binutils-gdb/gdb/somread.c
Gary Benson 61012eef84 New common function "startswith"
This commit introduces a new inline common function "startswith"
which takes two string arguments and returns nonzero if the first
string starts with the second.  It also updates the 295 places
where this logic was written out longhand to use the new function.

gdb/ChangeLog:

	* common/common-utils.h (startswith): New inline function.
	All places where this logic was used updated to use the above.
2015-03-06 09:42:06 +00:00

548 lines
16 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Read HP PA/Risc object files for GDB.
Copyright (C) 1991-2015 Free Software Foundation, Inc.
Written by Fred Fish at Cygnus Support.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "bfd.h"
#include "som/aout.h"
#include "symtab.h"
#include "symfile.h"
#include "objfiles.h"
#include "buildsym.h"
#include "stabsread.h"
#include "gdb-stabs.h"
#include "complaints.h"
#include "demangle.h"
#include "som.h"
#include "libhppa.h"
#include "psymtab.h"
#include "solib-som.h"
/* Read the symbol table of a SOM file.
Given an open bfd, a base address to relocate symbols to, and a
flag that specifies whether or not this bfd is for an executable
or not (may be shared library for example), add all the global
function and data symbols to the minimal symbol table. */
static void
som_symtab_read (bfd *abfd, struct objfile *objfile,
struct section_offsets *section_offsets)
{
struct cleanup *cleanup;
struct gdbarch *gdbarch = get_objfile_arch (objfile);
unsigned int number_of_symbols;
int val, dynamic;
char *stringtab;
asection *shlib_info;
struct som_external_symbol_dictionary_record *buf, *bufp, *endbufp;
char *symname;
const int symsize = sizeof (struct som_external_symbol_dictionary_record);
number_of_symbols = bfd_get_symcount (abfd);
/* Allocate a buffer to read in the debug info.
We avoid using alloca because the memory size could be so large
that we could hit the stack size limit. */
buf = xmalloc (symsize * number_of_symbols);
cleanup = make_cleanup (xfree, buf);
bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET);
val = bfd_bread (buf, symsize * number_of_symbols, abfd);
if (val != symsize * number_of_symbols)
error (_("Couldn't read symbol dictionary!"));
/* Allocate a buffer to read in the som stringtab section of
the debugging info. Again, we avoid using alloca because
the data could be so large that we could potentially hit
the stack size limitat. */
stringtab = xmalloc (obj_som_stringtab_size (abfd));
make_cleanup (xfree, stringtab);
bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET);
val = bfd_bread (stringtab, obj_som_stringtab_size (abfd), abfd);
if (val != obj_som_stringtab_size (abfd))
error (_("Can't read in HP string table."));
/* We need to determine if objfile is a dynamic executable (so we
can do the right thing for ST_ENTRY vs ST_CODE symbols).
There's nothing in the header which easily allows us to do
this.
