mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-18 12:24:38 +08:00
32d0add0a6
gdb/ChangeLog: Update year range in copyright notice of all files.
3315 lines
100 KiB
C
3315 lines
100 KiB
C
/* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
|
|
|
|
Copyright (C) 2003-2015 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "solib-svr4.h"
|
|
#include "symtab.h"
|
|
#include "symfile.h"
|
|
#include "objfiles.h"
|
|
#include "gdbtypes.h"
|
|
#include "gdbcore.h"
|
|
#include "value.h"
|
|
#include "dis-asm.h"
|
|
#include "inferior.h"
|
|
#include "floatformat.h"
|
|
#include "regcache.h"
|
|
#include "reggroups.h"
|
|
#include "regset.h"
|
|
|
|
#include "dummy-frame.h"
|
|
#include "dwarf2.h"
|
|
#include "dwarf2-frame.h"
|
|
#include "dwarf2loc.h"
|
|
#include "frame-base.h"
|
|
#include "frame-unwind.h"
|
|
|
|
#include "arch-utils.h"
|
|
#include "gdbarch.h"
|
|
#include "remote.h"
|
|
#include "serial.h"
|
|
|
|
#include "command.h"
|
|
#include "gdbcmd.h"
|
|
|
|
#include "xtensa-isa.h"
|
|
#include "xtensa-tdep.h"
|
|
#include "xtensa-config.h"
|
|
|
|
|
|
static unsigned int xtensa_debug_level = 0;
|
|
|
|
#define DEBUGWARN(args...) \
|
|
if (xtensa_debug_level > 0) \
|
|
fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
|
|
|
|
#define DEBUGINFO(args...) \
|
|
if (xtensa_debug_level > 1) \
|
|
fprintf_unfiltered (gdb_stdlog, "(info ) " args)
|
|
|
|
#define DEBUGTRACE(args...) \
|
|
if (xtensa_debug_level > 2) \
|
|
fprintf_unfiltered (gdb_stdlog, "(trace) " args)
|
|
|
|
#define DEBUGVERB(args...) \
|
|
if (xtensa_debug_level > 3) \
|
|
fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
|
|
|
|
|
|
/* According to the ABI, the SP must be aligned to 16-byte boundaries. */
|
|
#define SP_ALIGNMENT 16
|
|
|
|
|
|
/* On Windowed ABI, we use a6 through a11 for passing arguments
|
|
to a function called by GDB because CALL4 is used. */
|
|
#define ARGS_NUM_REGS 6
|
|
#define REGISTER_SIZE 4
|
|
|
|
|
|
/* Extract the call size from the return address or PS register. */
|
|
#define PS_CALLINC_SHIFT 16
|
|
#define PS_CALLINC_MASK 0x00030000
|
|
#define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
|
|
#define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
|
|
|
|
/* On TX, hardware can be configured without Exception Option.
|
|
There is no PS register in this case. Inside XT-GDB, let us treat
|
|
it as a virtual read-only register always holding the same value. */
|
|
#define TX_PS 0x20
|
|
|
|
/* ABI-independent macros. */
|
|
#define ARG_NOF(gdbarch) \
|
|
(gdbarch_tdep (gdbarch)->call_abi \
|
|
== CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
|
|
#define ARG_1ST(gdbarch) \
|
|
(gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
|
|
? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
|
|
: (gdbarch_tdep (gdbarch)->a0_base + 6))
|
|
|
|
/* XTENSA_IS_ENTRY tests whether the first byte of an instruction
|
|
indicates that the instruction is an ENTRY instruction. */
|
|
|
|
#define XTENSA_IS_ENTRY(gdbarch, op1) \
|
|
((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
|
|
? ((op1) == 0x6c) : ((op1) == 0x36))
|
|
|
|
#define XTENSA_ENTRY_LENGTH 3
|
|
|
|
/* windowing_enabled() returns true, if windowing is enabled.
|
|
WOE must be set to 1; EXCM to 0.
|
|
Note: We assume that EXCM is always 0 for XEA1. */
|
|
|
|
#define PS_WOE (1<<18)
|
|
#define PS_EXC (1<<4)
|
|
|
|
static int
|
|
windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
|
|
{
|
|
/* If we know CALL0 ABI is set explicitly, say it is Call0. */
|
|
if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
|
|
return 0;
|
|
|
|
return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
|
|
}
|
|
|
|
/* Convert a live A-register number to the corresponding AR-register
|
|
number. */
|
|
static int
|
|
arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
int arreg;
|
|
|
|
arreg = a_regnum - tdep->a0_base;
|
|
arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
|
|
arreg &= tdep->num_aregs - 1;
|
|
|
|
return arreg + tdep->ar_base;
|
|
}
|
|
|
|
/* Convert a live AR-register number to the corresponding A-register order
|
|
number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
|
|
static int
|
|
areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
int areg;
|
|
|
|
areg = ar_regnum - tdep->ar_base;
|
|
if (areg < 0 || areg >= tdep->num_aregs)
|
|
return -1;
|
|
areg = (areg - wb * 4) & (tdep->num_aregs - 1);
|
|
return (areg > 15) ? -1 : areg;
|
|
}
|
|
|
|
/* Read Xtensa register directly from the hardware. */
|
|
static unsigned long
|
|
xtensa_read_register (int regnum)
|
|
{
|
|
ULONGEST value;
|
|
|
|
regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
|
|
return (unsigned long) value;
|
|
}
|
|
|
|
/* Write Xtensa register directly to the hardware. */
|
|
static void
|
|
xtensa_write_register (int regnum, ULONGEST value)
|
|
{
|
|
regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
|
|
}
|
|
|
|
/* Return the window size of the previous call to the function from which we
|
|
have just returned.
|
|
|
|
This function is used to extract the return value after a called function
|
|
has returned to the caller. On Xtensa, the register that holds the return
|
|
value (from the perspective of the caller) depends on what call
|
|
instruction was used. For now, we are assuming that the call instruction
|
|
precedes the current address, so we simply analyze the call instruction.
|
|
If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
|
|
method to call the inferior function. */
|
|
|
|
static int
|
|
extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int winsize = 4;
|
|
int insn;
|
|
gdb_byte buf[4];
|
|
|
|
DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
|
|
|
|
/* Read the previous instruction (should be a call[x]{4|8|12}. */
|
|
read_memory (pc-3, buf, 3);
|
|
insn = extract_unsigned_integer (buf, 3, byte_order);
|
|
|
|
/* Decode call instruction:
|
|
Little Endian
|
|
call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
|
|
callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
|
|
Big Endian
|
|
call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
|
|
callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
|
|
|
|
if (byte_order == BFD_ENDIAN_LITTLE)
|
|
{
|
|
if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
|
|
winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
|
|
}
|
|
else
|
|
{
|
|
if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
|
|
winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
|
|
}
|
|
return winsize;
|
|
}
|
|
|
|
|
|
/* REGISTER INFORMATION */
|
|
|
|
/* Find register by name. */
|
|
static int
|
|
xtensa_find_register_by_name (struct gdbarch *gdbarch, char *name)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < gdbarch_num_regs (gdbarch)
|
|
+ gdbarch_num_pseudo_regs (gdbarch);
|
|
i++)
|
|
|
|
if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
|
|
return i;
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* Returns the name of a register. */
|
|
static const char *
|
|
xtensa_register_name (struct gdbarch *gdbarch, int regnum)
|
|
{
|
|
/* Return the name stored in the register map. */
|
|
if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
|
|
+ gdbarch_num_pseudo_regs (gdbarch))
|
|
return gdbarch_tdep (gdbarch)->regmap[regnum].name;
|
|
|
|
internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
|
|
return 0;
|
|
}
|
|
|
|
/* Return the type of a register. Create a new type, if necessary. */
|
|
|
|
static struct type *
|
|
xtensa_register_type (struct gdbarch *gdbarch, int regnum)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
/* Return signed integer for ARx and Ax registers. */
|
|
if ((regnum >= tdep->ar_base
|
|
&& regnum < tdep->ar_base + tdep->num_aregs)
|
|
|| (regnum >= tdep->a0_base
|
|
&& regnum < tdep->a0_base + 16))
|
|
return builtin_type (gdbarch)->builtin_int;
|
|
|
|
if (regnum == gdbarch_pc_regnum (gdbarch)
|
|
|| regnum == tdep->a0_base + 1)
|
|
return builtin_type (gdbarch)->builtin_data_ptr;
|
|
|
|
/* Return the stored type for all other registers. */
|
|
else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
|
|
+ gdbarch_num_pseudo_regs (gdbarch))
|
|
{
|
|
xtensa_register_t* reg = &tdep->regmap[regnum];
|
|
|
|
/* Set ctype for this register (only the first time). */
|
|
|
|
if (reg->ctype == 0)
|
|
{
|
|
struct ctype_cache *tp;
|
|
int size = reg->byte_size;
|
|
|
|
/* We always use the memory representation,
|
|
even if the register width is smaller. */
|
|
switch (size)
|
|
{
|
|
case 1:
|
|
reg->ctype = builtin_type (gdbarch)->builtin_uint8;
|
|
break;
|
|
|
|
case 2:
|
|
reg->ctype = builtin_type (gdbarch)->builtin_uint16;
|
|
break;
|
|
|
|
case 4:
|
|
reg->ctype = builtin_type (gdbarch)->builtin_uint32;
|
|
break;
|
|
|
|
case 8:
|
|
reg->ctype = builtin_type (gdbarch)->builtin_uint64;
|
|
break;
|
|
|
|
case 16:
|
|
reg->ctype = builtin_type (gdbarch)->builtin_uint128;
|
|
break;
|
|
|
|
default:
|
|
for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
|
|
if (tp->size == size)
|
|
break;
|
|
|
|
if (tp == NULL)
|
|
{
|
|
char *name = xstrprintf ("int%d", size * 8);
|
|
tp = xmalloc (sizeof (struct ctype_cache));
|
|
tp->next = tdep->type_entries;
|
|
tdep->type_entries = tp;
|
|
tp->size = size;
|
|
tp->virtual_type
|
|
= arch_integer_type (gdbarch, size * 8, 1, name);
|
|
xfree (name);
|
|
}
|
|
|
|
reg->ctype = tp->virtual_type;
|
|
}
|
|
}
|
|
return reg->ctype;
|
|
}
|
|
|
|
internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Return the 'local' register number for stubs, dwarf2, etc.
|
|
The debugging information enumerates registers starting from 0 for A0
|
|
to n for An. So, we only have to add the base number for A0. */
|
|
|
|
static int
|
|
xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
|
|
{
|
|
int i;
|
|
|
|
if (regnum >= 0 && regnum < 16)
|
|
return gdbarch_tdep (gdbarch)->a0_base + regnum;
|
|
|
|
for (i = 0;
|
|
i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
|
|
i++)
|
|
if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
|
|
return i;
|
|
|
|
internal_error (__FILE__, __LINE__,
|
|
_("invalid dwarf/stabs register number %d"), regnum);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Write the bits of a masked register to the various registers.
