binutils-gdb/gdb/ax-gdb.c
Simon Marchi 33d16dd987 gdb: remove TYPE_FIELD_NAME and FIELD_NAME macros
Remove the `TYPE_FIELD_NAME` and `FIELD_NAME` macros, changing all the
call sites to use field::name directly.

Change-Id: I6900ae4e1ffab1396e24fb3298e94bf123826ca6
2021-09-30 22:05:57 -04:00

2644 lines
81 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* GDB-specific functions for operating on agent expressions.
Copyright (C) 1998-2021 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "symtab.h"
#include "symfile.h"
#include "gdbtypes.h"
#include "language.h"
#include "value.h"
#include "expression.h"
#include "command.h"
#include "gdbcmd.h"
#include "frame.h"
#include "target.h"
#include "ax.h"
#include "ax-gdb.h"
#include "block.h"
#include "regcache.h"
#include "user-regs.h"
#include "dictionary.h"
#include "breakpoint.h"
#include "tracepoint.h"
#include "cp-support.h"
#include "arch-utils.h"
#include "cli/cli-utils.h"
#include "linespec.h"
#include "location.h"
#include "objfiles.h"
#include "typeprint.h"
#include "valprint.h"
#include "c-lang.h"
#include "expop.h"
#include "gdbsupport/format.h"
/* To make sense of this file, you should read doc/agentexpr.texi.
Then look at the types and enums in ax-gdb.h. For the code itself,
look at gen_expr, towards the bottom; that's the main function that
looks at the GDB expressions and calls everything else to generate
code.
I'm beginning to wonder whether it wouldn't be nicer to internally
generate trees, with types, and then spit out the bytecode in
linear form afterwards; we could generate fewer `swap', `ext', and
`zero_ext' bytecodes that way; it would make good constant folding
easier, too. But at the moment, I think we should be willing to
pay for the simplicity of this code with less-than-optimal bytecode
strings.
Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
/* Prototypes for local functions. */
/* There's a standard order to the arguments of these functions:
struct agent_expr * --- agent expression buffer to generate code into
struct axs_value * --- describes value left on top of stack */
static void gen_traced_pop (struct agent_expr *, struct axs_value *);
static void gen_sign_extend (struct agent_expr *, struct type *);
static void gen_extend (struct agent_expr *, struct type *);
static void gen_fetch (struct agent_expr *, struct type *);
static void gen_left_shift (struct agent_expr *, int);
static void gen_frame_args_address (struct agent_expr *);
static void gen_frame_locals_address (struct agent_expr *);
static void gen_offset (struct agent_expr *ax, int offset);
static void gen_sym_offset (struct agent_expr *, struct symbol *);
static void gen_var_ref (struct agent_expr *ax, struct axs_value *value,
struct symbol *var);
static void gen_int_literal (struct agent_expr *ax,
struct axs_value *value,
LONGEST k, struct type *type);
static void gen_usual_unary (struct agent_expr *ax, struct axs_value *value);
static int type_wider_than (struct type *type1, struct type *type2);
static struct type *max_type (struct type *type1, struct type *type2);
static void gen_conversion (struct agent_expr *ax,
struct type *from, struct type *to);
static int is_nontrivial_conversion (struct type *from, struct type *to);
static void gen_usual_arithmetic (struct agent_expr *ax,
struct axs_value *value1,
struct axs_value *value2);
static void gen_integral_promotions (struct agent_expr *ax,
struct axs_value *value);
static void gen_cast (struct agent_expr *ax,
struct axs_value *value, struct type *type);
static void gen_scale (struct agent_expr *ax,
enum agent_op op, struct type *type);
static void gen_ptradd (struct agent_expr *ax, struct axs_value *value,
struct axs_value *value1, struct axs_value *value2);
static void gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
struct axs_value *value1, struct axs_value *value2);
static void gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
struct axs_value *value1, struct axs_value *value2,
struct type *result_type);
static void gen_binop (struct agent_expr *ax,
struct axs_value *value,
struct axs_value *value1,
struct axs_value *value2,
enum agent_op op,
enum agent_op op_unsigned, int may_carry,
const char *name);
static void gen_logical_not (struct agent_expr *ax, struct axs_value *value,
struct type *result_type);
static void gen_complement (struct agent_expr *ax, struct axs_value *value);
static void gen_deref (struct axs_value *);
static void gen_address_of (struct axs_value *);
static void gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value,
struct type *type, int start, int end);
static void gen_primitive_field (struct agent_expr *ax,
struct axs_value *value,
int offset, int fieldno, struct type *type);
static int gen_struct_ref_recursive (struct agent_expr *ax,
struct axs_value *value,
const char *field, int offset,
struct type *type);
static void gen_struct_ref (struct agent_expr *ax,
struct axs_value *value,
const char *field,
const char *operator_name,
const char *operand_name);
static void gen_static_field (struct agent_expr *ax, struct axs_value *value,
struct type *type, int fieldno);
static void gen_expr_binop_rest (struct expression *exp,
enum exp_opcode op,
struct agent_expr *ax,
struct axs_value *value,
struct axs_value *value1,
struct axs_value *value2);
/* Generating bytecode from GDB expressions: general assumptions */
/* Here are a few general assumptions made throughout the code; if you
want to make a change that contradicts one of these, then you'd
better scan things pretty thoroughly.
- We assume that all values occupy one stack element. For example,
sometimes we'll swap to get at the left argument to a binary
operator. If we decide that void values should occupy no stack
elements, or that synthetic arrays (whose size is determined at
run time, created by the `@' operator) should occupy two stack
elements (address and length), then this will cause trouble.
- We assume the stack elements are infinitely wide, and that we
don't have to worry what happens if the user requests an
operation that is wider than the actual interpreter's stack.
That is, it's up to the interpreter to handle directly all the
integer widths the user has access to. (Woe betide the language
with bignums!)
- We don't support side effects. Thus, we don't have to worry about
GCC's generalized lvalues, function calls, etc.
- We don't support floating point. Many places where we switch on
some type don't bother to include cases for floating point; there
may be even more subtle ways this assumption exists. For
example, the arguments to % must be integers.
- We assume all subexpressions have a static, unchanging type. If
we tried to support convenience variables, this would be a
problem.
- All values on the stack should always be fully zero- or
sign-extended.
(I wasn't sure whether to choose this or its opposite --- that
only addresses are assumed extended --- but it turns out that
neither convention completely eliminates spurious extend
operations (if everything is always extended, then you have to
extend after add, because it could overflow; if nothing is
extended, then you end up producing extends whenever you change
sizes), and this is simpler.) */
/* Scan for all static fields in the given class, including any base
classes, and generate tracing bytecodes for each. */
static void
gen_trace_static_fields (struct agent_expr *ax,
struct type *type)
{
int i, nbases = TYPE_N_BASECLASSES (type);
struct axs_value value;
type = check_typedef (type);
for (i = type->num_fields () - 1; i >= nbases; i--)
{
if (field_is_static (&type->field (i)))
{
gen_static_field (ax, &value, type, i);
if (value.optimized_out)
continue;
switch (value.kind)
{
case axs_lvalue_memory:
{
/* Initialize the TYPE_LENGTH if it is a typedef. */
check_typedef (value.type);
ax_const_l (ax, TYPE_LENGTH (value.type));
ax_simple (ax, aop_trace);
}
break;
case axs_lvalue_register:
/* We don't actually need the register's value to be pushed,
just note that we need it to be collected. */
ax_reg_mask (ax, value.u.reg);
default:
break;
}
}
}
/* Now scan through base classes recursively. */
for (i = 0; i < nbases; i++)
{
struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
gen_trace_static_fields (ax, basetype);
}
}
/* Trace the lvalue on the stack, if it needs it. In either case, pop
the value. Useful on the left side of a comma, and at the end of
an expression being used for tracing. */
static void
gen_traced_pop (struct agent_expr *ax, struct axs_value *value)
{
int string_trace = 0;
if (ax->trace_string
&& value->type->code () == TYPE_CODE_PTR
&& c_textual_element_type (check_typedef (TYPE_TARGET_TYPE (value->type)),
's'))
string_trace = 1;
if (ax->tracing)
switch (value->kind)
{
case axs_rvalue:
if (string_trace)
{
ax_const_l (ax, ax->trace_string);
ax_simple (ax, aop_tracenz);
}
else
/* We don't trace rvalues, just the lvalues necessary to
produce them. So just dispose of this value. */
ax_simple (ax, aop_pop);
break;
case axs_lvalue_memory:
{
/* Initialize the TYPE_LENGTH if it is a typedef. */
check_typedef (value->type);
if (string_trace)
{
gen_fetch (ax, value->type);
ax_const_l (ax, ax->trace_string);
ax_simple (ax, aop_tracenz);
}
else
{
/* There's no point in trying to use a trace_quick bytecode
here, since "trace_quick SIZE pop" is three bytes, whereas
"const8 SIZE trace" is also three bytes, does the same
thing, and the simplest code which generates that will also
work correctly for objects with large sizes. */
ax_const_l (ax, TYPE_LENGTH (value->type));
ax_simple (ax, aop_trace);
}
}
break;
case axs_lvalue_register:
/* We don't actually need the register's value to be on the
stack, and the target will get heartburn if the register is
larger than will fit in a stack, so just mark it for
collection and be done with it. */
ax_reg_mask (ax, value->u.reg);
/* But if the register points to a string, assume the value
will fit on the stack and push it anyway. */
if (string_trace)
{
ax_reg (ax, value->u.reg);
ax_const_l (ax, ax->trace_string);
ax_simple (ax, aop_tracenz);
}
break;
}
else
/* If we're not tracing, just pop the value. */
ax_simple (ax, aop_pop);
/* To trace C++ classes with static fields stored elsewhere. */
if (ax->tracing
&& (value->type->code () == TYPE_CODE_STRUCT
|| value->type->code () == TYPE_CODE_UNION))
gen_trace_static_fields (ax, value->type);
}
/* Generating bytecode from GDB expressions: helper functions */
/* Assume that the lower bits of the top of the stack is a value of
type TYPE, and the upper bits are zero. Sign-extend if necessary. */
static void
gen_sign_extend (struct agent_expr *ax, struct type *type)
{
/* Do we need to sign-extend this? */
if (!type->is_unsigned ())
ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
}
/* Assume the lower bits of the top of the stack hold a value of type
TYPE, and the upper bits are garbage. Sign-extend or truncate as
needed. */
static void
gen_extend (struct agent_expr *ax, struct type *type)
{
int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
/* I just had to. */
((type->is_unsigned () ? ax_zero_ext : ax_ext) (ax, bits));
}
/* Assume that the top of the stack contains a value of type "pointer
to TYPE"; generate code to fetch its value. Note that TYPE is the
target type, not the pointer type. */
static void
gen_fetch (struct agent_expr *ax, struct type *type)
{
if (ax->tracing)
{
/* Record the area of memory we're about to fetch. */
ax_trace_quick (ax, TYPE_LENGTH (type));
}
if (type->code () == TYPE_CODE_RANGE)
type = TYPE_TARGET_TYPE (type);
switch (type->code ())
{
case TYPE_CODE_PTR:
case TYPE_CODE_REF:
case TYPE_CODE_RVALUE_REF:
case TYPE_CODE_ENUM:
case TYPE_CODE_INT:
case TYPE_CODE_CHAR:
case TYPE_CODE_BOOL:
/* It's a scalar value, so we know how to dereference it. How
many bytes long is it? */
switch (TYPE_LENGTH (type))
{
case 8 / TARGET_CHAR_BIT:
ax_simple (ax, aop_ref8);
break;
case 16 / TARGET_CHAR_BIT:
ax_simple (ax, aop_ref16);
break;
case 32 / TARGET_CHAR_BIT:
ax_simple (ax, aop_ref32);
break;
case 64 / TARGET_CHAR_BIT:
ax_simple (ax, aop_ref64);
break;
/* Either our caller shouldn't have asked us to dereference
that pointer (other code's fault), or we're not
implementing something we should be (this code's fault).
