mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-06 12:09:26 +08:00
edd079d9f6
When parsing floating-point literals, the language parsers currently use parse_float or some equivalent routine to parse the input string into a DOUBLEST, which is then stored within a OP_DOUBLE expression node. When evaluating the expression, the OP_DOUBLE is finally converted into a value in target format. On the other hand, *decimal* floating-point literals are parsed directly into target format and stored that way in a OP_DECFLOAT expression node. In order to eliminate the DOUBLEST, this patch therefore unifies the handling of binary and decimal floating- point literals and stores them both in target format within a new OP_FLOAT expression node, replacing both OP_DOUBLE and OP_DECFLOAT. In order to store literals in target format, the parse_float routine needs to know the type of the literal. All parsers therefore need to be changed to determine the appropriate type (e.g. by detecting suffixes) *before* calling parse_float, instead of after it as today. However, this change is mostly straightforward -- again, this is already done for decimal FP today. The core of the literal parsing is moved into a new routine floatformat_from_string, mirroring floatformat_to_string. The parse_float routine now calls either floatformat_from_string or decimal_from_sting, allowing it to handle any type of FP literal. All language parsers need to be updated. Some notes on specific changes to the various languages: - C: Decimal FP is now handled in parse_float, and no longer needs to be handled specially. - D: Straightforward. - Fortran: Still used a hard-coded "atof", also replaced by parse_float now. Continues to always use builtin_real_s8 as the type of literal, even though this is probably wrong. - Go: This used to handle "f" and "l" suffixes, even though the Go language actually doesn't support those. I kept this support for now -- maybe revisit later. Note the the GDB test suite for some reason actually *verifies* that GDB supports those unsupported suffixes ... - Pascal: Likewise -- this handles suffixes that are not supported in the language standard. - Modula-2: Like Fortran, used to use "atof". - Rust: Mostly straightforward, except for a unit-testing hitch. The code use to set a special "unit_testing" flag which would cause "rust_type" to always return NULL. This makes it not possible to encode a literal into target format (which type?). The reason for this flag appears to have been that during unit testing, there is no "rust_parser" context set up, which means no "gdbarch" is available to use its types. To fix this, I removed the unit_testing flag, and instead simply just set up a dummy rust_parser context during unit testing. - Ada: This used to check sizeof (DOUBLEST) to determine which type to use for floating-point literal. This seems questionable to begin with (since DOUBLEST is quite unrelated to target formats), and in any case we need to get rid of DOUBLEST. I'm now simply always using the largest type (builtin_long_double). gdb/ChangeLog: 2017-10-25 Ulrich Weigand <uweigand@de.ibm.com> * doublest.c (floatformat_from_string): New function. * doublest.h (floatformat_from_string): Add prototype. * std-operator.def (OP_DOUBLE, OP_DECFLOAT): Remove, replace by ... (OP_FLOAT): ... this. * expression.h: Do not include "doublest.h". (union exp_element): Replace doubleconst and decfloatconst by new element floatconst. * ada-lang.c (resolve_subexp): Handle OP_FLOAT instead of OP_DOUBLE. (ada_evaluate_subexp): Likewise. * eval.c (evaluate_subexp_standard): Handle OP_FLOAT instead of OP_DOUBLE and OP_DECFLOAT. * expprint.c (print_subexp_standard): Likewise. (dump_subexp_body_standard): Likewise. * breakpoint.c (watchpoint_exp_is_const): Likewise. * parse.c: Include "dfp.h". (write_exp_elt_dblcst, write_exp_elt_decfloatcst): Remove. (write_exp_elt_floatcst): New function. (operator_length_standard): Handle OP_FLOAT instead of OP_DOUBLE and OP_DECFLOAT. (operator_check_standard): Likewise. (parse_float): Do not accept suffix. Take type as input. Return bool. Return target format buffer instead of host DOUBLEST. Use floatformat_from_string and decimal_from_string to parse either binary or decimal floating-point types. (parse_c_float): Remove. * parser-defs.h: Do not include "doublest.h". (write_exp_elt_dblcst, write_exp_elt_decfloatcst): Remove. (write_exp_elt_floatcst): Add prototype. (parse_float): Update prototype. (parse_c_float): Remove. * c-exp.y: Do not include "dfp.h". (typed_val_float): Use byte buffer instead of DOUBLEST. (typed_val_decfloat): Remove. (DECFLOAT): Remove. (FLOAT): Use OP_FLOAT and write_exp_elt_floatcst. (parse_number): Update to new parse_float interface. Parse suffixes and determine type before calling parse_float. Handle decimal and binary FP types the same way. * d-exp.y (typed_val_float): Use byte buffer instead of DOUBLEST. (FLOAT_LITERAL): Use OP_FLOAT and write_exp_elt_floatcst. (parse_number): Update to new parse_float interface. Parse suffixes and determine type before calling parse_float. * f-exp.y: Replace dval by typed_val_float. (FLOAT): Use OP_FLOAT and write_exp_elt_floatcst. (parse_number): Use parse_float instead of atof. * go-exp.y (typed_val_float): Use byte buffer instead of DOUBLEST. (parse_go_float): Remove. (FLOAT): Use OP_FLOAT and write_exp_elt_floatcst. (parse_number): Call parse_float instead of parse_go_float. Parse suffixes and determine type before calling parse_float. * p-exp.y (typed_val_float): Use byte buffer instead of DOUBLEST. (FLOAT): Use OP_FLOAT and write_exp_elt_floatcst. (parse_number): Update to new parse_float interface. Parse suffixes and determine type before calling parse_float. * m2-exp.y: Replace dval by byte buffer val. (FLOAT): Use OP_FLOAT and write_exp_elt_floatcst. (parse_number): Call parse_float instead of atof. * rust-exp.y (typed_val_float): Use byte buffer instead of DOUBLEST. (lex_number): Call parse_float instead of strtod. (ast_dliteral): Use OP_FLOAT instead of OP_DOUBLE. (convert_ast_to_expression): Handle OP_FLOAT instead of OP_DOUBLE. Use write_exp_elt_floatcst. (unit_testing): Remove static variable. (rust_type): Do not check unit_testing. (rust_lex_tests): Do not set uint_testing. Set up dummy rust_parser. * ada-exp.y (type_float, type_double): Remove. (typed_val_float): Use byte buffer instead of DOUBLEST. (FLOAT): Use OP_FLOAT and write_exp_elt_floatcst. * ada-lex.l (processReal): Use parse_float instead of sscanf.