|
|
Only the masked areas of these registers are modified; the other
|
|
fields are untouched. The size of masked registers is always less
|
|
than or equal to 32 bits. */
|
|
|
|
static void
|
|
xtensa_register_write_masked (struct regcache *regcache,
|
|
xtensa_register_t *reg, const gdb_byte *buffer)
|
|
{
|
|
unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
|
|
const xtensa_mask_t *mask = reg->mask;
|
|
|
|
int shift = 0; /* Shift for next mask (mod 32). */
|
|
int start, size; /* Start bit and size of current mask. */
|
|
|
|
unsigned int *ptr = value;
|
|
unsigned int regval, m, mem = 0;
|
|
|
|
int bytesize = reg->byte_size;
|
|
int bitsize = bytesize * 8;
|
|
int i, r;
|
|
|
|
DEBUGTRACE ("xtensa_register_write_masked ()\n");
|
|
|
|
/* Copy the masked register to host byte-order. */
|
|
if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
|
|
for (i = 0; i < bytesize; i++)
|
|
{
|
|
mem >>= 8;
|
|
mem |= (buffer[bytesize - i - 1] << 24);
|
|
if ((i & 3) == 3)
|
|
*ptr++ = mem;
|
|
}
|
|
else
|
|
for (i = 0; i < bytesize; i++)
|
|
{
|
|
mem >>= 8;
|
|
mem |= (buffer[i] << 24);
|
|
if ((i & 3) == 3)
|
|
*ptr++ = mem;
|
|
}
|
|
|
|
/* We might have to shift the final value:
|
|
bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
|
|
bytesize & 3 == x -> shift (4-x) * 8. */
|
|
|
|
*ptr = mem >> (((0 - bytesize) & 3) * 8);
|
|
ptr = value;
|
|
mem = *ptr;
|
|
|
|
/* Write the bits to the masked areas of the other registers. */
|
|
for (i = 0; i < mask->count; i++)
|
|
{
|
|
start = mask->mask[i].bit_start;
|
|
size = mask->mask[i].bit_size;
|
|
regval = mem >> shift;
|
|
|
|
if ((shift += size) > bitsize)
|
|
error (_("size of all masks is larger than the register"));
|
|
|
|
if (shift >= 32)
|
|
{
|
|
mem = *(++ptr);
|
|
shift -= 32;
|
|
bitsize -= 32;
|
|
|
|
if (shift > 0)
|
|
regval |= mem << (size - shift);
|
|
}
|
|
|
|
/* Make sure we have a valid register. */
|
|
r = mask->mask[i].reg_num;
|
|
if (r >= 0 && size > 0)
|
|
{
|
|
/* Don't overwrite the unmasked areas. */
|
|
ULONGEST old_val;
|
|
regcache_cooked_read_unsigned (regcache, r, &old_val);
|
|
m = 0xffffffff >> (32 - size) << start;
|
|
regval <<= start;
|
|
regval = (regval & m) | (old_val & ~m);
|
|
regcache_cooked_write_unsigned (regcache, r, regval);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Read a tie state or mapped registers. Read the masked areas
|
|
of the registers and assemble them into a single value. */
|
|
|
|
static enum register_status
|
|
xtensa_register_read_masked (struct regcache *regcache,
|
|
xtensa_register_t *reg, gdb_byte *buffer)
|
|
{
|
|
unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
|
|
const xtensa_mask_t *mask = reg->mask;
|
|
|
|
int shift = 0;
|
|
int start, size;
|
|
|
|
unsigned int *ptr = value;
|
|
unsigned int regval, mem = 0;
|
|
|
|
int bytesize = reg->byte_size;
|
|
int bitsize = bytesize * 8;
|
|
int i;
|
|
|
|
DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
|
|
reg->name == 0 ? "" : reg->name);
|
|
|
|
/* Assemble the register from the masked areas of other registers. */
|
|
for (i = 0; i < mask->count; i++)
|
|
{
|
|
int r = mask->mask[i].reg_num;
|
|
if (r >= 0)
|
|
{
|
|
enum register_status status;
|
|
ULONGEST val;
|
|
|
|
status = regcache_cooked_read_unsigned (regcache, r, &val);
|
|
if (status != REG_VALID)
|
|
return status;
|
|
regval = (unsigned int) val;
|
|
}
|
|
else
|
|
regval = 0;
|
|
|
|
start = mask->mask[i].bit_start;
|
|
size = mask->mask[i].bit_size;
|
|
|
|
regval >>= start;
|
|
|
|
if (size < 32)
|
|
regval &= (0xffffffff >> (32 - size));
|
|
|
|
mem |= regval << shift;
|
|
|
|
if ((shift += size) > bitsize)
|
|
error (_("size of all masks is larger than the register"));
|
|
|
|
if (shift >= 32)
|
|
{
|
|
*ptr++ = mem;
|
|
bitsize -= 32;
|
|
shift -= 32;
|
|
|
|
if (shift == 0)
|
|
mem = 0;
|
|
else
|
|
mem = regval >> (size - shift);
|
|
}
|
|
}
|
|
|
|
if (shift > 0)
|
|
*ptr = mem;
|
|
|
|
/* Copy value to target byte order. */
|
|
ptr = value;
|
|
mem = *ptr;
|
|
|
|
if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
|
|
for (i = 0; i < bytesize; i++)
|
|
{
|
|
if ((i & 3) == 0)
|
|
mem = *ptr++;
|
|
buffer[bytesize - i - 1] = mem & 0xff;
|
|
mem >>= 8;
|
|
}
|
|
else
|
|
for (i = 0; i < bytesize; i++)
|
|
{
|
|
if ((i & 3) == 0)
|
|
mem = *ptr++;
|
|
buffer[i] = mem & 0xff;
|
|
mem >>= 8;
|
|
}
|
|
|
|
return REG_VALID;
|
|
}
|
|
|
|
|
|
/* Read pseudo registers. */
|
|
|
|
static enum register_status
|
|
xtensa_pseudo_register_read (struct gdbarch *gdbarch,
|
|
struct regcache *regcache,
|
|
int regnum,
|
|
gdb_byte *buffer)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
|
|
DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
|
|
regnum, xtensa_register_name (gdbarch, regnum));
|
|
|
|
if (regnum == gdbarch_num_regs (gdbarch)
|
|
+ gdbarch_num_pseudo_regs (gdbarch) - 1)
|
|
regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
|
|
|
|
/* Read aliases a0..a15, if this is a Windowed ABI. */
|
|
if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
|
|
&& (regnum >= gdbarch_tdep (gdbarch)->a0_base)
|
|
&& (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
|
|
{
|
|
gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
|
|
enum register_status status;
|
|
|
|
status = regcache_raw_read (regcache,
|
|
gdbarch_tdep (gdbarch)->wb_regnum,
|
|
buf);
|
|
if (status != REG_VALID)
|
|
return status;
|
|
regnum = arreg_number (gdbarch, regnum,
|
|
extract_unsigned_integer (buf, 4, byte_order));
|
|
}
|
|
|
|
/* We can always read non-pseudo registers. */
|
|
if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
|
|
return regcache_raw_read (regcache, regnum, buffer);
|
|
|
|
/* We have to find out how to deal with priveleged registers.
|
|
Let's treat them as pseudo-registers, but we cannot read/write them. */
|
|
|
|
else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
|
|
{
|
|
buffer[0] = (gdb_byte)0;
|
|
buffer[1] = (gdb_byte)0;
|
|
buffer[2] = (gdb_byte)0;
|
|
buffer[3] = (gdb_byte)0;
|
|
return REG_VALID;
|
|
}
|
|
/* Pseudo registers. */
|
|
else if (regnum >= 0
|
|
&& regnum < gdbarch_num_regs (gdbarch)
|
|
+ gdbarch_num_pseudo_regs (gdbarch))
|
|
{
|
|
xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
|
|
xtensa_register_type_t type = reg->type;
|
|
int flags = gdbarch_tdep (gdbarch)->target_flags;
|
|
|
|
/* We cannot read Unknown or Unmapped registers. */
|
|
if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
|
|
{
|
|
if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
|
|
{
|
|
warning (_("cannot read register %s"),
|
|
xtensa_register_name (gdbarch, regnum));
|
|
return REG_VALID;
|
|
}
|
|
}
|
|
|
|
/* Some targets cannot read TIE register files. */
|
|
else if (type == xtRegisterTypeTieRegfile)
|
|
{
|
|
/* Use 'fetch' to get register? */
|
|
if (flags & xtTargetFlagsUseFetchStore)
|
|
{
|
|
warning (_("cannot read register"));
|
|
return REG_VALID;
|
|
}
|
|
|
|
/* On some targets (esp. simulators), we can always read the reg. */
|
|
else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
|
|
{
|
|
warning (_("cannot read register"));
|
|
return REG_VALID;
|
|
}
|
|
}
|
|
|
|
/* We can always read mapped registers. */
|
|
else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
|
|
return xtensa_register_read_masked (regcache, reg, buffer);
|
|
|
|
/* Assume that we can read the register. */
|
|
return regcache_raw_read (regcache, regnum, buffer);
|
|
}
|
|
else
|
|
internal_error (__FILE__, __LINE__,
|
|
_("invalid register number %d"), regnum);
|
|
}
|
|
|
|
|
|
/* Write pseudo registers. */
|
|
|
|
static void
|
|
xtensa_pseudo_register_write (struct gdbarch *gdbarch,
|
|
struct regcache *regcache,
|
|
int regnum,
|
|
const gdb_byte *buffer)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
|
|
DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
|
|
regnum, xtensa_register_name (gdbarch, regnum));
|
|
|
|
if (regnum == gdbarch_num_regs (gdbarch)
|
|
+ gdbarch_num_pseudo_regs (gdbarch) -1)
|
|
regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
|
|
|
|
/* Renumber register, if aliase a0..a15 on Windowed ABI. */
|
|
if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
|
|
&& (regnum >= gdbarch_tdep (gdbarch)->a0_base)
|
|
&& (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
|
|
{
|
|
gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
|
|
|
|
regcache_raw_read (regcache,
|
|
gdbarch_tdep (gdbarch)->wb_regnum, buf);
|
|
regnum = arreg_number (gdbarch, regnum,
|
|
extract_unsigned_integer (buf, 4, byte_order));
|
|
}
|
|
|
|
/* We can always write 'core' registers.
|
|
Note: We might have converted Ax->ARy. */
|
|
if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
|
|
regcache_raw_write (regcache, regnum, buffer);
|
|
|
|
/* We have to find out how to deal with priveleged registers.
|
|
Let's treat them as pseudo-registers, but we cannot read/write them. */
|
|
|
|
else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
|
|
{
|
|
return;
|
|
}
|
|
/* Pseudo registers. */
|
|
else if (regnum >= 0
|
|
&& regnum < gdbarch_num_regs (gdbarch)
|
|
+ gdbarch_num_pseudo_regs (gdbarch))
|
|
{
|
|
xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
|
|
xtensa_register_type_t type = reg->type;
|
|
int flags = gdbarch_tdep (gdbarch)->target_flags;
|
|
|
|
/* On most targets, we cannot write registers
|
|
of type "Unknown" or "Unmapped". */
|
|
if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
|
|
{
|
|
if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
|
|
{
|
|
warning (_("cannot write register %s"),
|
|
xtensa_register_name (gdbarch, regnum));
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Some targets cannot read TIE register files. */
|
|
else if (type == xtRegisterTypeTieRegfile)
|
|
{
|
|
/* Use 'store' to get register? */
|
|
if (flags & xtTargetFlagsUseFetchStore)
|
|
{
|
|
warning (_("cannot write register"));
|
|
return;
|
|
}
|
|
|
|
/* On some targets (esp. simulators), we can always write
|
|
the register. */
|
|
else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
|
|
{
|
|
warning (_("cannot write register"));
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* We can always write mapped registers. */
|
|
else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
|
|
{
|
|
xtensa_register_write_masked (regcache, reg, buffer);
|
|
return;
|
|
}
|
|
|
|
/* Assume that we can write the register. */
|
|
regcache_raw_write (regcache, regnum, buffer);
|
|
}
|
|
else
|
|
internal_error (__FILE__, __LINE__,
|
|
_("invalid register number %d"), regnum);
|
|
}
|
|
|
|
static struct reggroup *xtensa_ar_reggroup;
|
|
static struct reggroup *xtensa_user_reggroup;
|
|
static struct reggroup *xtensa_vectra_reggroup;
|
|
static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
|
|
|
|
static void
|
|
xtensa_init_reggroups (void)
|
|
{
|
|
int i;
|
|
char cpname[] = "cp0";
|
|
|
|
xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
|
|
xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
|
|
xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
|
|
|
|
for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
|
|
{
|
|
cpname[2] = '0' + i;
|
|
xtensa_cp[i] = reggroup_new (cpname, USER_REGGROUP);
|
|
}
|
|
}
|
|
|
|
static void
|
|
xtensa_add_reggroups (struct gdbarch *gdbarch)
|
|
{
|
|
int i;
|
|
|
|
/* Predefined groups. */
|
|
reggroup_add (gdbarch, all_reggroup);
|
|
reggroup_add (gdbarch, save_reggroup);
|
|
reggroup_add (gdbarch, restore_reggroup);
|
|
reggroup_add (gdbarch, system_reggroup);
|
|
reggroup_add (gdbarch, vector_reggroup);
|
|
reggroup_add (gdbarch, general_reggroup);
|
|
reggroup_add (gdbarch, float_reggroup);
|
|
|
|
/* Xtensa-specific groups. */
|
|
reggroup_add (gdbarch, xtensa_ar_reggroup);
|
|
reggroup_add (gdbarch, xtensa_user_reggroup);
|
|
reggroup_add (gdbarch, xtensa_vectra_reggroup);
|
|
|
|
for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
|
|
reggroup_add (gdbarch, xtensa_cp[i]);
|
|
}
|
|
|
|
static int
|
|
xtensa_coprocessor_register_group (struct reggroup *group)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
|
|
if (group == xtensa_cp[i])
|
|
return i;
|
|
|
|
return -1;
|
|
}
|
|
|
|
#define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
|
|
| XTENSA_REGISTER_FLAGS_WRITABLE \
|
|
| XTENSA_REGISTER_FLAGS_VOLATILE)
|
|
|
|
#define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
|
|
| XTENSA_REGISTER_FLAGS_WRITABLE)
|
|
|
|
static int
|
|
xtensa_register_reggroup_p (struct gdbarch *gdbarch,
|
|
int regnum,
|
|
struct reggroup *group)
|
|
{
|
|
xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
|
|
xtensa_register_type_t type = reg->type;
|
|
xtensa_register_group_t rg = reg->group;
|
|
int cp_number;
|
|
|
|
if (group == save_reggroup)
|
|
/* Every single register should be included into the list of registers
|
|
to be watched for changes while using -data-list-changed-registers. */
|
|
return 1;
|
|
|
|
/* First, skip registers that are not visible to this target
|
|
(unknown and unmapped registers when not using ISS). */
|
|
|
|
if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
|
|
return 0;
|
|
if (group == all_reggroup)
|
|
return 1;
|
|
if (group == xtensa_ar_reggroup)
|
|
return rg & xtRegisterGroupAddrReg;
|
|
if (group == xtensa_user_reggroup)
|
|
return rg & xtRegisterGroupUser;
|
|
if (group == float_reggroup)
|
|
return rg & xtRegisterGroupFloat;
|
|
if (group == general_reggroup)
|
|
return rg & xtRegisterGroupGeneral;
|
|
if (group == system_reggroup)
|
|
return rg & xtRegisterGroupState;
|
|
if (group == vector_reggroup || group == xtensa_vectra_reggroup)
|
|
return rg & xtRegisterGroupVectra;
|
|
if (group == restore_reggroup)
|
|
return (regnum < gdbarch_num_regs (gdbarch)
|
|
&& (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
|
|
cp_number = xtensa_coprocessor_register_group (group);
|
|
if (cp_number >= 0)
|
|
return rg & (xtRegisterGroupCP0 << cp_number);
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Supply register REGNUM from the buffer specified by GREGS and LEN
|
|
in the general-purpose register set REGSET to register cache
|
|
REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
|
|
|
|
static void
|
|
xtensa_supply_gregset (const struct regset *regset,
|
|
struct regcache *rc,
|
|
int regnum,
|
|
const void *gregs,
|
|
size_t len)
|
|
{
|
|
const xtensa_elf_gregset_t *regs = gregs;
|
|
struct gdbarch *gdbarch = get_regcache_arch (rc);
|
|
int i;
|
|
|
|
DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
|
|
|
|
if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
|
|
regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) ®s->pc);
|
|
if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
|
|
regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) ®s->ps);
|
|
if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
|
|
regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
|
|
(char *) ®s->windowbase);
|
|
if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
|
|
regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
|
|
(char *) ®s->windowstart);
|
|
if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
|
|
regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
|
|
(char *) ®s->lbeg);
|
|
if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
|
|
regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
|
|
(char *) ®s->lend);
|
|
if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
|
|
regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
|
|
(char *) ®s->lcount);
|
|
if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
|
|
regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
|
|
(char *) ®s->sar);
|
|
if (regnum >=gdbarch_tdep (gdbarch)->ar_base
|
|
&& regnum < gdbarch_tdep (gdbarch)->ar_base
|
|
+ gdbarch_tdep (gdbarch)->num_aregs)
|
|
regcache_raw_supply (rc, regnum,
|
|
(char *) ®s->ar[regnum - gdbarch_tdep
|
|
(gdbarch)->ar_base]);
|
|
else if (regnum == -1)
|
|
{
|
|
for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
|
|
regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
|
|
(char *) ®s->ar[i]);
|
|
}
|
|
}
|
|
|
|
|
|
/* Xtensa register set. */
|
|
|
|
static struct regset
|
|
xtensa_gregset =
|
|
{
|
|
NULL,
|
|
xtensa_supply_gregset
|
|
};
|
|
|
|
|
|
/* Iterate over supported core file register note sections. */
|
|
|
|
static void
|
|
xtensa_iterate_over_regset_sections (struct gdbarch *gdbarch,
|
|
iterate_over_regset_sections_cb *cb,
|
|
void *cb_data,
|
|
const struct regcache *regcache)
|
|
{
|
|
DEBUGTRACE ("xtensa_iterate_over_regset_sections\n");
|
|
|
|
cb (".reg", sizeof (xtensa_elf_gregset_t), &xtensa_gregset,
|
|
NULL, cb_data);
|
|
}
|
|
|
|
|
|
/* Handling frames. */
|
|
|
|
/* Number of registers to save in case of Windowed ABI. */
|
|
#define XTENSA_NUM_SAVED_AREGS 12
|
|
|
|
/* Frame cache part for Windowed ABI. */
|
|
typedef struct xtensa_windowed_frame_cache
|
|
{
|
|
int wb; /* WINDOWBASE of the previous frame. */
|
|
int callsize; /* Call size of this frame. */
|
|
int ws; /* WINDOWSTART of the previous frame. It keeps track of
|
|
life windows only. If there is no bit set for the
|
|
window, that means it had been already spilled
|
|
because of window overflow. */
|
|
|
|
/* Addresses of spilled A-registers.