In any case, it's a bug the user shouldn't see. */
default:
internal_error (__FILE__, __LINE__,
_("gen_fetch: strange size"));
}
gen_sign_extend (ax, type);
break;
default:
/* Our caller requested us to dereference a pointer from an unsupported
type. Error out and give callers a chance to handle the failure
gracefully. */
error (_("gen_fetch: Unsupported type code `%s'."),
type->name ());
}
}
/* Generate code to left shift the top of the stack by DISTANCE bits, or
right shift it by -DISTANCE bits if DISTANCE < 0. This generates
unsigned (logical) right shifts. */
static void
gen_left_shift (struct agent_expr *ax, int distance)
{
if (distance > 0)
{
ax_const_l (ax, distance);
ax_simple (ax, aop_lsh);
}
else if (distance < 0)
{
ax_const_l (ax, -distance);
ax_simple (ax, aop_rsh_unsigned);
}
}
/* Generating bytecode from GDB expressions: symbol references */
/* Generate code to push the base address of the argument portion of
the top stack frame. */
static void
gen_frame_args_address (struct agent_expr *ax)
{
int frame_reg;
LONGEST frame_offset;
gdbarch_virtual_frame_pointer (ax->gdbarch,
ax->scope, &frame_reg, &frame_offset);
ax_reg (ax, frame_reg);
gen_offset (ax, frame_offset);
}
/* Generate code to push the base address of the locals portion of the
top stack frame. */
static void
gen_frame_locals_address (struct agent_expr *ax)
{
int frame_reg;
LONGEST frame_offset;
gdbarch_virtual_frame_pointer (ax->gdbarch,
ax->scope, &frame_reg, &frame_offset);
ax_reg (ax, frame_reg);
gen_offset (ax, frame_offset);
}
/* Generate code to add OFFSET to the top of the stack. Try to
generate short and readable code. We use this for getting to
variables on the stack, and structure members. If we were
programming in ML, it would be clearer why these are the same
thing. */
static void
gen_offset (struct agent_expr *ax, int offset)
{
/* It would suffice to simply push the offset and add it, but this
makes it easier to read positive and negative offsets in the
bytecode. */
if (offset > 0)
{
ax_const_l (ax, offset);
ax_simple (ax, aop_add);
}
else if (offset < 0)
{
ax_const_l (ax, -offset);
ax_simple (ax, aop_sub);
}
}
/* In many cases, a symbol's value is the offset from some other
address (stack frame, base register, etc.) Generate code to add
VAR's value to the top of the stack. */
static void
gen_sym_offset (struct agent_expr *ax, struct symbol *var)
{
gen_offset (ax, SYMBOL_VALUE (var));
}
/* Generate code for a variable reference to AX. The variable is the
symbol VAR. Set VALUE to describe the result. */
static void
gen_var_ref (struct agent_expr *ax, struct axs_value *value, struct symbol *var)
{
/* Dereference any typedefs. */
value->type = check_typedef (SYMBOL_TYPE (var));
value->optimized_out = 0;
if (SYMBOL_COMPUTED_OPS (var) != NULL)
{
SYMBOL_COMPUTED_OPS (var)->tracepoint_var_ref (var, ax, value);
return;
}
/* I'm imitating the code in read_var_value. */
switch (SYMBOL_CLASS (var))
{
case LOC_CONST: /* A constant, like an enum value. */
ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
value->kind = axs_rvalue;
break;
case LOC_LABEL: /* A goto label, being used as a value. */
ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
value->kind = axs_rvalue;
break;
case LOC_CONST_BYTES:
internal_error (__FILE__, __LINE__,
_("gen_var_ref: LOC_CONST_BYTES "
"symbols are not supported"));
/* Variable at a fixed location in memory. Easy. */
case LOC_STATIC:
/* Push the address of the variable. */
ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
value->kind = axs_lvalue_memory;
break;
case LOC_ARG: /* var lives in argument area of frame */
gen_frame_args_address (ax);
gen_sym_offset (ax, var);
value->kind = axs_lvalue_memory;
break;
case LOC_REF_ARG: /* As above, but the frame slot really
holds the address of the variable. */
gen_frame_args_address (ax);
gen_sym_offset (ax, var);
/* Don't assume any particular pointer size. */
gen_fetch (ax, builtin_type (ax->gdbarch)->builtin_data_ptr);
value->kind = axs_lvalue_memory;
break;
case LOC_LOCAL: /* var lives in locals area of frame */
gen_frame_locals_address (ax);
gen_sym_offset (ax, var);
value->kind = axs_lvalue_memory;
break;
case LOC_TYPEDEF:
error (_("Cannot compute value of typedef `%s'."),
var->print_name ());
break;
case LOC_BLOCK:
ax_const_l (ax, BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (var)));
value->kind = axs_rvalue;
break;
case LOC_REGISTER:
/* Don't generate any code at all; in the process of treating
this as an lvalue or rvalue, the caller will generate the
right code. */
value->kind = axs_lvalue_register;
value->u.reg
= SYMBOL_REGISTER_OPS (var)->register_number (var, ax->gdbarch);
break;
/* A lot like LOC_REF_ARG, but the pointer lives directly in a
register, not on the stack. Simpler than LOC_REGISTER
because it's just like any other case where the thing
has a real address. */
case LOC_REGPARM_ADDR:
ax_reg (ax,
SYMBOL_REGISTER_OPS (var)->register_number (var, ax->gdbarch));
value->kind = axs_lvalue_memory;
break;
case LOC_UNRESOLVED:
{
struct bound_minimal_symbol msym
= lookup_minimal_symbol (var->linkage_name (), NULL, NULL);
if (!msym.minsym)
error (_("Couldn't resolve symbol `%s'."), var->print_name ());
/* Push the address of the variable. */
ax_const_l (ax, BMSYMBOL_VALUE_ADDRESS (msym));
value->kind = axs_lvalue_memory;
}
break;
case LOC_COMPUTED:
gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
case LOC_OPTIMIZED_OUT:
/* Flag this, but don't say anything; leave it up to callers to
warn the user. */
value->optimized_out = 1;
break;
default:
error (_("Cannot find value of botched symbol `%s'."),
var->print_name ());
break;
}
}
/* Generate code for a minimal symbol variable reference to AX. The
variable is the symbol MINSYM, of OBJFILE. Set VALUE to describe
the result. */
static void
gen_msym_var_ref (agent_expr *ax, axs_value *value,
minimal_symbol *msymbol, objfile *objf)
{
CORE_ADDR address;
type *t = find_minsym_type_and_address (msymbol, objf, &address);
value->type = t;
value->optimized_out = false;
ax_const_l (ax, address);
value->kind = axs_lvalue_memory;
}
/* Generating bytecode from GDB expressions: literals */
static void
gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
struct type *type)
{
ax_const_l (ax, k);
value->kind = axs_rvalue;
value->type = check_typedef (type);
}
/* Generating bytecode from GDB expressions: unary conversions, casts */
/* Take what's on the top of the stack (as described by VALUE), and
try to make an rvalue out of it. Signal an error if we can't do
that. */
void
require_rvalue (struct agent_expr *ax, struct axs_value *value)
{
/* Only deal with scalars, structs and such may be too large
to fit in a stack entry. */
value->type = check_typedef (value->type);
if (value->type->code () == TYPE_CODE_ARRAY
|| value->type->code () == TYPE_CODE_STRUCT
|| value->type->code () == TYPE_CODE_UNION
|| value->type->code () == TYPE_CODE_FUNC)
error (_("Value not scalar: cannot be an rvalue."));
switch (value->kind)
{
case axs_rvalue:
/* It's already an rvalue. */
break;
case axs_lvalue_memory:
/* The top of stack is the address of the object. Dereference. */
gen_fetch (ax, value->type);
break;
case axs_lvalue_register:
/* There's nothing on the stack, but value->u.reg is the
register number containing the value.