1232 lines
31 KiB
Plaintext
1232 lines
31 KiB
Plaintext
|
||
/* YACC parser for Fortran expressions, for GDB.
|
||
Copyright (C) 1986-2017 Free Software Foundation, Inc.
|
||
|
||
Contributed by Motorola. Adapted from the C parser by Farooq Butt
|
||
(fmbutt@engage.sps.mot.com).
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
/* This was blantantly ripped off the C expression parser, please
|
||
be aware of that as you look at its basic structure -FMB */
|
||
|
||
/* Parse a F77 expression from text in a string,
|
||
and return the result as a struct expression pointer.
|
||
That structure contains arithmetic operations in reverse polish,
|
||
with constants represented by operations that are followed by special data.
|
||
See expression.h for the details of the format.
|
||
What is important here is that it can be built up sequentially
|
||
during the process of parsing; the lower levels of the tree always
|
||
come first in the result.
|
||
|
||
Note that malloc's and realloc's in this file are transformed to
|
||
xmalloc and xrealloc respectively by the same sed command in the
|
||
makefile that remaps any other malloc/realloc inserted by the parser
|
||
generator. Doing this with #defines and trying to control the interaction
|
||
with include files (<malloc.h> and <stdlib.h> for example) just became
|
||
too messy, particularly when such includes can be inserted at random
|
||
times by the parser generator. */
|
||
|
||
%{
|
||
|
||
#include "defs.h"
|
||
#include "expression.h"
|
||
#include "value.h"
|
||
#include "parser-defs.h"
|
||
#include "language.h"
|
||
#include "f-lang.h"
|
||
#include "bfd.h" /* Required by objfiles.h. */
|
||
#include "symfile.h" /* Required by objfiles.h. */
|
||
#include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
|
||
#include "block.h"
|
||
#include <ctype.h>
|
||
#include <algorithm>
|
||
|
||
#define parse_type(ps) builtin_type (parse_gdbarch (ps))
|
||
#define parse_f_type(ps) builtin_f_type (parse_gdbarch (ps))
|
||
|
||
/* Remap normal yacc parser interface names (yyparse, yylex, yyerror,
|
||
etc). */
|
||
#define GDB_YY_REMAP_PREFIX f_
|
||
#include "yy-remap.h"
|
||
|
||
/* The state of the parser, used internally when we are parsing the
|
||
expression. */
|
||
|
||
static struct parser_state *pstate = NULL;
|
||
|
||
int yyparse (void);
|
||
|
||
static int yylex (void);
|
||
|
||
void yyerror (const char *);
|
||
|
||
static void growbuf_by_size (int);
|
||
|
||
static int match_string_literal (void);
|
||
|
||
%}
|
||
|
||
/* Although the yacc "value" of an expression is not used,
|
||
since the result is stored in the structure being created,
|
||
other node types do have values. */
|
||
|
||
%union
|
||
{
|
||
LONGEST lval;
|
||
struct {
|
||
LONGEST val;
|
||
struct type *type;
|
||
} typed_val;
|
||
struct {
|
||
gdb_byte val[16];
|
||
struct type *type;
|
||
} typed_val_float;
|
||
struct symbol *sym;
|
||
struct type *tval;
|
||
struct stoken sval;
|
||
struct ttype tsym;
|
||
struct symtoken ssym;
|
||
int voidval;
|
||
struct block *bval;
|
||
enum exp_opcode opcode;
|
||
struct internalvar *ivar;
|
||
|
||
struct type **tvec;
|
||
int *ivec;
|
||
}
|
||
|
||
%{
|
||
/* YYSTYPE gets defined by %union */
|
||
static int parse_number (struct parser_state *, const char *, int,
|
||
int, YYSTYPE *);
|
||
%}
|
||
|
||
%type <voidval> exp type_exp start variable
|
||
%type <tval> type typebase
|
||
%type <tvec> nonempty_typelist
|
||
/* %type <bval> block */
|
||
|
||
/* Fancy type parsing. */
|
||
%type <voidval> func_mod direct_abs_decl abs_decl
|
||
%type <tval> ptype
|
||
|
||
%token <typed_val> INT
|
||
%token <typed_val_float> FLOAT
|
||
|
||
/* Both NAME and TYPENAME tokens represent symbols in the input,
|
||
and both convey their data as strings.
|
||
But a TYPENAME is a string that happens to be defined as a typedef
|
||
or builtin type name (such as int or char)
|
||
and a NAME is any other symbol.
|
||
Contexts where this distinction is not important can use the
|
||
nonterminal "name", which matches either NAME or TYPENAME. */
|
||
|
||
%token <sval> STRING_LITERAL
|
||
%token <lval> BOOLEAN_LITERAL
|
||
%token <ssym> NAME
|
||
%token <tsym> TYPENAME
|
||
%type <sval> name
|
||
%type <ssym> name_not_typename
|
||
|
||
/* A NAME_OR_INT is a symbol which is not known in the symbol table,
|
||
but which would parse as a valid number in the current input radix.
|
||
E.g. "c" when input_radix==16. Depending on the parse, it will be
|
||
turned into a name or into a number. */
|
||
|
||
%token <ssym> NAME_OR_INT
|
||
|
||
%token SIZEOF
|
||
%token ERROR
|
||
|
||
/* Special type cases, put in to allow the parser to distinguish different
|
||
legal basetypes. */
|
||
%token INT_KEYWORD INT_S2_KEYWORD LOGICAL_S1_KEYWORD LOGICAL_S2_KEYWORD
|
||
%token LOGICAL_S8_KEYWORD
|
||
%token LOGICAL_KEYWORD REAL_KEYWORD REAL_S8_KEYWORD REAL_S16_KEYWORD
|
||
%token COMPLEX_S8_KEYWORD COMPLEX_S16_KEYWORD COMPLEX_S32_KEYWORD
|
||
%token BOOL_AND BOOL_OR BOOL_NOT
|
||
%token <lval> CHARACTER
|
||
|
||
%token <voidval> VARIABLE
|
||
|
||
%token <opcode> ASSIGN_MODIFY
|
||
|
||
%left ','
|
||
%left ABOVE_COMMA
|
||
%right '=' ASSIGN_MODIFY
|
||
%right '?'
