup_symbol (b, symbol_search_name (*psym),
|
||
symbol_name_match_type::SEARCH_NAME,
|
||
(*psym)->domain);
|
||
if (!sym)
|
||
{
|
||
printf_filtered ("Static symbol `");
|
||
puts_filtered ((*psym)->name);
|
||
printf_filtered ("' only found in ");
|
||
puts_filtered (ps->filename);
|
||
printf_filtered (" psymtab\n");
|
||
}
|
||
psym++;
|
||
}
|
||
b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
|
||
psym = &objfile->global_psymbols[ps->globals_offset];
|
||
length = ps->n_global_syms;
|
||
while (length--)
|
||
{
|
||
sym = block_lookup_symbol (b, symbol_search_name (*psym),
|
||
symbol_name_match_type::SEARCH_NAME,
|
||
(*psym)->domain);
|
||
if (!sym)
|
||
{
|
||
printf_filtered ("Global symbol `");
|
||
puts_filtered ((*psym)->name);
|
||
printf_filtered ("' only found in ");
|
||
puts_filtered (ps->filename);
|
||
printf_filtered (" psymtab\n");
|
||
}
|
||
psym++;
|
||
}
|
||
if (ps->raw_text_high () != 0
|
||
&& (ps->text_low (objfile) < BLOCK_START (b)
|
||
|| ps->text_high (objfile) > BLOCK_END (b)))
|
||
{
|
||
printf_filtered ("Psymtab ");
|
||
puts_filtered (ps->filename);
|
||
printf_filtered (" covers ");
|
||
fputs_filtered (paddress (gdbarch, ps->text_low (objfile)),
|
||
gdb_stdout);
|
||
printf_filtered (" - ");
|
||
fputs_filtered (paddress (gdbarch, ps->text_high (objfile)),
|
||
gdb_stdout);
|
||
printf_filtered (" but symtab covers only ");
|
||
fputs_filtered (paddress (gdbarch, BLOCK_START (b)), gdb_stdout);
|
||
printf_filtered (" - ");
|
||
fputs_filtered (paddress (gdbarch, BLOCK_END (b)), gdb_stdout);
|
||
printf_filtered ("\n");
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
_initialize_psymtab (void)
|
||
{
|
||
add_cmd ("psymbols", class_maintenance, maintenance_print_psymbols, _("\
|
||
Print dump of current partial symbol definitions.\n\
|
||
Usage: mt print psymbols [-objfile objfile] [-pc address] [--] [outfile]\n\
|
||
mt print psymbols [-objfile objfile] [-source source] [--] [outfile]\n\
|
||
Entries in the partial symbol table are dumped to file OUTFILE,\n\
|
||
or the terminal if OUTFILE is unspecified.\n\
|
||
If ADDRESS is provided, dump only the file for that address.\n\
|
||
If SOURCE is provided, dump only that file's symbols.\n\
|
||
If OBJFILE is provided, dump only that file's minimal symbols."),
|
||
&maintenanceprintlist);
|
||
|
||
add_cmd ("psymtabs", class_maintenance, maintenance_info_psymtabs, _("\
|
||
List the partial symbol tables for all object files.\n\
|
||
This does not include information about individual partial symbols,\n\
|
||
just the symbol table structures themselves."),
|
||
&maintenanceinfolist);
|
||
|
||
add_cmd ("check-psymtabs", class_maintenance, maintenance_check_psymtabs,
|
||
_("\
|
||
Check consistency of currently expanded psymtabs versus symtabs."),
|
||
&maintenancelist);
|
||
}
|