When we add floating-point support, this is going to have to
change. What about SPARC register pairs, for example? */
ax_reg (ax, value->u.reg);
gen_extend (ax, value->type);
break;
}
value->kind = axs_rvalue;
}
/* Assume the top of the stack is described by VALUE, and perform the
usual unary conversions. This is motivated by ANSI 6.2.2, but of
course GDB expressions are not ANSI; they're the mishmash union of
a bunch of languages. Rah.
NOTE! This function promises to produce an rvalue only when the
incoming value is of an appropriate type. In other words, the
consumer of the value this function produces may assume the value
is an rvalue only after checking its type.
The immediate issue is that if the user tries to use a structure or
union as an operand of, say, the `+' operator, we don't want to try
to convert that structure to an rvalue; require_rvalue will bomb on
structs and unions. Rather, we want to simply pass the struct
lvalue through unchanged, and let `+' raise an error. */
static void
gen_usual_unary (struct agent_expr *ax, struct axs_value *value)
{
/* We don't have to generate any code for the usual integral
conversions, since values are always represented as full-width on
the stack. Should we tweak the type? */
/* Some types require special handling. */
switch (value->type->code ())
{
/* Functions get converted to a pointer to the function. */
case TYPE_CODE_FUNC:
value->type = lookup_pointer_type (value->type);
value->kind = axs_rvalue; /* Should always be true, but just in case. */
break;
/* Arrays get converted to a pointer to their first element, and
are no longer an lvalue. */
case TYPE_CODE_ARRAY:
{
struct type *elements = TYPE_TARGET_TYPE (value->type);
value->type = lookup_pointer_type (elements);
value->kind = axs_rvalue;
/* We don't need to generate any code; the address of the array
is also the address of its first element. */
}
break;
/* Don't try to convert structures and unions to rvalues. Let the
consumer signal an error. */
case TYPE_CODE_STRUCT:
case TYPE_CODE_UNION:
return;
}
/* If the value is an lvalue, dereference it. */
require_rvalue (ax, value);
}
/* Return non-zero iff the type TYPE1 is considered "wider" than the
type TYPE2, according to the rules described in gen_usual_arithmetic. */
static int
type_wider_than (struct type *type1, struct type *type2)
{
return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
|| (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
&& type1->is_unsigned ()
&& !type2->is_unsigned ()));
}
/* Return the "wider" of the two types TYPE1 and TYPE2. */
static struct type *
max_type (struct type *type1, struct type *type2)
{
return type_wider_than (type1, type2) ? type1 : type2;
}
/* Generate code to convert a scalar value of type FROM to type TO. */
static void
gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
{
/* Perhaps there is a more graceful way to state these rules. */
/* If we're converting to a narrower type, then we need to clear out
the upper bits. */
if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
gen_extend (ax, to);
/* If the two values have equal width, but different signednesses,
then we need to extend. */
else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
{
if (from->is_unsigned () != to->is_unsigned ())
gen_extend (ax, to);
}
/* If we're converting to a wider type, and becoming unsigned, then
we need to zero out any possible sign bits. */
else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
{
if (to->is_unsigned ())
gen_extend (ax, to);
}
}
/* Return non-zero iff the type FROM will require any bytecodes to be
emitted to be converted to the type TO. */
static int
is_nontrivial_conversion (struct type *from, struct type *to)
{
agent_expr_up ax (new agent_expr (NULL, 0));
int nontrivial;
/* Actually generate the code, and see if anything came out. At the
moment, it would be trivial to replicate the code in
gen_conversion here, but in the future, when we're supporting
floating point and the like, it may not be. Doing things this
way allows this function to be independent of the logic in
gen_conversion. */
gen_conversion (ax.get (), from, to);
nontrivial = ax->len > 0;
return nontrivial;
}
/* Generate code to perform the "usual arithmetic conversions" (ANSI C
6.2.1.5) for the two operands of an arithmetic operator. This
effectively finds a "least upper bound" type for the two arguments,
and promotes each argument to that type. *VALUE1 and *VALUE2
describe the values as they are passed in, and as they are left. */
static void
gen_usual_arithmetic (struct agent_expr *ax, struct axs_value *value1,
struct axs_value *value2)
{
/* Do the usual binary conversions. */
if (value1->type->code () == TYPE_CODE_INT
&& value2->type->code () == TYPE_CODE_INT)
{
/* The ANSI integral promotions seem to work this way: Order the
integer types by size, and then by signedness: an n-bit
unsigned type is considered "wider" than an n-bit signed
type. Promote to the "wider" of the two types, and always
promote at least to int. */
struct type *target = max_type (builtin_type (ax->gdbarch)->builtin_int,
max_type (value1->type, value2->type));
/* Deal with value2, on the top of the stack. */
gen_conversion (ax, value2->type, target);
/* Deal with value1, not on the top of the stack. Don't
generate the `swap' instructions if we're not actually going
to do anything. */
if (is_nontrivial_conversion (value1->type, target))
{
ax_simple (ax, aop_swap);
gen_conversion (ax, value1->type, target);
ax_simple (ax, aop_swap);
}
value1->type = value2->type = check_typedef (target);
}
}
/* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
the value on the top of the stack, as described by VALUE. Assume
the value has integral type. */
static void
gen_integral_promotions (struct agent_expr *ax, struct axs_value *value)
{
const struct builtin_type *builtin = builtin_type (ax->gdbarch);
if (!type_wider_than (value->type, builtin->builtin_int))
{
gen_conversion (ax, value->type, builtin->builtin_int);
value->type = builtin->builtin_int;
}
else if (!type_wider_than (value->type, builtin->builtin_unsigned_int))
{
gen_conversion (ax, value->type, builtin->builtin_unsigned_int);
value->type = builtin->builtin_unsigned_int;
}
}
/* Generate code for a cast to TYPE. */
static void
gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
{
/* GCC does allow casts to yield lvalues, so this should be fixed
before merging these changes into the trunk. */
require_rvalue (ax, value);
/* Dereference typedefs. */
type = check_typedef (type);
switch (type->code ())
{
case TYPE_CODE_PTR:
case TYPE_CODE_REF:
case TYPE_CODE_RVALUE_REF:
/* It's implementation-defined, and I'll bet this is what GCC
does. */
break;
case TYPE_CODE_ARRAY:
case TYPE_CODE_STRUCT:
case TYPE_CODE_UNION:
case TYPE_CODE_FUNC:
error (_("Invalid type cast: intended type must be scalar."));
case TYPE_CODE_ENUM:
case TYPE_CODE_BOOL:
/* We don't have to worry about the size of the value, because
all our integral values are fully sign-extended, and when
casting pointers we can do anything we like. Is there any
way for us to know what GCC actually does with a cast like
this? */
break;
case TYPE_CODE_INT:
gen_conversion (ax, value->type, type);
break;
case TYPE_CODE_VOID:
/* We could pop the value, and rely on everyone else to check
the type and notice that this value doesn't occupy a stack
slot. But for now, leave the value on the stack, and
preserve the "value == stack element" assumption. */
break;
default:
error (_("Casts to requested type are not yet implemented."));
}
value->type = type;
}
/* Generating bytecode from GDB expressions: arithmetic */
/* Scale the integer on the top of the stack by the size of the target
of the pointer type TYPE. */
static void
gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
{
struct type *element = TYPE_TARGET_TYPE (type);
if (TYPE_LENGTH (element) != 1)
{
ax_const_l (ax, TYPE_LENGTH (element));
ax_simple (ax, op);
}
}
/* Generate code for pointer arithmetic PTR + INT. */
static void
gen_ptradd (struct agent_expr *ax, struct axs_value *value,
struct axs_value *value1, struct axs_value *value2)
{
gdb_assert (value1->type->is_pointer_or_reference ());
gdb_assert (value2->type->code () == TYPE_CODE_INT);
gen_scale (ax, aop_mul, value1->type);
ax_simple (ax, aop_add);
gen_extend (ax, value1->type); /* Catch overflow. */
value->type = value1->type;
value->kind = axs_rvalue;
}
/* Generate code for pointer arithmetic PTR - INT. */
static void
gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
struct axs_value *value1, struct axs_value *value2)
{
gdb_assert (value1->type->is_pointer_or_reference ());
gdb_assert (value2->type->code () == TYPE_CODE_INT);
gen_scale (ax, aop_mul, value1->type);
ax_simple (ax, aop_sub);
gen_extend (ax, value1->type); /* Catch overflow. */
value->type = value1->type;
value->kind = axs_rvalue;
}
/* Generate code for pointer arithmetic PTR - PTR. */
static void
gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
struct axs_value *value1, struct axs_value *value2,
struct type *result_type)
{
gdb_assert (value1->type->is_pointer_or_reference ());
gdb_assert (value2->type->is_pointer_or_reference ());
if (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
!= TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type)))
error (_("\
First argument of `-' is a pointer, but second argument is neither\n\
an integer nor a pointer of the same type."));
ax_simple (ax, aop_sub);
gen_scale (ax, aop_div_unsigned, value1->type);
value->type = result_type;
value->kind = axs_rvalue;
}
static void
gen_equal (struct agent_expr *ax, struct axs_value *value,
struct axs_value *value1, struct axs_value *value2,
struct type *result_type)
{
if (value1->type->is_pointer_or_reference () || value2->type->is_pointer_or_reference ())
ax_simple (ax, aop_equal);
else
gen_binop (ax, value, value1, value2,
aop_equal, aop_equal, 0, "equal");
value->type = result_type;
value->kind = axs_rvalue;
}
static void
gen_less (struct agent_expr *ax, struct axs_value *value,
struct axs_value *value1, struct axs_value *value2,
struct type *result_type)
{
if (value1->type->is_pointer_or_reference () || value2->type->is_pointer_or_reference ())
ax_simple (ax, aop_less_unsigned);
else
gen_binop (ax, value, value1, value2,
aop_less_signed, aop_less_unsigned, 0, "less than");
value->type = result_type;
value->kind = axs_rvalue;
}
/* Generate code for a binary operator that doesn't do pointer magic.