|
||
%left BOOL_OR
|
||
%right BOOL_NOT
|
||
%left BOOL_AND
|
||
%left '|'
|
||
%left '^'
|
||
%left '&'
|
||
%left EQUAL NOTEQUAL
|
||
%left LESSTHAN GREATERTHAN LEQ GEQ
|
||
%left LSH RSH
|
||
%left '@'
|
||
%left '+' '-'
|
||
%left '*' '/'
|
||
%right STARSTAR
|
||
%right '%'
|
||
%right UNARY
|
||
%right '('
|
||
|
||
|
||
%%
|
||
|
||
start : exp
|
||
| type_exp
|
||
;
|
||
|
||
type_exp: type
|
||
{ write_exp_elt_opcode (pstate, OP_TYPE);
|
||
write_exp_elt_type (pstate, $1);
|
||
write_exp_elt_opcode (pstate, OP_TYPE); }
|
||
;
|
||
|
||
exp : '(' exp ')'
|
||
{ }
|
||
;
|
||
|
||
/* Expressions, not including the comma operator. */
|
||
exp : '*' exp %prec UNARY
|
||
{ write_exp_elt_opcode (pstate, UNOP_IND); }
|
||
;
|
||
|
||
exp : '&' exp %prec UNARY
|
||
{ write_exp_elt_opcode (pstate, UNOP_ADDR); }
|
||
;
|
||
|
||
exp : '-' exp %prec UNARY
|
||
{ write_exp_elt_opcode (pstate, UNOP_NEG); }
|
||
;
|
||
|
||
exp : BOOL_NOT exp %prec UNARY
|
||
{ write_exp_elt_opcode (pstate, UNOP_LOGICAL_NOT); }
|
||
;
|
||
|
||
exp : '~' exp %prec UNARY
|
||
{ write_exp_elt_opcode (pstate, UNOP_COMPLEMENT); }
|
||
;
|
||
|
||
exp : SIZEOF exp %prec UNARY
|
||
{ write_exp_elt_opcode (pstate, UNOP_SIZEOF); }
|
||
;
|
||
|
||
/* No more explicit array operators, we treat everything in F77 as
|
||
a function call. The disambiguation as to whether we are
|
||
doing a subscript operation or a function call is done
|
||
later in eval.c. */
|
||
|
||
exp : exp '('
|
||
{ start_arglist (); }
|
||
arglist ')'
|
||
{ write_exp_elt_opcode (pstate,
|
||
OP_F77_UNDETERMINED_ARGLIST);
|
||
write_exp_elt_longcst (pstate,
|
||
(LONGEST) end_arglist ());
|
||
write_exp_elt_opcode (pstate,
|
||
OP_F77_UNDETERMINED_ARGLIST); }
|
||
;
|
||
|
||
arglist :
|
||
;
|
||
|
||
arglist : exp
|
||
{ arglist_len = 1; }
|
||
;
|
||
|
||
arglist : subrange
|
||
{ arglist_len = 1; }
|
||
;
|
||
|
||
arglist : arglist ',' exp %prec ABOVE_COMMA
|
||
{ arglist_len++; }
|
||
;
|
||
|
||
/* There are four sorts of subrange types in F90. */
|
||
|
||
subrange: exp ':' exp %prec ABOVE_COMMA
|
||
{ write_exp_elt_opcode (pstate, OP_RANGE);
|
||
write_exp_elt_longcst (pstate, NONE_BOUND_DEFAULT);
|
||
write_exp_elt_opcode (pstate, OP_RANGE); }
|
||
;
|
||
|
||
subrange: exp ':' %prec ABOVE_COMMA
|
||
{ write_exp_elt_opcode (pstate, OP_RANGE);
|
||
write_exp_elt_longcst (pstate, HIGH_BOUND_DEFAULT);
|
||
write_exp_elt_opcode (pstate, OP_RANGE); }
|
||
;
|
||
|
||
subrange: ':' exp %prec ABOVE_COMMA
|
||
{ write_exp_elt_opcode (pstate, OP_RANGE);
|
||
write_exp_elt_longcst (pstate, LOW_BOUND_DEFAULT);
|
||
write_exp_elt_opcode (pstate, OP_RANGE); }
|
||
;
|
||
|
||
subrange: ':' %prec ABOVE_COMMA
|
||
{ write_exp_elt_opcode (pstate, OP_RANGE);
|
||
write_exp_elt_longcst (pstate, BOTH_BOUND_DEFAULT);
|
||
write_exp_elt_opcode (pstate, OP_RANGE); }
|
||
;
|
||
|
||
complexnum: exp ',' exp
|
||
{ }
|
||
;
|
||
|
||
exp : '(' complexnum ')'
|
||
{ write_exp_elt_opcode (pstate, OP_COMPLEX);
|
||
write_exp_elt_type (pstate,
|
||
parse_f_type (pstate)
|
||
->builtin_complex_s16);
|
||
write_exp_elt_opcode (pstate, OP_COMPLEX); }
|
||
;
|
||
|
||
exp : '(' type ')' exp %prec UNARY
|
||
{ write_exp_elt_opcode (pstate, UNOP_CAST);
|
||
write_exp_elt_type (pstate, $2);
|
||
write_exp_elt_opcode (pstate, UNOP_CAST); }
|
||
;
|
||
|
||
exp : exp '%' name
|
||
{ write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
|
||
write_exp_string (pstate, $3);
|
||
write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
|
||
;
|
||
|
||
/* Binary operators in order of decreasing precedence. */
|
||
|
||
exp : exp '@' exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_REPEAT); }
|
||
;
|
||
|
||
exp : exp STARSTAR exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_EXP); }
|
||
;
|
||
|
||
exp : exp '*' exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_MUL); }
|
||
;
|
||
|
||
exp : exp '/' exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_DIV); }
|
||
;
|
||
|
||
exp : exp '+' exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_ADD); }
|
||
;
|
||
|
||
exp : exp '-' exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_SUB); }
|
||
;
|
||
|
||
exp : exp LSH exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_LSH); }
|
||
;
|
||
|
||
exp : exp RSH exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_RSH); }
|
||
;
|
||
|
||
exp : exp EQUAL exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_EQUAL); }
|
||
;
|
||
|
||
exp : exp NOTEQUAL exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_NOTEQUAL); }
|
||
;
|
||
|
||
exp : exp LEQ exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_LEQ); }
|
||
;
|
||
|
||
exp : exp GEQ exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_GEQ); }
|
||
;
|
||
|
||
exp : exp LESSTHAN exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_LESS); }
|
||
;
|
||
|
||
exp : exp GREATERTHAN exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_GTR); }
|
||
;
|
||
|
||