This code used to rely upon the existence of a $SHLIB_INFO$
section to make this determination. HP claims that it is
more accurate to check for a nonzero text offset, but they
have not provided any information about why that test is
more accurate. */
dynamic = (ANOFFSET (section_offsets, SECT_OFF_TEXT (objfile)) != 0);
endbufp = buf + number_of_symbols;
for (bufp = buf; bufp < endbufp; ++bufp)
{
enum minimal_symbol_type ms_type;
unsigned int flags = bfd_getb32 (bufp->flags);
unsigned int symbol_type
= (flags >> SOM_SYMBOL_TYPE_SH) & SOM_SYMBOL_TYPE_MASK;
unsigned int symbol_scope
= (flags >> SOM_SYMBOL_SCOPE_SH) & SOM_SYMBOL_SCOPE_MASK;
CORE_ADDR symbol_value = bfd_getb32 (bufp->symbol_value);
asection *section = NULL;
QUIT;
/* Compute the section. */
switch (symbol_scope)
{
case SS_EXTERNAL:
if (symbol_type != ST_STORAGE)
section = bfd_und_section_ptr;
else
section = bfd_com_section_ptr;
break;
case SS_UNSAT:
if (symbol_type != ST_STORAGE)
section = bfd_und_section_ptr;
else
section = bfd_com_section_ptr;
break;
case SS_UNIVERSAL:
section = bfd_section_from_som_symbol (abfd, bufp);
break;
case SS_LOCAL:
section = bfd_section_from_som_symbol (abfd, bufp);
break;
}
switch (symbol_scope)
{
case SS_UNIVERSAL:
case SS_EXTERNAL:
switch (symbol_type)
{
case ST_SYM_EXT:
case ST_ARG_EXT:
continue;
case ST_CODE:
case ST_PRI_PROG:
case ST_SEC_PROG:
case ST_MILLICODE:
symname = bfd_getb32 (bufp->name) + stringtab;
ms_type = mst_text;
symbol_value = gdbarch_addr_bits_remove (gdbarch, symbol_value);
break;
case ST_ENTRY:
symname = bfd_getb32 (bufp->name) + stringtab;
/* For a dynamic executable, ST_ENTRY symbols are
the stubs, while the ST_CODE symbol is the real
function. */
if (dynamic)
ms_type = mst_solib_trampoline;
else
ms_type = mst_text;
symbol_value = gdbarch_addr_bits_remove (gdbarch, symbol_value);
break;
case ST_STUB:
symname = bfd_getb32 (bufp->name) + stringtab;
ms_type = mst_solib_trampoline;
symbol_value = gdbarch_addr_bits_remove (gdbarch, symbol_value);
break;
case ST_DATA:
symname = bfd_getb32 (bufp->name) + stringtab;
ms_type = mst_data;
break;
default:
continue;
}
break;
#if 0
/* SS_GLOBAL and SS_LOCAL are two names for the same thing (!). */
case SS_GLOBAL:
#endif
case SS_LOCAL:
switch (symbol_type)
{
case ST_SYM_EXT:
case ST_ARG_EXT:
continue;
case ST_CODE:
symname = bfd_getb32 (bufp->name) + stringtab;
ms_type = mst_file_text;
symbol_value = gdbarch_addr_bits_remove (gdbarch, symbol_value);
check_strange_names:
/* Utah GCC 2.5, FSF GCC 2.6 and later generate correct local
label prefixes for stabs, constant data, etc. So we need
only filter out L$ symbols which are left in due to
limitations in how GAS generates SOM relocations.
When linking in the HPUX C-library the HP linker has
the nasty habit of placing section symbols from the literal
subspaces in the middle of the program's text. Filter
those out as best we can. Check for first and last character
being '$'.
And finally, the newer HP compilers emit crud like $PIC_foo$N
in some circumstance (PIC code I guess). It's also claimed
that they emit D$ symbols too. What stupidity. */
if ((symname[0] == 'L' && symname[1] == '$')
|| (symname[0] == '$' && symname[strlen (symname) - 1] == '$')
|| (symname[0] == 'D' && symname[1] == '$')
|| (startswith (symname, "L0\001"))
|| (startswith (symname, "$PIC")))
continue;
break;
case ST_PRI_PROG:
case ST_SEC_PROG:
case ST_MILLICODE:
symname = bfd_getb32 (bufp->name) + stringtab;
ms_type = mst_file_text;
symbol_value = gdbarch_addr_bits_remove (gdbarch, symbol_value);
break;
case ST_ENTRY:
symname = bfd_getb32 (bufp->name) + stringtab;
/* SS_LOCAL symbols in a shared library do not have
export stubs, so we do not have to worry about
using mst_file_text vs mst_solib_trampoline here like
we do for SS_UNIVERSAL and SS_EXTERNAL symbols above. */
ms_type = mst_file_text;
symbol_value = gdbarch_addr_bits_remove (gdbarch, symbol_value);
break;
case ST_STUB:
symname = bfd_getb32 (bufp->name) + stringtab;
ms_type = mst_solib_trampoline;
symbol_value = gdbarch_addr_bits_remove (gdbarch, symbol_value);
break;
case ST_DATA:
symname = bfd_getb32 (bufp->name) + stringtab;
ms_type = mst_file_data;
goto check_strange_names;
default:
continue;
}
break;
/* This can happen for common symbols when -E is passed to the
final link. No idea _why_ that would make the linker force
common symbols to have an SS_UNSAT scope, but it does.