We set VALUE to describe the result value; we assume VALUE1 and
VALUE2 describe the two operands, and that they've undergone the
usual binary conversions. MAY_CARRY should be non-zero iff the
result needs to be extended. NAME is the English name of the
operator, used in error messages */
static void
gen_binop (struct agent_expr *ax, struct axs_value *value,
struct axs_value *value1, struct axs_value *value2,
enum agent_op op, enum agent_op op_unsigned,
int may_carry, const char *name)
{
/* We only handle INT op INT. */
if ((value1->type->code () != TYPE_CODE_INT)
|| (value2->type->code () != TYPE_CODE_INT))
error (_("Invalid combination of types in %s."), name);
ax_simple (ax, value1->type->is_unsigned () ? op_unsigned : op);
if (may_carry)
gen_extend (ax, value1->type); /* catch overflow */
value->type = value1->type;
value->kind = axs_rvalue;
}
static void
gen_logical_not (struct agent_expr *ax, struct axs_value *value,
struct type *result_type)
{
if (value->type->code () != TYPE_CODE_INT
&& value->type->code () != TYPE_CODE_PTR)
error (_("Invalid type of operand to `!'."));
ax_simple (ax, aop_log_not);
value->type = result_type;
}
static void
gen_complement (struct agent_expr *ax, struct axs_value *value)
{
if (value->type->code () != TYPE_CODE_INT)
error (_("Invalid type of operand to `~'."));
ax_simple (ax, aop_bit_not);
gen_extend (ax, value->type);
}
/* Generating bytecode from GDB expressions: * & . -> @ sizeof */
/* Dereference the value on the top of the stack. */
static void
gen_deref (struct axs_value *value)
{
/* The caller should check the type, because several operators use
this, and we don't know what error message to generate. */
if (!value->type->is_pointer_or_reference ())
internal_error (__FILE__, __LINE__,
_("gen_deref: expected a pointer"));
/* We've got an rvalue now, which is a pointer. We want to yield an
lvalue, whose address is exactly that pointer. So we don't
actually emit any code; we just change the type from "Pointer to
T" to "T", and mark the value as an lvalue in memory. Leave it
to the consumer to actually dereference it. */
value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
if (value->type->code () == TYPE_CODE_VOID)
error (_("Attempt to dereference a generic pointer."));
value->kind = ((value->type->code () == TYPE_CODE_FUNC)
? axs_rvalue : axs_lvalue_memory);
}
/* Produce the address of the lvalue on the top of the stack. */
static void
gen_address_of (struct axs_value *value)
{
/* Special case for taking the address of a function. The ANSI
standard describes this as a special case, too, so this
arrangement is not without motivation. */
if (value->type->code () == TYPE_CODE_FUNC)
/* The value's already an rvalue on the stack, so we just need to
change the type. */
value->type = lookup_pointer_type (value->type);
else
switch (value->kind)
{
case axs_rvalue:
error (_("Operand of `&' is an rvalue, which has no address."));
case axs_lvalue_register:
error (_("Operand of `&' is in a register, and has no address."));
case axs_lvalue_memory:
value->kind = axs_rvalue;
value->type = lookup_pointer_type (value->type);
break;
}
}
/* Generate code to push the value of a bitfield of a structure whose
address is on the top of the stack. START and END give the
starting and one-past-ending *bit* numbers of the field within the
structure. */
static void
gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value,
struct type *type, int start, int end)
{
/* Note that ops[i] fetches 8 << i bits. */
static enum agent_op ops[]
= {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
static int num_ops = (sizeof (ops) / sizeof (ops[0]));
/* We don't want to touch any byte that the bitfield doesn't
actually occupy; we shouldn't make any accesses we're not
explicitly permitted to. We rely here on the fact that the
bytecode `ref' operators work on unaligned addresses.
It takes some fancy footwork to get the stack to work the way
we'd like. Say we're retrieving a bitfield that requires three
fetches. Initially, the stack just contains the address:
addr
For the first fetch, we duplicate the address
addr addr
then add the byte offset, do the fetch, and shift and mask as
needed, yielding a fragment of the value, properly aligned for
the final bitwise or:
addr frag1
then we swap, and repeat the process:
frag1 addr --- address on top
frag1 addr addr --- duplicate it
frag1 addr frag2 --- get second fragment
frag1 frag2 addr --- swap again
frag1 frag2 frag3 --- get third fragment
Notice that, since the third fragment is the last one, we don't
bother duplicating the address this time. Now we have all the
fragments on the stack, and we can simply `or' them together,
yielding the final value of the bitfield. */
/* The first and one-after-last bits in the field, but rounded down
and up to byte boundaries. */
int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
int bound_end = (((end + TARGET_CHAR_BIT - 1)
/ TARGET_CHAR_BIT)
* TARGET_CHAR_BIT);
/* current bit offset within the structure */
int offset;
/* The index in ops of the opcode we're considering. */
int op;
/* The number of fragments we generated in the process. Probably
equal to the number of `one' bits in bytesize, but who cares? */
int fragment_count;
/* Dereference any typedefs. */
type = check_typedef (type);
/* Can we fetch the number of bits requested at all? */
if ((end - start) > ((1 << num_ops) * 8))
internal_error (__FILE__, __LINE__,
_("gen_bitfield_ref: bitfield too wide"));
/* Note that we know here that we only need to try each opcode once.
That may not be true on machines with weird byte sizes. */
offset = bound_start;
fragment_count = 0;
for (op = num_ops - 1; op >= 0; op--)
{
/* number of bits that ops[op] would fetch */
int op_size = 8 << op;
/* The stack at this point, from bottom to top, contains zero or
more fragments, then the address. */
/* Does this fetch fit within the bitfield? */
if (offset + op_size <= bound_end)
{
/* Is this the last fragment? */
int last_frag = (offset + op_size == bound_end);
if (!last_frag)
ax_simple (ax, aop_dup); /* keep a copy of the address */
/* Add the offset. */
gen_offset (ax, offset / TARGET_CHAR_BIT);
if (ax->tracing)
{
/* Record the area of memory we're about to fetch. */
ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
}
/* Perform the fetch. */
ax_simple (ax, ops[op]);
/* Shift the bits we have to their proper position.
gen_left_shift will generate right shifts when the operand
is negative.
A big-endian field diagram to ponder:
byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
+------++------++------++------++------++------++------++------+
xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
^ ^ ^ ^
bit number 16 32 48 53
These are bit numbers as supplied by GDB. Note that the
bit numbers run from right to left once you've fetched the
value!
A little-endian field diagram to ponder:
byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
+------++------++------++------++------++------++------++------+
xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
^ ^ ^ ^ ^
bit number 48 32 16 4 0
In both cases, the most significant end is on the left
(i.e. normal numeric writing order), which means that you
don't go crazy thinking about `left' and `right' shifts.
We don't have to worry about masking yet:
- If they contain garbage off the least significant end, then we
must be looking at the low end of the field, and the right
shift will wipe them out.
- If they contain garbage off the most significant end, then we
must be looking at the most significant end of the word, and
the sign/zero extension will wipe them out.