exp : exp '&' exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_BITWISE_AND); }
|
||
;
|
||
|
||
exp : exp '^' exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_BITWISE_XOR); }
|
||
;
|
||
|
||
exp : exp '|' exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_BITWISE_IOR); }
|
||
;
|
||
|
||
exp : exp BOOL_AND exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_LOGICAL_AND); }
|
||
;
|
||
|
||
|
||
exp : exp BOOL_OR exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_LOGICAL_OR); }
|
||
;
|
||
|
||
exp : exp '=' exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_ASSIGN); }
|
||
;
|
||
|
||
exp : exp ASSIGN_MODIFY exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_ASSIGN_MODIFY);
|
||
write_exp_elt_opcode (pstate, $2);
|
||
write_exp_elt_opcode (pstate, BINOP_ASSIGN_MODIFY); }
|
||
;
|
||
|
||
exp : INT
|
||
{ write_exp_elt_opcode (pstate, OP_LONG);
|
||
write_exp_elt_type (pstate, $1.type);
|
||
write_exp_elt_longcst (pstate, (LONGEST) ($1.val));
|
||
write_exp_elt_opcode (pstate, OP_LONG); }
|
||
;
|
||
|
||
exp : NAME_OR_INT
|
||
{ YYSTYPE val;
|
||
parse_number (pstate, $1.stoken.ptr,
|
||
$1.stoken.length, 0, &val);
|
||
write_exp_elt_opcode (pstate, OP_LONG);
|
||
write_exp_elt_type (pstate, val.typed_val.type);
|
||
write_exp_elt_longcst (pstate,
|
||
(LONGEST)val.typed_val.val);
|
||
write_exp_elt_opcode (pstate, OP_LONG); }
|
||
;
|
||
|
||
exp : FLOAT
|
||
{ write_exp_elt_opcode (pstate, OP_FLOAT);
|
||
write_exp_elt_type (pstate, $1.type);
|
||
write_exp_elt_floatcst (pstate, $1.val);
|
||
write_exp_elt_opcode (pstate, OP_FLOAT); }
|
||
;
|
||
|
||
exp : variable
|
||
;
|
||
|
||
exp : VARIABLE
|
||
;
|
||
|
||
exp : SIZEOF '(' type ')' %prec UNARY
|
||
{ write_exp_elt_opcode (pstate, OP_LONG);
|
||
write_exp_elt_type (pstate,
|
||
parse_f_type (pstate)
|
||
->builtin_integer);
|
||
$3 = check_typedef ($3);
|
||
write_exp_elt_longcst (pstate,
|
||
(LONGEST) TYPE_LENGTH ($3));
|
||
write_exp_elt_opcode (pstate, OP_LONG); }
|
||
;
|
||
|
||
exp : BOOLEAN_LITERAL
|
||
{ write_exp_elt_opcode (pstate, OP_BOOL);
|
||
write_exp_elt_longcst (pstate, (LONGEST) $1);
|
||
write_exp_elt_opcode (pstate, OP_BOOL);
|
||
}
|
||
;
|
||
|
||
exp : STRING_LITERAL
|
||
{
|
||
write_exp_elt_opcode (pstate, OP_STRING);
|
||
write_exp_string (pstate, $1);
|
||
write_exp_elt_opcode (pstate, OP_STRING);
|
||
}
|
||
;
|
||
|
||
variable: name_not_typename
|
||
{ struct block_symbol sym = $1.sym;
|
||
|
||
if (sym.symbol)
|
||
{
|
||
if (symbol_read_needs_frame (sym.symbol))
|
||
{
|
||
if (innermost_block == 0
|
||
|| contained_in (sym.block,
|
||
innermost_block))
|
||
innermost_block = sym.block;
|
||
}
|
||
write_exp_elt_opcode (pstate, OP_VAR_VALUE);
|
||
write_exp_elt_block (pstate, sym.block);
|
||
write_exp_elt_sym (pstate, sym.symbol);
|
||
write_exp_elt_opcode (pstate, OP_VAR_VALUE);
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
struct bound_minimal_symbol msymbol;
|
||
char *arg = copy_name ($1.stoken);
|
||
|
||
msymbol =
|
||
lookup_bound_minimal_symbol (arg);
|
||
if (msymbol.minsym != NULL)
|
||
write_exp_msymbol (pstate, msymbol);
|
||
else if (!have_full_symbols () && !have_partial_symbols ())
|
||
error (_("No symbol table is loaded. Use the \"file\" command."));
|
||
else
|
||
error (_("No symbol \"%s\" in current context."),
|
||
copy_name ($1.stoken));
|
||
}
|
||
}
|
||
;
|
||
|
||
|
||
type : ptype
|
||
;
|
||
|
||
ptype : typebase
|
||
| typebase abs_decl
|
||
{
|
||
/* This is where the interesting stuff happens. */
|
||
int done = 0;
|
||
int array_size;
|
||
struct type *follow_type = $1;
|
||
struct type *range_type;
|
||
|
||
while (!done)
|
||
switch (pop_type ())
|
||
{
|
||
case tp_end:
|
||
done = 1;
|
||
break;
|
||
case tp_pointer:
|
||
follow_type = lookup_pointer_type (follow_type);
|
||
break;
|
||
case tp_reference:
|
||
follow_type = lookup_lvalue_reference_type (follow_type);
|
||
break;
|
||
case tp_array:
|
||
array_size = pop_type_int ();
|
||
if (array_size != -1)
|
||
{
|
||
range_type =
|
||
create_static_range_type ((struct type *) NULL,
|
||
parse_f_type (pstate)
|
||
->builtin_integer,
|
||
0, array_size - 1);
|
||
follow_type =
|
||
create_array_type ((struct type *) NULL,
|
||
follow_type, range_type);
|
||
}
|
||
else
|
||
follow_type = lookup_pointer_type (follow_type);
|
||
break;
|
||
case tp_function:
|
||
follow_type = lookup_function_type (follow_type);
|
||
break;
|
||
}
|
||
$$ = follow_type;
|
||
}
|
||
;
|
||
|
||
abs_decl: '*'
|
||
{ push_type (tp_pointer); $$ = 0; }
|
||
| '*' abs_decl
|
||
{ push_type (tp_pointer); $$ = $2; }
|
||
| '&'
|
||
{ push_type (tp_reference); $$ = 0; }
|
||
| '&' abs_decl
|
||
{ push_type (tp_reference); $$ = $2; }
|
||
| direct_abs_decl
|
||
;
|
||
|
||
direct_abs_decl: '(' abs_decl ')'
|
||
{ $$ = $2; }
|
||
| direct_abs_decl func_mod
|
||
{ push_type (tp_function); }
|
||
| func_mod
|
||
{ push_type (tp_function); }
|
||
;
|
||
|
||
func_mod: '(' ')'
|
||
{ $$ = 0; }
|
||
| '(' nonempty_typelist ')'
|
||
