mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-18 12:24:38 +08:00
2731 lines
78 KiB
C
2731 lines
78 KiB
C
/* Support for HPPA 64-bit ELF
|
||
Copyright 1999, 2000, 2001 Free Software Foundation, Inc.
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||
|
||
#include "alloca-conf.h"
|
||
#include "bfd.h"
|
||
#include "sysdep.h"
|
||
#include "libbfd.h"
|
||
#include "elf-bfd.h"
|
||
#include "elf/hppa.h"
|
||
#include "libhppa.h"
|
||
#include "elf64-hppa.h"
|
||
#define ARCH_SIZE 64
|
||
|
||
#define PLT_ENTRY_SIZE 0x10
|
||
#define DLT_ENTRY_SIZE 0x8
|
||
#define OPD_ENTRY_SIZE 0x20
|
||
|
||
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
|
||
|
||
/* The stub is supposed to load the target address and target's DP
|
||
value out of the PLT, then do an external branch to the target
|
||
address.
|
||
|
||
LDD PLTOFF(%r27),%r1
|
||
BVE (%r1)
|
||
LDD PLTOFF+8(%r27),%r27
|
||
|
||
Note that we must use the LDD with a 14 bit displacement, not the one
|
||
with a 5 bit displacement. */
|
||
static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
|
||
0x53, 0x7b, 0x00, 0x00 };
|
||
|
||
struct elf64_hppa_dyn_hash_entry
|
||
{
|
||
struct bfd_hash_entry root;
|
||
|
||
/* Offsets for this symbol in various linker sections. */
|
||
bfd_vma dlt_offset;
|
||
bfd_vma plt_offset;
|
||
bfd_vma opd_offset;
|
||
bfd_vma stub_offset;
|
||
|
||
/* The symbol table entry, if any, that this was derived from. */
|
||
struct elf_link_hash_entry *h;
|
||
|
||
/* The index of the (possibly local) symbol in the input bfd and its
|
||
associated BFD. Needed so that we can have relocs against local
|
||
symbols in shared libraries. */
|
||
long sym_indx;
|
||
bfd *owner;
|
||
|
||
/* Dynamic symbols may need to have two different values. One for
|
||
the dynamic symbol table, one for the normal symbol table.
|
||
|
||
In such cases we store the symbol's real value and section
|
||
index here so we can restore the real value before we write
|
||
the normal symbol table. */
|
||
bfd_vma st_value;
|
||
int st_shndx;
|
||
|
||
/* Used to count non-got, non-plt relocations for delayed sizing
|
||
of relocation sections. */
|
||
struct elf64_hppa_dyn_reloc_entry
|
||
{
|
||
/* Next relocation in the chain. */
|
||
struct elf64_hppa_dyn_reloc_entry *next;
|
||
|
||
/* The type of the relocation. */
|
||
int type;
|
||
|
||
/* The input section of the relocation. */
|
||
asection *sec;
|
||
|
||
/* The index of the section symbol for the input section of
|
||
the relocation. Only needed when building shared libraries. */
|
||
int sec_symndx;
|
||
|
||
/* The offset within the input section of the relocation. */
|
||
bfd_vma offset;
|
||
|
||
/* The addend for the relocation. */
|
||
bfd_vma addend;
|
||
|
||
} *reloc_entries;
|
||
|
||
/* Nonzero if this symbol needs an entry in one of the linker
|
||
sections. */
|
||
unsigned want_dlt;
|
||
unsigned want_plt;
|
||
unsigned want_opd;
|
||
unsigned want_stub;
|
||
};
|
||
|
||
struct elf64_hppa_dyn_hash_table
|
||
{
|
||
struct bfd_hash_table root;
|
||
};
|
||
|
||
struct elf64_hppa_link_hash_table
|
||
{
|
||
struct elf_link_hash_table root;
|
||
|
||
/* Shortcuts to get to the various linker defined sections. */
|
||
asection *dlt_sec;
|
||
asection *dlt_rel_sec;
|
||
asection *plt_sec;
|
||
asection *plt_rel_sec;
|
||
asection *opd_sec;
|
||
asection *opd_rel_sec;
|
||
asection *other_rel_sec;
|
||
|
||
/* Offset of __gp within .plt section. When the PLT gets large we want
|
||
to slide __gp into the PLT section so that we can continue to use
|
||
single DP relative instructions to load values out of the PLT. */
|
||
bfd_vma gp_offset;
|
||
|
||
/* Note this is not strictly correct. We should create a stub section for
|
||
each input section with calls. The stub section should be placed before
|
||
the section with the call. */
|
||
asection *stub_sec;
|
||
|
||
bfd_vma text_segment_base;
|
||
bfd_vma data_segment_base;
|
||
|
||
struct elf64_hppa_dyn_hash_table dyn_hash_table;
|
||
|
||
/* We build tables to map from an input section back to its
|
||
symbol index. This is the BFD for which we currently have
|
||
a map. */
|
||
bfd *section_syms_bfd;
|
||
|
||
/* Array of symbol numbers for each input section attached to the
|
||
current BFD. */
|
||
int *section_syms;
|
||
};
|
||
|
||
#define elf64_hppa_hash_table(p) \
|
||
((struct elf64_hppa_link_hash_table *) ((p)->hash))
|
||
|
||
typedef struct bfd_hash_entry *(*new_hash_entry_func)
|
||
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
|
||
|
||
static boolean elf64_hppa_dyn_hash_table_init
|
||
PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
|
||
new_hash_entry_func new));
|
||
static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
|
||
PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
|
||
const char *string));
|
||
static struct bfd_link_hash_table *elf64_hppa_hash_table_create
|
||
PARAMS ((bfd *abfd));
|
||
static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
|
||
PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
|
||
boolean create, boolean copy));
|
||
static void elf64_hppa_dyn_hash_traverse
|
||
PARAMS ((struct elf64_hppa_dyn_hash_table *table,
|
||
boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
|
||
PTR info));
|
||
|
||
static const char *get_dyn_name
|
||
PARAMS ((asection *, struct elf_link_hash_entry *,
|
||
const Elf_Internal_Rela *, char **, size_t *));
|
||
|
||
/* This must follow the definitions of the various derived linker
|
||
hash tables and shared functions. */
|
||
#include "elf-hppa.h"
|
||
|
||
static boolean elf64_hppa_object_p
|
||
PARAMS ((bfd *));
|
||
|
||
static boolean elf64_hppa_section_from_shdr
|
||
PARAMS ((bfd *, Elf64_Internal_Shdr *, char *));
|
||
|
||
static void elf64_hppa_post_process_headers
|
||
PARAMS ((bfd *, struct bfd_link_info *));
|
||
|
||
static boolean elf64_hppa_create_dynamic_sections
|
||
PARAMS ((bfd *, struct bfd_link_info *));
|
||
|
||
static boolean elf64_hppa_adjust_dynamic_symbol
|
||
PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
|
||
|
||
static boolean elf64_hppa_size_dynamic_sections
|
||
PARAMS ((bfd *, struct bfd_link_info *));