- If we're in the interior of the word, then there is no garbage
on either end, because the ref operators zero-extend. */
if (gdbarch_byte_order (ax->gdbarch) == BFD_ENDIAN_BIG)
gen_left_shift (ax, end - (offset + op_size));
else
gen_left_shift (ax, offset - start);
if (!last_frag)
/* Bring the copy of the address up to the top. */
ax_simple (ax, aop_swap);
offset += op_size;
fragment_count++;
}
}
/* Generate enough bitwise `or' operations to combine all the
fragments we left on the stack. */
while (fragment_count-- > 1)
ax_simple (ax, aop_bit_or);
/* Sign- or zero-extend the value as appropriate. */
((type->is_unsigned () ? ax_zero_ext : ax_ext) (ax, end - start));
/* This is *not* an lvalue. Ugh. */
value->kind = axs_rvalue;
value->type = type;
}
/* Generate bytecodes for field number FIELDNO of type TYPE. OFFSET
is an accumulated offset (in bytes), will be nonzero for objects
embedded in other objects, like C++ base classes. Behavior should
generally follow value_primitive_field. */
static void
gen_primitive_field (struct agent_expr *ax, struct axs_value *value,
int offset, int fieldno, struct type *type)
{
/* Is this a bitfield? */
if (TYPE_FIELD_PACKED (type, fieldno))
gen_bitfield_ref (ax, value, type->field (fieldno).type (),
(offset * TARGET_CHAR_BIT
+ TYPE_FIELD_BITPOS (type, fieldno)),
(offset * TARGET_CHAR_BIT
+ TYPE_FIELD_BITPOS (type, fieldno)
+ TYPE_FIELD_BITSIZE (type, fieldno)));
else
{
gen_offset (ax, offset
+ TYPE_FIELD_BITPOS (type, fieldno) / TARGET_CHAR_BIT);
value->kind = axs_lvalue_memory;
value->type = type->field (fieldno).type ();
}
}
/* Search for the given field in either the given type or one of its
base classes. Return 1 if found, 0 if not. */
static int
gen_struct_ref_recursive (struct agent_expr *ax, struct axs_value *value,
const char *field, int offset, struct type *type)
{
int i, rslt;
int nbases = TYPE_N_BASECLASSES (type);
type = check_typedef (type);
for (i = type->num_fields () - 1; i >= nbases; i--)
{
const char *this_name = type->field (i).name ();
if (this_name)
{
if (strcmp (field, this_name) == 0)
{
/* Note that bytecodes for the struct's base (aka
"this") will have been generated already, which will
be unnecessary but not harmful if the static field is
being handled as a global. */
if (field_is_static (&type->field (i)))
{
gen_static_field (ax, value, type, i);
if (value->optimized_out)
error (_("static field `%s' has been "
"optimized out, cannot use"),
field);
return 1;
}
gen_primitive_field (ax, value, offset, i, type);
return 1;
}
#if 0 /* is this right? */
if (this_name[0] == '\0')
internal_error (__FILE__, __LINE__,
_("find_field: anonymous unions not supported"));
#endif
}
}
/* Now scan through base classes recursively. */
for (i = 0; i < nbases; i++)
{
struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
rslt = gen_struct_ref_recursive (ax, value, field,
offset + TYPE_BASECLASS_BITPOS (type, i)
/ TARGET_CHAR_BIT,
basetype);
if (rslt)
return 1;
}
/* Not found anywhere, flag so caller can complain. */
return 0;
}
/* Generate code to reference the member named FIELD of a structure or
union. The top of the stack, as described by VALUE, should have
type (pointer to a)* struct/union. OPERATOR_NAME is the name of
the operator being compiled, and OPERAND_NAME is the kind of thing
it operates on; we use them in error messages. */
static void
gen_struct_ref (struct agent_expr *ax, struct axs_value *value,
const char *field, const char *operator_name,
const char *operand_name)
{
struct type *type;
int found;
/* Follow pointers until we reach a non-pointer. These aren't the C
semantics, but they're what the normal GDB evaluator does, so we
should at least be consistent. */
while (value->type->is_pointer_or_reference ())
{
require_rvalue (ax, value);
gen_deref (value);
}
type = check_typedef (value->type);
/* This must yield a structure or a union. */
if (type->code () != TYPE_CODE_STRUCT
&& type->code () != TYPE_CODE_UNION)
error (_("The left operand of `%s' is not a %s."),
operator_name, operand_name);
/* And it must be in memory; we don't deal with structure rvalues,
or structures living in registers. */
if (value->kind != axs_lvalue_memory)
error (_("Structure does not live in memory."));
/* Search through fields and base classes recursively. */
found = gen_struct_ref_recursive (ax, value, field, 0, type);
if (!found)
error (_("Couldn't find member named `%s' in struct/union/class `%s'"),
field, type->name ());
}
static int
gen_namespace_elt (struct agent_expr *ax, struct axs_value *value,
const struct type *curtype, const char *name);
static int
gen_maybe_namespace_elt (struct agent_expr *ax, struct axs_value *value,
const struct type *curtype, const char *name);
static void
gen_static_field (struct agent_expr *ax, struct axs_value *value,
struct type *type, int fieldno)
{
if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
{
ax_const_l (ax, TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
value->kind = axs_lvalue_memory;
value->type = type->field (fieldno).type ();
value->optimized_out = 0;
}
else
{
const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0).symbol;
if (sym)
{
gen_var_ref (ax, value, sym);
/* Don't error if the value was optimized out, we may be
scanning all static fields and just want to pass over this
and continue with the rest. */
}
else
{
/* Silently assume this was optimized out; class printing
will let the user know why the data is missing. */
value->optimized_out = 1;
}
}
}
static int
gen_struct_elt_for_reference (struct agent_expr *ax, struct axs_value *value,
struct type *type, const char *fieldname)
{
struct type *t = type;
int i;
if (t->code () != TYPE_CODE_STRUCT
&& t->code () != TYPE_CODE_UNION)
internal_error (__FILE__, __LINE__,
_("non-aggregate type to gen_struct_elt_for_reference"));
for (i = t->num_fields () - 1; i >= TYPE_N_BASECLASSES (t); i--)
{
const char *t_field_name = t->field (i).name ();
if (t_field_name && strcmp (t_field_name, fieldname) == 0)
{
if (field_is_static (&t->field (i)))
{
gen_static_field (ax, value, t, i);
if (value->optimized_out)
error (_("static field `%s' has been "
"optimized out, cannot use"),
fieldname);
return 1;
}
if (TYPE_FIELD_PACKED (t, i))
error (_("pointers to bitfield members not allowed"));
/* FIXME we need a way to do "want_address" equivalent */
error (_("Cannot reference non-static field \"%s\""), fieldname);
}
}
/* FIXME add other scoped-reference cases here */
/* Do a last-ditch lookup. */
return gen_maybe_namespace_elt (ax, value, type, fieldname);
}
/* C++: Return the member NAME of the namespace given by the type
CURTYPE. */
static int
gen_namespace_elt (struct agent_expr *ax, struct axs_value *value,
const struct type *curtype, const char *name)
{
int found = gen_maybe_namespace_elt (ax, value, curtype, name);
if (!found)
error (_("No symbol \"%s\" in namespace \"%s\"."),
name, curtype->name ());
return found;
}
/* A helper function used by value_namespace_elt and
value_struct_elt_for_reference. It looks up NAME inside the
context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
is a class and NAME refers to a type in CURTYPE itself (as opposed
to, say, some base class of CURTYPE). */
static int
gen_maybe_namespace_elt (struct agent_expr *ax, struct axs_value *value,
const struct type *curtype, const char *name)
{
const char *namespace_name = curtype->name ();
struct block_symbol sym;
sym = cp_lookup_symbol_namespace (namespace_name, name,
block_for_pc (ax->scope),
VAR_DOMAIN);
if (sym.symbol == NULL)
return 0;
gen_var_ref (ax, value, sym.symbol);
if (value->optimized_out)
error (_("`%s' has been optimized out, cannot use"),
sym.symbol->print_name ());
return 1;
}
static int
gen_aggregate_elt_ref (struct agent_expr *ax, struct axs_value *value,
struct type *type, const char *field)
{
switch (type->code ())
{
case TYPE_CODE_STRUCT:
case TYPE_CODE_UNION:
return gen_struct_elt_for_reference (ax, value, type, field);
break;
case TYPE_CODE_NAMESPACE:
return gen_namespace_elt (ax, value, type, field);
break;
default:
internal_error (__FILE__, __LINE__,
_("non-aggregate type in gen_aggregate_elt_ref"));
}
return 0;
}
namespace expr
{
void
operation::generate_ax (struct expression *exp,
struct agent_expr *ax,
struct axs_value *value,
struct type *cast_type)
{
if (constant_p ())
{
struct value *v = evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
ax_const_l (ax, value_as_long (v));
value->kind = axs_rvalue;
value->type = check_typedef (value_type (v));
}
else
{
do_generate_ax (exp, ax, value, cast_type);
if (cast_type != nullptr)
gen_cast (ax, value, cast_type);
}
}
void
scope_operation::do_generate_ax (struct expression *exp,
struct agent_expr *ax,
struct axs_value *value,
struct type *cast_type)
{
struct type *type = std::get<0> (m_storage);
const std::string &name = std::get<1> (m_storage);
int found = gen_aggregate_elt_ref (ax, value, type, name.c_str ());
if (!found)
error (_("There is no field named %s"), name.c_str ());
}
void
long_const_operation::do_generate_ax (struct expression *exp,
struct agent_expr *ax,
struct axs_value *value,
struct type *cast_type)
{
gen_int_literal (ax, value, std::get<1> (m_storage),
std::get<0> (m_storage));
}
void
var_msym_value_operation::do_generate_ax (struct expression *exp,
struct agent_expr *ax,
struct axs_value *value,
struct type *cast_type)
{
const bound_minimal_symbol &b = std::get<0> (m_storage);
gen_msym_var_ref (ax, value, b.minsym, b.objfile);
if (value->type->code () == TYPE_CODE_ERROR)
{
if (cast_type == nullptr)
error_unknown_type (b.minsym->linkage_name ());
value->type = cast_type;
}
}
void
register_operation::do_generate_ax (struct expression *exp,
struct agent_expr *ax,
struct axs_value *value,
struct type *cast_type)
{
const char *name = std::get<0> (m_storage).c_str ();
int len = std::get<0> (m_storage).size ();
int reg;
reg = user_reg_map_name_to_regnum (ax->gdbarch, name, len);
if (reg == -1)
internal_error (__FILE__, __LINE__,
_("Register $%s not available"), name);
/* No support for tracing user registers yet. */
if (reg >= gdbarch_num_cooked_regs (ax->gdbarch))
error (_("'%s' is a user-register; "
"GDB cannot yet trace user-register contents."),
name);
value->kind = axs_lvalue_register;
value->u.reg = reg;
value->type = register_type (ax->gdbarch, reg);
}
void
internalvar_operation::do_generate_ax (struct expression *exp,
struct agent_expr *ax,
struct axs_value *value,
struct type *cast_type)
{
struct internalvar *var = std::get<0> (m_storage);
const char *name = internalvar_name (var);
struct trace_state_variable *tsv;
tsv = find_trace_state_variable (name);
if (tsv)
{
ax_tsv (ax, aop_getv, tsv->number);
if (ax->tracing)
ax_tsv (ax, aop_tracev, tsv->number);
/* Trace state variables are always 64-bit integers. */
value->kind = axs_rvalue;
value->type = builtin_type (ax->gdbarch)->builtin_long_long;
}
else if (! compile_internalvar_to_ax (var, ax, value))
error (_("$%s is not a trace state variable; GDB agent "
"expressions cannot use convenience variables."), name);
}
void
ternop_cond_operation::do_generate_ax (struct expression *exp,
struct agent_expr *ax,
struct axs_value *value,
struct type *cast_type)
{
struct axs_value value1, value2, value3;
int if1, end;
std::get<0> (m_storage)->generate_ax (exp, ax, &value1);
gen_usual_unary (ax, &value1);
/* For (A ? B : C), it's easiest to generate subexpression
bytecodes in order, but if_goto jumps on true, so we invert
the sense of A. Then we can do B by dropping through, and
jump to do C. */
gen_logical_not (ax, &value1, builtin_type (ax->gdbarch)->builtin_int);
if1 = ax_goto (ax, aop_if_goto);
std::get<1> (m_storage)->generate_ax (exp, ax, &value2);
gen_usual_unary (ax, &value2);
end = ax_goto (ax, aop_goto);
ax_label (ax, if1, ax->len);
std::get<2> (m_storage)->generate_ax (exp, ax, &value3);
gen_usual_unary (ax, &value3);
ax_label (ax, end, ax->len);
/* This is arbitrary - what if B and C are incompatible types? */
value->type = value2.type;
value->kind = value2.kind;
}
/* Generate code for GDB's magical `repeat' operator.