{ free ($2); $$ = 0; }
|
||
;
|
||
|
||
typebase /* Implements (approximately): (type-qualifier)* type-specifier */
|
||
: TYPENAME
|
||
{ $$ = $1.type; }
|
||
| INT_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_integer; }
|
||
| INT_S2_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_integer_s2; }
|
||
| CHARACTER
|
||
{ $$ = parse_f_type (pstate)->builtin_character; }
|
||
| LOGICAL_S8_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_logical_s8; }
|
||
| LOGICAL_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_logical; }
|
||
| LOGICAL_S2_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_logical_s2; }
|
||
| LOGICAL_S1_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_logical_s1; }
|
||
| REAL_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_real; }
|
||
| REAL_S8_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_real_s8; }
|
||
| REAL_S16_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_real_s16; }
|
||
| COMPLEX_S8_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_complex_s8; }
|
||
| COMPLEX_S16_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_complex_s16; }
|
||
| COMPLEX_S32_KEYWORD
|
||
{ $$ = parse_f_type (pstate)->builtin_complex_s32; }
|
||
;
|
||
|
||
nonempty_typelist
|
||
: type
|
||
{ $$ = (struct type **) malloc (sizeof (struct type *) * 2);
|
||
$<ivec>$[0] = 1; /* Number of types in vector */
|
||
$$[1] = $1;
|
||
}
|
||
| nonempty_typelist ',' type
|
||
{ int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
|
||
$$ = (struct type **) realloc ((char *) $1, len);
|
||
$$[$<ivec>$[0]] = $3;
|
||
}
|
||
;
|
||
|
||
name : NAME
|
||
{ $$ = $1.stoken; }
|
||
;
|
||
|
||
name_not_typename : NAME
|
||
/* These would be useful if name_not_typename was useful, but it is just
|
||
a fake for "variable", so these cause reduce/reduce conflicts because
|
||
the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
|
||
=exp) or just an exp. If name_not_typename was ever used in an lvalue
|
||
context where only a name could occur, this might be useful.
|
||
| NAME_OR_INT
|
||
*/
|
||
;
|
||
|
||
%%
|
||
|
||
/* Take care of parsing a number (anything that starts with a digit).
|
||
Set yylval and return the token type; update lexptr.
|
||
LEN is the number of characters in it. */
|
||
|
||
/*** Needs some error checking for the float case ***/
|
||
|
||
static int
|
||
parse_number (struct parser_state *par_state,
|
||
const char *p, int len, int parsed_float, YYSTYPE *putithere)
|
||
{
|
||
LONGEST n = 0;
|
||
LONGEST prevn = 0;
|
||
int c;
|
||
int base = input_radix;
|
||
int unsigned_p = 0;
|
||
int long_p = 0;
|
||
ULONGEST high_bit;
|
||
struct type *signed_type;
|
||
struct type *unsigned_type;
|
||
|
||
if (parsed_float)
|
||
{
|
||
/* It's a float since it contains a point or an exponent. */
|
||
/* [dD] is not understood as an exponent by parse_float,
|
||
change it to 'e'. */
|
||
char *tmp, *tmp2;
|
||
|
||
tmp = xstrdup (p);
|
||
for (tmp2 = tmp; *tmp2; ++tmp2)
|
||
if (*tmp2 == 'd' || *tmp2 == 'D')
|
||
*tmp2 = 'e';
|
||
|
||
/* FIXME: Should this use different types? */
|
||
putithere->typed_val_float.type = parse_f_type (pstate)->builtin_real_s8;
|
||
bool parsed = parse_float (tmp, len,
|
||
putithere->typed_val_float.type,
|
||
putithere->typed_val_float.val);
|
||
free (tmp);
|
||
return parsed? FLOAT : ERROR;
|
||
}
|
||
|
||
/* Handle base-switching prefixes 0x, 0t, 0d, 0 */
|
||
if (p[0] == '0')
|
||
switch (p[1])
|
||
{
|
||
case 'x':
|
||
case 'X':
|
||
if (len >= 3)
|
||
{
|
||
p += 2;
|
||
base = 16;
|
||
len -= 2;
|
||
}
|
||
break;
|
||
|
||
case 't':
|
||
case 'T':
|
||
case 'd':
|
||
case 'D':
|
||
if (len >= 3)
|
||
{
|
||
p += 2;
|
||
base = 10;
|
||
len -= 2;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
base = 8;
|
||
break;
|
||
}
|
||
|
||
while (len-- > 0)
|
||
{
|
||
c = *p++;
|
||
if (isupper (c))
|
||
c = tolower (c);
|
||
if (len == 0 && c == 'l')
|
||
long_p = 1;
|
||
else if (len == 0 && c == 'u')
|
||
unsigned_p = 1;
|
||
else
|
||
{
|
||
int i;
|
||
if (c >= '0' && c <= '9')
|
||
i = c - '0';
|
||
else if (c >= 'a' && c <= 'f')
|
||
i = c - 'a' + 10;
|
||
else
|
||
return ERROR; /* Char not a digit */
|
||
if (i >= base)
|
||
return ERROR; /* Invalid digit in this base */
|
||
n *= base;
|
||
n += i;
|
||
}
|
||
/* Portably test for overflow (only works for nonzero values, so make
|
||
a second check for zero). */
|
||
if ((prevn >= n) && n != 0)
|
||
unsigned_p=1; /* Try something unsigned */
|
||
/* If range checking enabled, portably test for unsigned overflow. */
|
||
if (RANGE_CHECK && n != 0)
|
||
{
|
||
if ((unsigned_p && (unsigned)prevn >= (unsigned)n))
|
||
range_error (_("Overflow on numeric constant."));
|
||
}
|
||
prevn = n;
|
||
}
|
||
|
||
/* If the number is too big to be an int, or it's got an l suffix
|
||
then it's a long. Work out if this has to be a long by
|
||
shifting right and seeing if anything remains, and the
|
||
target int size is different to the target long size.