This also happens for weak symbols, but their type is
ST_DATA. */
case SS_UNSAT:
switch (symbol_type)
{
case ST_STORAGE:
case ST_DATA:
symname = bfd_getb32 (bufp->name) + stringtab;
ms_type = mst_data;
break;
default:
continue;
}
break;
default:
continue;
}
if (bfd_getb32 (bufp->name) > obj_som_stringtab_size (abfd))
error (_("Invalid symbol data; bad HP string table offset: %s"),
plongest (bfd_getb32 (bufp->name)));
if (bfd_is_const_section (section))
{
struct obj_section *iter;
ALL_OBJFILE_OSECTIONS (objfile, iter)
{
CORE_ADDR start;
CORE_ADDR len;
if (bfd_is_const_section (iter->the_bfd_section))
continue;
start = bfd_get_section_vma (iter->objfile->obfd,
iter->the_bfd_section);
len = bfd_get_section_size (iter->the_bfd_section);
if (start <= symbol_value && symbol_value < start + len)
{
section = iter->the_bfd_section;
break;
}
}
}
prim_record_minimal_symbol_and_info (symname, symbol_value, ms_type,
gdb_bfd_section_index (objfile->obfd,
section),
objfile);
}
do_cleanups (cleanup);
}
/* Scan and build partial symbols for a symbol file.
We have been initialized by a call to som_symfile_init, which
currently does nothing.
SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
in each section. This is ignored, as it isn't needed for SOM.
This function only does the minimum work necessary for letting the
user "name" things symbolically; it does not read the entire symtab.
Instead, it reads the external and static symbols and puts them in partial
symbol tables. When more extensive information is requested of a
file, the corresponding partial symbol table is mutated into a full
fledged symbol table by going back and reading the symbols
for real.
We look for sections with specific names, to tell us what debug
format to look for.
somstab_build_psymtabs() handles STABS symbols.
Note that SOM files have a "minimal" symbol table, which is vaguely
reminiscent of a COFF symbol table, but has only the minimal information
necessary for linking. We process this also, and use the information to
build gdb's minimal symbol table. This gives us some minimal debugging
capability even for files compiled without -g. */
static void
som_symfile_read (struct objfile *objfile, int symfile_flags)
{
bfd *abfd = objfile->obfd;
struct cleanup *back_to;
init_minimal_symbol_collection ();
back_to = make_cleanup_discard_minimal_symbols ();
/* Process the normal SOM symbol table first.
This reads in the DNTT and string table, but doesn't
actually scan the DNTT. It does scan the linker symbol
table and thus build up a "minimal symbol table". */
som_symtab_read (abfd, objfile, objfile->section_offsets);
/* Install any minimal symbols that have been collected as the current
minimal symbols for this objfile.
Further symbol-reading is done incrementally, file-by-file,
in a step known as "psymtab-to-symtab" expansion. hp-symtab-read.c
contains the code to do the actual DNTT scanning and symtab building. */
install_minimal_symbols (objfile);
do_cleanups (back_to);
/* Now read information from the stabs debug sections.
This is emitted by gcc. */
stabsect_build_psymtabs (objfile,
"$GDB_SYMBOLS$", "$GDB_STRINGS$", "$TEXT$");
}
/* Initialize anything that needs initializing when a completely new symbol
file is specified (not just adding some symbols from another file, e.g. a
shared library).