LVALUE @ INT creates an array INT elements long, and whose elements
have the same type as LVALUE, located in memory so that LVALUE is
its first element. For example, argv[0]@argc gives you the array
of command-line arguments.
Unfortunately, because we have to know the types before we actually
have a value for the expression, we can't implement this perfectly
without changing the type system, having values that occupy two
stack slots, doing weird things with sizeof, etc. So we require
the right operand to be a constant expression. */
void
repeat_operation::do_generate_ax (struct expression *exp,
struct agent_expr *ax,
struct axs_value *value,
struct type *cast_type)
{
struct axs_value value1;
/* We don't want to turn this into an rvalue, so no conversions
here. */
std::get<0> (m_storage)->generate_ax (exp, ax, &value1);
if (value1.kind != axs_lvalue_memory)
error (_("Left operand of `@' must be an object in memory."));
/* Evaluate the length; it had better be a constant. */
if (!std::get<1> (m_storage)->constant_p ())
error (_("Right operand of `@' must be a "
"constant, in agent expressions."));
struct value *v
= std::get<1> (m_storage)->evaluate (nullptr, exp,
EVAL_AVOID_SIDE_EFFECTS);
if (value_type (v)->code () != TYPE_CODE_INT)
error (_("Right operand of `@' must be an integer."));
int length = value_as_long (v);
if (length <= 0)
error (_("Right operand of `@' must be positive."));
/* The top of the stack is already the address of the object, so
all we need to do is frob the type of the lvalue. */
/* FIXME-type-allocation: need a way to free this type when we are
done with it. */
struct type *array
= lookup_array_range_type (value1.type, 0, length - 1);
value->kind = axs_lvalue_memory;
value->type = array;
}
void
comma_operation::do_generate_ax (struct expression *exp,
struct agent_expr *ax,
struct axs_value *value,
struct type *cast_type)
{
/* Note that we need to be a little subtle about generating code
for comma. In C, we can do some optimizations here because
we know the left operand is only being evaluated for effect.
However, if the tracing kludge is in effect, then we always
need to evaluate the left hand side fully, so that all the
variables it mentions get traced. */
struct axs_value value1;
std::get<0> (m_storage)->generate_ax (exp, ax, &value1);
/* Don't just dispose of the left operand. We might be tracing,
in which case we want to emit code to trace it if it's an
lvalue. */
gen_traced_pop (ax, &value1);
std::get<1> (m_storage)->generate_ax (exp, ax, value);
/* It's the consumer's responsibility to trace the right operand. */
}
void
unop_sizeof_operation::do_generate_ax (struct expression *exp,
struct agent_expr *ax,
struct axs_value *value,
struct type *cast_type)
{
/* We don't care about the value of the operand expression; we only
care about its type. However, in the current arrangement, the
only way to find an expression's type is to generate code for it.
So we generate code for the operand, and then throw it away,
replacing it with code that simply pushes its size. */
int start = ax->len;
std::get<0> (m_storage)->generate_ax (exp, ax, value);
/* Throw away the code we just generated. */
ax->len = start;
ax_const_l (ax, TYPE_LENGTH (value->type));
value->kind = axs_rvalue;
value->type = builtin_type (ax->gdbarch)->builtin_int;
}
void
unop_cast_operation::do_generate_ax (struct expression *exp,
struct agent_expr *ax,
struct axs_value *value,
struct type *cast_type)
{
std::get<0> (m_storage)->generate_ax (exp, ax, value,
std::get<1> (m_storage));
}
void
unop_memval_operation::do_generate_ax (struct expression *exp,
struct agent_expr *ax,
struct axs_value *value,
struct type *cast_type)
{
std::get<0> (m_storage)->generate_ax (exp, ax, value);
/* If we have an axs_rvalue or an axs_lvalue_memory, then we
already have the right value on the stack. For
axs_lvalue_register, we must convert. */
if (value->kind == axs_lvalue_register)
require_rvalue (ax, value);
value->type = std::get<1> (m_storage);
value->kind = axs_lvalue_memory;
}
void
unop_memval_type_operation::do_generate_ax (struct expression *exp,
struct agent_expr *ax,
struct axs_value *value,
struct type *cast_type)
{
struct value *val
= std::get<0> (m_storage)->evaluate (nullptr, exp,
EVAL_AVOID_SIDE_EFFECTS);
struct type *type = value_type (val);
std::get<1> (m_storage)->generate_ax (exp, ax, value);
/* If we have an axs_rvalue or an axs_lvalue_memory, then we
already have the right value on the stack. For
axs_lvalue_register, we must convert. */
if (value->kind == axs_lvalue_register)
require_rvalue (ax, value);
value->type = type;
value->kind = axs_lvalue_memory;
}
void
op_this_operation::do_generate_ax (struct expression *exp,
struct agent_expr *ax,
struct axs_value *value,
struct type *cast_type)
{
struct symbol *sym, *func;
const struct block *b;
const struct language_defn *lang;
b = block_for_pc (ax->scope);
func = block_linkage_function (b);
lang = language_def (func->language ());
sym = lookup_language_this (lang, b).symbol;
if (!sym)
error (_("no `%s' found"), lang->name_of_this ());
gen_var_ref (ax, value, sym);
if (value->optimized_out)
error (_("`%s' has been optimized out, cannot use"),
sym->print_name ());
}
void
assign_operation::do_generate_ax (struct expression *exp,
struct agent_expr *ax,
struct axs_value *value,
struct type *cast_type)
{
operation *subop = std::get<0> (m_storage).get ();
if (subop->opcode () != OP_INTERNALVAR)
error (_("May only assign to trace state variables"));
internalvar_operation *ivarop
= dynamic_cast<internalvar_operation *> (subop);
gdb_assert (ivarop != nullptr);
const char *name = internalvar_name (ivarop->get_internalvar ());
struct trace_state_variable *tsv;
std::get<1> (m_storage)->generate_ax (exp, ax, value);
tsv = find_trace_state_variable (name);
if (tsv)
{
ax_tsv (ax, aop_setv, tsv->number);
if (ax->tracing)
ax_tsv (ax, aop_tracev, tsv->number);
}
else
error (_("$%s is not a trace state variable, "
"may not assign to it"), name);
}
void
assign_modify_operation::do_generate_ax (struct expression *exp,
struct agent_expr *ax,
struct axs_value *value,
struct type *cast_type)
{
operation *subop = std::get<1> (m_storage).get ();
if (subop->opcode () != OP_INTERNALVAR)
error (_("May only assign to trace state variables"));
internalvar_operation *ivarop
= dynamic_cast<internalvar_operation *> (subop);
gdb_assert (ivarop != nullptr);
const char *name = internalvar_name (ivarop->get_internalvar ());
struct trace_state_variable *tsv;
tsv = find_trace_state_variable (name);
if (tsv)
{
/* The tsv will be the left half of the binary operation. */
ax_tsv (ax, aop_getv, tsv->number);
if (ax->tracing)
ax_tsv (ax, aop_tracev, tsv->number);
/* Trace state variables are always 64-bit integers. */
struct axs_value value1, value2;
value1.kind = axs_rvalue;
value1.type = builtin_type (ax->gdbarch)->builtin_long_long;
/* Now do right half of expression. */
std::get<2> (m_storage)->generate_ax (exp, ax, &value2);
gen_expr_binop_rest (exp, std::get<0> (m_storage), ax,
value, &value1, &value2);
/* We have a result of the binary op, set the tsv. */
ax_tsv (ax, aop_setv, tsv->number);
if (ax->tracing)
ax_tsv (ax, aop_tracev, tsv->number);
}
else
error (_("$%s is not a trace state variable, "
"may not assign to it"), name);
}
void
unop_cast_type_operation::do_generate_ax (struct expression *exp,
struct agent_expr *ax,
struct axs_value *value,
struct type *cast_type)
{
struct value *val
= std::get<0> (m_storage)->evaluate (nullptr, exp,
EVAL_AVOID_SIDE_EFFECTS);
std::get<1> (m_storage)->generate_ax (exp, ax, value, value_type (val));
}
void
var_value_operation::do_generate_ax (struct expression *exp,
struct agent_expr *ax,
struct axs_value *value,
struct type *cast_type)
{
gen_var_ref (ax, value, std::get<0> (m_storage).symbol);
if (value->optimized_out)
error (_("`%s' has been optimized out, cannot use"),
std::get<0> (m_storage).symbol->print_name ());
if (value->type->code () == TYPE_CODE_ERROR)
{
if (cast_type == nullptr)
error_unknown_type (std::get<0> (m_storage).symbol->print_name ());
value->type = cast_type;
}
}
void
logical_and_operation::do_generate_ax (struct expression *exp,
struct agent_expr *ax,
struct axs_value *value,
struct type *cast_type)
{
struct axs_value value1, value2;
int if1, go1, if2, go2, end;
/* Generate the obvious sequence of tests and jumps. */
std::get<0> (m_storage)->generate_ax (exp, ax, &value1);
gen_usual_unary (ax, &value1);
if1 = ax_goto (ax, aop_if_goto);
go1 = ax_goto (ax, aop_goto);
ax_label (ax, if1, ax->len);