|
||
|
||
In the expression below, we could have tested
|
||
(n >> gdbarch_int_bit (parse_gdbarch))
|
||
to see if it was zero,
|
||
but too many compilers warn about that, when ints and longs
|
||
are the same size. So we shift it twice, with fewer bits
|
||
each time, for the same result. */
|
||
|
||
if ((gdbarch_int_bit (parse_gdbarch (par_state))
|
||
!= gdbarch_long_bit (parse_gdbarch (par_state))
|
||
&& ((n >> 2)
|
||
>> (gdbarch_int_bit (parse_gdbarch (par_state))-2))) /* Avoid
|
||
shift warning */
|
||
|| long_p)
|
||
{
|
||
high_bit = ((ULONGEST)1)
|
||
<< (gdbarch_long_bit (parse_gdbarch (par_state))-1);
|
||
unsigned_type = parse_type (par_state)->builtin_unsigned_long;
|
||
signed_type = parse_type (par_state)->builtin_long;
|
||
}
|
||
else
|
||
{
|
||
high_bit =
|
||
((ULONGEST)1) << (gdbarch_int_bit (parse_gdbarch (par_state)) - 1);
|
||
unsigned_type = parse_type (par_state)->builtin_unsigned_int;
|
||
signed_type = parse_type (par_state)->builtin_int;
|
||
}
|
||
|
||
putithere->typed_val.val = n;
|
||
|
||
/* If the high bit of the worked out type is set then this number
|
||
has to be unsigned. */
|
||
|
||
if (unsigned_p || (n & high_bit))
|
||
putithere->typed_val.type = unsigned_type;
|
||
else
|
||
putithere->typed_val.type = signed_type;
|
||
|
||
return INT;
|
||
}
|
||
|
||
struct token
|
||
{
|
||
const char *oper;
|
||
int token;
|
||
enum exp_opcode opcode;
|
||
};
|
||
|
||
static const struct token dot_ops[] =
|
||
{
|
||
{ ".and.", BOOL_AND, BINOP_END },
|
||
{ ".AND.", BOOL_AND, BINOP_END },
|
||
{ ".or.", BOOL_OR, BINOP_END },
|
||
{ ".OR.", BOOL_OR, BINOP_END },
|
||
{ ".not.", BOOL_NOT, BINOP_END },
|
||
{ ".NOT.", BOOL_NOT, BINOP_END },
|
||
{ ".eq.", EQUAL, BINOP_END },
|
||
{ ".EQ.", EQUAL, BINOP_END },
|
||
{ ".eqv.", EQUAL, BINOP_END },
|
||
{ ".NEQV.", NOTEQUAL, BINOP_END },
|
||
{ ".neqv.", NOTEQUAL, BINOP_END },
|
||
{ ".EQV.", EQUAL, BINOP_END },
|
||
{ ".ne.", NOTEQUAL, BINOP_END },
|
||
{ ".NE.", NOTEQUAL, BINOP_END },
|
||
{ ".le.", LEQ, BINOP_END },
|
||
{ ".LE.", LEQ, BINOP_END },
|
||
{ ".ge.", GEQ, BINOP_END },
|
||
{ ".GE.", GEQ, BINOP_END },
|
||
{ ".gt.", GREATERTHAN, BINOP_END },
|
||
{ ".GT.", GREATERTHAN, BINOP_END },
|
||
{ ".lt.", LESSTHAN, BINOP_END },
|
||
{ ".LT.", LESSTHAN, BINOP_END },
|
||
{ NULL, 0, BINOP_END }
|
||
};
|
||
|
||
struct f77_boolean_val
|
||
{
|
||
const char *name;
|
||
int value;
|
||
};
|
||
|
||
static const struct f77_boolean_val boolean_values[] =
|
||
{
|
||
{ ".true.", 1 },
|
||
{ ".TRUE.", 1 },
|
||
{ ".false.", 0 },
|
||
{ ".FALSE.", 0 },
|
||
{ NULL, 0 }
|
||
};
|
||
|
||
static const struct token f77_keywords[] =
|
||
{
|
||
{ "complex_16", COMPLEX_S16_KEYWORD, BINOP_END },
|
||
{ "complex_32", COMPLEX_S32_KEYWORD, BINOP_END },
|
||
{ "character", CHARACTER, BINOP_END },
|
||
{ "integer_2", INT_S2_KEYWORD, BINOP_END },
|
||
{ "logical_1", LOGICAL_S1_KEYWORD, BINOP_END },
|
||
{ "logical_2", LOGICAL_S2_KEYWORD, BINOP_END },
|
||
{ "logical_8", LOGICAL_S8_KEYWORD, BINOP_END },
|
||
{ "complex_8", COMPLEX_S8_KEYWORD, BINOP_END },
|
||
{ "integer", INT_KEYWORD, BINOP_END },
|
||
{ "logical", LOGICAL_KEYWORD, BINOP_END },
|
||
{ "real_16", REAL_S16_KEYWORD, BINOP_END },
|
||
{ "complex", COMPLEX_S8_KEYWORD, BINOP_END },
|
||
{ "sizeof", SIZEOF, BINOP_END },
|
||
{ "real_8", REAL_S8_KEYWORD, BINOP_END },
|
||
{ "real", REAL_KEYWORD, BINOP_END },
|
||
{ NULL, 0, BINOP_END }
|
||
};
|
||
|
||
/* Implementation of a dynamically expandable buffer for processing input
|
||
characters acquired through lexptr and building a value to return in
|
||
yylval. Ripped off from ch-exp.y */
|
||
|
||
static char *tempbuf; /* Current buffer contents */
|
||
static int tempbufsize; /* Size of allocated buffer */
|
||
static int tempbufindex; /* Current index into buffer */
|
||
|
||
#define GROWBY_MIN_SIZE 64 /* Minimum amount to grow buffer by */
|
||
|
||
#define CHECKBUF(size) \
|
||
do { \
|
||
if (tempbufindex + (size) >= tempbufsize) \
|
||
{ \
|
||
growbuf_by_size (size); \
|
||
} \
|
||
} while (0);
|
||
|
||
|
||
/* Grow the static temp buffer if necessary, including allocating the
|
||
first one on demand. */
|
||
|
||
static void
|
||
growbuf_by_size (int count)
|
||
{
|
||
int growby;
|
||
|
||
growby = std::max (count, GROWBY_MIN_SIZE);
|
||
tempbufsize += growby;
|
||
if (tempbuf == NULL)
|
||
tempbuf = (char *) malloc (tempbufsize);
|
||
else
|
||
tempbuf = (char *) realloc (tempbuf, tempbufsize);
|
||
}
|
||
|
||
/* Blatantly ripped off from ch-exp.y. This routine recognizes F77
|
||
string-literals.
