mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-24 12:35:55 +08:00
edd079d9f6
When parsing floating-point literals, the language parsers currently use parse_float or some equivalent routine to parse the input string into a DOUBLEST, which is then stored within a OP_DOUBLE expression node. When evaluating the expression, the OP_DOUBLE is finally converted into a value in target format. On the other hand, *decimal* floating-point literals are parsed directly into target format and stored that way in a OP_DECFLOAT expression node. In order to eliminate the DOUBLEST, this patch therefore unifies the handling of binary and decimal floating- point literals and stores them both in target format within a new OP_FLOAT expression node, replacing both OP_DOUBLE and OP_DECFLOAT. In order to store literals in target format, the parse_float routine needs to know the type of the literal. All parsers therefore need to be changed to determine the appropriate type (e.g. by detecting suffixes) *before* calling parse_float, instead of after it as today. However, this change is mostly straightforward -- again, this is already done for decimal FP today. The core of the literal parsing is moved into a new routine floatformat_from_string, mirroring floatformat_to_string. The parse_float routine now calls either floatformat_from_string or decimal_from_sting, allowing it to handle any type of FP literal. All language parsers need to be updated. Some notes on specific changes to the various languages: - C: Decimal FP is now handled in parse_float, and no longer needs to be handled specially. - D: Straightforward. - Fortran: Still used a hard-coded "atof", also replaced by parse_float now. Continues to always use builtin_real_s8 as the type of literal, even though this is probably wrong. - Go: This used to handle "f" and "l" suffixes, even though the Go language actually doesn't support those. I kept this support for now -- maybe revisit later. Note the the GDB test suite for some reason actually *verifies* that GDB supports those unsupported suffixes ... - Pascal: Likewise -- this handles suffixes that are not supported in the language standard. - Modula-2: Like Fortran, used to use "atof". - Rust: Mostly straightforward, except for a unit-testing hitch. The code use to set a special "unit_testing" flag which would cause "rust_type" to always return NULL. This makes it not possible to encode a literal into target format (which type?). The reason for this flag appears to have been that during unit testing, there is no "rust_parser" context set up, which means no "gdbarch" is available to use its types. To fix this, I removed the unit_testing flag, and instead simply just set up a dummy rust_parser context during unit testing. - Ada: This used to check sizeof (DOUBLEST) to determine which type to use for floating-point literal. This seems questionable to begin with (since DOUBLEST is quite unrelated to target formats), and in any case we need to get rid of DOUBLEST. I'm now simply always using the largest type (builtin_long_double). gdb/ChangeLog: 2017-10-25 Ulrich Weigand <uweigand@de.ibm.com> * doublest.c (floatformat_from_string): New function. * doublest.h (floatformat_from_string): Add prototype. * std-operator.def (OP_DOUBLE, OP_DECFLOAT): Remove, replace by ... (OP_FLOAT): ... this. * expression.h: Do not include "doublest.h". (union exp_element): Replace doubleconst and decfloatconst by new element floatconst. * ada-lang.c (resolve_subexp): Handle OP_FLOAT instead of OP_DOUBLE. (ada_evaluate_subexp): Likewise. * eval.c (evaluate_subexp_standard): Handle OP_FLOAT instead of OP_DOUBLE and OP_DECFLOAT. * expprint.c (print_subexp_standard): Likewise. (dump_subexp_body_standard): Likewise. * breakpoint.c (watchpoint_exp_is_const): Likewise. * parse.c: Include "dfp.h". (write_exp_elt_dblcst, write_exp_elt_decfloatcst): Remove. (write_exp_elt_floatcst): New function. (operator_length_standard): Handle OP_FLOAT instead of OP_DOUBLE and OP_DECFLOAT. (operator_check_standard): Likewise. (parse_float): Do not accept suffix. Take type as input. Return bool. Return target format buffer instead of host DOUBLEST. Use floatformat_from_string and decimal_from_string to parse either binary or decimal floating-point types. (parse_c_float): Remove. * parser-defs.h: Do not include "doublest.h". (write_exp_elt_dblcst, write_exp_elt_decfloatcst): Remove. (write_exp_elt_floatcst): Add prototype. (parse_float): Update prototype. (parse_c_float): Remove. * c-exp.y: Do not include "dfp.h". (typed_val_float): Use byte buffer instead of DOUBLEST. (typed_val_decfloat): Remove. (DECFLOAT): Remove. (FLOAT): Use OP_FLOAT and write_exp_elt_floatcst. (parse_number): Update to new parse_float interface. Parse suffixes and determine type before calling parse_float. Handle decimal and binary FP types the same way. * d-exp.y (typed_val_float): Use byte buffer instead of DOUBLEST. (FLOAT_LITERAL): Use OP_FLOAT and write_exp_elt_floatcst. (parse_number): Update to new parse_float interface. Parse suffixes and determine type before calling parse_float. * f-exp.y: Replace dval by typed_val_float. (FLOAT): Use OP_FLOAT and write_exp_elt_floatcst. (parse_number): Use parse_float instead of atof. * go-exp.y (typed_val_float): Use byte buffer instead of DOUBLEST. (parse_go_float): Remove. (FLOAT): Use OP_FLOAT and write_exp_elt_floatcst. (parse_number): Call parse_float instead of parse_go_float. Parse suffixes and determine type before calling parse_float. * p-exp.y (typed_val_float): Use byte buffer instead of DOUBLEST. (FLOAT): Use OP_FLOAT and write_exp_elt_floatcst. (parse_number): Update to new parse_float interface. Parse suffixes and determine type before calling parse_float. * m2-exp.y: Replace dval by byte buffer val. (FLOAT): Use OP_FLOAT and write_exp_elt_floatcst. (parse_number): Call parse_float instead of atof. * rust-exp.y (typed_val_float): Use byte buffer instead of DOUBLEST. (lex_number): Call parse_float instead of strtod. (ast_dliteral): Use OP_FLOAT instead of OP_DOUBLE. (convert_ast_to_expression): Handle OP_FLOAT instead of OP_DOUBLE. Use write_exp_elt_floatcst. (unit_testing): Remove static variable. (rust_type): Do not check unit_testing. (rust_lex_tests): Do not set uint_testing. Set up dummy rust_parser. * ada-exp.y (type_float, type_double): Remove. (typed_val_float): Use byte buffer instead of DOUBLEST. (FLOAT): Use OP_FLOAT and write_exp_elt_floatcst. * ada-lex.l (processReal): Use parse_float instead of sscanf.