|
||
|
||
static boolean elf64_hppa_link_output_symbol_hook
|
||
PARAMS ((bfd *abfd, struct bfd_link_info *, const char *,
|
||
Elf_Internal_Sym *, asection *input_sec));
|
||
|
||
static boolean elf64_hppa_finish_dynamic_symbol
|
||
PARAMS ((bfd *, struct bfd_link_info *,
|
||
struct elf_link_hash_entry *, Elf_Internal_Sym *));
|
||
|
||
static int elf64_hppa_additional_program_headers PARAMS ((bfd *));
|
||
|
||
static boolean elf64_hppa_modify_segment_map PARAMS ((bfd *));
|
||
|
||
static boolean elf64_hppa_finish_dynamic_sections
|
||
PARAMS ((bfd *, struct bfd_link_info *));
|
||
|
||
static boolean elf64_hppa_check_relocs
|
||
PARAMS ((bfd *, struct bfd_link_info *,
|
||
asection *, const Elf_Internal_Rela *));
|
||
|
||
static boolean elf64_hppa_dynamic_symbol_p
|
||
PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
|
||
|
||
static boolean elf64_hppa_mark_exported_functions
|
||
PARAMS ((struct elf_link_hash_entry *, PTR));
|
||
|
||
static boolean elf64_hppa_finalize_opd
|
||
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
||
|
||
static boolean elf64_hppa_finalize_dlt
|
||
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
||
|
||
static boolean allocate_global_data_dlt
|
||
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
||
|
||
static boolean allocate_global_data_plt
|
||
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
||
|
||
static boolean allocate_global_data_stub
|
||
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
||
|
||
static boolean allocate_global_data_opd
|
||
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
||
|
||
static boolean get_reloc_section
|
||
PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
|
||
|
||
static boolean count_dyn_reloc
|
||
PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
|
||
int, asection *, int, bfd_vma, bfd_vma));
|
||
|
||
static boolean allocate_dynrel_entries
|
||
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
||
|
||
static boolean elf64_hppa_finalize_dynreloc
|
||
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
||
|
||
static boolean get_opd
|
||
PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
|
||
|
||
static boolean get_plt
|
||
PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
|
||
|
||
static boolean get_dlt
|
||
PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
|
||
|
||
static boolean get_stub
|
||
PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
|
||
|
||
static int elf64_hppa_elf_get_symbol_type
|
||
PARAMS ((Elf_Internal_Sym *, int));
|
||
|
||
static boolean
|
||
elf64_hppa_dyn_hash_table_init (ht, abfd, new)
|
||
struct elf64_hppa_dyn_hash_table *ht;
|
||
bfd *abfd ATTRIBUTE_UNUSED;
|
||
new_hash_entry_func new;
|
||
{
|
||
memset (ht, 0, sizeof (*ht));
|
||
return bfd_hash_table_init (&ht->root, new);
|
||
}
|
||
|
||
static struct bfd_hash_entry*
|
||
elf64_hppa_new_dyn_hash_entry (entry, table, string)
|
||
struct bfd_hash_entry *entry;
|
||
struct bfd_hash_table *table;
|
||
const char *string;
|
||
{
|
||
struct elf64_hppa_dyn_hash_entry *ret;
|
||
ret = (struct elf64_hppa_dyn_hash_entry *) entry;
|
||
|
||
/* Allocate the structure if it has not already been allocated by a
|
||
subclass. */
|
||
if (!ret)
|
||
ret = bfd_hash_allocate (table, sizeof (*ret));
|
||
|
||
if (!ret)
|
||
return 0;
|
||
|
||
/* Initialize our local data. All zeros, and definitely easier
|
||
than setting 8 bit fields. */
|
||
memset (ret, 0, sizeof (*ret));
|
||
|
||
/* Call the allocation method of the superclass. */
|
||
ret = ((struct elf64_hppa_dyn_hash_entry *)
|
||
bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
|
||
|
||
return &ret->root;
|
||
}
|
||
|
||
/* Create the derived linker hash table. The PA64 ELF port uses this
|
||
derived hash table to keep information specific to the PA ElF
|
||
linker (without using static variables). */
|
||
|
||
static struct bfd_link_hash_table*
|
||
elf64_hppa_hash_table_create (abfd)
|
||
bfd *abfd;
|
||
{
|
||
struct elf64_hppa_link_hash_table *ret;
|
||
|
||
ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
|
||
if (!ret)
|
||
return 0;
|
||
if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
|
||
_bfd_elf_link_hash_newfunc))
|
||
{
|
||
bfd_release (abfd, ret);
|
||
return 0;
|
||
}
|
||
|
||
if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
|
||
elf64_hppa_new_dyn_hash_entry))
|
||
return 0;
|
||
return &ret->root.root;
|
||
}
|
||
|
||
/* Look up an entry in a PA64 ELF linker hash table. */
|
||
|
||
static struct elf64_hppa_dyn_hash_entry *
|
||
elf64_hppa_dyn_hash_lookup(table, string, create, copy)
|
||
struct elf64_hppa_dyn_hash_table *table;
|
||
const char *string;
|
||
boolean create, copy;
|
||
{
|
||
return ((struct elf64_hppa_dyn_hash_entry *)
|
||
bfd_hash_lookup (&table->root, string, create, copy));
|
||
}
|
||
|
||
/* Traverse a PA64 ELF linker hash table. */
|
||
|
||
static void
|
||
elf64_hppa_dyn_hash_traverse (table, func, info)
|
||
struct elf64_hppa_dyn_hash_table *table;
|
||
boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
||
PTR info;
|
||
{
|
||
(bfd_hash_traverse
|
||
(&table->root,
|
||
(boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
|
||
info));
|
||
}
|
||
|
||
/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
|
||
|
||
Additionally we set the default architecture and machine. */
|
||
static boolean
|
||
elf64_hppa_object_p (abfd)
|
||
bfd *abfd;
|
||
{
|
||
Elf_Internal_Ehdr * i_ehdrp;
|
||
unsigned int flags;
|
||
|
||
i_ehdrp = elf_elfheader (abfd);
|
||
if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
|
||
{
|
||
if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
|
||
return false;
|
||
}
|
||
else
|
||
{
|
||
if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
|
||
return false;
|
||
}
|
||
|
||
flags = i_ehdrp->e_flags;
|
||
switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
|
||
{
|
||
case EFA_PARISC_1_0:
|
||
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
|
||
case EFA_PARISC_1_1:
|
||
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
|
||
case EFA_PARISC_2_0:
|
||
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
|
||
case EFA_PARISC_2_0 | EF_PARISC_WIDE:
|
||
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
|
||
}
|
||
/* Don't be fussy. */
|
||
return true;
|
||
}
|
||
|
||
/* Given section type (hdr->sh_type), return a boolean indicating
|
||
whether or not the section is an elf64-hppa specific section. */
|
||
static boolean
|
||
elf64_hppa_section_from_shdr (abfd, hdr, name)
|
||
bfd *abfd;
|
||
Elf64_Internal_Shdr *hdr;
|
||
char *name;
|
||
{
|
||
asection *newsect;
|
||
|
||
switch (hdr->sh_type)
|
||
{
|
||
case SHT_PARISC_EXT:
|
||
if (strcmp (name, ".PARISC.archext") != 0)
|
||
return false;
|
||
break;
|
||
case SHT_PARISC_UNWIND:
|
||
if (strcmp (name, ".PARISC.unwind") != 0)
|
||
return false;
|
||
break;
|
||
case SHT_PARISC_DOC:
|
||
case SHT_PARISC_ANNOT:
|
||
default:
|
||
return false;
|
||
}
|
||
|
||
if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
|
||
return false;
|
||
newsect = hdr->bfd_section;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Construct a string for use in the elf64_hppa_dyn_hash_table. The
|
||
name describes what was once potentially anonymous memory. We
|
||
allocate memory as necessary, possibly reusing PBUF/PLEN. */
|
||
|
||
static const char *
|
||
get_dyn_name (sec, h, rel, pbuf, plen)
|
||
asection *sec;
|
||
struct elf_link_hash_entry *h;
|
||
const Elf_Internal_Rela *rel;
|
||
char **pbuf;
|
||
size_t *plen;
|
||
{
|
||
size_t nlen, tlen;
|
||
char *buf;
|
||
size_t len;
|
||
|
||
if (h && rel->r_addend == 0)
|
||
return h->root.root.string;
|
||
|
||
if (h)
|
||
nlen = strlen (h->root.root.string);
|
||
else
|
||
nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
|
||
tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
|
||
|
||
len = *plen;
|
||
buf = *pbuf;
|
||
if (len < tlen)
|
||
{
|
||
if (buf)
|
||
free (buf);
|
||
*pbuf = buf = malloc (tlen);
|
||
*plen = len = tlen;
|
||
if (!buf)
|
||
return NULL;
|
||
}
|
||
|
||
if (h)
|
||
{
|
||
memcpy (buf, h->root.root.string, nlen);
|
||
buf[nlen++] = '+';
|
||
sprintf_vma (buf + nlen, rel->r_addend);
|
||
}
|
||
else
|
||
{
|
||
nlen = sprintf (buf, "%x:%lx",
|
||
sec->id & 0xffffffff,
|
||
(long) ELF64_R_SYM (rel->r_info));
|
||
if (rel->r_addend)
|
||
{
|
||
buf[nlen++] = '+';
|
||
sprintf_vma (buf + nlen, rel->r_addend);
|
||
}
|
||
}
|
||
|
||
return buf;
|
||
}
|
||
|
||
/* SEC is a section containing relocs for an input BFD when linking; return
|
||
a suitable section for holding relocs in the output BFD for a link. */
|
||
|
||
static boolean
|
||
get_reloc_section (abfd, hppa_info, sec)
|
||
bfd *abfd;
|
||
struct elf64_hppa_link_hash_table *hppa_info;
|
||
asection *sec;
|
||
{
|
||
const char *srel_name;
|
||
asection *srel;
|
||
bfd *dynobj;
|
||
|
||
srel_name = (bfd_elf_string_from_elf_section
|
||
(abfd, elf_elfheader(abfd)->e_shstrndx,
|
||
elf_section_data(sec)->rel_hdr.sh_name));
|
||
if (srel_name == NULL)
|
||
return false;
|
||
|
||
BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
|
||
&& strcmp (bfd_get_section_name (abfd, sec),
|
||
srel_name+5) == 0)
|
||
|| (strncmp (srel_name, ".rel", 4) == 0
|
||
&& strcmp (bfd_get_section_name (abfd, sec),
|
||
srel_name+4) == 0));
|
||
|
||
dynobj = hppa_info->root.dynobj;
|
||
if (!dynobj)
|
||
hppa_info->root.dynobj = dynobj = abfd;
|
||
|
||
srel = bfd_get_section_by_name (dynobj, srel_name);
|
||
if (srel == NULL)
|
||
{
|
||
srel = bfd_make_section (dynobj, srel_name);
|
||
if (srel == NULL
|
||
|| !bfd_set_section_flags (dynobj, srel,
|
||
(SEC_ALLOC
|
||
| SEC_LOAD
|
||
| SEC_HAS_CONTENTS
|
||
| SEC_IN_MEMORY
|
||
| SEC_LINKER_CREATED
|
||
| SEC_READONLY))
|
||
|| !bfd_set_section_alignment (dynobj, srel, 3))
|
||
return false;
|
||
}
|
||
|
||
hppa_info->other_rel_sec = srel;
|
||
return true;
|
||
}
|
||
|
||
/* Add a new entry to the list of dynamic relocations against DYN_H.
|
||
|
||
We use this to keep a record of all the FPTR relocations against a
|
||
particular symbol so that we can create FPTR relocations in the
|
||
output file. */
|
||
|
||
static boolean
|
||
count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
|
||
bfd *abfd;
|
||
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
||
int type;
|
||
asection *sec;
|
||
int sec_symndx;
|
||
bfd_vma offset;
|
||
bfd_vma addend;
|
||
{
|
||
struct elf64_hppa_dyn_reloc_entry *rent;
|
||
|
||
rent = (struct elf64_hppa_dyn_reloc_entry *)
|
||
bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
|
||
if (!rent)
|
||
return false;
|
||
|
||
rent->next = dyn_h->reloc_entries;
|
||
rent->type = type;
|
||
rent->sec = sec;
|
||
rent->sec_symndx = sec_symndx;
|
||
rent->offset = offset;
|
||
rent->addend = addend;
|
||
dyn_h->reloc_entries = rent;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Scan the RELOCS and record the type of dynamic entries that each
|
||
referenced symbol needs. */
|
||
|
||
static boolean
|
||
elf64_hppa_check_relocs (abfd, info, sec, relocs)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
asection *sec;
|
||
const Elf_Internal_Rela *relocs;
|
||
{
|
||
struct elf64_hppa_link_hash_table *hppa_info;
|
||
const Elf_Internal_Rela *relend;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
const Elf_Internal_Rela *rel;
|
||
asection *dlt, *plt, *stubs;
|
||
char *buf;
|
||
size_t buf_len;
|
||
int sec_symndx;
|
||
|
||
if (info->relocateable)
|
||
return true;
|
||
|
||
/* If this is the first dynamic object found in the link, create
|
||
the special sections required for dynamic linking. */
|
||
if (! elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
if (! bfd_elf64_link_create_dynamic_sections (abfd, info))
|
||
return false;
|
||
}
|
||
|
||
hppa_info = elf64_hppa_hash_table (info);
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
|
||
/* If necessary, build a new table holding section symbols indices
|
||
for this BFD. This is disgusting. */
|
||
|
||
if (info->shared && hppa_info->section_syms_bfd != abfd)
|
||
{
|
||
unsigned long i;
|
||
int highest_shndx;
|
||
Elf_Internal_Sym *local_syms, *isym;
|
||
Elf64_External_Sym *ext_syms, *esym;
|
||
bfd_size_type amt;
|
||
|
||
/* We're done with the old cache of section index to section symbol
|
||
index information. Free it.