|
|
AREGS[i] == -1, if corresponding AR is alive. */
|
|
CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
|
|
} xtensa_windowed_frame_cache_t;
|
|
|
|
/* Call0 ABI Definitions. */
|
|
|
|
#define C0_MAXOPDS 3 /* Maximum number of operands for prologue
|
|
analysis. */
|
|
#define C0_NREGS 16 /* Number of A-registers to track. */
|
|
#define C0_CLESV 12 /* Callee-saved registers are here and up. */
|
|
#define C0_SP 1 /* Register used as SP. */
|
|
#define C0_FP 15 /* Register used as FP. */
|
|
#define C0_RA 0 /* Register used as return address. */
|
|
#define C0_ARGS 2 /* Register used as first arg/retval. */
|
|
#define C0_NARGS 6 /* Number of A-regs for args/retvals. */
|
|
|
|
/* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
|
|
A-register where the current content of the reg came from (in terms
|
|
of an original reg and a constant). Negative values of c0_rt[n].fp_reg
|
|
mean that the orignal content of the register was saved to the stack.
|
|
c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
|
|
know where SP will end up until the entire prologue has been analyzed. */
|
|
|
|
#define C0_CONST -1 /* fr_reg value if register contains a constant. */
|
|
#define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
|
|
#define C0_NOSTK -1 /* to_stk value if register has not been stored. */
|
|
|
|
extern xtensa_isa xtensa_default_isa;
|
|
|
|
typedef struct xtensa_c0reg
|
|
{
|
|
int fr_reg; /* original register from which register content
|
|
is derived, or C0_CONST, or C0_INEXP. */
|
|
int fr_ofs; /* constant offset from reg, or immediate value. */
|
|
int to_stk; /* offset from original SP to register (4-byte aligned),
|
|
or C0_NOSTK if register has not been saved. */
|
|
} xtensa_c0reg_t;
|
|
|
|
/* Frame cache part for Call0 ABI. */
|
|
typedef struct xtensa_call0_frame_cache
|
|
{
|
|
int c0_frmsz; /* Stack frame size. */
|
|
int c0_hasfp; /* Current frame uses frame pointer. */
|
|
int fp_regnum; /* A-register used as FP. */
|
|
int c0_fp; /* Actual value of frame pointer. */
|
|
int c0_fpalign; /* Dinamic adjustment for the stack
|
|
pointer. It's an AND mask. Zero,
|
|
if alignment was not adjusted. */
|
|
int c0_old_sp; /* In case of dynamic adjustment, it is
|
|
a register holding unaligned sp.
|
|
C0_INEXP, when undefined. */
|
|
int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
|
|
stack offset. C0_NOSTK otherwise. */
|
|
|
|
xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
|
|
} xtensa_call0_frame_cache_t;
|
|
|
|
typedef struct xtensa_frame_cache
|
|
{
|
|
CORE_ADDR base; /* Stack pointer of this frame. */
|
|
CORE_ADDR pc; /* PC of this frame at the function entry point. */
|
|
CORE_ADDR ra; /* The raw return address of this frame. */
|
|
CORE_ADDR ps; /* The PS register of the previous (older) frame. */
|
|
CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
|
|
int call0; /* It's a call0 framework (else windowed). */
|
|
union
|
|
{
|
|
xtensa_windowed_frame_cache_t wd; /* call0 == false. */
|
|
xtensa_call0_frame_cache_t c0; /* call0 == true. */
|
|
};
|
|
} xtensa_frame_cache_t;
|
|
|
|
|
|
static struct xtensa_frame_cache *
|
|
xtensa_alloc_frame_cache (int windowed)
|
|
{
|
|
xtensa_frame_cache_t *cache;
|
|
int i;
|
|
|
|
DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
|
|
|
|
cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
|
|
|
|
cache->base = 0;
|
|
cache->pc = 0;
|
|
cache->ra = 0;
|
|
cache->ps = 0;
|
|
cache->prev_sp = 0;
|
|
cache->call0 = !windowed;
|
|
if (cache->call0)
|
|
{
|
|
cache->c0.c0_frmsz = -1;
|
|
cache->c0.c0_hasfp = 0;
|
|
cache->c0.fp_regnum = -1;
|
|
cache->c0.c0_fp = -1;
|
|
cache->c0.c0_fpalign = 0;
|
|
cache->c0.c0_old_sp = C0_INEXP;
|
|
cache->c0.c0_sp_ofs = C0_NOSTK;
|
|
|
|
for (i = 0; i < C0_NREGS; i++)
|
|
{
|
|
cache->c0.c0_rt[i].fr_reg = i;
|
|
cache->c0.c0_rt[i].fr_ofs = 0;
|
|
cache->c0.c0_rt[i].to_stk = C0_NOSTK;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
cache->wd.wb = 0;
|
|
cache->wd.ws = 0;
|
|
cache->wd.callsize = -1;
|
|
|
|
for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
|
|
cache->wd.aregs[i] = -1;
|
|
}
|
|
return cache;
|
|
}
|
|
|
|
|
|
static CORE_ADDR
|
|
xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
|
|
{
|
|
return address & ~15;
|
|
}
|
|
|
|
|
|
static CORE_ADDR
|
|
xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
gdb_byte buf[8];
|
|
CORE_ADDR pc;
|
|
|
|
DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
|
|
host_address_to_string (next_frame));
|
|
|
|
frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
|
|
pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
|
|
|
|
DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
|
|
|
|
return pc;
|
|
}
|
|
|
|
|
|
static struct frame_id
|
|
xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
|
{
|
|
CORE_ADDR pc, fp;
|
|
|
|
/* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
|
|
|
|
pc = get_frame_pc (this_frame);
|
|
fp = get_frame_register_unsigned
|
|
(this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
|
|
|
|
/* Make dummy frame ID unique by adding a constant. */
|
|
return frame_id_build (fp + SP_ALIGNMENT, pc);
|
|
}
|
|
|
|
/* Returns true, if instruction to execute next is unique to Xtensa Window
|
|
Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
|
|
|
|
static int
|
|
xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
unsigned int insn = read_memory_integer (pc, 4, byte_order);
|
|
unsigned int code;
|
|
|
|
if (byte_order == BFD_ENDIAN_BIG)
|
|
{
|
|
/* Check, if this is L32E or S32E. */
|
|
code = insn & 0xf000ff00;
|
|
if ((code == 0x00009000) || (code == 0x00009400))
|
|
return 1;
|
|
/* Check, if this is RFWU or RFWO. */
|
|
code = insn & 0xffffff00;
|
|
return ((code == 0x00430000) || (code == 0x00530000));
|
|
}
|
|
else
|
|
{
|
|
/* Check, if this is L32E or S32E. */
|
|
code = insn & 0x00ff000f;
|
|
if ((code == 0x090000) || (code == 0x490000))
|
|
return 1;
|
|
/* Check, if this is RFWU or RFWO. */
|
|
code = insn & 0x00ffffff;
|
|
return ((code == 0x00003400) || (code == 0x00003500));
|
|
}
|
|
}
|
|
|
|
/* Returns the best guess about which register is a frame pointer
|
|
for the function containing CURRENT_PC. */
|
|
|
|
#define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
|
|
#define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
|
|
|
|
static unsigned int
|
|
xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
|
|
{
|
|
#define RETURN_FP goto done
|
|
|
|
unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
|
|
CORE_ADDR start_addr;
|
|
xtensa_isa isa;
|
|
xtensa_insnbuf ins, slot;
|
|
gdb_byte ibuf[XTENSA_ISA_BSZ];
|
|
CORE_ADDR ia, bt, ba;
|
|
xtensa_format ifmt;
|
|
int ilen, islots, is;
|
|
xtensa_opcode opc;
|
|
const char *opcname;
|
|
|
|
find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
|
|
if (start_addr == 0)
|
|
return fp_regnum;
|
|
|
|
if (!xtensa_default_isa)
|
|
xtensa_default_isa = xtensa_isa_init (0, 0);
|
|
isa = xtensa_default_isa;
|
|
gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
|
|
ins = xtensa_insnbuf_alloc (isa);
|
|
slot = xtensa_insnbuf_alloc (isa);
|
|
ba = 0;
|
|
|
|
for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
|
|
{
|
|
if (ia + xtensa_isa_maxlength (isa) > bt)
|
|
{
|
|
ba = ia;
|
|
bt = (ba + XTENSA_ISA_BSZ) < current_pc
|
|
? ba + XTENSA_ISA_BSZ : current_pc;
|
|
if (target_read_memory (ba, ibuf, bt - ba) != 0)
|
|
RETURN_FP;
|
|
}
|
|
|
|
xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
|
|
ifmt = xtensa_format_decode (isa, ins);
|
|
if (ifmt == XTENSA_UNDEFINED)
|
|
RETURN_FP;
|
|
ilen = xtensa_format_length (isa, ifmt);
|
|
if (ilen == XTENSA_UNDEFINED)
|
|
RETURN_FP;
|
|
islots = xtensa_format_num_slots (isa, ifmt);
|
|
if (islots == XTENSA_UNDEFINED)
|
|
RETURN_FP;
|
|
|
|
for (is = 0; is < islots; ++is)
|
|
{
|
|
if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
|
|
RETURN_FP;
|
|
|
|
opc = xtensa_opcode_decode (isa, ifmt, is, slot);
|
|
if (opc == XTENSA_UNDEFINED)
|
|
RETURN_FP;
|
|
|
|
opcname = xtensa_opcode_name (isa, opc);
|
|
|
|
if (strcasecmp (opcname, "mov.n") == 0
|
|
|| strcasecmp (opcname, "or") == 0)
|
|
{
|
|
unsigned int register_operand;
|
|
|
|
/* Possible candidate for setting frame pointer
|
|
from A1. This is what we are looking for. */
|
|
|
|
if (xtensa_operand_get_field (isa, opc, 1, ifmt,
|
|
is, slot, ®ister_operand) != 0)
|
|
RETURN_FP;
|
|
if (xtensa_operand_decode (isa, opc, 1, ®ister_operand) != 0)
|
|
RETURN_FP;
|
|
if (register_operand == 1) /* Mov{.n} FP A1. */
|
|
{
|
|
if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
|
|
®ister_operand) != 0)
|
|
RETURN_FP;
|
|
if (xtensa_operand_decode (isa, opc, 0,
|
|
®ister_operand) != 0)
|
|
RETURN_FP;
|
|
|
|
fp_regnum
|
|
= gdbarch_tdep (gdbarch)->a0_base + register_operand;
|
|
RETURN_FP;
|
|
}
|
|
}
|
|
|
|
if (
|
|
/* We have problems decoding the memory. */
|
|
opcname == NULL
|
|
|| strcasecmp (opcname, "ill") == 0
|
|
|| strcasecmp (opcname, "ill.n") == 0
|
|
/* Hit planted breakpoint. */
|
|
|| strcasecmp (opcname, "break") == 0
|
|
|| strcasecmp (opcname, "break.n") == 0
|
|
/* Flow control instructions finish prologue. */
|
|
|| xtensa_opcode_is_branch (isa, opc) > 0
|
|
|| xtensa_opcode_is_jump (isa, opc) > 0
|
|
|| xtensa_opcode_is_loop (isa, opc) > 0
|
|
|| xtensa_opcode_is_call (isa, opc) > 0
|
|
|| strcasecmp (opcname, "simcall") == 0
|
|
|| strcasecmp (opcname, "syscall") == 0)
|
|
/* Can not continue analysis. */
|
|
RETURN_FP;
|
|
}
|
|
}
|
|
done:
|
|
xtensa_insnbuf_free(isa, slot);
|
|
xtensa_insnbuf_free(isa, ins);
|
|
return fp_regnum;
|
|
}
|
|
|
|
/* The key values to identify the frame using "cache" are
|
|
|
|
cache->base = SP (or best guess about FP) of this frame;
|
|
cache->pc = entry-PC (entry point of the frame function);
|
|
cache->prev_sp = SP of the previous frame. */
|
|
|
|
static void
|
|
call0_frame_cache (struct frame_info *this_frame,
|
|
xtensa_frame_cache_t *cache, CORE_ADDR pc);
|
|
|
|
static void
|
|
xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
|
|
xtensa_frame_cache_t *cache,
|
|
CORE_ADDR pc);
|
|
|
|
static struct xtensa_frame_cache *
|
|
xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
|
|
{
|
|
xtensa_frame_cache_t *cache;
|
|
CORE_ADDR ra, wb, ws, pc, sp, ps;
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
unsigned int fp_regnum;
|
|
int windowed, ps_regnum;
|
|
|
|
if (*this_cache)
|
|
return *this_cache;
|
|
|
|
pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
|
|
ps_regnum = gdbarch_ps_regnum (gdbarch);
|
|
ps = (ps_regnum >= 0
|
|
? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
|
|
|
|
windowed = windowing_enabled (gdbarch, ps);
|
|
|
|
/* Get pristine xtensa-frame. */
|
|
cache = xtensa_alloc_frame_cache (windowed);
|
|
*this_cache = cache;
|
|
|
|
if (windowed)
|
|
{
|
|
char op1;
|
|
|
|
/* Get WINDOWBASE, WINDOWSTART, and PS registers. */
|
|
wb = get_frame_register_unsigned (this_frame,
|
|
gdbarch_tdep (gdbarch)->wb_regnum);
|
|
ws = get_frame_register_unsigned (this_frame,
|
|
gdbarch_tdep (gdbarch)->ws_regnum);
|
|
|
|
op1 = read_memory_integer (pc, 1, byte_order);
|
|
if (XTENSA_IS_ENTRY (gdbarch, op1))
|
|
{
|
|
int callinc = CALLINC (ps);
|
|
ra = get_frame_register_unsigned
|
|
(this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
|
|
|
|
/* ENTRY hasn't been executed yet, therefore callsize is still 0. */
|
|
cache->wd.callsize = 0;
|
|
cache->wd.wb = wb;
|
|
cache->wd.ws = ws;
|
|
cache->prev_sp = get_frame_register_unsigned
|
|
(this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
|
|
|
|
/* This only can be the outermost frame since we are
|
|
just about to execute ENTRY. SP hasn't been set yet.