990 lines
30 KiB
C
990 lines
30 KiB
C
/* Floating point routines for GDB, the GNU debugger.
|
||
|
||
Copyright (C) 1986-2017 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
/* Support for converting target fp numbers into host DOUBLEST format. */
|
||
|
||
/* XXX - This code should really be in libiberty/floatformat.c,
|
||
however configuration issues with libiberty made this very
|
||
difficult to do in the available time. */
|
||
|
||
#include "defs.h"
|
||
#include "doublest.h"
|
||
#include "floatformat.h"
|
||
#include "gdbtypes.h"
|
||
#include <math.h> /* ldexp */
|
||
#include <algorithm>
|
||
|
||
/* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
|
||
going to bother with trying to muck around with whether it is defined in
|
||
a system header, what we do if not, etc. */
|
||
#define FLOATFORMAT_CHAR_BIT 8
|
||
|
||
/* The number of bytes that the largest floating-point type that we
|
||
can convert to doublest will need. */
|
||
#define FLOATFORMAT_LARGEST_BYTES 16
|
||
|
||
/* Extract a field which starts at START and is LEN bytes long. DATA and
|
||
TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
|
||
static unsigned long
|
||
get_field (const bfd_byte *data, enum floatformat_byteorders order,
|
||
unsigned int total_len, unsigned int start, unsigned int len)
|
||
{
|
||
unsigned long result;
|
||
unsigned int cur_byte;
|
||
int cur_bitshift;
|
||
|
||
/* Caller must byte-swap words before calling this routine. */
|
||
gdb_assert (order == floatformat_little || order == floatformat_big);
|
||
|
||
/* Start at the least significant part of the field. */
|
||
if (order == floatformat_little)
|
||
{
|
||
/* We start counting from the other end (i.e, from the high bytes
|
||
rather than the low bytes). As such, we need to be concerned
|
||
with what happens if bit 0 doesn't start on a byte boundary.
|
||
I.e, we need to properly handle the case where total_len is
|
||
not evenly divisible by 8. So we compute ``excess'' which
|
||
represents the number of bits from the end of our starting
|
||
byte needed to get to bit 0. */
|
||
int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
|
||
|
||
cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
|
||
- ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
|
||
cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
|
||
- FLOATFORMAT_CHAR_BIT;
|
||
}
|
||
else
|
||
{
|
||
cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
|
||
cur_bitshift =
|
||
((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
|
||
}
|
||
if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
|
||
result = *(data + cur_byte) >> (-cur_bitshift);
|
||
else
|
||
result = 0;
|
||
cur_bitshift += FLOATFORMAT_CHAR_BIT;
|
||
if (order == floatformat_little)
|
||
++cur_byte;
|
||
else
|
||
--cur_byte;
|
||
|
||
/* Move towards the most significant part of the field. */
|
||
while (cur_bitshift < len)
|
||
{
|
||
result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
|
||
cur_bitshift += FLOATFORMAT_CHAR_BIT;
|
||
switch (order)
|
||
{
|
||
case floatformat_little:
|
||
++cur_byte;
|
||
break;
|
||
case floatformat_big:
|
||
--cur_byte;
|
||
break;
|
||
}
|
||
}
|
||
if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
|
||
/* Mask out bits which are not part of the field. */
|
||
result &= ((1UL << len) - 1);
|
||
return result;
|
||
}
|
||
|
||
/* Normalize the byte order of FROM into TO. If no normalization is
|
||
needed then FMT->byteorder is returned and TO is not changed;
|
||
otherwise the format of the normalized form in TO is returned. */
|
||
|
||
static enum floatformat_byteorders
|
||
floatformat_normalize_byteorder (const struct floatformat *fmt,
|
||
const void *from, void *to)
|
||
{
|
||
const unsigned char *swapin;
|
||
unsigned char *swapout;
|
||
int words;
|
||
|
||
if (fmt->byteorder == floatformat_little
|
||
|| fmt->byteorder == floatformat_big)
|
||
return fmt->byteorder;
|
||
|
||
words = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
|
||
words >>= 2;
|
||
|
||
swapout = (unsigned char *)to;
|
||
swapin = (const unsigned char *)from;
|
||
|
||
if (fmt->byteorder == floatformat_vax)
|
||
{
|
||
while (words-- > 0)
|
||
{
|
||
*swapout++ = swapin[1];
|
||
*swapout++ = swapin[0];
|
||
*swapout++ = swapin[3];
|
||
*swapout++ = swapin[2];
|
||
swapin += 4;
|
||
}
|
||
/* This may look weird, since VAX is little-endian, but it is
|
||
easier to translate to big-endian than to little-endian. */
|
||
return floatformat_big;
|
||
}
|
||
else
|
||
{
|
||
gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword);
|
||
|
||
while (words-- > 0)
|
||
{
|
||
*swapout++ = swapin[3];
|
||
*swapout++ = swapin[2];
|
||
*swapout++ = swapin[1];
|
||
*swapout++ = swapin[0];
|
||
swapin += 4;
|
||
}
|
||
return floatformat_big;
|
||
}
|
||
}
|
||
|
||
/* Convert from FMT to a DOUBLEST.