|
||
|
||
Recognize a string literal. A string literal is a nonzero sequence
|
||
of characters enclosed in matching single quotes, except that
|
||
a single character inside single quotes is a character literal, which
|
||
we reject as a string literal. To embed the terminator character inside
|
||
a string, it is simply doubled (I.E. 'this''is''one''string') */
|
||
|
||
static int
|
||
match_string_literal (void)
|
||
{
|
||
const char *tokptr = lexptr;
|
||
|
||
for (tempbufindex = 0, tokptr++; *tokptr != '\0'; tokptr++)
|
||
{
|
||
CHECKBUF (1);
|
||
if (*tokptr == *lexptr)
|
||
{
|
||
if (*(tokptr + 1) == *lexptr)
|
||
tokptr++;
|
||
else
|
||
break;
|
||
}
|
||
tempbuf[tempbufindex++] = *tokptr;
|
||
}
|
||
if (*tokptr == '\0' /* no terminator */
|
||
|| tempbufindex == 0) /* no string */
|
||
return 0;
|
||
else
|
||
{
|
||
tempbuf[tempbufindex] = '\0';
|
||
yylval.sval.ptr = tempbuf;
|
||
yylval.sval.length = tempbufindex;
|
||
lexptr = ++tokptr;
|
||
return STRING_LITERAL;
|
||
}
|
||
}
|
||
|
||
/* Read one token, getting characters through lexptr. */
|
||
|
||
static int
|
||
yylex (void)
|
||
{
|
||
int c;
|
||
int namelen;
|
||
unsigned int i,token;
|
||
const char *tokstart;
|
||
|
||
retry:
|
||
|
||
prev_lexptr = lexptr;
|
||
|
||
tokstart = lexptr;
|
||
|
||
/* First of all, let us make sure we are not dealing with the
|
||
special tokens .true. and .false. which evaluate to 1 and 0. */
|
||
|
||
if (*lexptr == '.')
|
||
{
|
||
for (i = 0; boolean_values[i].name != NULL; i++)
|
||
{
|
||
if (strncmp (tokstart, boolean_values[i].name,
|
||
strlen (boolean_values[i].name)) == 0)
|
||
{
|
||
lexptr += strlen (boolean_values[i].name);
|
||
yylval.lval = boolean_values[i].value;
|
||
return BOOLEAN_LITERAL;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* See if it is a special .foo. operator. */
|
||
|
||
for (i = 0; dot_ops[i].oper != NULL; i++)
|
||
if (strncmp (tokstart, dot_ops[i].oper,
|
||
strlen (dot_ops[i].oper)) == 0)
|
||
{
|
||
lexptr += strlen (dot_ops[i].oper);
|
||
yylval.opcode = dot_ops[i].opcode;
|
||
return dot_ops[i].token;
|
||
}
|
||
|
||
/* See if it is an exponentiation operator. */
|
||
|
||
if (strncmp (tokstart, "**", 2) == 0)
|
||
{
|
||
lexptr += 2;
|
||
yylval.opcode = BINOP_EXP;
|
||
return STARSTAR;
|
||
}
|
||
|
||
switch (c = *tokstart)
|
||
{
|
||
case 0:
|
||
return 0;
|
||
|
||
case ' ':
|
||
case '\t':
|
||
case '\n':
|
||
lexptr++;
|
||
goto retry;
|
||
|
||
case '\'':
|
||
token = match_string_literal ();
|
||
if (token != 0)
|
||
return (token);
|
||
break;
|
||
|
||
case '(':
|
||
paren_depth++;
|
||
lexptr++;
|
||
return c;
|
||
|
||
case ')':
|
||
if (paren_depth == 0)
|
||
return 0;
|
||
paren_depth--;
|
||
lexptr++;
|
||
return c;
|
||
|
||
case ',':
|
||
if (comma_terminates && paren_depth == 0)
|
||
return 0;
|
||
lexptr++;
|
||
return c;
|
||
|
||
case '.':
|
||
/* Might be a floating point number. */
|
||
if (lexptr[1] < '0' || lexptr[1] > '9')
|
||
goto symbol; /* Nope, must be a symbol. */
|
||
/* FALL THRU into number case. */
|
||
|
||
case '0':
|
||
case '1':
|
||
case '2':
|
||
case '3':
|
||
case '4':
|
||
case '5':
|
||
case '6':
|
||
case '7':
|
||
case '8':
|
||
case '9':
|
||
{
|
||
/* It's a number. */
|
||
int got_dot = 0, got_e = 0, got_d = 0, toktype;
|
||
const char *p = tokstart;
|
||
int hex = input_radix > 10;
|
||
|
||
if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
|
||
{
|
||
p += 2;
|
||
hex = 1;
|
||
}
|
||
else if (c == '0' && (p[1]=='t' || p[1]=='T'
|
||
|| p[1]=='d' || p[1]=='D'))
|
||
{
|
||
p += 2;
|
||
hex = 0;
|
||
}
|
||
|
||
for (;; ++p)
|
||
{
|
||
if (!hex && !got_e && (*p == 'e' || *p == 'E'))
|
||
got_dot = got_e = 1;
|
||
else if (!hex && !got_d && (*p == 'd' || *p == 'D'))
|
||
got_dot = got_d = 1;
|
||
else if (!hex && !got_dot && *p == '.')