|
|
We can assume any frame size, because it does not
|
|
matter, and, let's fake frame base in cache. */
|
|
cache->base = cache->prev_sp - 16;
|
|
|
|
cache->pc = pc;
|
|
cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
|
|
cache->ps = (ps & ~PS_CALLINC_MASK)
|
|
| ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
|
|
|
|
return cache;
|
|
}
|
|
else
|
|
{
|
|
fp_regnum = xtensa_scan_prologue (gdbarch, pc);
|
|
ra = get_frame_register_unsigned (this_frame,
|
|
gdbarch_tdep (gdbarch)->a0_base);
|
|
cache->wd.callsize = WINSIZE (ra);
|
|
cache->wd.wb = (wb - cache->wd.callsize / 4)
|
|
& (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
|
|
cache->wd.ws = ws & ~(1 << wb);
|
|
|
|
cache->pc = get_frame_func (this_frame);
|
|
cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
|
|
cache->ps = (ps & ~PS_CALLINC_MASK)
|
|
| ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
|
|
}
|
|
|
|
if (cache->wd.ws == 0)
|
|
{
|
|
int i;
|
|
|
|
/* Set A0...A3. */
|
|
sp = get_frame_register_unsigned
|
|
(this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
|
|
|
|
for (i = 0; i < 4; i++, sp += 4)
|
|
{
|
|
cache->wd.aregs[i] = sp;
|
|
}
|
|
|
|
if (cache->wd.callsize > 4)
|
|
{
|
|
/* Set A4...A7/A11. */
|
|
/* Get the SP of the frame previous to the previous one.
|
|
To achieve this, we have to dereference SP twice. */
|
|
sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
|
|
sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
|
|
sp -= cache->wd.callsize * 4;
|
|
|
|
for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
|
|
{
|
|
cache->wd.aregs[i] = sp;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((cache->prev_sp == 0) && ( ra != 0 ))
|
|
/* If RA is equal to 0 this frame is an outermost frame. Leave
|
|
cache->prev_sp unchanged marking the boundary of the frame stack. */
|
|
{
|
|
if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
|
|
{
|
|
/* Register window overflow already happened.
|
|
We can read caller's SP from the proper spill loction. */
|
|
sp = get_frame_register_unsigned
|
|
(this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
|
|
cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
|
|
}
|
|
else
|
|
{
|
|
/* Read caller's frame SP directly from the previous window. */
|
|
int regnum = arreg_number
|
|
(gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
|
|
cache->wd.wb);
|
|
|
|
cache->prev_sp = xtensa_read_register (regnum);
|
|
}
|
|
}
|
|
}
|
|
else if (xtensa_window_interrupt_insn (gdbarch, pc))
|
|
{
|
|
/* Execution stopped inside Xtensa Window Interrupt Handler. */
|
|
|
|
xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
|
|
/* Everything was set already, including cache->base. */
|
|
return cache;
|
|
}
|
|
else /* Call0 framework. */
|
|
{
|
|
call0_frame_cache (this_frame, cache, pc);
|
|
fp_regnum = cache->c0.fp_regnum;
|
|
}
|
|
|
|
cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
|
|
|
|
return cache;
|
|
}
|
|
|
|
static int xtensa_session_once_reported = 1;
|
|
|
|
/* Report a problem with prologue analysis while doing backtracing.
|
|
But, do it only once to avoid annoyng repeated messages. */
|
|
|
|
static void
|
|
warning_once (void)
|
|
{
|
|
if (xtensa_session_once_reported == 0)
|
|
warning (_("\
|
|
\nUnrecognised function prologue. Stack trace cannot be resolved. \
|
|
This message will not be repeated in this session.\n"));
|
|
|
|
xtensa_session_once_reported = 1;
|
|
}
|
|
|
|
|
|
static void
|
|
xtensa_frame_this_id (struct frame_info *this_frame,
|
|
void **this_cache,
|
|
struct frame_id *this_id)
|
|
{
|
|
struct xtensa_frame_cache *cache =
|
|
xtensa_frame_cache (this_frame, this_cache);
|
|
|
|
if (cache->prev_sp == 0)
|
|
return;
|
|
|
|
(*this_id) = frame_id_build (cache->prev_sp, cache->pc);
|
|
}
|
|
|
|
static struct value *
|
|
xtensa_frame_prev_register (struct frame_info *this_frame,
|
|
void **this_cache,
|
|
int regnum)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
struct xtensa_frame_cache *cache;
|
|
ULONGEST saved_reg = 0;
|
|
int done = 1;
|
|
|
|
if (*this_cache == NULL)
|
|
*this_cache = xtensa_frame_cache (this_frame, this_cache);
|
|
cache = *this_cache;
|
|
|
|
if (regnum ==gdbarch_pc_regnum (gdbarch))
|
|
saved_reg = cache->ra;
|
|
else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
|
|
saved_reg = cache->prev_sp;
|
|
else if (!cache->call0)
|
|
{
|
|
if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
|
|
saved_reg = cache->wd.ws;
|
|
else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
|
|
saved_reg = cache->wd.wb;
|
|
else if (regnum == gdbarch_ps_regnum (gdbarch))
|
|
saved_reg = cache->ps;
|
|
else
|
|
done = 0;
|
|
}
|
|
else
|
|
done = 0;
|
|
|
|
if (done)
|
|
return frame_unwind_got_constant (this_frame, regnum, saved_reg);
|
|
|
|
if (!cache->call0) /* Windowed ABI. */
|
|
{
|
|
/* Convert A-register numbers to AR-register numbers,
|
|
if we deal with A-register. */
|
|
if (regnum >= gdbarch_tdep (gdbarch)->a0_base
|
|
&& regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
|
|
regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
|
|
|
|
/* Check, if we deal with AR-register saved on stack. */
|
|
if (regnum >= gdbarch_tdep (gdbarch)->ar_base
|
|
&& regnum <= (gdbarch_tdep (gdbarch)->ar_base
|
|
+ gdbarch_tdep (gdbarch)->num_aregs))
|
|
{
|
|
int areg = areg_number (gdbarch, regnum, cache->wd.wb);
|
|
|
|
if (areg >= 0
|
|
&& areg < XTENSA_NUM_SAVED_AREGS
|
|
&& cache->wd.aregs[areg] != -1)
|
|
return frame_unwind_got_memory (this_frame, regnum,
|
|
cache->wd.aregs[areg]);
|
|
}
|
|
}
|
|
else /* Call0 ABI. */
|
|
{
|
|
int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
|
|
&& regnum <= (gdbarch_tdep (gdbarch)->ar_base
|
|
+ C0_NREGS))
|
|
? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
|
|
|
|
if (reg < C0_NREGS)
|
|
{
|
|
CORE_ADDR spe;
|
|
int stkofs;
|
|
|
|
/* If register was saved in the prologue, retrieve it. */
|
|
stkofs = cache->c0.c0_rt[reg].to_stk;
|
|
if (stkofs != C0_NOSTK)
|
|
{
|
|
/* Determine SP on entry based on FP. */
|
|
spe = cache->c0.c0_fp
|
|
- cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
|
|
|
|
return frame_unwind_got_memory (this_frame, regnum,
|
|
spe + stkofs);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* All other registers have been either saved to
|
|
the stack or are still alive in the processor. */
|
|
|
|
return frame_unwind_got_register (this_frame, regnum, regnum);
|
|
}
|
|
|
|
|
|
static const struct frame_unwind
|
|
xtensa_unwind =
|
|
{
|
|
NORMAL_FRAME,
|
|
default_frame_unwind_stop_reason,
|
|
xtensa_frame_this_id,
|
|
xtensa_frame_prev_register,
|
|
NULL,
|
|
default_frame_sniffer
|
|
};
|
|
|
|
static CORE_ADDR
|
|
xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
|
|
{
|
|
struct xtensa_frame_cache *cache =
|
|
xtensa_frame_cache (this_frame, this_cache);
|
|
|
|
return cache->base;
|
|
}
|
|
|
|
static const struct frame_base
|
|
xtensa_frame_base =
|
|
{
|
|
&xtensa_unwind,
|
|
xtensa_frame_base_address,
|
|
xtensa_frame_base_address,
|
|
xtensa_frame_base_address
|
|
};
|
|
|
|
|
|
static void
|
|
xtensa_extract_return_value (struct type *type,
|
|
struct regcache *regcache,
|
|
void *dst)
|
|
{
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
bfd_byte *valbuf = dst;
|
|
int len = TYPE_LENGTH (type);
|
|
ULONGEST pc, wb;
|
|
int callsize, areg;
|
|
int offset = 0;
|
|
|
|
DEBUGTRACE ("xtensa_extract_return_value (...)\n");
|
|
|
|
gdb_assert(len > 0);
|
|
|
|
if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
|
|
{
|
|
/* First, we have to find the caller window in the register file. */
|
|
regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
|
|
callsize = extract_call_winsize (gdbarch, pc);
|
|
|
|
/* On Xtensa, we can return up to 4 words (or 2 for call12). */
|
|
if (len > (callsize > 8 ? 8 : 16))
|
|
internal_error (__FILE__, __LINE__,
|
|
_("cannot extract return value of %d bytes long"),
|
|
len);
|
|
|
|
/* Get the register offset of the return
|
|
register (A2) in the caller window. */
|
|
regcache_raw_read_unsigned
|
|
(regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
|
|
areg = arreg_number (gdbarch,
|
|
gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
|
|
}
|
|
else
|
|
{
|
|
/* No windowing hardware - Call0 ABI. */
|
|
areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
|
|
}
|
|
|
|
DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
|
|
|
|
if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
offset = 4 - len;
|
|
|
|
for (; len > 0; len -= 4, areg++, valbuf += 4)
|
|
{
|
|
if (len < 4)
|
|
regcache_raw_read_part (regcache, areg, offset, len, valbuf);
|
|
else
|
|
regcache_raw_read (regcache, areg, valbuf);
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
xtensa_store_return_value (struct type *type,
|
|
struct regcache *regcache,
|
|
const void *dst)
|
|
{
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
const bfd_byte *valbuf = dst;
|
|
unsigned int areg;
|
|
ULONGEST pc, wb;
|
|
int callsize;
|
|
int len = TYPE_LENGTH (type);
|
|
int offset = 0;
|
|
|
|
DEBUGTRACE ("xtensa_store_return_value (...)\n");
|
|
|
|
if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
|
|
{
|
|
regcache_raw_read_unsigned
|
|
(regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
|
|
regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
|
|
callsize = extract_call_winsize (gdbarch, pc);
|
|
|
|
if (len > (callsize > 8 ? 8 : 16))
|
|
internal_error (__FILE__, __LINE__,
|
|
_("unimplemented for this length: %d"),
|
|
TYPE_LENGTH (type));
|
|
areg = arreg_number (gdbarch,
|
|
gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
|
|
|
|
DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
|
|
callsize, (int) wb);
|
|
}
|
|
else
|
|
{
|
|
areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
|
|
}
|
|
|
|
if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
offset = 4 - len;
|
|
|
|
for (; len > 0; len -= 4, areg++, valbuf += 4)
|
|
{
|
|
if (len < 4)
|
|
regcache_raw_write_part (regcache, areg, offset, len, valbuf);
|
|
else
|
|
regcache_raw_write (regcache, areg, valbuf);
|
|
}
|
|
}
|
|
|
|
|
|
static enum return_value_convention
|
|
xtensa_return_value (struct gdbarch *gdbarch,
|
|
struct value *function,
|
|
struct type *valtype,
|
|
struct regcache *regcache,
|
|
gdb_byte *readbuf,
|
|
const gdb_byte *writebuf)
|
|
{
|
|
/* Structures up to 16 bytes are returned in registers. */
|
|
|
|
int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_UNION
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
|
|
&& TYPE_LENGTH (valtype) > 16);
|
|
|
|
if (struct_return)
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
|
|
DEBUGTRACE ("xtensa_return_value(...)\n");
|
|
|
|
if (writebuf != NULL)
|
|
{
|
|
xtensa_store_return_value (valtype, regcache, writebuf);
|
|
}
|
|
|
|
if (readbuf != NULL)
|
|
{
|
|
gdb_assert (!struct_return);
|
|
xtensa_extract_return_value (valtype, regcache, readbuf);
|
|
}
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
|
|
|
|
/* DUMMY FRAME */
|
|
|
|
static CORE_ADDR
|
|
xtensa_push_dummy_call (struct gdbarch *gdbarch,
|
|
struct value *function,
|
|
struct regcache *regcache,
|
|
CORE_ADDR bp_addr,
|
|
int nargs,
|
|
struct value **args,
|
|
CORE_ADDR sp,
|
|
int struct_return,
|
|
CORE_ADDR struct_addr)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int i;
|
|
int size, onstack_size;
|
|
gdb_byte *buf = (gdb_byte *) alloca (16);
|
|
CORE_ADDR ra, ps;
|
|
struct argument_info
|
|
{
|
|
const bfd_byte *contents;
|
|
int length;
|
|
int onstack; /* onstack == 0 => in reg */
|
|
int align; /* alignment */
|
|
union
|
|
{
|
|
int offset; /* stack offset if on stack. */
|
|
int regno; /* regno if in register. */
|
|
} u;
|
|
};
|
|
|
|
struct argument_info *arg_info =
|
|
(struct argument_info *) alloca (nargs * sizeof (struct argument_info));
|
|
|
|
CORE_ADDR osp = sp;
|
|
|
|
DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
|
|
|
|
if (xtensa_debug_level > 3)
|
|
{
|
|
int i;
|
|
DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
|
|
DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
|
|
"struct_addr=0x%x\n",
|
|
(int) sp, (int) struct_return, (int) struct_addr);
|
|
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
struct value *arg = args[i];
|
|
struct type *arg_type = check_typedef (value_type (arg));
|
|
fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
|
|
host_address_to_string (arg),
|
|
TYPE_LENGTH (arg_type));
|
|
switch (TYPE_CODE (arg_type))
|
|
{
|
|
case TYPE_CODE_INT:
|
|
fprintf_unfiltered (gdb_stdlog, "int");
|
|
break;
|
|
case TYPE_CODE_STRUCT:
|
|
fprintf_unfiltered (gdb_stdlog, "struct");
|
|
break;
|
|
default:
|
|
fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
|
|
break;
|
|
}
|
|
fprintf_unfiltered (gdb_stdlog, " %s\n",
|
|
host_address_to_string (value_contents (arg)));
|
|
}
|
|
}
|
|
|
|
/* First loop: collect information.