|
||
FROM is the address of the extended float.
|
||
Store the DOUBLEST in *TO. */
|
||
|
||
static void
|
||
convert_floatformat_to_doublest (const struct floatformat *fmt,
|
||
const void *from,
|
||
DOUBLEST *to)
|
||
{
|
||
unsigned char *ufrom = (unsigned char *) from;
|
||
DOUBLEST dto;
|
||
long exponent;
|
||
unsigned long mant;
|
||
unsigned int mant_bits, mant_off;
|
||
int mant_bits_left;
|
||
int special_exponent; /* It's a NaN, denorm or zero. */
|
||
enum floatformat_byteorders order;
|
||
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
|
||
enum float_kind kind;
|
||
|
||
gdb_assert (fmt->totalsize
|
||
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
|
||
|
||
/* For non-numbers, reuse libiberty's logic to find the correct
|
||
format. We do not lose any precision in this case by passing
|
||
through a double. */
|
||
kind = floatformat_classify (fmt, (const bfd_byte *) from);
|
||
if (kind == float_infinite || kind == float_nan)
|
||
{
|
||
double dto;
|
||
|
||
floatformat_to_double (fmt->split_half ? fmt->split_half : fmt,
|
||
from, &dto);
|
||
*to = (DOUBLEST) dto;
|
||
return;
|
||
}
|
||
|
||
order = floatformat_normalize_byteorder (fmt, ufrom, newfrom);
|
||
|
||
if (order != fmt->byteorder)
|
||
ufrom = newfrom;
|
||
|
||
if (fmt->split_half)
|
||
{
|
||
DOUBLEST dtop, dbot;
|
||
|
||
floatformat_to_doublest (fmt->split_half, ufrom, &dtop);
|
||
/* Preserve the sign of 0, which is the sign of the top
|
||
half. */
|
||
if (dtop == 0.0)
|
||
{
|
||
*to = dtop;
|
||
return;
|
||
}
|
||
floatformat_to_doublest (fmt->split_half,
|
||
ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2,
|
||
&dbot);
|
||
*to = dtop + dbot;
|
||
return;
|
||
}
|
||
|
||
exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start,
|
||
fmt->exp_len);
|
||
/* Note that if exponent indicates a NaN, we can't really do anything useful
|
||
(not knowing if the host has NaN's, or how to build one). So it will
|
||
end up as an infinity or something close; that is OK. */
|
||
|
||
mant_bits_left = fmt->man_len;
|
||
mant_off = fmt->man_start;
|
||
dto = 0.0;
|
||
|
||
special_exponent = exponent == 0 || exponent == fmt->exp_nan;
|
||
|
||
/* Don't bias NaNs. Use minimum exponent for denorms. For
|
||
simplicity, we don't check for zero as the exponent doesn't matter.
|
||
Note the cast to int; exp_bias is unsigned, so it's important to
|
||
make sure the operation is done in signed arithmetic. */
|
||
if (!special_exponent)
|
||
exponent -= fmt->exp_bias;
|
||
else if (exponent == 0)
|
||
exponent = 1 - fmt->exp_bias;
|
||
|
||
/* Build the result algebraically. Might go infinite, underflow, etc;
|
||
who cares. */
|
||
|
||
/* If this format uses a hidden bit, explicitly add it in now. Otherwise,
|
||
increment the exponent by one to account for the integer bit. */
|
||
|
||
if (!special_exponent)
|
||
{
|
||
if (fmt->intbit == floatformat_intbit_no)
|
||
dto = ldexp (1.0, exponent);
|
||
else
|
||
exponent++;
|
||
}
|
||
|
||
while (mant_bits_left > 0)
|
||
{
|
||
mant_bits = std::min (mant_bits_left, 32);
|
||
|
||
mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits);
|
||
|
||
dto += ldexp ((double) mant, exponent - mant_bits);
|
||
exponent -= mant_bits;
|
||
mant_off += mant_bits;
|
||
mant_bits_left -= mant_bits;
|
||
}
|
||
|
||
/* Negate it if negative. */
|
||
if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1))
|
||
dto = -dto;
|
||
*to = dto;
|
||
}
|
||
|
||
/* Set a field which starts at START and is LEN bytes long. DATA and
|
||
TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
|
||
static void
|
||
put_field (unsigned char *data, enum floatformat_byteorders order,
|
||
unsigned int total_len, unsigned int start, unsigned int len,
|
||
unsigned long stuff_to_put)
|
||
{
|
||
unsigned int cur_byte;
|
||
int cur_bitshift;
|
||
|
||
/* Caller must byte-swap words before calling this routine. */
|
||
gdb_assert (order == floatformat_little || order == floatformat_big);
|
||
|
||
/* Start at the least significant part of the field. */
|
||
if (order == floatformat_little)
|
||
{
|
||
int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
|
||
|
||
cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
|
||
- ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
|
||
cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
|
||
- FLOATFORMAT_CHAR_BIT;
|
||
}