|
||
|
||
?!? Note we leak the last section_syms array. Presumably we
|
||
could free it in one of the later routines in this file. */
|
||
if (hppa_info->section_syms)
|
||
free (hppa_info->section_syms);
|
||
|
||
/* Allocate memory for the internal and external symbols. */
|
||
amt = symtab_hdr->sh_info;
|
||
amt *= sizeof (Elf_Internal_Sym);
|
||
local_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
|
||
if (local_syms == NULL)
|
||
return false;
|
||
|
||
amt = symtab_hdr->sh_info;
|
||
amt *= sizeof (Elf64_External_Sym);
|
||
ext_syms = (Elf64_External_Sym *) bfd_malloc (amt);
|
||
if (ext_syms == NULL)
|
||
{
|
||
free (local_syms);
|
||
return false;
|
||
}
|
||
|
||
/* Read in the local symbols. */
|
||
if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
|
||
|| bfd_bread (ext_syms, amt, abfd) != amt)
|
||
{
|
||
free (local_syms);
|
||
free (ext_syms);
|
||
return false;
|
||
}
|
||
|
||
/* Swap in the local symbols, also record the highest section index
|
||
referenced by the local symbols. */
|
||
isym = local_syms;
|
||
esym = ext_syms;
|
||
highest_shndx = 0;
|
||
for (i = 0; i < symtab_hdr->sh_info; i++, esym++, isym++)
|
||
{
|
||
bfd_elf64_swap_symbol_in (abfd, esym, isym);
|
||
if (isym->st_shndx > highest_shndx)
|
||
highest_shndx = isym->st_shndx;
|
||
}
|
||
|
||
/* Now we can free the external symbols. */
|
||
free (ext_syms);
|
||
|
||
/* Allocate an array to hold the section index to section symbol index
|
||
mapping. Bump by one since we start counting at zero. */
|
||
highest_shndx++;
|
||
amt = highest_shndx;
|
||
amt *= sizeof (int);
|
||
hppa_info->section_syms = (int *) bfd_malloc (amt);
|
||
|
||
/* Now walk the local symbols again. If we find a section symbol,
|
||
record the index of the symbol into the section_syms array. */
|
||
for (isym = local_syms, i = 0; i < symtab_hdr->sh_info; i++, isym++)
|
||
{
|
||
if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
|
||
hppa_info->section_syms[isym->st_shndx] = i;
|
||
}
|
||
|
||
/* We are finished with the local symbols. Get rid of them. */
|
||
free (local_syms);
|
||
|
||
/* Record which BFD we built the section_syms mapping for. */
|
||
hppa_info->section_syms_bfd = abfd;
|
||
}
|
||
|
||
/* Record the symbol index for this input section. We may need it for
|
||
relocations when building shared libraries. When not building shared
|
||
libraries this value is never really used, but assign it to zero to
|
||
prevent out of bounds memory accesses in other routines. */
|
||
if (info->shared)
|
||
{
|
||
sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
|
||
|
||
/* If we did not find a section symbol for this section, then
|
||
something went terribly wrong above. */
|
||
if (sec_symndx == -1)
|
||
return false;
|
||
|
||
sec_symndx = hppa_info->section_syms[sec_symndx];
|
||
}
|
||
else
|
||
sec_symndx = 0;
|
||
|
||
dlt = plt = stubs = NULL;
|
||
buf = NULL;
|
||
buf_len = 0;
|
||
|
||
relend = relocs + sec->reloc_count;
|
||
for (rel = relocs; rel < relend; ++rel)
|
||
{
|
||
enum {
|
||
NEED_DLT = 1,
|
||
NEED_PLT = 2,
|
||
NEED_STUB = 4,
|
||
NEED_OPD = 8,
|
||
NEED_DYNREL = 16,
|
||
};
|
||
|
||
struct elf_link_hash_entry *h = NULL;
|
||
unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
|
||
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
||
int need_entry;
|
||
const char *addr_name;
|
||
boolean maybe_dynamic;
|
||
int dynrel_type = R_PARISC_NONE;
|
||
static reloc_howto_type *howto;
|
||
|
||
if (r_symndx >= symtab_hdr->sh_info)
|
||
{
|
||
/* We're dealing with a global symbol -- find its hash entry
|
||
and mark it as being referenced. */
|
||
long indx = r_symndx - symtab_hdr->sh_info;
|
||
h = elf_sym_hashes (abfd)[indx];
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
|
||
h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
|
||
}
|
||
|
||
/* We can only get preliminary data on whether a symbol is
|
||
locally or externally defined, as not all of the input files
|
||
have yet been processed. Do something with what we know, as
|
||
this may help reduce memory usage and processing time later. */
|
||
maybe_dynamic = false;
|
||
if (h && ((info->shared
|
||
&& (!info->symbolic || info->allow_shlib_undefined) )
|
||
|| ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
|
||
|| h->root.type == bfd_link_hash_defweak))
|
||
maybe_dynamic = true;
|
||
|
||
howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
|
||
need_entry = 0;
|
||
switch (howto->type)
|
||
{
|
||
/* These are simple indirect references to symbols through the
|
||
DLT. We need to create a DLT entry for any symbols which
|
||
appears in a DLTIND relocation. */
|
||
case R_PARISC_DLTIND21L:
|
||
case R_PARISC_DLTIND14R:
|
||
case R_PARISC_DLTIND14F:
|
||
case R_PARISC_DLTIND14WR:
|
||
case R_PARISC_DLTIND14DR:
|
||
need_entry = NEED_DLT;
|
||
break;
|
||
|
||
/* ?!? These need a DLT entry. But I have no idea what to do with
|
||
the "link time TP value. */
|
||
case R_PARISC_LTOFF_TP21L:
|
||
case R_PARISC_LTOFF_TP14R:
|
||
case R_PARISC_LTOFF_TP14F:
|
||
case R_PARISC_LTOFF_TP64:
|
||
case R_PARISC_LTOFF_TP14WR:
|
||
case R_PARISC_LTOFF_TP14DR:
|
||
case R_PARISC_LTOFF_TP16F:
|
||
case R_PARISC_LTOFF_TP16WF:
|
||
case R_PARISC_LTOFF_TP16DF:
|
||
need_entry = NEED_DLT;
|
||
break;
|
||
|
||
/* These are function calls. Depending on their precise target we
|
||
may need to make a stub for them. The stub uses the PLT, so we
|
||
need to create PLT entries for these symbols too. */
|
||
case R_PARISC_PCREL12F:
|
||
case R_PARISC_PCREL17F:
|
||
case R_PARISC_PCREL22F:
|
||
case R_PARISC_PCREL32:
|
||
case R_PARISC_PCREL64:
|
||
case R_PARISC_PCREL21L:
|
||
case R_PARISC_PCREL17R:
|
||
case R_PARISC_PCREL17C:
|
||
case R_PARISC_PCREL14R:
|
||
case R_PARISC_PCREL14F:
|
||
case R_PARISC_PCREL22C:
|
||
case R_PARISC_PCREL14WR:
|
||
case R_PARISC_PCREL14DR:
|
||
case R_PARISC_PCREL16F:
|
||
case R_PARISC_PCREL16WF:
|
||
case R_PARISC_PCREL16DF:
|
||
need_entry = (NEED_PLT | NEED_STUB);
|
||
break;
|
||
|
||
case R_PARISC_PLTOFF21L:
|
||
case R_PARISC_PLTOFF14R:
|
||
case R_PARISC_PLTOFF14F:
|
||
case R_PARISC_PLTOFF14WR:
|
||
case R_PARISC_PLTOFF14DR:
|
||
case R_PARISC_PLTOFF16F:
|
||
case R_PARISC_PLTOFF16WF:
|
||
case R_PARISC_PLTOFF16DF:
|
||
need_entry = (NEED_PLT);
|
||
break;
|
||
|
||
case R_PARISC_DIR64:
|
||
if (info->shared || maybe_dynamic)
|
||
need_entry = (NEED_DYNREL);
|
||
dynrel_type = R_PARISC_DIR64;
|
||
break;
|
||
|
||
/* This is an indirect reference through the DLT to get the address
|
||
of a OPD descriptor. Thus we need to make a DLT entry that points
|
||
to an OPD entry. */
|
||
case R_PARISC_LTOFF_FPTR21L:
|
||
case R_PARISC_LTOFF_FPTR14R:
|
||
case R_PARISC_LTOFF_FPTR14WR:
|
||
case R_PARISC_LTOFF_FPTR14DR:
|
||
case R_PARISC_LTOFF_FPTR32:
|
||
case R_PARISC_LTOFF_FPTR64:
|
||
case R_PARISC_LTOFF_FPTR16F:
|
||
case R_PARISC_LTOFF_FPTR16WF:
|
||
case R_PARISC_LTOFF_FPTR16DF:
|
||
if (info->shared || maybe_dynamic)
|
||
need_entry = (NEED_DLT | NEED_OPD);
|
||
else
|
||
need_entry = (NEED_DLT | NEED_OPD);
|
||
dynrel_type = R_PARISC_FPTR64;
|
||
break;
|
||
|
||
/* This is a simple OPD entry. */
|
||
case R_PARISC_FPTR64:
|
||
if (info->shared || maybe_dynamic)
|
||
need_entry = (NEED_OPD | NEED_DYNREL);
|
||
else
|
||
need_entry = (NEED_OPD);
|
||
dynrel_type = R_PARISC_FPTR64;
|
||
break;
|
||
|
||
/* Add more cases as needed. */
|
||
}
|
||
|
||
if (!need_entry)
|
||
continue;
|
||
|
||
/* Collect a canonical name for this address. */
|
||
addr_name = get_dyn_name (sec, h, rel, &buf, &buf_len);
|
||
|
||
/* Collect the canonical entry data for this address. */
|
||
dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
|
||
addr_name, true, true);
|
||
BFD_ASSERT (dyn_h);
|
||
|
||
/* Stash away enough information to be able to find this symbol
|
||
regardless of whether or not it is local or global. */
|
||
dyn_h->h = h;
|
||
dyn_h->owner = abfd;
|
||
dyn_h->sym_indx = r_symndx;
|
||
|
||
/* ?!? We may need to do some error checking in here. */
|
||
/* Create what's needed. */
|
||
if (need_entry & NEED_DLT)
|
||
{
|
||
if (! hppa_info->dlt_sec
|
||
&& ! get_dlt (abfd, info, hppa_info))
|
||
goto err_out;
|
||
dyn_h->want_dlt = 1;
|
||
}
|
||
|
||
if (need_entry & NEED_PLT)
|
||
{
|
||
if (! hppa_info->plt_sec
|
||
&& ! get_plt (abfd, info, hppa_info))
|
||
goto err_out;
|
||
dyn_h->want_plt = 1;
|
||
}
|
||
|
||
if (need_entry & NEED_STUB)
|
||
{
|
||
if (! hppa_info->stub_sec
|
||
&& ! get_stub (abfd, info, hppa_info))
|
||
goto err_out;
|
||
dyn_h->want_stub = 1;
|
||
}
|
||
|
||
if (need_entry & NEED_OPD)
|
||
{
|
||
if (! hppa_info->opd_sec
|
||
&& ! get_opd (abfd, info, hppa_info))
|
||
goto err_out;
|
||
|
||
dyn_h->want_opd = 1;
|
||
|
||
/* FPTRs are not allocated by the dynamic linker for PA64, though
|
||
it is possible that will change in the future. */
|
||
|
||
/* This could be a local function that had its address taken, in
|
||
which case H will be NULL. */
|
||
if (h)
|
||
h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
|
||
}
|
||
|
||
/* Add a new dynamic relocation to the chain of dynamic
|
||
relocations for this symbol. */
|
||
if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
|
||
{
|
||
if (! hppa_info->other_rel_sec
|
||
&& ! get_reloc_section (abfd, hppa_info, sec))
|
||
goto err_out;
|
||
|
||
if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
|
||
sec_symndx, rel->r_offset, rel->r_addend))
|
||
goto err_out;
|
||
|
||
/* If we are building a shared library and we just recorded
|
||
a dynamic R_PARISC_FPTR64 relocation, then make sure the
|
||
section symbol for this section ends up in the dynamic
|
||
symbol table. */
|
||
if (info->shared && dynrel_type == R_PARISC_FPTR64
|
||
&& ! (_bfd_elf64_link_record_local_dynamic_symbol
|
||
(info, abfd, sec_symndx)))
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (buf)
|
||
free (buf);
|
||
return true;
|
||
|
||
err_out:
|
||
if (buf)
|
||
free (buf);
|
||
return false;
|
||
}
|
||
|
||
struct elf64_hppa_allocate_data
|
||
{
|
||
struct bfd_link_info *info;
|
||
bfd_size_type ofs;
|
||
};
|
||
|
||
/* Should we do dynamic things to this symbol? */
|
||
|
||
static boolean
|
||
elf64_hppa_dynamic_symbol_p (h, info)
|
||
struct elf_link_hash_entry *h;
|
||
struct bfd_link_info *info;
|
||
{
|
||
if (h == NULL)
|
||
return false;
|
||
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
|
||
if (h->dynindx == -1)
|
||
return false;
|
||
|
||
if (h->root.type == bfd_link_hash_undefweak
|
||
|| h->root.type == bfd_link_hash_defweak)
|
||
return true;
|
||
|
||
if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
|
||
return false;
|
||
|
||
if ((info->shared && (!info->symbolic || info->allow_shlib_undefined))
|
||
|| ((h->elf_link_hash_flags
|
||
& (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR))
|
||
== (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR)))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Mark all funtions exported by this file so that we can later allocate
|
||
entries in .opd for them. */
|
||
|
||
static boolean
|
||
elf64_hppa_mark_exported_functions (h, data)
|
||
struct elf_link_hash_entry *h;
|
||
PTR data;
|
||
{
|
||
struct bfd_link_info *info = (struct bfd_link_info *)data;
|
||
struct elf64_hppa_link_hash_table *hppa_info;
|
||
|
||
hppa_info = elf64_hppa_hash_table (info);
|
||
|
||
if (h
|
||
&& (h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak)
|
||
&& h->root.u.def.section->output_section != NULL
|
||
&& h->type == STT_FUNC)
|
||
{
|
||
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
||
|
||
/* Add this symbol to the PA64 linker hash table. */
|
||
dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
|
||
h->root.root.string, true, true);
|
||
BFD_ASSERT (dyn_h);
|
||
dyn_h->h = h;
|
||
|
||
if (! hppa_info->opd_sec
|
||
&& ! get_opd (hppa_info->root.dynobj, info, hppa_info))
|
||
return false;
|
||
|
||
dyn_h->want_opd = 1;
|
||
/* Put a flag here for output_symbol_hook. */
|
||
dyn_h->st_shndx = -1;
|
||
h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Allocate space for a DLT entry. */
|
||
|
||
static boolean
|
||
allocate_global_data_dlt (dyn_h, data)
|
||
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
||
PTR data;
|
||
{
|
||
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
||
|
||
if (dyn_h->want_dlt)
|
||
{
|
||
struct elf_link_hash_entry *h = dyn_h->h;
|
||
|
||
if (x->info->shared)
|
||
{
|
||
/* Possibly add the symbol to the local dynamic symbol