std::get<1> (m_storage)->generate_ax (exp, ax, &value2);
gen_usual_unary (ax, &value2);
if2 = ax_goto (ax, aop_if_goto);
go2 = ax_goto (ax, aop_goto);
ax_label (ax, if2, ax->len);
ax_const_l (ax, 1);
end = ax_goto (ax, aop_goto);
ax_label (ax, go1, ax->len);
ax_label (ax, go2, ax->len);
ax_const_l (ax, 0);
ax_label (ax, end, ax->len);
value->kind = axs_rvalue;
value->type = builtin_type (ax->gdbarch)->builtin_int;
}
void
logical_or_operation::do_generate_ax (struct expression *exp,
struct agent_expr *ax,
struct axs_value *value,
struct type *cast_type)
{
struct axs_value value1, value2;
int if1, if2, end;
/* Generate the obvious sequence of tests and jumps. */
std::get<0> (m_storage)->generate_ax (exp, ax, &value1);
gen_usual_unary (ax, &value1);
if1 = ax_goto (ax, aop_if_goto);
std::get<1> (m_storage)->generate_ax (exp, ax, &value2);
gen_usual_unary (ax, &value2);
if2 = ax_goto (ax, aop_if_goto);
ax_const_l (ax, 0);
end = ax_goto (ax, aop_goto);
ax_label (ax, if1, ax->len);
ax_label (ax, if2, ax->len);
ax_const_l (ax, 1);
ax_label (ax, end, ax->len);
value->kind = axs_rvalue;
value->type = builtin_type (ax->gdbarch)->builtin_int;
}
}
/* This handles the middle-to-right-side of code generation for binary
expressions, which is shared between regular binary operations and
assign-modify (+= and friends) expressions. */
static void
gen_expr_binop_rest (struct expression *exp,
enum exp_opcode op,
struct agent_expr *ax, struct axs_value *value,
struct axs_value *value1, struct axs_value *value2)
{
struct type *int_type = builtin_type (ax->gdbarch)->builtin_int;
gen_usual_unary (ax, value2);
gen_usual_arithmetic (ax, value1, value2);
switch (op)
{
case BINOP_ADD:
if (value1->type->code () == TYPE_CODE_INT
&& value2->type->is_pointer_or_reference ())
{
/* Swap the values and proceed normally. */
ax_simple (ax, aop_swap);
gen_ptradd (ax, value, value2, value1);
}
else if (value1->type->is_pointer_or_reference ()
&& value2->type->code () == TYPE_CODE_INT)
gen_ptradd (ax, value, value1, value2);
else
gen_binop (ax, value, value1, value2,
aop_add, aop_add, 1, "addition");
break;
case BINOP_SUB:
if (value1->type->is_pointer_or_reference ()
&& value2->type->code () == TYPE_CODE_INT)
gen_ptrsub (ax,value, value1, value2);
else if (value1->type->is_pointer_or_reference ()
&& value2->type->is_pointer_or_reference ())
/* FIXME --- result type should be ptrdiff_t */
gen_ptrdiff (ax, value, value1, value2,
builtin_type (ax->gdbarch)->builtin_long);
else
gen_binop (ax, value, value1, value2,
aop_sub, aop_sub, 1, "subtraction");
break;
case BINOP_MUL:
gen_binop (ax, value, value1, value2,
aop_mul, aop_mul, 1, "multiplication");
break;
case BINOP_DIV:
gen_binop (ax, value, value1, value2,
aop_div_signed, aop_div_unsigned, 1, "division");
break;
case BINOP_REM:
gen_binop (ax, value, value1, value2,
aop_rem_signed, aop_rem_unsigned, 1, "remainder");
break;
case BINOP_LSH:
gen_binop (ax, value, value1, value2,
aop_lsh, aop_lsh, 1, "left shift");
break;
case BINOP_RSH:
gen_binop (ax, value, value1, value2,
aop_rsh_signed, aop_rsh_unsigned, 1, "right shift");
break;
case BINOP_SUBSCRIPT:
{
struct type *type;
if (binop_types_user_defined_p (op, value1->type, value2->type))
{
error (_("cannot subscript requested type: "
"cannot call user defined functions"));
}
else
{
/* If the user attempts to subscript something that is not
an array or pointer type (like a plain int variable for
example), then report this as an error. */
type = check_typedef (value1->type);
if (type->code () != TYPE_CODE_ARRAY
&& type->code () != TYPE_CODE_PTR)
{
if (type->name ())
error (_("cannot subscript something of type `%s'"),
type->name ());
else
error (_("cannot subscript requested type"));
}
}
if (!is_integral_type (value2->type))
error (_("Argument to arithmetic operation "
"not a number or boolean."));
gen_ptradd (ax, value, value1, value2);
gen_deref (value);
break;
}
case BINOP_BITWISE_AND:
gen_binop (ax, value, value1, value2,
aop_bit_and, aop_bit_and, 0, "bitwise and");
break;
case BINOP_BITWISE_IOR:
gen_binop (ax, value, value1, value2,
aop_bit_or, aop_bit_or, 0, "bitwise or");
break;
case BINOP_BITWISE_XOR:
gen_binop (ax, value, value1, value2,
aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
break;
case BINOP_EQUAL:
gen_equal (ax, value, value1, value2, int_type);
break;
case BINOP_NOTEQUAL:
gen_equal (ax, value, value1, value2, int_type);
gen_logical_not (ax, value, int_type);
break;
case BINOP_LESS:
gen_less (ax, value, value1, value2, int_type);
break;
case BINOP_GTR:
ax_simple (ax, aop_swap);
gen_less (ax, value, value1, value2, int_type);
break;
case BINOP_LEQ:
ax_simple (ax, aop_swap);
gen_less (ax, value, value1, value2, int_type);
gen_logical_not (ax, value, int_type);
break;
case BINOP_GEQ:
gen_less (ax, value, value1, value2, int_type);
gen_logical_not (ax, value, int_type);
break;
default:
/* We should only list operators in the outer case statement
that we actually handle in the inner case statement. */
internal_error (__FILE__, __LINE__,
_("gen_expr: op case sets don't match"));
}
}
/* A helper function that emits a binop based on two operations. */
void
gen_expr_binop (struct expression *exp,
enum exp_opcode op,
expr::operation *lhs, expr::operation *rhs,
struct agent_expr *ax, struct axs_value *value)
{
struct axs_value value1, value2;
lhs->generate_ax (exp, ax, &value1);
gen_usual_unary (ax, &value1);
rhs->generate_ax (exp, ax, &value2);
gen_expr_binop_rest (exp, op, ax, value, &value1, &value2);
}
/* A helper function that emits a structop based on an operation and a
member name. */
void
gen_expr_structop (struct expression *exp,
enum exp_opcode op,
expr::operation *lhs,
const char *name,
struct agent_expr *ax, struct axs_value *value)
{
lhs->generate_ax (exp, ax, value);
if (op == STRUCTOP_STRUCT)
gen_struct_ref (ax, value, name, ".", "structure or union");
else if (op == STRUCTOP_PTR)
gen_struct_ref (ax, value, name, "->",
"pointer to a structure or union");
else
/* If this `if' chain doesn't handle it, then the case list
shouldn't mention it, and we shouldn't be here. */
internal_error (__FILE__, __LINE__,
_("gen_expr: unhandled struct case"));
}
/* A helper function that emits a unary operation. */
void
gen_expr_unop (struct expression *exp,
enum exp_opcode op,
expr::operation *lhs,
struct agent_expr *ax, struct axs_value *value)
{
struct axs_value value1, value2;
switch (op)
{
case UNOP_NEG:
gen_int_literal (ax, &value1, 0,
builtin_type (ax->gdbarch)->builtin_int);
gen_usual_unary (ax, &value1); /* shouldn't do much */
lhs->generate_ax (exp, ax, &value2);
gen_usual_unary (ax, &value2);
gen_usual_arithmetic (ax, &value1, &value2);
gen_binop (ax, value, &value1, &value2, aop_sub, aop_sub, 1, "negation");
break;
case UNOP_PLUS:
/* + FOO is equivalent to 0 + FOO, which can be optimized. */
lhs->generate_ax (exp, ax, value);
gen_usual_unary (ax, value);
break;
case UNOP_LOGICAL_NOT:
lhs->generate_ax (exp, ax, value);
gen_usual_unary (ax, value);
gen_logical_not (ax, value, builtin_type (ax->gdbarch)->builtin_int);
break;
case UNOP_COMPLEMENT:
lhs->generate_ax (exp, ax, value);
gen_usual_unary (ax, value);
gen_integral_promotions (ax, value);
gen_complement (ax, value);
break;
case UNOP_IND:
lhs->generate_ax (exp, ax, value);
gen_usual_unary (ax, value);
if (!value->type->is_pointer_or_reference ())
error (_("Argument of unary `*' is not a pointer."));
gen_deref (value);
break;
case UNOP_ADDR:
lhs->generate_ax (exp, ax, value);
gen_address_of (value);
break;
default:
gdb_assert_not_reached ("invalid case in gen_expr_unop");
}
}
/* Given a single variable and a scope, generate bytecodes to trace
its value. This is for use in situations where we have only a
variable's name, and no parsed expression; for instance, when the
name comes from a list of local variables of a function. */
agent_expr_up
gen_trace_for_var (CORE_ADDR scope, struct gdbarch *gdbarch,
struct symbol *var, int trace_string)
{
agent_expr_up ax (new agent_expr (gdbarch, scope));
struct axs_value value;
ax->tracing = 1;
ax->trace_string = trace_string;
gen_var_ref (ax.get (), &value, var);
/* If there is no actual variable to trace, flag it by returning
an empty agent expression. */
if (value.optimized_out)
return agent_expr_up ();
/* Make sure we record the final object, and get rid of it. */
gen_traced_pop (ax.get (), &value);
/* Oh, and terminate. */
ax_simple (ax.get (), aop_end);
return ax;
}
/* Generating bytecode from GDB expressions: driver */
/* Given a GDB expression EXPR, return bytecode to trace its value.