|
||
else
|
||
{
|
||
cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
|
||
cur_bitshift =
|
||
((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
|
||
}
|
||
if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
|
||
{
|
||
*(data + cur_byte) &=
|
||
~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
|
||
<< (-cur_bitshift));
|
||
*(data + cur_byte) |=
|
||
(stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
|
||
}
|
||
cur_bitshift += FLOATFORMAT_CHAR_BIT;
|
||
if (order == floatformat_little)
|
||
++cur_byte;
|
||
else
|
||
--cur_byte;
|
||
|
||
/* Move towards the most significant part of the field. */
|
||
while (cur_bitshift < len)
|
||
{
|
||
if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
|
||
{
|
||
/* This is the last byte. */
|
||
*(data + cur_byte) &=
|
||
~((1 << (len - cur_bitshift)) - 1);
|
||
*(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
|
||
}
|
||
else
|
||
*(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
|
||
& ((1 << FLOATFORMAT_CHAR_BIT) - 1));
|
||
cur_bitshift += FLOATFORMAT_CHAR_BIT;
|
||
if (order == floatformat_little)
|
||
++cur_byte;
|
||
else
|
||
--cur_byte;
|
||
}
|
||
}
|
||
|
||
/* The converse: convert the DOUBLEST *FROM to an extended float and
|
||
store where TO points. Neither FROM nor TO have any alignment
|
||
restrictions. */
|
||
|
||
static void
|
||
convert_doublest_to_floatformat (const struct floatformat *fmt,
|
||
const DOUBLEST *from, void *to)
|
||
{
|
||
DOUBLEST dfrom;
|
||
int exponent;
|
||
DOUBLEST mant;
|
||
unsigned int mant_bits, mant_off;
|
||
int mant_bits_left;
|
||
unsigned char *uto = (unsigned char *) to;
|
||
enum floatformat_byteorders order = fmt->byteorder;
|
||
unsigned char newto[FLOATFORMAT_LARGEST_BYTES];
|
||
|
||
if (order != floatformat_little)
|
||
order = floatformat_big;
|
||
|
||
if (order != fmt->byteorder)
|
||
uto = newto;
|
||
|
||
memcpy (&dfrom, from, sizeof (dfrom));
|
||
memset (uto, 0, floatformat_totalsize_bytes (fmt));
|
||
|
||
if (fmt->split_half)
|
||
{
|
||
/* Use static volatile to ensure that any excess precision is
|
||
removed via storing in memory, and so the top half really is
|
||
the result of converting to double. */
|
||
static volatile double dtop, dbot;
|
||
DOUBLEST dtopnv, dbotnv;
|
||
|
||
dtop = (double) dfrom;
|
||
/* If the rounded top half is Inf, the bottom must be 0 not NaN
|
||
or Inf. */
|
||
if (dtop + dtop == dtop && dtop != 0.0)
|
||
dbot = 0.0;
|
||
else
|
||
dbot = (double) (dfrom - (DOUBLEST) dtop);
|
||
dtopnv = dtop;
|
||
dbotnv = dbot;
|
||
floatformat_from_doublest (fmt->split_half, &dtopnv, uto);
|
||
floatformat_from_doublest (fmt->split_half, &dbotnv,
|
||
(uto
|
||
+ fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2));
|
||
return;
|
||
}
|
||
|
||
if (dfrom == 0)
|
||
return; /* Result is zero */
|
||
if (dfrom != dfrom) /* Result is NaN */
|
||
{
|
||
/* From is NaN */
|
||
put_field (uto, order, fmt->totalsize, fmt->exp_start,
|
||
fmt->exp_len, fmt->exp_nan);
|
||
/* Be sure it's not infinity, but NaN value is irrel. */
|
||
put_field (uto, order, fmt->totalsize, fmt->man_start,
|
||
fmt->man_len, 1);
|
||
goto finalize_byteorder;
|
||
}
|
||
|
||
/* If negative, set the sign bit. */
|
||
if (dfrom < 0)
|
||
{
|
||
put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1);
|
||
dfrom = -dfrom;
|
||
}
|
||
|
||
if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity. */
|
||
{
|
||
/* Infinity exponent is same as NaN's. */
|
||
put_field (uto, order, fmt->totalsize, fmt->exp_start,
|
||
fmt->exp_len, fmt->exp_nan);
|
||
/* Infinity mantissa is all zeroes. */
|
||
put_field (uto, order, fmt->totalsize, fmt->man_start,
|
||
fmt->man_len, 0);
|
||
goto finalize_byteorder;
|
||
}
|
||
|
||
#ifdef HAVE_LONG_DOUBLE
|
||
mant = frexpl (dfrom, &exponent);
|
||
#else
|
||
mant = frexp (dfrom, &exponent);
|
||
#endif
|
||
|
||
if (exponent + fmt->exp_bias <= 0)
|
||
{
|
||
/* The value is too small to be expressed in the destination
|
||
type (not enough bits in the exponent. Treat as 0. */
|
||
put_field (uto, order, fmt->totalsize, fmt->exp_start,
|
||
fmt->exp_len, 0);
|
||
put_field (uto, order, fmt->totalsize, fmt->man_start,
|
||
fmt->man_len, 0);
|
||
goto finalize_byteorder;
|
||
}
|
||
|
||
if (exponent + fmt->exp_bias >= (1 << fmt->exp_len))
|
||
{
|
||
/* The value is too large to fit into the destination.