|
||
table since we might need to create a dynamic relocation
|
||
against it. */
|
||
if (! h
|
||
|| (h && h->dynindx == -1))
|
||
{
|
||
bfd *owner;
|
||
owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
|
||
|
||
if (! (_bfd_elf64_link_record_local_dynamic_symbol
|
||
(x->info, owner, dyn_h->sym_indx)))
|
||
return false;
|
||
}
|
||
}
|
||
|
||
dyn_h->dlt_offset = x->ofs;
|
||
x->ofs += DLT_ENTRY_SIZE;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Allocate space for a DLT.PLT entry. */
|
||
|
||
static boolean
|
||
allocate_global_data_plt (dyn_h, data)
|
||
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
||
PTR data;
|
||
{
|
||
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
||
|
||
if (dyn_h->want_plt
|
||
&& elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
|
||
&& !((dyn_h->h->root.type == bfd_link_hash_defined
|
||
|| dyn_h->h->root.type == bfd_link_hash_defweak)
|
||
&& dyn_h->h->root.u.def.section->output_section != NULL))
|
||
{
|
||
dyn_h->plt_offset = x->ofs;
|
||
x->ofs += PLT_ENTRY_SIZE;
|
||
if (dyn_h->plt_offset < 0x2000)
|
||
elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
|
||
}
|
||
else
|
||
dyn_h->want_plt = 0;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Allocate space for a STUB entry. */
|
||
|
||
static boolean
|
||
allocate_global_data_stub (dyn_h, data)
|
||
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
||
PTR data;
|
||
{
|
||
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
||
|
||
if (dyn_h->want_stub
|
||
&& elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
|
||
&& !((dyn_h->h->root.type == bfd_link_hash_defined
|
||
|| dyn_h->h->root.type == bfd_link_hash_defweak)
|
||
&& dyn_h->h->root.u.def.section->output_section != NULL))
|
||
{
|
||
dyn_h->stub_offset = x->ofs;
|
||
x->ofs += sizeof (plt_stub);
|
||
}
|
||
else
|
||
dyn_h->want_stub = 0;
|
||
return true;
|
||
}
|
||
|
||
/* Allocate space for a FPTR entry. */
|
||
|
||
static boolean
|
||
allocate_global_data_opd (dyn_h, data)
|
||
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
||
PTR data;
|
||
{
|
||
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
||
|
||
if (dyn_h->want_opd)
|
||
{
|
||
struct elf_link_hash_entry *h = dyn_h->h;
|
||
|
||
if (h)
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
|
||
/* We never need an opd entry for a symbol which is not
|
||
defined by this output file. */
|
||
if (h && h->root.type == bfd_link_hash_undefined)
|
||
dyn_h->want_opd = 0;
|
||
|
||
/* If we are creating a shared library, took the address of a local
|
||
function or might export this function from this object file, then
|
||
we have to create an opd descriptor. */
|
||
else if (x->info->shared
|
||
|| h == NULL
|
||
|| h->dynindx == -1
|
||
|| ((h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak)
|
||
&& h->root.u.def.section->output_section != NULL))
|
||
{
|
||
/* If we are creating a shared library, then we will have to
|
||
create a runtime relocation for the symbol to properly
|
||
initialize the .opd entry. Make sure the symbol gets
|
||
added to the dynamic symbol table. */
|
||
if (x->info->shared
|
||
&& (h == NULL || (h->dynindx == -1)))
|
||
{
|
||
bfd *owner;
|
||
owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
|
||
|
||
if (!_bfd_elf64_link_record_local_dynamic_symbol
|
||
(x->info, owner, dyn_h->sym_indx))
|
||
return false;
|
||
}
|
||
|
||
/* This may not be necessary or desirable anymore now that
|
||
we have some support for dealing with section symbols
|
||
in dynamic relocs. But name munging does make the result
|
||
much easier to debug. ie, the EPLT reloc will reference
|
||
a symbol like .foobar, instead of .text + offset. */
|
||
if (x->info->shared && h)
|
||
{
|
||
char *new_name;
|
||
struct elf_link_hash_entry *nh;
|
||
|
||
new_name = alloca (strlen (h->root.root.string) + 2);
|
||
new_name[0] = '.';
|
||
strcpy (new_name + 1, h->root.root.string);
|
||
|
||
nh = elf_link_hash_lookup (elf_hash_table (x->info),
|
||
new_name, true, true, true);
|
||
|
||
nh->root.type = h->root.type;
|
||
nh->root.u.def.value = h->root.u.def.value;
|
||
nh->root.u.def.section = h->root.u.def.section;
|
||
|
||
if (! bfd_elf64_link_record_dynamic_symbol (x->info, nh))
|
||
return false;
|
||
|
||
}
|
||
dyn_h->opd_offset = x->ofs;
|
||
x->ofs += OPD_ENTRY_SIZE;
|
||
}
|
||
|
||
/* Otherwise we do not need an opd entry. */
|
||
else
|
||
dyn_h->want_opd = 0;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* HP requires the EI_OSABI field to be filled in. The assignment to
|
||
EI_ABIVERSION may not be strictly necessary. */
|
||
|
||
static void
|
||
elf64_hppa_post_process_headers (abfd, link_info)
|
||
bfd * abfd;
|
||
struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
|
||
{
|
||
Elf_Internal_Ehdr * i_ehdrp;
|
||
|
||
i_ehdrp = elf_elfheader (abfd);
|
||
|
||
if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
|
||
{
|
||
i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
|
||
}
|
||
else
|
||
{
|
||
i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
|
||
i_ehdrp->e_ident[EI_ABIVERSION] = 1;
|
||
}
|
||
}
|
||
|
||
/* Create function descriptor section (.opd). This section is called .opd
|
||
because it contains "official prodecure descriptors". The "official"
|
||
refers to the fact that these descriptors are used when taking the address
|
||
of a procedure, thus ensuring a unique address for each procedure. */
|
||
|
||
static boolean
|
||
get_opd (abfd, info, hppa_info)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
||
struct elf64_hppa_link_hash_table *hppa_info;
|
||
{
|
||
asection *opd;
|
||
bfd *dynobj;
|
||
|
||
opd = hppa_info->opd_sec;
|
||
if (!opd)
|
||
{
|
||
dynobj = hppa_info->root.dynobj;
|
||
if (!dynobj)
|
||
hppa_info->root.dynobj = dynobj = abfd;
|
||
|
||
opd = bfd_make_section (dynobj, ".opd");
|
||
if (!opd
|
||
|| !bfd_set_section_flags (dynobj, opd,
|
||
(SEC_ALLOC
|
||
| SEC_LOAD
|
||
| SEC_HAS_CONTENTS
|
||
| SEC_IN_MEMORY
|
||
| SEC_LINKER_CREATED))
|
||
|| !bfd_set_section_alignment (abfd, opd, 3))
|
||
{
|
||
BFD_ASSERT (0);
|
||
return false;
|
||
}
|
||
|
||
hppa_info->opd_sec = opd;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Create the PLT section. */
|