The result will use the `trace' and `trace_quick' bytecodes to
record the value of all memory touched by the expression. The
caller can then use the ax_reqs function to discover which
registers it relies upon. */
agent_expr_up
gen_trace_for_expr (CORE_ADDR scope, struct expression *expr,
int trace_string)
{
agent_expr_up ax (new agent_expr (expr->gdbarch, scope));
struct axs_value value;
ax->tracing = 1;
ax->trace_string = trace_string;
value.optimized_out = 0;
expr->op->generate_ax (expr, ax.get (), &value);
/* Make sure we record the final object, and get rid of it. */
gen_traced_pop (ax.get (), &value);
/* Oh, and terminate. */
ax_simple (ax.get (), aop_end);
return ax;
}
/* Given a GDB expression EXPR, return a bytecode sequence that will
evaluate and return a result. The bytecodes will do a direct
evaluation, using the current data on the target, rather than
recording blocks of memory and registers for later use, as
gen_trace_for_expr does. The generated bytecode sequence leaves
the result of expression evaluation on the top of the stack. */
agent_expr_up
gen_eval_for_expr (CORE_ADDR scope, struct expression *expr)
{
agent_expr_up ax (new agent_expr (expr->gdbarch, scope));
struct axs_value value;
ax->tracing = 0;
value.optimized_out = 0;
expr->op->generate_ax (expr, ax.get (), &value);
require_rvalue (ax.get (), &value);
/* Oh, and terminate. */
ax_simple (ax.get (), aop_end);
return ax;
}
agent_expr_up
gen_trace_for_return_address (CORE_ADDR scope, struct gdbarch *gdbarch,
int trace_string)
{
agent_expr_up ax (new agent_expr (gdbarch, scope));
struct axs_value value;
ax->tracing = 1;
ax->trace_string = trace_string;
gdbarch_gen_return_address (gdbarch, ax.get (), &value, scope);
/* Make sure we record the final object, and get rid of it. */
gen_traced_pop (ax.get (), &value);
/* Oh, and terminate. */
ax_simple (ax.get (), aop_end);
return ax;
}
/* Given a collection of printf-style arguments, generate code to
evaluate the arguments and pass everything to a special
bytecode. */
agent_expr_up
gen_printf (CORE_ADDR scope, struct gdbarch *gdbarch,
CORE_ADDR function, LONGEST channel,
const char *format, int fmtlen,
int nargs, struct expression **exprs)
{
agent_expr_up ax (new agent_expr (gdbarch, scope));
struct axs_value value;
int tem;
/* We're computing values, not doing side effects. */
ax->tracing = 0;
/* Evaluate and push the args on the stack in reverse order,
for simplicity of collecting them on the target side. */
for (tem = nargs - 1; tem >= 0; --tem)
{
value.optimized_out = 0;
exprs[tem]->op->generate_ax (exprs[tem], ax.get (), &value);
require_rvalue (ax.get (), &value);
}
/* Push function and channel. */
ax_const_l (ax.get (), channel);
ax_const_l (ax.get (), function);
/* Issue the printf bytecode proper. */
ax_simple (ax.get (), aop_printf);
ax_raw_byte (ax.get (), nargs);
ax_string (ax.get (), format, fmtlen);
/* And terminate. */
ax_simple (ax.get (), aop_end);
return ax;
}
static void
agent_eval_command_one (const char *exp, int eval, CORE_ADDR pc)
{
const char *arg;
int trace_string = 0;
if (!eval)
{
if (*exp == '/')
exp = decode_agent_options (exp, &trace_string);
}
agent_expr_up agent;
arg = exp;
if (!eval && strcmp (arg, "$_ret") == 0)
{
agent = gen_trace_for_return_address (pc, get_current_arch (),
trace_string);
}
else
{
expression_up expr = parse_exp_1 (&arg, pc, block_for_pc (pc), 0);
if (eval)
{
gdb_assert (trace_string == 0);
agent = gen_eval_for_expr (pc, expr.get ());
}
else
agent = gen_trace_for_expr (pc, expr.get (), trace_string);
}
ax_reqs (agent.get ());
ax_print (gdb_stdout, agent.get ());
/* It would be nice to call ax_reqs here to gather some general info
about the expression, and then print out the result. */
dont_repeat ();
}
static void
agent_command_1 (const char *exp, int eval)
{
/* We don't deal with overlay debugging at the moment. We need to
think more carefully about this. If you copy this code into
another command, change the error message; the user shouldn't
have to know anything about agent expressions. */
if (overlay_debugging)
error (_("GDB can't do agent expression translation with overlays."));
if (exp == 0)
error_no_arg (_("expression to translate"));
if (check_for_argument (&exp, "-at", sizeof ("-at") - 1))
{
struct linespec_result canonical;
event_location_up location
= new_linespec_location (&exp, symbol_name_match_type::WILD);
decode_line_full (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
NULL, 0, &canonical,
NULL, NULL);
exp = skip_spaces (exp);
if (exp[0] == ',')
{
exp++;
exp = skip_spaces (exp);
}
for (const auto &lsal : canonical.lsals)
for (const auto &sal : lsal.sals)
agent_eval_command_one (exp, eval, sal.pc);
}
else
agent_eval_command_one (exp, eval, get_frame_pc (get_current_frame ()));
dont_repeat ();
}
static void
agent_command (const char *exp, int from_tty)
{
agent_command_1 (exp, 0);
}
/* Parse the given expression, compile it into an agent expression
that does direct evaluation, and display the resulting
expression. */
static void
agent_eval_command (const char *exp, int from_tty)
{
agent_command_1 (exp, 1);
}
/* Parse the given expression, compile it into an agent expression
that does a printf, and display the resulting expression. */
static void
maint_agent_printf_command (const char *cmdrest, int from_tty)
{
struct frame_info *fi = get_current_frame (); /* need current scope */
const char *format_start, *format_end;
/* We don't deal with overlay debugging at the moment. We need to
think more carefully about this. If you copy this code into
another command, change the error message; the user shouldn't
have to know anything about agent expressions. */
if (overlay_debugging)
error (_("GDB can't do agent expression translation with overlays."));
if (cmdrest == 0)
error_no_arg (_("expression to translate"));
cmdrest = skip_spaces (cmdrest);
if (*cmdrest++ != '"')
error (_("Must start with a format string."));
format_start = cmdrest;
format_pieces fpieces (&cmdrest);
format_end = cmdrest;
if (*cmdrest++ != '"')
error (_("Bad format string, non-terminated '\"'."));
cmdrest = skip_spaces (cmdrest);
if (*cmdrest != ',' && *cmdrest != 0)
error (_("Invalid argument syntax"));
if (*cmdrest == ',')
cmdrest++;
cmdrest = skip_spaces (cmdrest);
std::vector<struct expression *> argvec;
while (*cmdrest != '\0')
{
const char *cmd1;
cmd1 = cmdrest;
expression_up expr = parse_exp_1 (&cmd1, 0, (struct block *) 0, 1);
argvec.push_back (expr.release ());
cmdrest = cmd1;
if (*cmdrest == ',')
++cmdrest;
/* else complain? */
}
agent_expr_up agent = gen_printf (get_frame_pc (fi), get_current_arch (),
0, 0,
format_start, format_end - format_start,
argvec.size (), argvec.data ());
ax_reqs (agent.get ());
ax_print (gdb_stdout, agent.get ());
/* It would be nice to call ax_reqs here to gather some general info
about the expression, and then print out the result. */
dont_repeat ();
}
/* Initialization code. */
void _initialize_ax_gdb ();
void
_initialize_ax_gdb ()
{
add_cmd ("agent", class_maintenance, agent_command,
_("\
Translate an expression into remote agent bytecode for tracing.\n\
Usage: maint agent [-at LOCATION,] EXPRESSION\n\
If -at is given, generate remote agent bytecode for this location.\n\
If not, generate remote agent bytecode for current frame pc address."),
&maintenancelist);
add_cmd ("agent-eval", class_maintenance, agent_eval_command,
_("\
Translate an expression into remote agent bytecode for evaluation.\n\
Usage: maint agent-eval [-at LOCATION,] EXPRESSION\n\
If -at is given, generate remote agent bytecode for this location.\n\
If not, generate remote agent bytecode for current frame pc address."),
&maintenancelist);
add_cmd ("agent-printf", class_maintenance, maint_agent_printf_command,
_("Translate an expression into remote "
"agent bytecode for evaluation and display the bytecodes."),
&maintenancelist);
}