|
||
Treat as infinity. */
|
||
put_field (uto, order, fmt->totalsize, fmt->exp_start,
|
||
fmt->exp_len, fmt->exp_nan);
|
||
put_field (uto, order, fmt->totalsize, fmt->man_start,
|
||
fmt->man_len, 0);
|
||
goto finalize_byteorder;
|
||
}
|
||
|
||
put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len,
|
||
exponent + fmt->exp_bias - 1);
|
||
|
||
mant_bits_left = fmt->man_len;
|
||
mant_off = fmt->man_start;
|
||
while (mant_bits_left > 0)
|
||
{
|
||
unsigned long mant_long;
|
||
|
||
mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
|
||
|
||
mant *= 4294967296.0;
|
||
mant_long = ((unsigned long) mant) & 0xffffffffL;
|
||
mant -= mant_long;
|
||
|
||
/* If the integer bit is implicit, then we need to discard it.
|
||
If we are discarding a zero, we should be (but are not) creating
|
||
a denormalized number which means adjusting the exponent
|
||
(I think). */
|
||
if (mant_bits_left == fmt->man_len
|
||
&& fmt->intbit == floatformat_intbit_no)
|
||
{
|
||
mant_long <<= 1;
|
||
mant_long &= 0xffffffffL;
|
||
/* If we are processing the top 32 mantissa bits of a doublest
|
||
so as to convert to a float value with implied integer bit,
|
||
we will only be putting 31 of those 32 bits into the
|
||
final value due to the discarding of the top bit. In the
|
||
case of a small float value where the number of mantissa
|
||
bits is less than 32, discarding the top bit does not alter
|
||
the number of bits we will be adding to the result. */
|
||
if (mant_bits == 32)
|
||
mant_bits -= 1;
|
||
}
|
||
|
||
if (mant_bits < 32)
|
||
{
|
||
/* The bits we want are in the most significant MANT_BITS bits of
|
||
mant_long. Move them to the least significant. */
|
||
mant_long >>= 32 - mant_bits;
|
||
}
|
||
|
||
put_field (uto, order, fmt->totalsize,
|
||
mant_off, mant_bits, mant_long);
|
||
mant_off += mant_bits;
|
||
mant_bits_left -= mant_bits;
|
||
}
|
||
|
||
finalize_byteorder:
|
||
/* Do we need to byte-swap the words in the result? */
|
||
if (order != fmt->byteorder)
|
||
floatformat_normalize_byteorder (fmt, newto, to);
|
||
}
|
||
|
||
/* Check if VAL (which is assumed to be a floating point number whose
|
||
format is described by FMT) is negative. */
|
||
|
||
int
|
||
floatformat_is_negative (const struct floatformat *fmt,
|
||
const bfd_byte *uval)
|
||
{
|
||
enum floatformat_byteorders order;
|
||
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
|
||
|
||
gdb_assert (fmt != NULL);
|
||
gdb_assert (fmt->totalsize
|
||
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
|
||
|
||
/* An IBM long double (a two element array of double) always takes the
|
||
sign of the first double. */
|
||
if (fmt->split_half)
|
||
fmt = fmt->split_half;
|
||
|
||
order = floatformat_normalize_byteorder (fmt, uval, newfrom);
|
||
|
||
if (order != fmt->byteorder)
|
||
uval = newfrom;
|
||
|
||
return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1);
|
||
}
|
||
|
||
/* Check if VAL is "not a number" (NaN) for FMT. */
|
||
|
||
enum float_kind
|
||
floatformat_classify (const struct floatformat *fmt,
|
||
const bfd_byte *uval)
|
||
{
|
||
long exponent;
|
||
unsigned long mant;
|
||
unsigned int mant_bits, mant_off;
|
||
int mant_bits_left;
|
||
enum floatformat_byteorders order;
|
||
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
|
||
int mant_zero;
|
||
|
||
gdb_assert (fmt != NULL);
|
||
gdb_assert (fmt->totalsize
|
||
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
|
||
|
||
/* An IBM long double (a two element array of double) can be classified
|
||
by looking at the first double. inf and nan are specified as
|
||
ignoring the second double. zero and subnormal will always have
|
||
the second double 0.0 if the long double is correctly rounded. */
|
||
if (fmt->split_half)
|
||
fmt = fmt->split_half;
|
||
|
||
order = floatformat_normalize_byteorder (fmt, uval, newfrom);
|
||
|
||
if (order != fmt->byteorder)
|
||
uval = newfrom;
|
||
|
||
exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start,
|
||
fmt->exp_len);