|
|
Cast into type_long. (This shouldn't happen often for C because
|
|
GDB already does this earlier.) It's possible that GDB could
|
|
do it all the time but it's harmless to leave this code here. */
|
|
|
|
size = 0;
|
|
onstack_size = 0;
|
|
i = 0;
|
|
|
|
if (struct_return)
|
|
size = REGISTER_SIZE;
|
|
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
struct argument_info *info = &arg_info[i];
|
|
struct value *arg = args[i];
|
|
struct type *arg_type = check_typedef (value_type (arg));
|
|
|
|
switch (TYPE_CODE (arg_type))
|
|
{
|
|
case TYPE_CODE_INT:
|
|
case TYPE_CODE_BOOL:
|
|
case TYPE_CODE_CHAR:
|
|
case TYPE_CODE_RANGE:
|
|
case TYPE_CODE_ENUM:
|
|
|
|
/* Cast argument to long if necessary as the mask does it too. */
|
|
if (TYPE_LENGTH (arg_type)
|
|
< TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
|
|
{
|
|
arg_type = builtin_type (gdbarch)->builtin_long;
|
|
arg = value_cast (arg_type, arg);
|
|
}
|
|
/* Aligment is equal to the type length for the basic types. */
|
|
info->align = TYPE_LENGTH (arg_type);
|
|
break;
|
|
|
|
case TYPE_CODE_FLT:
|
|
|
|
/* Align doubles correctly. */
|
|
if (TYPE_LENGTH (arg_type)
|
|
== TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
|
|
info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
|
|
else
|
|
info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
|
|
break;
|
|
|
|
case TYPE_CODE_STRUCT:
|
|
default:
|
|
info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
|
|
break;
|
|
}
|
|
info->length = TYPE_LENGTH (arg_type);
|
|
info->contents = value_contents (arg);
|
|
|
|
/* Align size and onstack_size. */
|
|
size = (size + info->align - 1) & ~(info->align - 1);
|
|
onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
|
|
|
|
if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
|
|
{
|
|
info->onstack = 1;
|
|
info->u.offset = onstack_size;
|
|
onstack_size += info->length;
|
|
}
|
|
else
|
|
{
|
|
info->onstack = 0;
|
|
info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
|
|
}
|
|
size += info->length;
|
|
}
|
|
|
|
/* Adjust the stack pointer and align it. */
|
|
sp = align_down (sp - onstack_size, SP_ALIGNMENT);
|
|
|
|
/* Simulate MOVSP, if Windowed ABI. */
|
|
if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
|
|
&& (sp != osp))
|
|
{
|
|
read_memory (osp - 16, buf, 16);
|
|
write_memory (sp - 16, buf, 16);
|
|
}
|
|
|
|
/* Second Loop: Load arguments. */
|
|
|
|
if (struct_return)
|
|
{
|
|
store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
|
|
regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
|
|
}
|
|
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
struct argument_info *info = &arg_info[i];
|
|
|
|
if (info->onstack)
|
|
{
|
|
int n = info->length;
|
|
CORE_ADDR offset = sp + info->u.offset;
|
|
|
|
/* Odd-sized structs are aligned to the lower side of a memory
|
|
word in big-endian mode and require a shift. This only
|
|
applies for structures smaller than one word. */
|
|
|
|
if (n < REGISTER_SIZE
|
|
&& gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
offset += (REGISTER_SIZE - n);
|
|
|
|
write_memory (offset, info->contents, info->length);
|
|
|
|
}
|
|
else
|
|
{
|
|
int n = info->length;
|
|
const bfd_byte *cp = info->contents;
|
|
int r = info->u.regno;
|
|
|
|
/* Odd-sized structs are aligned to the lower side of registers in
|
|
big-endian mode and require a shift. The odd-sized leftover will
|
|
be at the end. Note that this is only true for structures smaller
|
|
than REGISTER_SIZE; for larger odd-sized structures the excess
|
|
will be left-aligned in the register on both endiannesses. */
|
|
|
|
if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
|
|
{
|
|
ULONGEST v;
|
|
v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
|
|
v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
|
|
|
|
store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
|
|
regcache_cooked_write (regcache, r, buf);
|
|
|
|
cp += REGISTER_SIZE;
|
|
n -= REGISTER_SIZE;
|
|
r++;
|
|
}
|
|
else
|
|
while (n > 0)
|
|
{
|
|
regcache_cooked_write (regcache, r, cp);
|
|
|
|
cp += REGISTER_SIZE;
|
|
n -= REGISTER_SIZE;
|
|
r++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set the return address of dummy frame to the dummy address.
|
|
The return address for the current function (in A0) is
|
|
saved in the dummy frame, so we can savely overwrite A0 here. */
|
|
|
|
if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
|
|
{
|
|
ULONGEST val;
|
|
|
|
ra = (bp_addr & 0x3fffffff) | 0x40000000;
|
|
regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
|
|
ps = (unsigned long) val & ~0x00030000;
|
|
regcache_cooked_write_unsigned
|
|
(regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
|
|
regcache_cooked_write_unsigned (regcache,
|
|
gdbarch_ps_regnum (gdbarch),
|
|
ps | 0x00010000);
|
|
|
|
/* All the registers have been saved. After executing
|
|
dummy call, they all will be restored. So it's safe
|
|
to modify WINDOWSTART register to make it look like there
|
|
is only one register window corresponding to WINDOWEBASE. */
|
|
|
|
regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
|
|
regcache_cooked_write_unsigned
|
|
(regcache, gdbarch_tdep (gdbarch)->ws_regnum,
|
|
1 << extract_unsigned_integer (buf, 4, byte_order));
|
|
}
|
|
else
|
|
{
|
|
/* Simulate CALL0: write RA into A0 register. */
|
|
regcache_cooked_write_unsigned
|
|
(regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
|
|
}
|
|
|
|
/* Set new stack pointer and return it. */
|
|
regcache_cooked_write_unsigned (regcache,
|
|
gdbarch_tdep (gdbarch)->a0_base + 1, sp);
|
|
/* Make dummy frame ID unique by adding a constant. */
|
|
return sp + SP_ALIGNMENT;
|
|
}
|
|
|
|
|
|
/* Return a breakpoint for the current location of PC. We always use
|
|
the density version if we have density instructions (regardless of the
|
|
current instruction at PC), and use regular instructions otherwise. */
|
|
|
|
#define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
|
|
#define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
|
|
#define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
|
|
#define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
|
|
|
|
static const unsigned char *
|
|
xtensa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
|
|
int *lenptr)
|
|
{
|
|
static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
|
|
static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
|
|
static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
|
|
static unsigned char density_little_breakpoint[] = DENSITY_LITTLE_BREAKPOINT;
|
|
|
|
DEBUGTRACE ("xtensa_breakpoint_from_pc (pc = 0x%08x)\n", (int) *pcptr);
|
|
|
|
if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
|
|
{
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
{
|
|
*lenptr = sizeof (density_big_breakpoint);
|
|
return density_big_breakpoint;
|
|
}
|
|
else
|
|
{
|
|
*lenptr = sizeof (density_little_breakpoint);
|
|
return density_little_breakpoint;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
{
|
|
*lenptr = sizeof (big_breakpoint);
|
|
return big_breakpoint;
|
|
}
|
|
else
|
|
{
|
|
*lenptr = sizeof (little_breakpoint);
|
|
return little_breakpoint;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Call0 ABI support routines. */
|
|
|
|
/* Return true, if PC points to "ret" or "ret.n". */
|
|
|
|
static int
|
|
call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
|
|
{
|
|
#define RETURN_RET goto done
|
|
xtensa_isa isa;
|
|
xtensa_insnbuf ins, slot;
|
|
gdb_byte ibuf[XTENSA_ISA_BSZ];
|
|
CORE_ADDR ia, bt, ba;
|
|
xtensa_format ifmt;
|
|
int ilen, islots, is;
|
|
xtensa_opcode opc;
|
|
const char *opcname;
|
|
int found_ret = 0;
|
|
|
|
isa = xtensa_default_isa;
|
|
gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
|
|
ins = xtensa_insnbuf_alloc (isa);
|
|
slot = xtensa_insnbuf_alloc (isa);
|
|
ba = 0;
|
|
|
|
for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
|
|
{
|
|
if (ia + xtensa_isa_maxlength (isa) > bt)
|
|
{
|
|
ba = ia;
|
|
bt = (ba + XTENSA_ISA_BSZ) < finish_pc
|
|
? ba + XTENSA_ISA_BSZ : finish_pc;
|
|
if (target_read_memory (ba, ibuf, bt - ba) != 0 )
|
|
RETURN_RET;
|
|
}
|
|
|
|
xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
|
|
ifmt = xtensa_format_decode (isa, ins);
|
|
if (ifmt == XTENSA_UNDEFINED)
|
|
RETURN_RET;
|
|
ilen = xtensa_format_length (isa, ifmt);
|
|
if (ilen == XTENSA_UNDEFINED)
|
|
RETURN_RET;
|
|
islots = xtensa_format_num_slots (isa, ifmt);
|
|
if (islots == XTENSA_UNDEFINED)
|
|
RETURN_RET;
|
|
|
|
for (is = 0; is < islots; ++is)
|
|
{
|
|
if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
|
|
RETURN_RET;
|
|
|
|
opc = xtensa_opcode_decode (isa, ifmt, is, slot);
|
|
if (opc == XTENSA_UNDEFINED)
|
|
RETURN_RET;
|
|
|
|
opcname = xtensa_opcode_name (isa, opc);
|
|
|
|
if ((strcasecmp (opcname, "ret.n") == 0)
|
|
|| (strcasecmp (opcname, "ret") == 0))
|
|
{
|
|
found_ret = 1;
|
|
RETURN_RET;
|
|
}
|
|
}
|
|
}
|
|
done:
|
|
xtensa_insnbuf_free(isa, slot);
|
|
xtensa_insnbuf_free(isa, ins);
|
|
return found_ret;
|
|
}
|
|
|
|
/* Call0 opcode class. Opcodes are preclassified according to what they
|
|
mean for Call0 prologue analysis, and their number of significant operands.
|
|
The purpose of this is to simplify prologue analysis by separating
|
|
instruction decoding (libisa) from the semantics of prologue analysis. */
|
|
|
|
typedef enum
|
|
{
|
|
c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
|
|
c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
|
|
c0opc_flow, /* Flow control insn. */
|
|
c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
|
|
c0opc_break, /* Debugger software breakpoints. */
|
|
c0opc_add, /* Adding two registers. */
|
|
c0opc_addi, /* Adding a register and an immediate. */
|
|
c0opc_and, /* Bitwise "and"-ing two registers. */
|
|
c0opc_sub, /* Subtracting a register from a register. */
|
|
c0opc_mov, /* Moving a register to a register. */
|
|
c0opc_movi, /* Moving an immediate to a register. */
|
|
c0opc_l32r, /* Loading a literal. */
|
|
c0opc_s32i, /* Storing word at fixed offset from a base register. */
|
|
c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
|
|
c0opc_l32e, /* L32E instruction. */
|
|
c0opc_s32e, /* S32E instruction. */
|
|
c0opc_rfwo, /* RFWO instruction. */
|
|
c0opc_rfwu, /* RFWU instruction. */
|
|
c0opc_NrOf /* Number of opcode classifications. */
|
|
} xtensa_insn_kind;
|
|
|
|
/* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
|
|
|
|
static int
|
|
rwx_special_register (const char *opcname)
|
|
{
|
|
char ch = *opcname++;
|
|
|
|
if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
|
|
return 0;
|
|
if (*opcname++ != 's')
|
|
return 0;
|
|
if (*opcname++ != 'r')
|
|
return 0;
|
|
if (*opcname++ != '.')