|
||
got_dot = 1;
|
||
else if (((got_e && (p[-1] == 'e' || p[-1] == 'E'))
|
||
|| (got_d && (p[-1] == 'd' || p[-1] == 'D')))
|
||
&& (*p == '-' || *p == '+'))
|
||
/* This is the sign of the exponent, not the end of the
|
||
number. */
|
||
continue;
|
||
/* We will take any letters or digits. parse_number will
|
||
complain if past the radix, or if L or U are not final. */
|
||
else if ((*p < '0' || *p > '9')
|
||
&& ((*p < 'a' || *p > 'z')
|
||
&& (*p < 'A' || *p > 'Z')))
|
||
break;
|
||
}
|
||
toktype = parse_number (pstate, tokstart, p - tokstart,
|
||
got_dot|got_e|got_d,
|
||
&yylval);
|
||
if (toktype == ERROR)
|
||
{
|
||
char *err_copy = (char *) alloca (p - tokstart + 1);
|
||
|
||
memcpy (err_copy, tokstart, p - tokstart);
|
||
err_copy[p - tokstart] = 0;
|
||
error (_("Invalid number \"%s\"."), err_copy);
|
||
}
|
||
lexptr = p;
|
||
return toktype;
|
||
}
|
||
|
||
case '+':
|
||
case '-':
|
||
case '*':
|
||
case '/':
|
||
case '%':
|
||
case '|':
|
||
case '&':
|
||
case '^':
|
||
case '~':
|
||
case '!':
|
||
case '@':
|
||
case '<':
|
||
case '>':
|
||
case '[':
|
||
case ']':
|
||
case '?':
|
||
case ':':
|
||
case '=':
|
||
case '{':
|
||
case '}':
|
||
symbol:
|
||
lexptr++;
|
||
return c;
|
||
}
|
||
|
||
if (!(c == '_' || c == '$' || c ==':'
|
||
|| (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
|
||
/* We must have come across a bad character (e.g. ';'). */
|
||
error (_("Invalid character '%c' in expression."), c);
|
||
|
||
namelen = 0;
|
||
for (c = tokstart[namelen];
|
||
(c == '_' || c == '$' || c == ':' || (c >= '0' && c <= '9')
|
||
|| (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
|
||
c = tokstart[++namelen]);
|
||
|
||
/* The token "if" terminates the expression and is NOT
|
||
removed from the input stream. */
|
||
|
||
if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
|
||
return 0;
|
||
|
||
lexptr += namelen;
|
||
|
||
/* Catch specific keywords. */
|
||
|
||
for (i = 0; f77_keywords[i].oper != NULL; i++)
|
||
if (strlen (f77_keywords[i].oper) == namelen
|
||
&& strncmp (tokstart, f77_keywords[i].oper, namelen) == 0)
|
||
{
|
||
/* lexptr += strlen(f77_keywords[i].operator); */
|
||
yylval.opcode = f77_keywords[i].opcode;
|
||
return f77_keywords[i].token;
|
||
}
|
||
|
||
yylval.sval.ptr = tokstart;
|
||
yylval.sval.length = namelen;
|
||
|
||
if (*tokstart == '$')
|
||
{
|
||
write_dollar_variable (pstate, yylval.sval);
|
||
return VARIABLE;
|
||
}
|
||
|
||
/* Use token-type TYPENAME for symbols that happen to be defined
|
||
currently as names of types; NAME for other symbols.
|
||
The caller is not constrained to care about the distinction. */
|
||
{
|
||
char *tmp = copy_name (yylval.sval);
|
||
struct block_symbol result;
|
||
struct field_of_this_result is_a_field_of_this;
|
||
enum domain_enum_tag lookup_domains[] =
|
||
{
|
||
STRUCT_DOMAIN,
|
||
VAR_DOMAIN,
|
||
MODULE_DOMAIN
|
||
};
|
||
int i;
|
||
int hextype;
|
||
|
||
for (i = 0; i < ARRAY_SIZE (lookup_domains); ++i)
|
||
{
|
||
/* Initialize this in case we *don't* use it in this call; that
|
||
way we can refer to it unconditionally below. */
|
||
memset (&is_a_field_of_this, 0, sizeof (is_a_field_of_this));
|
||
|
||
result = lookup_symbol (tmp, expression_context_block,
|
||
lookup_domains[i],
|
||
parse_language (pstate)->la_language
|
||
== language_cplus
|
||
? &is_a_field_of_this : NULL);
|
||
if (result.symbol && SYMBOL_CLASS (result.symbol) == LOC_TYPEDEF)
|
||
{
|
||
yylval.tsym.type = SYMBOL_TYPE (result.symbol);
|
||
return TYPENAME;
|
||
}
|
||
|
||
if (result.symbol)
|
||
break;
|
||
}
|
||
|
||
yylval.tsym.type
|
||
= language_lookup_primitive_type (parse_language (pstate),
|
||
parse_gdbarch (pstate), tmp);
|
||
if (yylval.tsym.type != NULL)
|
||
return TYPENAME;
|
||
|
||
/* Input names that aren't symbols but ARE valid hex numbers,
|
||
when the input radix permits them, can be names or numbers
|
||
depending on the parse. Note we support radixes > 16 here. */
|
||
if (!result.symbol
|
||
&& ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
|
||
|| (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
|
||
{
|
||
YYSTYPE newlval; /* Its value is ignored. */
|
||
hextype = parse_number (pstate, tokstart, namelen, 0, &newlval);
|
||
if (hextype == INT)
|
||
{
|
||
yylval.ssym.sym = result;
|
||
yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL;
|
||
return NAME_OR_INT;
|
||
}
|
||
}
|
||
|
||
/* Any other kind of symbol */
|
||
yylval.ssym.sym = result;
|
||
yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL;
|
||
return NAME;
|
||
}
|
||
}
|
||
|
||
int
|
||
f_parse (struct parser_state *par_state)
|
||
{
|
||
/* Setting up the parser state. */
|
||
scoped_restore pstate_restore = make_scoped_restore (&pstate);
|
||
gdb_assert (par_state != NULL);
|
||
pstate = par_state;
|
||
|
||
return yyparse ();
|
||
}
|
||
|
||
void
|
||
yyerror (const char *msg)
|
||
{
|
||
if (prev_lexptr)
|
||
lexptr = prev_lexptr;
|
||
|
||
error (_("A %s in expression, near `%s'."), (msg ? msg : "error"), lexptr);
|
||
}
|