|
||
|
||
mant_bits_left = fmt->man_len;
|
||
mant_off = fmt->man_start;
|
||
|
||
mant_zero = 1;
|
||
while (mant_bits_left > 0)
|
||
{
|
||
mant_bits = std::min (mant_bits_left, 32);
|
||
|
||
mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
|
||
|
||
/* If there is an explicit integer bit, mask it off. */
|
||
if (mant_off == fmt->man_start
|
||
&& fmt->intbit == floatformat_intbit_yes)
|
||
mant &= ~(1 << (mant_bits - 1));
|
||
|
||
if (mant)
|
||
{
|
||
mant_zero = 0;
|
||
break;
|
||
}
|
||
|
||
mant_off += mant_bits;
|
||
mant_bits_left -= mant_bits;
|
||
}
|
||
|
||
/* If exp_nan is not set, assume that inf, NaN, and subnormals are not
|
||
supported. */
|
||
if (! fmt->exp_nan)
|
||
{
|
||
if (mant_zero)
|
||
return float_zero;
|
||
else
|
||
return float_normal;
|
||
}
|
||
|
||
if (exponent == 0 && !mant_zero)
|
||
return float_subnormal;
|
||
|
||
if (exponent == fmt->exp_nan)
|
||
{
|
||
if (mant_zero)
|
||
return float_infinite;
|
||
else
|
||
return float_nan;
|
||
}
|
||
|
||
if (mant_zero)
|
||
return float_zero;
|
||
|
||
return float_normal;
|
||
}
|
||
|
||
/* Convert the mantissa of VAL (which is assumed to be a floating
|
||
point number whose format is described by FMT) into a hexadecimal
|
||
and store it in a static string. Return a pointer to that string. */
|
||
|
||
const char *
|
||
floatformat_mantissa (const struct floatformat *fmt,
|
||
const bfd_byte *val)
|
||
{
|
||
unsigned char *uval = (unsigned char *) val;
|
||
unsigned long mant;
|
||
unsigned int mant_bits, mant_off;
|
||
int mant_bits_left;
|
||
static char res[50];
|
||
char buf[9];
|
||
int len;
|
||
enum floatformat_byteorders order;
|
||
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
|
||
|
||
gdb_assert (fmt != NULL);
|
||
gdb_assert (fmt->totalsize
|
||
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
|
||
|
||
/* For IBM long double (a two element array of double), return the
|
||
mantissa of the first double. The problem with returning the
|
||
actual mantissa from both doubles is that there can be an
|
||
arbitrary number of implied 0's or 1's between the mantissas
|
||
of the first and second double. In any case, this function
|
||
is only used for dumping out nans, and a nan is specified to
|
||
ignore the value in the second double. */
|
||
if (fmt->split_half)
|
||
fmt = fmt->split_half;
|
||
|
||
order = floatformat_normalize_byteorder (fmt, uval, newfrom);
|
||
|
||
if (order != fmt->byteorder)
|
||
uval = newfrom;
|
||
|
||
if (! fmt->exp_nan)
|
||
return 0;
|
||
|
||
/* Make sure we have enough room to store the mantissa. */
|
||
gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
|
||
|
||
mant_off = fmt->man_start;
|
||
mant_bits_left = fmt->man_len;
|
||
mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
|
||
|
||
mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
|
||
|
||
len = xsnprintf (res, sizeof res, "%lx", mant);
|
||
|
||
mant_off += mant_bits;
|
||
mant_bits_left -= mant_bits;
|
||
|
||
while (mant_bits_left > 0)
|
||
{
|
||
mant = get_field (uval, order, fmt->totalsize, mant_off, 32);
|
||
|
||
xsnprintf (buf, sizeof buf, "%08lx", mant);
|
||
gdb_assert (len + strlen (buf) <= sizeof res);
|
||
strcat (res, buf);
|
||
|
||
mant_off += 32;
|
||
mant_bits_left -= 32;
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Return the precision of the floating point format FMT. */
|
||
|
||
static int
|
||
floatformat_precision (const struct floatformat *fmt)
|
||
{
|
||
/* Assume the precision of and IBM long double is twice the precision
|
||
of the underlying double. This matches what GCC does. */
|
||
if (fmt->split_half)
|
||
return 2 * floatformat_precision (fmt->split_half);
|
||
|
||
/* Otherwise, the precision is the size of mantissa in bits,
|
||
including the implicit bit if present. */
|
||
int prec = fmt->man_len;
|
||
if (fmt->intbit == floatformat_intbit_no)
|
||
prec++;
|
||
|
||
return prec;
|
||
}
|
||
|
||
|
||
/* Convert TO/FROM target to the hosts DOUBLEST floating-point format.