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Classify an opcode based on what it means for Call0 prologue analysis. */
|
|
|
|
static xtensa_insn_kind
|
|
call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
|
|
{
|
|
const char *opcname;
|
|
xtensa_insn_kind opclass = c0opc_uninteresting;
|
|
|
|
DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
|
|
|
|
/* Get opcode name and handle special classifications. */
|
|
|
|
opcname = xtensa_opcode_name (isa, opc);
|
|
|
|
if (opcname == NULL
|
|
|| strcasecmp (opcname, "ill") == 0
|
|
|| strcasecmp (opcname, "ill.n") == 0)
|
|
opclass = c0opc_illegal;
|
|
else if (strcasecmp (opcname, "break") == 0
|
|
|| strcasecmp (opcname, "break.n") == 0)
|
|
opclass = c0opc_break;
|
|
else if (strcasecmp (opcname, "entry") == 0)
|
|
opclass = c0opc_entry;
|
|
else if (strcasecmp (opcname, "rfwo") == 0)
|
|
opclass = c0opc_rfwo;
|
|
else if (strcasecmp (opcname, "rfwu") == 0)
|
|
opclass = c0opc_rfwu;
|
|
else if (xtensa_opcode_is_branch (isa, opc) > 0
|
|
|| xtensa_opcode_is_jump (isa, opc) > 0
|
|
|| xtensa_opcode_is_loop (isa, opc) > 0
|
|
|| xtensa_opcode_is_call (isa, opc) > 0
|
|
|| strcasecmp (opcname, "simcall") == 0
|
|
|| strcasecmp (opcname, "syscall") == 0)
|
|
opclass = c0opc_flow;
|
|
|
|
/* Also, classify specific opcodes that need to be tracked. */
|
|
else if (strcasecmp (opcname, "add") == 0
|
|
|| strcasecmp (opcname, "add.n") == 0)
|
|
opclass = c0opc_add;
|
|
else if (strcasecmp (opcname, "and") == 0)
|
|
opclass = c0opc_and;
|
|
else if (strcasecmp (opcname, "addi") == 0
|
|
|| strcasecmp (opcname, "addi.n") == 0
|
|
|| strcasecmp (opcname, "addmi") == 0)
|
|
opclass = c0opc_addi;
|
|
else if (strcasecmp (opcname, "sub") == 0)
|
|
opclass = c0opc_sub;
|
|
else if (strcasecmp (opcname, "mov.n") == 0
|
|
|| strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
|
|
opclass = c0opc_mov;
|
|
else if (strcasecmp (opcname, "movi") == 0
|
|
|| strcasecmp (opcname, "movi.n") == 0)
|
|
opclass = c0opc_movi;
|
|
else if (strcasecmp (opcname, "l32r") == 0)
|
|
opclass = c0opc_l32r;
|
|
else if (strcasecmp (opcname, "s32i") == 0
|
|
|| strcasecmp (opcname, "s32i.n") == 0)
|
|
opclass = c0opc_s32i;
|
|
else if (strcasecmp (opcname, "l32e") == 0)
|
|
opclass = c0opc_l32e;
|
|
else if (strcasecmp (opcname, "s32e") == 0)
|
|
opclass = c0opc_s32e;
|
|
else if (rwx_special_register (opcname))
|
|
opclass = c0opc_rwxsr;
|
|
|
|
return opclass;
|
|
}
|
|
|
|
/* Tracks register movement/mutation for a given operation, which may
|
|
be within a bundle. Updates the destination register tracking info
|
|
accordingly. The pc is needed only for pc-relative load instructions
|
|
(eg. l32r). The SP register number is needed to identify stores to
|
|
the stack frame. Returns 0, if analysis was succesfull, non-zero
|
|
otherwise. */
|
|
|
|
static int
|
|
call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
|
|
xtensa_insn_kind opclass, int nods, unsigned odv[],
|
|
CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
unsigned litbase, litaddr, litval;
|
|
|
|
switch (opclass)
|
|
{
|
|
case c0opc_addi:
|
|
/* 3 operands: dst, src, imm. */
|
|
gdb_assert (nods == 3);
|
|
dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
|
|
dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
|
|
break;
|
|
case c0opc_add:
|
|
/* 3 operands: dst, src1, src2. */
|
|
gdb_assert (nods == 3);
|
|
if (src[odv[1]].fr_reg == C0_CONST)
|
|
{
|
|
dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
|
|
dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
|
|
}
|
|
else if (src[odv[2]].fr_reg == C0_CONST)
|
|
{
|
|
dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
|
|
dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
|
|
}
|
|
else dst[odv[0]].fr_reg = C0_INEXP;
|
|
break;
|
|
case c0opc_and:
|
|
/* 3 operands: dst, src1, src2. */
|
|
gdb_assert (nods == 3);
|
|
if (cache->c0.c0_fpalign == 0)
|
|
{
|
|
/* Handle dynamic stack alignment. */
|
|
if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
|
|
{
|
|
if (src[odv[2]].fr_reg == C0_CONST)
|
|
cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
|
|
break;
|
|
}
|
|
else if ((src[odv[0]].fr_reg == spreg)
|
|
&& (src[odv[2]].fr_reg == spreg))
|
|
{
|
|
if (src[odv[1]].fr_reg == C0_CONST)
|
|
cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
|
|
break;
|
|
}
|
|
/* else fall through. */
|
|
}
|
|
if (src[odv[1]].fr_reg == C0_CONST)
|
|
{
|
|
dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
|
|
dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
|
|
}
|
|
else if (src[odv[2]].fr_reg == C0_CONST)
|
|
{
|
|
dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
|
|
dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
|
|
}
|
|
else dst[odv[0]].fr_reg = C0_INEXP;
|
|
break;
|
|
case c0opc_sub:
|
|
/* 3 operands: dst, src1, src2. */
|
|
gdb_assert (nods == 3);
|
|
if (src[odv[2]].fr_reg == C0_CONST)
|
|
{
|
|
dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
|
|
dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
|
|
}
|
|
else dst[odv[0]].fr_reg = C0_INEXP;
|
|
break;
|
|
case c0opc_mov:
|
|
/* 2 operands: dst, src [, src]. */
|
|
gdb_assert (nods == 2);
|
|
/* First, check if it's a special case of saving unaligned SP
|
|
to a spare register in case of dynamic stack adjustment.
|
|
But, only do it one time. The second time could be initializing
|
|
frame pointer. We don't want to overwrite the first one. */
|
|
if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
|
|
cache->c0.c0_old_sp = odv[0];
|
|
|
|
dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
|
|
dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
|
|
break;
|
|
case c0opc_movi:
|
|
/* 2 operands: dst, imm. */
|
|
gdb_assert (nods == 2);
|
|
dst[odv[0]].fr_reg = C0_CONST;
|
|
dst[odv[0]].fr_ofs = odv[1];
|
|
break;
|
|
case c0opc_l32r:
|
|
/* 2 operands: dst, literal offset. */
|
|
gdb_assert (nods == 2);
|
|
/* litbase = xtensa_get_litbase (pc); can be also used. */
|
|
litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
|
|
? 0 : xtensa_read_register
|
|
(gdbarch_tdep (gdbarch)->litbase_regnum);
|
|
litaddr = litbase & 1
|
|
? (litbase & ~1) + (signed)odv[1]
|
|
: (pc + 3 + (signed)odv[1]) & ~3;
|
|
litval = read_memory_integer (litaddr, 4, byte_order);
|
|
dst[odv[0]].fr_reg = C0_CONST;
|
|
dst[odv[0]].fr_ofs = litval;
|
|
break;
|
|
case c0opc_s32i:
|
|
/* 3 operands: value, base, offset. */
|
|
gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
|
|
/* First, check if it's a spill for saved unaligned SP,
|
|
when dynamic stack adjustment was applied to this frame. */
|
|
if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
|
|
&& (odv[1] == spreg) /* SP usage indicates spill. */
|
|
&& (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
|
|
cache->c0.c0_sp_ofs = odv[2];
|
|
|
|
if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
|
|
&& (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
|
|
&& src[odv[0]].fr_reg >= 0 /* Value is from a register. */
|
|
&& src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
|
|
&& src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
|
|
{
|
|
/* ISA encoding guarantees alignment. But, check it anyway. */
|
|
gdb_assert ((odv[2] & 3) == 0);
|
|
dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
|
|
}
|
|
break;
|
|
/* If we end up inside Window Overflow / Underflow interrupt handler
|
|
report an error because these handlers should have been handled
|
|
already in a different way. */
|
|
case c0opc_l32e:
|
|
case c0opc_s32e:
|
|
case c0opc_rfwo:
|
|
case c0opc_rfwu:
|
|
return 1;
|
|
default:
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Analyze prologue of the function at start address to determine if it uses
|
|
the Call0 ABI, and if so track register moves and linear modifications
|
|
in the prologue up to the PC or just beyond the prologue, whichever is
|
|
first. An 'entry' instruction indicates non-Call0 ABI and the end of the
|
|
prologue. The prologue may overlap non-prologue instructions but is
|
|
guaranteed to end by the first flow-control instruction (jump, branch,
|
|
call or return). Since an optimized function may move information around
|
|
and change the stack frame arbitrarily during the prologue, the information
|
|
is guaranteed valid only at the point in the function indicated by the PC.
|
|
May be used to skip the prologue or identify the ABI, w/o tracking.
|
|
|
|
Returns: Address of first instruction after prologue, or PC (whichever
|
|
is first), or 0, if decoding failed (in libisa).
|
|
Input args:
|
|
start Start address of function/prologue.
|
|
pc Program counter to stop at. Use 0 to continue to end of prologue.
|
|
If 0, avoids infinite run-on in corrupt code memory by bounding
|
|
the scan to the end of the function if that can be determined.
|
|
nregs Number of general registers to track.
|
|
InOut args:
|
|
cache Xtensa frame cache.
|
|
|
|
Note that these may produce useful results even if decoding fails
|
|
because they begin with default assumptions that analysis may change. */
|
|
|
|
static CORE_ADDR
|
|
call0_analyze_prologue (struct gdbarch *gdbarch,
|
|
CORE_ADDR start, CORE_ADDR pc,
|
|
int nregs, xtensa_frame_cache_t *cache)
|
|
{
|
|
CORE_ADDR ia; /* Current insn address in prologue. */
|
|
CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
|
|
CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
|
|
gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
|
|
xtensa_isa isa; /* libisa ISA handle. */
|
|
xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
|
|
xtensa_format ifmt; /* libisa instruction format. */
|
|
int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
|
|
xtensa_opcode opc; /* Opcode in current slot. */
|
|
xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
|
|
int nods; /* Opcode number of operands. */
|
|
unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
|
|
xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
|
|
int j; /* General loop counter. */
|
|
int fail = 0; /* Set non-zero and exit, if decoding fails. */
|
|
CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
|
|
CORE_ADDR end_pc; /* The PC for the lust function insn. */
|
|
|
|
struct symtab_and_line prologue_sal;
|
|
|
|
DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
|
|
(int)start, (int)pc);
|
|
|
|
/* Try to limit the scan to the end of the function if a non-zero pc
|
|
arg was not supplied to avoid probing beyond the end of valid memory.
|
|
If memory is full of garbage that classifies as c0opc_uninteresting.
|
|
If this fails (eg. if no symbols) pc ends up 0 as it was.
|
|
Intialize the Call0 frame and register tracking info.
|
|
Assume it's Call0 until an 'entry' instruction is encountered.
|
|
Assume we may be in the prologue until we hit a flow control instr. */
|
|
|
|
rtmp = NULL;
|
|
body_pc = UINT_MAX;
|
|
end_pc = 0;
|
|
|
|
/* Find out, if we have an information about the prologue from DWARF. */
|
|
prologue_sal = find_pc_line (start, 0);
|
|
if (prologue_sal.line != 0) /* Found debug info. */
|
|
body_pc = prologue_sal.end;
|
|
|
|
/* If we are going to analyze the prologue in general without knowing about
|
|
the current PC, make the best assumtion for the end of the prologue. */
|
|
if (pc == 0)
|
|
{
|
|
find_pc_partial_function (start, 0, NULL, &end_pc);
|
|
body_pc = min (end_pc, body_pc);
|
|
}
|
|
else
|
|
body_pc = min (pc, body_pc);
|
|
|
|
cache->call0 = 1;
|
|
rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
|
|
|
|
if (!xtensa_default_isa)
|
|
xtensa_default_isa = xtensa_isa_init (0, 0);
|
|
isa = xtensa_default_isa;
|
|
gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
|
|
ins = xtensa_insnbuf_alloc (isa);
|
|
slot = xtensa_insnbuf_alloc (isa);
|
|
|
|
for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
|
|
{
|
|
/* (Re)fill instruction buffer from memory if necessary, but do not
|
|
read memory beyond PC to be sure we stay within text section
|
|
(this protection only works if a non-zero pc is supplied). */
|
|
|
|
if (ia + xtensa_isa_maxlength (isa) > bt)
|
|
{
|
|
ba = ia;
|
|
bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
|
|
if (target_read_memory (ba, ibuf, bt - ba) != 0 )
|
|
error (_("Unable to read target memory ..."));
|
|
}
|
|
|
|
/* Decode format information. */
|
|
|
|
xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
|
|
ifmt = xtensa_format_decode (isa, ins);
|
|
if (ifmt == XTENSA_UNDEFINED)
|
|
{
|
|
fail = 1;
|
|
goto done;
|
|
}
|
|
ilen = xtensa_format_length (isa, ifmt);
|
|
if (ilen == XTENSA_UNDEFINED)
|
|
{
|
|
fail = 1;
|
|
goto done;
|
|
}
|
|
islots = xtensa_format_num_slots (isa, ifmt);
|
|
if (islots == XTENSA_UNDEFINED)
|
|
{
|
|
fail = 1;
|
|
goto done;
|
|
}
|
|
|
|
/* Analyze a bundle or a single instruction, using a snapshot of
|
|
the register tracking info as input for the entire bundle so that
|
|
register changes do not take effect within this bundle. */
|
|
|
|
for (j = 0; j < nregs; ++j)
|
|
rtmp[j] = cache->c0.c0_rt[j];
|
|
|
|
for (is = 0; is < islots; ++is)
|
|
{
|
|
/* Decode a slot and classify the opcode. */
|
|
|
|
fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
|
|
if (fail)
|
|
goto done;
|
|
|
|
opc = xtensa_opcode_decode (isa, ifmt, is, slot);
|
|
DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
|
|
(unsigned)ia, opc);
|
|
if (opc == XTENSA_UNDEFINED)
|
|
opclass = c0opc_illegal;
|
|
else
|
|
opclass = call0_classify_opcode (isa, opc);
|
|
|
|
/* Decide whether to track this opcode, ignore it, or bail out. */
|
|
|
|
switch (opclass)
|
|
{
|
|
case c0opc_illegal:
|
|
case c0opc_break:
|
|
fail = 1;
|
|
goto done;
|
|
|
|
case c0opc_uninteresting:
|
|
continue;
|
|
|
|
case c0opc_flow: /* Flow control instructions stop analysis. */
|
|
case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
|
|
goto done;
|
|
|
|
case c0opc_entry:
|
|
cache->call0 = 0;
|
|
ia += ilen; /* Skip over 'entry' insn. */
|
|
goto done;
|
|
|
|
default:
|
|
cache->call0 = 1;
|
|
}
|
|
|
|
/* Only expected opcodes should get this far. */
|
|
|
|
/* Extract and decode the operands. */
|
|
nods = xtensa_opcode_num_operands (isa, opc);
|
|
if (nods == XTENSA_UNDEFINED)
|
|
{
|
|
fail = 1;
|
|
goto done;
|
|
}
|
|
|
|
for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
|
|
{
|
|
fail = xtensa_operand_get_field (isa, opc, j, ifmt,
|
|
is, slot, &odv[j]);
|
|
if (fail)
|
|
goto done;
|
|
|
|
fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
|
|
if (fail)
|
|
goto done;
|
|
}
|
|
|
|
/* Check operands to verify use of 'mov' assembler macro. */
|
|
if (opclass == c0opc_mov && nods == 3)
|
|
{
|
|
if (odv[2] == odv[1])
|
|
{
|
|
nods = 2;
|
|
if ((odv[0] == 1) && (odv[1] != 1))
|
|
/* OR A1, An, An , where n != 1.