We reinitialize buildsym, since we may be reading stabs from a SOM file. */
static void
som_new_init (struct objfile *ignore)
{
stabsread_new_init ();
buildsym_new_init ();
}
/* Perform any local cleanups required when we are done with a particular
objfile. I.e, we are in the process of discarding all symbol information
for an objfile, freeing up all memory held for it, and unlinking the
objfile struct from the global list of known objfiles. */
static void
som_symfile_finish (struct objfile *objfile)
{
}
/* SOM specific initialization routine for reading symbols. */
static void
som_symfile_init (struct objfile *objfile)
{
/* SOM objects may be reordered, so set OBJF_REORDERED. If we
find this causes a significant slowdown in gdb then we could
set it in the debug symbol readers only when necessary. */
objfile->flags |= OBJF_REORDERED;
}
/* An object of this type is passed to find_section_offset. */
struct find_section_offset_arg
{
/* The objfile. */
struct objfile *objfile;
/* Flags to invert. */
flagword invert;
/* Flags to look for. */
flagword flags;
/* A text section with non-zero size, if any. */
asection *best_section;
/* An empty text section, if any. */
asection *empty_section;
};
/* A callback for bfd_map_over_sections that tries to find a section
with particular flags in an objfile. */
static void
find_section_offset (bfd *abfd, asection *sect, void *arg)
{
struct find_section_offset_arg *info = arg;
flagword aflag;
aflag = bfd_get_section_flags (abfd, sect);
aflag ^= info->invert;
if ((aflag & info->flags) == info->flags)
{
if (bfd_section_size (abfd, sect) > 0)
{
if (info->best_section == NULL)
info->best_section = sect;
}
else
{
if (info->empty_section == NULL)
info->empty_section = sect;
}
}
}
/* Set a section index from a BFD. */
static void
set_section_index (struct objfile *objfile, flagword invert, flagword flags,
int *index_ptr)
{
struct find_section_offset_arg info;
info.objfile = objfile;
info.best_section = NULL;
info.empty_section = NULL;
info.invert = invert;
info.flags = flags;
bfd_map_over_sections (objfile->obfd, find_section_offset, &info);
if (info.best_section)
*index_ptr = info.best_section->index;
else if (info.empty_section)
*index_ptr = info.empty_section->index;
}
/* SOM specific parsing routine for section offsets.
Plain and simple for now. */
static void
som_symfile_offsets (struct objfile *objfile,
const struct section_addr_info *addrs)
{
int i;
CORE_ADDR text_addr;
asection *sect;
objfile->num_sections = bfd_count_sections (objfile->obfd);
objfile->section_offsets = (struct section_offsets *)
obstack_alloc (&objfile->objfile_obstack,
SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
set_section_index (objfile, 0, SEC_ALLOC | SEC_CODE,
&objfile->sect_index_text);
set_section_index (objfile, 0, SEC_ALLOC | SEC_DATA,
&objfile->sect_index_data);
set_section_index (objfile, SEC_LOAD, SEC_ALLOC | SEC_LOAD,
&objfile->sect_index_bss);
set_section_index (objfile, 0, SEC_ALLOC | SEC_READONLY,
&objfile->sect_index_rodata);
/* First see if we're a shared library. If so, get the section
offsets from the library, else get them from addrs. */
if (!som_solib_section_offsets (objfile, objfile->section_offsets))
{
/* Note: Here is OK to compare with ".text" because this is the
name that gdb itself gives to that section, not the SOM
name. */
for (i = 0; i < addrs->num_sections; i++)
if (strcmp (addrs->other[i].name, ".text") == 0)
break;
text_addr = addrs->other[i].addr;
for (i = 0; i < objfile->num_sections; i++)
(objfile->section_offsets)->offsets[i] = text_addr;
}
}
/* Register that we are able to handle SOM object file formats. */
static const struct sym_fns som_sym_fns =
{
som_new_init, /* init anything gbl to entire symtab */
som_symfile_init, /* read initial info, setup for sym_read() */
som_symfile_read, /* read a symbol file into symtab */
NULL, /* sym_read_psymbols */
som_symfile_finish, /* finished with file, cleanup */
som_symfile_offsets, /* Translate ext. to int. relocation */
default_symfile_segments, /* Get segment information from a file. */
NULL,
default_symfile_relocate, /* Relocate a debug section. */
NULL, /* sym_get_probes */
&psym_functions
};
initialize_file_ftype _initialize_somread;
void
_initialize_somread (void)
{
add_symtab_fns (bfd_target_som_flavour, &som_sym_fns);
}