|
||
|
||
If the host and target formats agree, we just copy the raw data
|
||
into the appropriate type of variable and return, letting the host
|
||
increase precision as necessary. Otherwise, we call the conversion
|
||
routine and let it do the dirty work. Note that even if the target
|
||
and host floating-point formats match, the length of the types
|
||
might still be different, so the conversion routines must make sure
|
||
to not overrun any buffers. For example, on x86, long double is
|
||
the 80-bit extended precision type on both 32-bit and 64-bit ABIs,
|
||
but by default it is stored as 12 bytes on 32-bit, and 16 bytes on
|
||
64-bit, for alignment reasons. See comment in store_typed_floating
|
||
for a discussion about zeroing out remaining bytes in the target
|
||
buffer. */
|
||
|
||
static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT;
|
||
static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT;
|
||
static const struct floatformat *host_long_double_format
|
||
= GDB_HOST_LONG_DOUBLE_FORMAT;
|
||
|
||
/* See doublest.h. */
|
||
|
||
size_t
|
||
floatformat_totalsize_bytes (const struct floatformat *fmt)
|
||
{
|
||
return ((fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
|
||
/ FLOATFORMAT_CHAR_BIT);
|
||
}
|
||
|
||
void
|
||
floatformat_to_doublest (const struct floatformat *fmt,
|
||
const void *in, DOUBLEST *out)
|
||
{
|
||
gdb_assert (fmt != NULL);
|
||
|
||
if (fmt == host_float_format)
|
||
{
|
||
float val = 0;
|
||
|
||
memcpy (&val, in, floatformat_totalsize_bytes (fmt));
|
||
*out = val;
|
||
}
|
||
else if (fmt == host_double_format)
|
||
{
|
||
double val = 0;
|
||
|
||
memcpy (&val, in, floatformat_totalsize_bytes (fmt));
|
||
*out = val;
|
||
}
|
||
else if (fmt == host_long_double_format)
|
||
{
|
||
long double val = 0;
|
||
|
||
memcpy (&val, in, floatformat_totalsize_bytes (fmt));
|
||
*out = val;
|
||
}
|
||
else
|
||
convert_floatformat_to_doublest (fmt, in, out);
|
||
}
|
||
|
||
void
|
||
floatformat_from_doublest (const struct floatformat *fmt,
|
||
const DOUBLEST *in, void *out)
|
||
{
|
||
gdb_assert (fmt != NULL);
|
||
|
||
if (fmt == host_float_format)
|
||
{
|
||
float val = *in;
|
||
|
||
memcpy (out, &val, floatformat_totalsize_bytes (fmt));
|
||
}
|
||
else if (fmt == host_double_format)
|
||
{
|
||
double val = *in;
|
||
|
||
memcpy (out, &val, floatformat_totalsize_bytes (fmt));
|
||
}
|
||
else if (fmt == host_long_double_format)
|
||
{
|
||
long double val = *in;
|
||
|
||
memcpy (out, &val, floatformat_totalsize_bytes (fmt));
|
||
}
|
||
else
|
||
convert_doublest_to_floatformat (fmt, in, out);
|
||
}
|
||
|
||
/* Convert the byte-stream ADDR, interpreted as floating-point format FMT,
|
||
to a string, optionally using the print format FORMAT. */
|
||
std::string
|
||
floatformat_to_string (const struct floatformat *fmt,
|
||
const gdb_byte *in, const char *format)
|
||
{
|
||
/* Unless we need to adhere to a specific format, provide special
|
||
output for certain cases. */
|
||
if (format == nullptr)
|
||
{
|
||
/* Detect invalid representations. */
|
||
if (!floatformat_is_valid (fmt, in))
|
||
return "<invalid float value>";
|
||
|
||
/* Handle NaN and Inf. */
|
||
enum float_kind kind = floatformat_classify (fmt, in);
|
||
if (kind == float_nan)
|
||
{
|
||
const char *sign = floatformat_is_negative (fmt, in)? "-" : "";
|
||
const char *mantissa = floatformat_mantissa (fmt, in);
|
||
return string_printf ("%snan(0x%s)", sign, mantissa);
|
||
}
|
||
else if (kind == float_infinite)
|
||
{
|
||
const char *sign = floatformat_is_negative (fmt, in)? "-" : "";
|
||
return string_printf ("%sinf", sign);
|
||
}
|
||
}
|
||
|
||
/* Determine the format string to use on the host side. */
|
||
std::string host_format;
|
||
char conversion;
|
||
|
||
if (format == nullptr)
|
||
{
|
||
/* If no format was specified, print the number using a format string
|
||
where the precision is set to the DECIMAL_DIG value for the given
|
||
floating-point format. This value is computed as
|
||
|
||
ceil(1 + p * log10(b)),
|
||
|
||
where p is the precision of the floating-point format in bits, and
|
||
b is the base (which is always 2 for the formats we support). */
|
||
const double log10_2 = .30102999566398119521;
|
||
double d_decimal_dig = 1 + floatformat_precision (fmt) * log10_2;
|
||
int decimal_dig = d_decimal_dig;
|
||
if (decimal_dig < d_decimal_dig)
|
||
decimal_dig++;
|
||
|
||
host_format = string_printf ("%%.%d", decimal_dig);
|
||
conversion = 'g';
|
||
}
|
||
else
|
||
{
|
||
/* Use the specified format, stripping out the conversion character
|
||
and length modifier, if present. */
|
||
size_t len = strlen (format);
|
||
gdb_assert (len > 1);
|
||
conversion = format[--len];
|
||
gdb_assert (conversion == 'e' || conversion == 'f' || conversion == 'g'
|
||
|| conversion == 'E' || conversion == 'G');
|
||
if (format[len - 1] == 'L')
|
||
len--;
|
||
|
||
host_format = std::string (format, len);
|
||
}
|
||
|
||
/* Add the length modifier and conversion character appropriate for
|
||
handling the host DOUBLEST type. */
|
||
#ifdef HAVE_LONG_DOUBLE
|
||
host_format += 'L';
|
||
#endif
|
||
host_format += conversion;
|
||
|
||
DOUBLEST doub;
|
||
floatformat_to_doublest (fmt, in, &doub);
|
||
return string_printf (host_format.c_str (), doub);
|
||
}
|
||
|
||
/* Parse string STRING into a target floating-number of format FMT and
|
||
store it as byte-stream ADDR. Return whether parsing succeeded. */
|
||
bool
|
||
floatformat_from_string (const struct floatformat *fmt, gdb_byte *out,
|
||
const std::string &in)
|
||
{
|
||
DOUBLEST doub;
|
||
int n, num;
|
||
#ifdef HAVE_LONG_DOUBLE
|
||
const char *scan_format = "%Lg%n";
|
||
#else
|
||
const char *scan_format = "%lg%n";
|
||
#endif
|
||
num = sscanf (in.c_str (), scan_format, &doub, &n);
|
||
|
||
/* The sscanf man page suggests not making any assumptions on the effect
|
||
of %n on the result, so we don't.