|
|
This means we are inside epilogue already. */
|
|
goto done;
|
|
}
|
|
else
|
|
{
|
|
opclass = c0opc_uninteresting;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* Track register movement and modification for this operation. */
|
|
fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
|
|
opclass, nods, odv, ia, 1, cache);
|
|
if (fail)
|
|
goto done;
|
|
}
|
|
}
|
|
done:
|
|
DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
|
|
(unsigned)ia, fail ? "failed" : "succeeded");
|
|
xtensa_insnbuf_free(isa, slot);
|
|
xtensa_insnbuf_free(isa, ins);
|
|
return fail ? XTENSA_ISA_BADPC : ia;
|
|
}
|
|
|
|
/* Initialize frame cache for the current frame in CALL0 ABI. */
|
|
|
|
static void
|
|
call0_frame_cache (struct frame_info *this_frame,
|
|
xtensa_frame_cache_t *cache, CORE_ADDR pc)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
CORE_ADDR start_pc; /* The beginning of the function. */
|
|
CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
|
|
CORE_ADDR sp, fp, ra;
|
|
int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
|
|
|
|
sp = get_frame_register_unsigned
|
|
(this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
|
|
fp = sp; /* Assume FP == SP until proven otherwise. */
|
|
|
|
/* Find the beginning of the prologue of the function containing the PC
|
|
and analyze it up to the PC or the end of the prologue. */
|
|
|
|
if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
|
|
{
|
|
body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
|
|
|
|
if (body_pc == XTENSA_ISA_BADPC)
|
|
{
|
|
warning_once ();
|
|
ra = 0;
|
|
goto finish_frame_analysis;
|
|
}
|
|
}
|
|
|
|
/* Get the frame information and FP (if used) at the current PC.
|
|
If PC is in the prologue, the prologue analysis is more reliable
|
|
than DWARF info. We don't not know for sure, if PC is in the prologue,
|
|
but we do know no calls have yet taken place, so we can almost
|
|
certainly rely on the prologue analysis. */
|
|
|
|
if (body_pc <= pc)
|
|
{
|
|
/* Prologue analysis was successful up to the PC.
|
|
It includes the cases when PC == START_PC. */
|
|
c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
|
|
/* c0_hasfp == true means there is a frame pointer because
|
|
we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
|
|
was derived from SP. Otherwise, it would be C0_FP. */
|
|
fp_regnum = c0_hasfp ? C0_FP : C0_SP;
|
|
c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
|
|
fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
|
|
}
|
|
else /* No data from the prologue analysis. */
|
|
{
|
|
c0_hasfp = 0;
|
|
fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
|
|
c0_frmsz = 0;
|
|
start_pc = pc;
|
|
}
|
|
|
|
if (cache->c0.c0_fpalign)
|
|
{
|
|
/* This frame has a special prologue with a dynamic stack adjustment
|
|
to force an alignment, which is bigger than standard 16 bytes. */
|
|
|
|
CORE_ADDR unaligned_sp;
|
|
|
|
if (cache->c0.c0_old_sp == C0_INEXP)
|
|
/* This can't be. Prologue code should be consistent.
|
|
Unaligned stack pointer should be saved in a spare register. */
|
|
{
|
|
warning_once ();
|
|
ra = 0;
|
|
goto finish_frame_analysis;
|
|
}
|
|
|
|
if (cache->c0.c0_sp_ofs == C0_NOSTK)
|
|
/* Saved unaligned value of SP is kept in a register. */
|
|
unaligned_sp = get_frame_register_unsigned
|
|
(this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
|
|
else
|
|
/* Get the value from stack. */
|
|
unaligned_sp = (CORE_ADDR)
|
|
read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
|
|
|
|
prev_sp = unaligned_sp + c0_frmsz;
|
|
}
|
|
else
|
|
prev_sp = fp + c0_frmsz;
|
|
|
|
/* Frame size from debug info or prologue tracking does not account for
|
|
alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
|
|
if (c0_hasfp)
|
|
{
|
|
fp = get_frame_register_unsigned (this_frame, fp_regnum);
|
|
|
|
/* Update the stack frame size. */
|
|
c0_frmsz += fp - sp;
|
|
}
|
|
|
|
/* Get the return address (RA) from the stack if saved,
|
|
or try to get it from a register. */
|
|
|
|
to_stk = cache->c0.c0_rt[C0_RA].to_stk;
|
|
if (to_stk != C0_NOSTK)
|
|
ra = (CORE_ADDR)
|
|
read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
|
|
4, byte_order);
|
|
|
|
else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
|
|
&& cache->c0.c0_rt[C0_RA].fr_ofs == 0)
|
|
{
|
|
/* Special case for terminating backtrace at a function that wants to
|
|
be seen as the outermost one. Such a function will clear it's RA (A0)
|
|
register to 0 in the prologue instead of saving its original value. */
|
|
ra = 0;
|
|
}
|
|
else
|
|
{
|
|
/* RA was copied to another register or (before any function call) may
|
|
still be in the original RA register. This is not always reliable:
|
|
even in a leaf function, register tracking stops after prologue, and
|
|
even in prologue, non-prologue instructions (not tracked) may overwrite
|
|
RA or any register it was copied to. If likely in prologue or before
|
|
any call, use retracking info and hope for the best (compiler should
|
|
have saved RA in stack if not in a leaf function). If not in prologue,
|
|
too bad. */
|
|
|
|
int i;
|
|
for (i = 0;
|
|
(i < C0_NREGS)
|
|
&& (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
|
|
++i);
|
|
if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
|
|
i = C0_RA;
|
|
if (i < C0_NREGS)
|
|
{
|
|
ra = get_frame_register_unsigned
|
|
(this_frame,
|
|
gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
|
|
}
|
|
else ra = 0;
|
|
}
|
|
|
|
finish_frame_analysis:
|
|
cache->pc = start_pc;
|
|
cache->ra = ra;
|
|
/* RA == 0 marks the outermost frame. Do not go past it. */
|
|
cache->prev_sp = (ra != 0) ? prev_sp : 0;
|
|
cache->c0.fp_regnum = fp_regnum;
|
|
cache->c0.c0_frmsz = c0_frmsz;
|
|
cache->c0.c0_hasfp = c0_hasfp;
|
|
cache->c0.c0_fp = fp;
|
|
}
|
|
|
|
static CORE_ADDR a0_saved;
|
|
static CORE_ADDR a7_saved;
|
|
static CORE_ADDR a11_saved;
|
|
static int a0_was_saved;
|
|
static int a7_was_saved;
|
|
static int a11_was_saved;
|
|
|
|
/* Simulate L32E instruction: AT <-- ref (AS + offset). */
|
|
static void
|
|
execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
|
|
{
|
|
int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
|
|
int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
|
|
CORE_ADDR addr = xtensa_read_register (asreg) + offset;
|
|
unsigned int spilled_value
|
|
= read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
|
|
|
|
if ((at == 0) && !a0_was_saved)
|
|
{
|
|
a0_saved = xtensa_read_register (atreg);
|
|
a0_was_saved = 1;
|
|
}
|
|
else if ((at == 7) && !a7_was_saved)
|
|
{
|
|
a7_saved = xtensa_read_register (atreg);
|
|
a7_was_saved = 1;
|
|
}
|
|
else if ((at == 11) && !a11_was_saved)
|
|
{
|
|
a11_saved = xtensa_read_register (atreg);
|
|
a11_was_saved = 1;
|
|
}
|
|
|
|
xtensa_write_register (atreg, spilled_value);
|
|
}
|
|
|
|
/* Simulate S32E instruction: AT --> ref (AS + offset). */
|
|
static void
|
|
execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
|
|
{
|
|
int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
|
|
int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
|
|
CORE_ADDR addr = xtensa_read_register (asreg) + offset;
|
|
ULONGEST spilled_value = xtensa_read_register (atreg);
|
|
|
|
write_memory_unsigned_integer (addr, 4,
|
|
gdbarch_byte_order (gdbarch),
|
|
spilled_value);
|
|
}
|
|
|
|
#define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
|
|
|
|
typedef enum
|
|
{
|
|
xtWindowOverflow,
|
|
xtWindowUnderflow,
|
|
xtNoExceptionHandler
|
|
} xtensa_exception_handler_t;
|
|
|
|
/* Execute instruction stream from current PC until hitting RFWU or RFWO.
|
|
Return type of Xtensa Window Interrupt Handler on success. */
|
|
static xtensa_exception_handler_t
|
|
execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
|
|
{
|
|
xtensa_isa isa;
|
|
xtensa_insnbuf ins, slot;
|
|
gdb_byte ibuf[XTENSA_ISA_BSZ];
|
|
CORE_ADDR ia, bt, ba;
|
|
xtensa_format ifmt;
|
|
int ilen, islots, is;
|
|
xtensa_opcode opc;
|
|
int insn_num = 0;
|
|
int fail = 0;
|
|
void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
|
|
|
|
uint32_t at, as, offset;
|
|
|
|
/* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
|
|
int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
|
|
|
|
isa = xtensa_default_isa;
|
|
gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
|
|
ins = xtensa_insnbuf_alloc (isa);
|
|
slot = xtensa_insnbuf_alloc (isa);
|
|
ba = 0;
|
|
ia = current_pc;
|
|
bt = ia;
|
|
|
|
a0_was_saved = 0;
|
|
a7_was_saved = 0;
|
|
a11_was_saved = 0;
|
|
|
|
while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
|
|
{
|
|
if (ia + xtensa_isa_maxlength (isa) > bt)
|
|
{
|
|
ba = ia;
|
|
bt = (ba + XTENSA_ISA_BSZ);
|
|
if (target_read_memory (ba, ibuf, bt - ba) != 0)
|
|
return xtNoExceptionHandler;
|
|
}
|
|
xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
|
|
ifmt = xtensa_format_decode (isa, ins);
|
|
if (ifmt == XTENSA_UNDEFINED)
|
|
return xtNoExceptionHandler;
|
|
ilen = xtensa_format_length (isa, ifmt);
|
|
if (ilen == XTENSA_UNDEFINED)
|
|
return xtNoExceptionHandler;
|
|
islots = xtensa_format_num_slots (isa, ifmt);
|
|
if (islots == XTENSA_UNDEFINED)
|
|
return xtNoExceptionHandler;
|
|
for (is = 0; is < islots; ++is)
|
|
{
|
|
if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
|
|
return xtNoExceptionHandler;
|
|
opc = xtensa_opcode_decode (isa, ifmt, is, slot);
|
|
if (opc == XTENSA_UNDEFINED)
|
|
return xtNoExceptionHandler;
|
|
switch (call0_classify_opcode (isa, opc))
|
|
{
|
|
case c0opc_illegal:
|
|
case c0opc_flow:
|
|
case c0opc_entry:
|
|
case c0opc_break:
|
|
/* We expect none of them here. */
|
|
return xtNoExceptionHandler;
|
|
case c0opc_l32e:
|
|
func = execute_l32e;
|
|
break;
|
|
case c0opc_s32e:
|
|
func = execute_s32e;
|
|
break;
|
|
case c0opc_rfwo: /* RFWO. */
|
|
/* Here, we return from WindowOverflow handler and,
|
|
if we stopped at the very beginning, which means
|
|
A0 was saved, we have to restore it now. */
|
|
if (a0_was_saved)
|
|
{
|
|
int arreg = arreg_number (gdbarch,
|
|
gdbarch_tdep (gdbarch)->a0_base,
|
|
wb);
|
|
xtensa_write_register (arreg, a0_saved);
|
|
}
|
|
return xtWindowOverflow;
|
|
case c0opc_rfwu: /* RFWU. */
|
|
/* Here, we return from WindowUnderflow handler.