||
|
||
static boolean
|
||
get_plt (abfd, info, hppa_info)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
||
struct elf64_hppa_link_hash_table *hppa_info;
|
||
{
|
||
asection *plt;
|
||
bfd *dynobj;
|
||
|
||
plt = hppa_info->plt_sec;
|
||
if (!plt)
|
||
{
|
||
dynobj = hppa_info->root.dynobj;
|
||
if (!dynobj)
|
||
hppa_info->root.dynobj = dynobj = abfd;
|
||
|
||
plt = bfd_make_section (dynobj, ".plt");
|
||
if (!plt
|
||
|| !bfd_set_section_flags (dynobj, plt,
|
||
(SEC_ALLOC
|
||
| SEC_LOAD
|
||
| SEC_HAS_CONTENTS
|
||
| SEC_IN_MEMORY
|
||
| SEC_LINKER_CREATED))
|
||
|| !bfd_set_section_alignment (abfd, plt, 3))
|
||
{
|
||
BFD_ASSERT (0);
|
||
return false;
|
||
}
|
||
|
||
hppa_info->plt_sec = plt;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Create the DLT section. */
|
||
|
||
static boolean
|
||
get_dlt (abfd, info, hppa_info)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
||
struct elf64_hppa_link_hash_table *hppa_info;
|
||
{
|
||
asection *dlt;
|
||
bfd *dynobj;
|
||
|
||
dlt = hppa_info->dlt_sec;
|
||
if (!dlt)
|
||
{
|
||
dynobj = hppa_info->root.dynobj;
|
||
if (!dynobj)
|
||
hppa_info->root.dynobj = dynobj = abfd;
|
||
|
||
dlt = bfd_make_section (dynobj, ".dlt");
|
||
if (!dlt
|
||
|| !bfd_set_section_flags (dynobj, dlt,
|
||
(SEC_ALLOC
|
||
| SEC_LOAD
|
||
| SEC_HAS_CONTENTS
|
||
| SEC_IN_MEMORY
|
||
| SEC_LINKER_CREATED))
|
||
|| !bfd_set_section_alignment (abfd, dlt, 3))
|
||
{
|
||
BFD_ASSERT (0);
|
||
return false;
|
||
}
|
||
|
||
hppa_info->dlt_sec = dlt;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Create the stubs section. */
|
||
|
||
static boolean
|
||
get_stub (abfd, info, hppa_info)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
||
struct elf64_hppa_link_hash_table *hppa_info;
|
||
{
|
||
asection *stub;
|
||
bfd *dynobj;
|
||
|
||
stub = hppa_info->stub_sec;
|
||
if (!stub)
|
||
{
|
||
dynobj = hppa_info->root.dynobj;
|
||
if (!dynobj)
|
||
hppa_info->root.dynobj = dynobj = abfd;
|
||
|
||
stub = bfd_make_section (dynobj, ".stub");
|
||
if (!stub
|
||
|| !bfd_set_section_flags (dynobj, stub,
|
||
(SEC_ALLOC
|
||
| SEC_LOAD
|
||
| SEC_HAS_CONTENTS
|
||
| SEC_IN_MEMORY
|
||
| SEC_READONLY
|
||
| SEC_LINKER_CREATED))
|
||
|| !bfd_set_section_alignment (abfd, stub, 3))
|
||
{
|
||
BFD_ASSERT (0);
|
||
return false;
|
||
}
|
||
|
||
hppa_info->stub_sec = stub;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Create sections necessary for dynamic linking. This is only a rough
|
||
cut and will likely change as we learn more about the somewhat
|
||
unusual dynamic linking scheme HP uses.
|
||
|
||
.stub:
|
||
Contains code to implement cross-space calls. The first time one
|
||
of the stubs is used it will call into the dynamic linker, later
|
||
calls will go straight to the target.
|
||
|
||
The only stub we support right now looks like
|
||
|
||
ldd OFFSET(%dp),%r1
|
||
bve %r0(%r1)
|
||
ldd OFFSET+8(%dp),%dp
|
||
|
||
Other stubs may be needed in the future. We may want the remove
|
||
the break/nop instruction. It is only used right now to keep the
|
||
offset of a .plt entry and a .stub entry in sync.
|
||
|
||
.dlt:
|
||
This is what most people call the .got. HP used a different name.
|
||
Losers.
|
||
|
||
.rela.dlt:
|
||
Relocations for the DLT.
|
||
|
||
.plt:
|
||
Function pointers as address,gp pairs.
|
||
|
||
.rela.plt:
|
||
Should contain dynamic IPLT (and EPLT?) relocations.
|
||
|
||
.opd:
|
||
FPTRS
|
||
|
||
.rela.opd:
|
||
EPLT relocations for symbols exported from shared libraries. */
|
||
|
||
static boolean
|
||
elf64_hppa_create_dynamic_sections (abfd, info)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
{
|
||
asection *s;
|
||
|
||
if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
|
||
return false;
|
||
|
||
if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
|
||
return false;
|
||
|
||
if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
|
||
return false;
|
||
|
||
if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
|
||
return false;
|
||
|
||
s = bfd_make_section(abfd, ".rela.dlt");
|
||
if (s == NULL
|
||
|| !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
|
||
| SEC_HAS_CONTENTS
|
||
| SEC_IN_MEMORY
|
||
| SEC_READONLY
|
||
| SEC_LINKER_CREATED))
|
||
|| !bfd_set_section_alignment (abfd, s, 3))
|
||
return false;
|
||
elf64_hppa_hash_table (info)->dlt_rel_sec = s;
|
||
|
||
s = bfd_make_section(abfd, ".rela.plt");
|
||
if (s == NULL
|
||
|| !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
|
||
| SEC_HAS_CONTENTS
|
||
| SEC_IN_MEMORY
|
||
| SEC_READONLY
|
||
| SEC_LINKER_CREATED))
|
||
|| !bfd_set_section_alignment (abfd, s, 3))
|
||
return false;
|
||
elf64_hppa_hash_table (info)->plt_rel_sec = s;
|
||
|
||
s = bfd_make_section(abfd, ".rela.data");
|
||
if (s == NULL
|
||
|| !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
|
||
| SEC_HAS_CONTENTS
|
||
| SEC_IN_MEMORY
|
||
| SEC_READONLY
|
||
| SEC_LINKER_CREATED))
|
||
|| !bfd_set_section_alignment (abfd, s, 3))
|
||
return false;
|
||
elf64_hppa_hash_table (info)->other_rel_sec = s;
|
||
|
||
s = bfd_make_section(abfd, ".rela.opd");
|
||
if (s == NULL
|
||
|| !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
|
||
| SEC_HAS_CONTENTS
|
||
| SEC_IN_MEMORY
|
||
| SEC_READONLY
|
||
| SEC_LINKER_CREATED))
|
||
|| !bfd_set_section_alignment (abfd, s, 3))
|
||
return false;
|
||
elf64_hppa_hash_table (info)->opd_rel_sec = s;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Allocate dynamic relocations for those symbols that turned out
|
||
to be dynamic. */
|
||
|
||
static boolean
|
||
allocate_dynrel_entries (dyn_h, data)
|
||
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
||
PTR data;
|
||
{
|
||
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
||
struct elf64_hppa_link_hash_table *hppa_info;
|
||
struct elf64_hppa_dyn_reloc_entry *rent;
|
||
boolean dynamic_symbol, shared;
|
||
|
||
hppa_info = elf64_hppa_hash_table (x->info);
|
||
dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
|
||
shared = x->info->shared;
|
||
|
||
/* We may need to allocate relocations for a non-dynamic symbol
|
||
when creating a shared library. */
|
||
if (!dynamic_symbol && !shared)
|
||
return true;
|
||
|
||
/* Take care of the normal data relocations. */