|
||
That is why we simply test num == 0. */
|
||
if (num == 0)
|
||
return false;
|
||
|
||
/* We only accept the whole string. */
|
||
if (in[n])
|
||
return false;
|
||
|
||
floatformat_from_doublest (fmt, &doub, out);
|
||
return true;
|
||
}
|
||
|
||
/* Extract a floating-point number of type TYPE from a target-order
|
||
byte-stream at ADDR. Returns the value as type DOUBLEST. */
|
||
|
||
DOUBLEST
|
||
extract_typed_floating (const void *addr, const struct type *type)
|
||
{
|
||
const struct floatformat *fmt = floatformat_from_type (type);
|
||
DOUBLEST retval;
|
||
|
||
floatformat_to_doublest (fmt, addr, &retval);
|
||
return retval;
|
||
}
|
||
|
||
/* Store VAL as a floating-point number of type TYPE to a target-order
|
||
byte-stream at ADDR. */
|
||
|
||
void
|
||
store_typed_floating (void *addr, const struct type *type, DOUBLEST val)
|
||
{
|
||
const struct floatformat *fmt = floatformat_from_type (type);
|
||
|
||
/* FIXME: kettenis/2001-10-28: It is debatable whether we should
|
||
zero out any remaining bytes in the target buffer when TYPE is
|
||
longer than the actual underlying floating-point format. Perhaps
|
||
we should store a fixed bitpattern in those remaining bytes,
|
||
instead of zero, or perhaps we shouldn't touch those remaining
|
||
bytes at all.
|
||
|
||
NOTE: cagney/2001-10-28: With the way things currently work, it
|
||
isn't a good idea to leave the end bits undefined. This is
|
||
because GDB writes out the entire sizeof(<floating>) bits of the
|
||
floating-point type even though the value might only be stored
|
||
in, and the target processor may only refer to, the first N <
|
||
TYPE_LENGTH (type) bits. If the end of the buffer wasn't
|
||
initialized, GDB would write undefined data to the target. An
|
||
errant program, refering to that undefined data, would then
|
||
become non-deterministic.
|
||
|
||
See also the function convert_typed_floating below. */
|
||
memset (addr, 0, TYPE_LENGTH (type));
|
||
|
||
floatformat_from_doublest (fmt, &val, addr);
|
||
}
|
||
|
||
/* Convert a floating-point number of type FROM_TYPE from a
|
||
target-order byte-stream at FROM to a floating-point number of type
|
||
TO_TYPE, and store it to a target-order byte-stream at TO. */
|
||
|
||
void
|
||
convert_typed_floating (const void *from, const struct type *from_type,
|
||
void *to, const struct type *to_type)
|
||
{
|
||
const struct floatformat *from_fmt = floatformat_from_type (from_type);
|
||
const struct floatformat *to_fmt = floatformat_from_type (to_type);
|
||
|
||
if (from_fmt == NULL || to_fmt == NULL)
|
||
{
|
||
/* If we don't know the floating-point format of FROM_TYPE or
|
||
TO_TYPE, there's not much we can do. We might make the
|
||
assumption that if the length of FROM_TYPE and TO_TYPE match,
|
||
their floating-point format would match too, but that
|
||
assumption might be wrong on targets that support
|
||
floating-point types that only differ in endianness for
|
||
example. So we warn instead, and zero out the target buffer. */
|
||
warning (_("Can't convert floating-point number to desired type."));
|
||
memset (to, 0, TYPE_LENGTH (to_type));
|
||
}
|
||
else if (from_fmt == to_fmt)
|
||
{
|
||
/* We're in business. The floating-point format of FROM_TYPE
|
||
and TO_TYPE match. However, even though the floating-point
|
||
format matches, the length of the type might still be
|
||
different. Make sure we don't overrun any buffers. See
|
||
comment in store_typed_floating for a discussion about
|
||
zeroing out remaining bytes in the target buffer. */
|
||
memset (to, 0, TYPE_LENGTH (to_type));
|
||
memcpy (to, from, std::min (TYPE_LENGTH (from_type),
|
||
TYPE_LENGTH (to_type)));
|
||
}
|
||
else
|
||
{
|
||
/* The floating-point types don't match. The best we can do
|
||
(apart from simulating the target FPU) is converting to the
|
||
widest floating-point type supported by the host, and then
|
||
again to the desired type. */
|
||
DOUBLEST d;
|
||
|
||
floatformat_to_doublest (from_fmt, from, &d);
|
||
floatformat_from_doublest (to_fmt, &d, to);
|
||
}
|
||
}
|