|
|
Let's see if either A7 or A11 has to be restored. */
|
|
if (WindowUnderflow12)
|
|
{
|
|
if (a11_was_saved)
|
|
{
|
|
int arreg = arreg_number (gdbarch,
|
|
gdbarch_tdep (gdbarch)->a0_base + 11,
|
|
wb);
|
|
xtensa_write_register (arreg, a11_saved);
|
|
}
|
|
}
|
|
else if (a7_was_saved)
|
|
{
|
|
int arreg = arreg_number (gdbarch,
|
|
gdbarch_tdep (gdbarch)->a0_base + 7,
|
|
wb);
|
|
xtensa_write_register (arreg, a7_saved);
|
|
}
|
|
return xtWindowUnderflow;
|
|
default: /* Simply skip this insns. */
|
|
continue;
|
|
}
|
|
|
|
/* Decode arguments for L32E / S32E and simulate their execution. */
|
|
if ( xtensa_opcode_num_operands (isa, opc) != 3 )
|
|
return xtNoExceptionHandler;
|
|
if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
|
|
return xtNoExceptionHandler;
|
|
if (xtensa_operand_decode (isa, opc, 0, &at))
|
|
return xtNoExceptionHandler;
|
|
if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
|
|
return xtNoExceptionHandler;
|
|
if (xtensa_operand_decode (isa, opc, 1, &as))
|
|
return xtNoExceptionHandler;
|
|
if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
|
|
return xtNoExceptionHandler;
|
|
if (xtensa_operand_decode (isa, opc, 2, &offset))
|
|
return xtNoExceptionHandler;
|
|
|
|
(*func) (gdbarch, at, as, offset, wb);
|
|
}
|
|
|
|
ia += ilen;
|
|
}
|
|
return xtNoExceptionHandler;
|
|
}
|
|
|
|
/* Handle Window Overflow / Underflow exception frames. */
|
|
|
|
static void
|
|
xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
|
|
xtensa_frame_cache_t *cache,
|
|
CORE_ADDR pc)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
CORE_ADDR ps, wb, ws, ra;
|
|
int epc1_regnum, i, regnum;
|
|
xtensa_exception_handler_t eh_type;
|
|
|
|
/* Read PS, WB, and WS from the hardware. Note that PS register
|
|
must be present, if Windowed ABI is supported. */
|
|
ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
|
|
wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
|
|
ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
|
|
|
|
/* Execute all the remaining instructions from Window Interrupt Handler
|
|
by simulating them on the remote protocol level. On return, set the
|
|
type of Xtensa Window Interrupt Handler, or report an error. */
|
|
eh_type = execute_code (gdbarch, pc, wb);
|
|
if (eh_type == xtNoExceptionHandler)
|
|
error (_("\
|
|
Unable to decode Xtensa Window Interrupt Handler's code."));
|
|
|
|
cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
|
|
cache->call0 = 0; /* It's Windowed ABI. */
|
|
|
|
/* All registers for the cached frame will be alive. */
|
|
for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
|
|
cache->wd.aregs[i] = -1;
|
|
|
|
if (eh_type == xtWindowOverflow)
|
|
cache->wd.ws = ws ^ (1 << wb);
|
|
else /* eh_type == xtWindowUnderflow. */
|
|
cache->wd.ws = ws | (1 << wb);
|
|
|
|
cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
|
|
regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
|
|
cache->wd.wb);
|
|
ra = xtensa_read_register (regnum);
|
|
cache->wd.callsize = WINSIZE (ra);
|
|
cache->prev_sp = xtensa_read_register (regnum + 1);
|
|
/* Set regnum to a frame pointer of the frame being cached. */
|
|
regnum = xtensa_scan_prologue (gdbarch, pc);
|
|
regnum = arreg_number (gdbarch,
|
|
gdbarch_tdep (gdbarch)->a0_base + regnum,
|
|
cache->wd.wb);
|
|
cache->base = get_frame_register_unsigned (this_frame, regnum);
|
|
|
|
/* Read PC of interrupted function from EPC1 register. */
|
|
epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
|
|
if (epc1_regnum < 0)
|
|
error(_("Unable to read Xtensa register EPC1"));
|
|
cache->ra = xtensa_read_register (epc1_regnum);
|
|
cache->pc = get_frame_func (this_frame);
|
|
}
|
|
|
|
|
|
/* Skip function prologue.
|
|
|
|
Return the pc of the first instruction after prologue. GDB calls this to
|
|
find the address of the first line of the function or (if there is no line
|
|
number information) to skip the prologue for planting breakpoints on
|
|
function entries. Use debug info (if present) or prologue analysis to skip
|
|
the prologue to achieve reliable debugging behavior. For windowed ABI,
|
|
only the 'entry' instruction is skipped. It is not strictly necessary to
|
|
skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
|
|
backtrace at any point in the prologue, however certain potential hazards
|
|
are avoided and a more "normal" debugging experience is ensured by
|
|
skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
|
|
For example, if we don't skip the prologue:
|
|
- Some args may not yet have been saved to the stack where the debug
|
|
info expects to find them (true anyway when only 'entry' is skipped);
|
|
- Software breakpoints ('break' instrs) may not have been unplanted
|
|
when the prologue analysis is done on initializing the frame cache,
|
|
and breaks in the prologue will throw off the analysis.
|
|
|
|
If we have debug info ( line-number info, in particular ) we simply skip
|
|
the code associated with the first function line effectively skipping
|
|
the prologue code. It works even in cases like
|
|
|
|
int main()
|
|
{ int local_var = 1;
|
|
....
|
|
}
|
|
|
|
because, for this source code, both Xtensa compilers will generate two
|
|
separate entries ( with the same line number ) in dwarf line-number
|
|
section to make sure there is a boundary between the prologue code and
|
|
the rest of the function.
|
|
|
|
If there is no debug info, we need to analyze the code. */
|
|
|
|
/* #define DONT_SKIP_PROLOGUE */
|
|
|
|
static CORE_ADDR
|
|
xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
|
|
{
|
|
struct symtab_and_line prologue_sal;
|
|
CORE_ADDR body_pc;
|
|
|
|
DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
|
|
|
|
#if DONT_SKIP_PROLOGUE
|
|
return start_pc;
|
|
#endif
|
|
|
|
/* Try to find first body line from debug info. */
|
|
|
|
prologue_sal = find_pc_line (start_pc, 0);
|
|
if (prologue_sal.line != 0) /* Found debug info. */
|
|
{
|
|
/* In Call0, it is possible to have a function with only one instruction
|
|
('ret') resulting from a one-line optimized function that does nothing.
|
|
In that case, prologue_sal.end may actually point to the start of the
|
|
next function in the text section, causing a breakpoint to be set at
|
|
the wrong place. Check, if the end address is within a different
|
|
function, and if so return the start PC. We know we have symbol
|
|
information. */
|
|
|
|
CORE_ADDR end_func;
|
|
|
|
if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
|
|
&& call0_ret (start_pc, prologue_sal.end))
|
|
return start_pc;
|
|
|
|
find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
|
|
if (end_func != start_pc)
|
|
return start_pc;
|
|
|
|
return prologue_sal.end;
|
|
}
|
|
|
|
/* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
|
|
body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
|
|
xtensa_alloc_frame_cache (0));
|
|
return body_pc != 0 ? body_pc : start_pc;
|
|
}
|
|
|
|
/* Verify the current configuration. */
|
|
static void
|
|
xtensa_verify_config (struct gdbarch *gdbarch)
|
|
{
|
|
struct ui_file *log;
|
|
struct cleanup *cleanups;
|
|
struct gdbarch_tdep *tdep;
|
|
long length;
|
|
char *buf;
|
|
|
|
tdep = gdbarch_tdep (gdbarch);
|
|
log = mem_fileopen ();
|
|
cleanups = make_cleanup_ui_file_delete (log);
|
|
|
|
/* Verify that we got a reasonable number of AREGS. */
|
|
if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
|
|
fprintf_unfiltered (log, _("\
|
|
\n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
|
|
tdep->num_aregs);
|
|
|
|
/* Verify that certain registers exist. */
|
|
|
|
if (tdep->pc_regnum == -1)
|
|
fprintf_unfiltered (log, _("\n\tpc_regnum: No PC register"));
|
|
if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
|
|
fprintf_unfiltered (log, _("\n\tps_regnum: No PS register"));
|
|
|
|
if (tdep->isa_use_windowed_registers)
|
|
{
|
|
if (tdep->wb_regnum == -1)
|
|
fprintf_unfiltered (log, _("\n\twb_regnum: No WB register"));
|
|
if (tdep->ws_regnum == -1)
|
|
fprintf_unfiltered (log, _("\n\tws_regnum: No WS register"));
|
|
if (tdep->ar_base == -1)
|
|
fprintf_unfiltered (log, _("\n\tar_base: No AR registers"));
|
|
}
|
|
|
|
if (tdep->a0_base == -1)
|
|
fprintf_unfiltered (log, _("\n\ta0_base: No Ax registers"));
|
|
|
|
buf = ui_file_xstrdup (log, &length);
|
|
make_cleanup (xfree, buf);
|
|
if (length > 0)
|
|
internal_error (__FILE__, __LINE__,
|
|
_("the following are invalid: %s"), buf);
|
|
do_cleanups (cleanups);
|
|
}
|
|
|
|
|
|
/* Derive specific register numbers from the array of registers. */
|
|
|
|
static void
|
|
xtensa_derive_tdep (struct gdbarch_tdep *tdep)
|
|
{
|
|
xtensa_register_t* rmap;
|
|
int n, max_size = 4;
|
|
|
|
tdep->num_regs = 0;
|
|
tdep->num_nopriv_regs = 0;
|
|
|
|
/* Special registers 0..255 (core). */
|
|
#define XTENSA_DBREGN_SREG(n) (0x0200+(n))
|
|
|
|
for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
|
|
{
|
|
if (rmap->target_number == 0x0020)
|
|
tdep->pc_regnum = n;
|
|
else if (rmap->target_number == 0x0100)
|
|
tdep->ar_base = n;
|
|
else if (rmap->target_number == 0x0000)
|
|
tdep->a0_base = n;
|
|
else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
|
|
tdep->wb_regnum = n;
|
|
else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
|
|
tdep->ws_regnum = n;
|
|
else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
|
|
tdep->debugcause_regnum = n;
|
|
else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
|
|
tdep->exccause_regnum = n;
|
|
else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
|
|
tdep->excvaddr_regnum = n;
|
|
else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
|
|
tdep->lbeg_regnum = n;
|
|
else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
|
|
tdep->lend_regnum = n;
|
|
else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
|
|
tdep->lcount_regnum = n;
|
|
else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
|
|
tdep->sar_regnum = n;
|
|
else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
|
|
tdep->litbase_regnum = n;
|
|
else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
|
|
tdep->ps_regnum = n;
|
|
#if 0
|
|
else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
|
|
tdep->interrupt_regnum = n;
|
|
else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
|
|
tdep->interrupt2_regnum = n;
|
|
else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
|
|
tdep->cpenable_regnum = n;
|
|
#endif
|
|
|
|
if (rmap->byte_size > max_size)
|
|
max_size = rmap->byte_size;
|
|
if (rmap->mask != 0 && tdep->num_regs == 0)
|
|
tdep->num_regs = n;
|
|
/* Find out out how to deal with priveleged registers.
|
|
|
|
if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
|
|
&& tdep->num_nopriv_regs == 0)
|
|
tdep->num_nopriv_regs = n;
|
|
*/
|
|
if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
|
|
&& tdep->num_regs == 0)
|
|
tdep->num_regs = n;
|
|
}
|
|
|
|
/* Number of pseudo registers. */
|
|
tdep->num_pseudo_regs = n - tdep->num_regs;
|
|
|
|
/* Empirically determined maximum sizes. */
|
|
tdep->max_register_raw_size = max_size;
|
|
tdep->max_register_virtual_size = max_size;
|
|
}
|
|
|
|
/* Module "constructor" function. */
|
|
|
|
extern struct gdbarch_tdep xtensa_tdep;
|
|
|
|
static struct gdbarch *
|
|
xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|
{
|
|
struct gdbarch_tdep *tdep;
|
|
struct gdbarch *gdbarch;
|
|
struct xtensa_abi_handler *abi_handler;
|
|
|
|
DEBUGTRACE ("gdbarch_init()\n");
|
|
|
|
/* We have to set the byte order before we call gdbarch_alloc. */
|
|
info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
|
|
|
|
tdep = &xtensa_tdep;
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
|
xtensa_derive_tdep (tdep);
|
|
|
|
/* Verify our configuration. */
|
|
xtensa_verify_config (gdbarch);
|
|
xtensa_session_once_reported = 0;
|
|
|
|
/* Pseudo-Register read/write. */
|
|
set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
|
|
set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
|
|
|
|
/* Set target information. */
|
|
set_gdbarch_num_regs (gdbarch, tdep->num_regs);
|
|
set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
|
|
set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
|
|
set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
|
|
set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
|
|
|
|
/* Renumber registers for known formats (stabs and dwarf2). */
|
|
set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
|
|
|
|
/* We provide our own function to get register information. */
|
|
set_gdbarch_register_name (gdbarch, xtensa_register_name);
|
|
set_gdbarch_register_type (gdbarch, xtensa_register_type);
|
|
|
|
/* To call functions from GDB using dummy frame. */
|
|
set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
|
|
|
|
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
|
|
|
|
set_gdbarch_return_value (gdbarch, xtensa_return_value);
|
|
|
|
/* Advance PC across any prologue instructions to reach "real" code. */
|
|
set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
|
|
|
|
/* Stack grows downward. */
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|
|
|
/* Set breakpoints. */
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, xtensa_breakpoint_from_pc);
|
|
|
|
/* After breakpoint instruction or illegal instruction, pc still
|
|
points at break instruction, so don't decrement. */
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 0);
|
|
|
|
/* We don't skip args. */
|
|
set_gdbarch_frame_args_skip (gdbarch, 0);
|
|
|
|
set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
|
|
|
|
set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
|
|
|
|
set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
|
|
|
|
/* Frame handling. */
|
|
frame_base_set_default (gdbarch, &xtensa_frame_base);
|
|
frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
|
|
dwarf2_append_unwinders (gdbarch);
|
|
|
|
set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
|
|
|
|
set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
|
|
|
|
xtensa_add_reggroups (gdbarch);
|
|
set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
|
|
|
|
set_gdbarch_iterate_over_regset_sections
|
|
(gdbarch, xtensa_iterate_over_regset_sections);
|
|
|
|
set_solib_svr4_fetch_link_map_offsets
|
|
(gdbarch, svr4_ilp32_fetch_link_map_offsets);
|
|
|
|
return gdbarch;
|
|
}
|
|
|
|
static void
|
|
xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
|
|
{
|
|
error (_("xtensa_dump_tdep(): not implemented"));
|
|
}
|
|
|
|
/* Provide a prototype to silence -Wmissing-prototypes. */
|
|
extern initialize_file_ftype _initialize_xtensa_tdep;
|
|
|
|
void
|
|
_initialize_xtensa_tdep (void)
|
|
{
|
|
struct cmd_list_element *c;
|
|
|
|
gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
|
|
xtensa_init_reggroups ();
|
|
|
|
add_setshow_zuinteger_cmd ("xtensa",
|
|
class_maintenance,
|
|
&xtensa_debug_level,
|
|
_("Set Xtensa debugging."),
|
|
_("Show Xtensa debugging."), _("\
|
|
When non-zero, Xtensa-specific debugging is enabled. \
|
|
Can be 1, 2, 3, or 4 indicating the level of debugging."),
|
|
NULL,
|
|
NULL,
|
|
&setdebuglist, &showdebuglist);
|
|
}
|