|
||
|
||
for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
|
||
{
|
||
switch (rent->type)
|
||
{
|
||
case R_PARISC_FPTR64:
|
||
/* Allocate one iff we are not building a shared library and
|
||
!want_opd, which by this point will be true only if we're
|
||
actually allocating one statically in the main executable. */
|
||
if (!x->info->shared && dyn_h->want_opd)
|
||
continue;
|
||
break;
|
||
}
|
||
hppa_info->other_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
|
||
|
||
/* Make sure this symbol gets into the dynamic symbol table if it is
|
||
not already recorded. ?!? This should not be in the loop since
|
||
the symbol need only be added once. */
|
||
if (dyn_h->h == 0 || dyn_h->h->dynindx == -1)
|
||
if (!_bfd_elf64_link_record_local_dynamic_symbol
|
||
(x->info, rent->sec->owner, dyn_h->sym_indx))
|
||
return false;
|
||
}
|
||
|
||
/* Take care of the GOT and PLT relocations. */
|
||
|
||
if ((dynamic_symbol || shared) && dyn_h->want_dlt)
|
||
hppa_info->dlt_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
|
||
|
||
/* If we are building a shared library, then every symbol that has an
|
||
opd entry will need an EPLT relocation to relocate the symbol's address
|
||
and __gp value based on the runtime load address. */
|
||
if (shared && dyn_h->want_opd)
|
||
hppa_info->opd_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
|
||
|
||
if (dyn_h->want_plt && dynamic_symbol)
|
||
{
|
||
bfd_size_type t = 0;
|
||
|
||
/* Dynamic symbols get one IPLT relocation. Local symbols in
|
||
shared libraries get two REL relocations. Local symbols in
|
||
main applications get nothing. */
|
||
if (dynamic_symbol)
|
||
t = sizeof (Elf64_External_Rela);
|
||
else if (shared)
|
||
t = 2 * sizeof (Elf64_External_Rela);
|
||
|
||
hppa_info->plt_rel_sec->_raw_size += t;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Adjust a symbol defined by a dynamic object and referenced by a
|
||
regular object. */
|
||
|
||
static boolean
|
||
elf64_hppa_adjust_dynamic_symbol (info, h)
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
||
struct elf_link_hash_entry *h;
|
||
{
|
||
/* ??? Undefined symbols with PLT entries should be re-defined
|
||
to be the PLT entry. */
|
||
|
||
/* If this is a weak symbol, and there is a real definition, the
|
||
processor independent code will have arranged for us to see the
|
||
real definition first, and we can just use the same value. */
|
||
if (h->weakdef != NULL)
|
||
{
|
||
BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
|
||
|| h->weakdef->root.type == bfd_link_hash_defweak);
|
||
h->root.u.def.section = h->weakdef->root.u.def.section;
|
||
h->root.u.def.value = h->weakdef->root.u.def.value;
|
||
return true;
|
||
}
|
||
|
||
/* If this is a reference to a symbol defined by a dynamic object which
|
||
is not a function, we might allocate the symbol in our .dynbss section
|
||
and allocate a COPY dynamic relocation.
|
||
|
||
But PA64 code is canonically PIC, so as a rule we can avoid this sort
|
||
of hackery. */
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Set the final sizes of the dynamic sections and allocate memory for
|
||
the contents of our special sections. */
|
||
|
||
static boolean
|
||
elf64_hppa_size_dynamic_sections (output_bfd, info)
|
||
bfd *output_bfd;
|
||
struct bfd_link_info *info;
|
||
{
|
||
bfd *dynobj;
|
||
asection *s;
|
||
boolean plt;
|
||
boolean relocs;
|
||
boolean reltext;
|
||
struct elf64_hppa_allocate_data data;
|
||
struct elf64_hppa_link_hash_table *hppa_info;
|
||
|
||
hppa_info = elf64_hppa_hash_table (info);
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
BFD_ASSERT (dynobj != NULL);
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
/* Set the contents of the .interp section to the interpreter. */
|
||
if (! info->shared)
|
||
{
|
||
s = bfd_get_section_by_name (dynobj, ".interp");
|
||
BFD_ASSERT (s != NULL);
|
||
s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
|
||
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* We may have created entries in the .rela.got section.
|
||
However, if we are not creating the dynamic sections, we will
|
||
not actually use these entries. Reset the size of .rela.dlt,
|
||
which will cause it to get stripped from the output file
|
||
below. */
|
||
s = bfd_get_section_by_name (dynobj, ".rela.dlt");
|
||
if (s != NULL)
|
||
s->_raw_size = 0;
|
||
}
|
||
|
||
/* Allocate the GOT entries. */
|
||
|
||
data.info = info;
|
||
if (elf64_hppa_hash_table (info)->dlt_sec)
|
||
{
|
||
data.ofs = 0x0;
|
||
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
||
allocate_global_data_dlt, &data);
|
||
hppa_info->dlt_sec->_raw_size = data.ofs;
|
||
|
||
data.ofs = 0x0;
|
||
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
||
allocate_global_data_plt, &data);
|
||
hppa_info->plt_sec->_raw_size = data.ofs;
|
||
|
||
data.ofs = 0x0;
|
||
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
||
allocate_global_data_stub, &data);
|
||
hppa_info->stub_sec->_raw_size = data.ofs;
|
||
}
|
||
|
||
/* Mark each function this program exports so that we will allocate
|
||
space in the .opd section for each function's FPTR.
|
||
|
||
We have to traverse the main linker hash table since we have to
|
||
find functions which may not have been mentioned in any relocs. */
|
||
elf_link_hash_traverse (elf_hash_table (info),
|
||
elf64_hppa_mark_exported_functions,
|
||
info);
|
||
|
||
/* Allocate space for entries in the .opd section. */
|
||
if (elf64_hppa_hash_table (info)->opd_sec)
|
||
{
|
||
data.ofs = 0;
|
||
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
||
allocate_global_data_opd, &data);
|
||
hppa_info->opd_sec->_raw_size = data.ofs;
|
||
}
|
||
|
||
/* Now allocate space for dynamic relocations, if necessary. */
|
||
if (hppa_info->root.dynamic_sections_created)
|
||
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
||
allocate_dynrel_entries, &data);
|
||
|
||
/* The sizes of all the sections are set. Allocate memory for them. */
|
||
plt = false;
|
||
relocs = false;
|
||
reltext = false;
|
||
for (s = dynobj->sections; s != NULL; s = s->next)
|
||
{
|
||
const char *name;
|
||
boolean strip;
|
||
|
||
if ((s->flags & SEC_LINKER_CREATED) == 0)
|
||
continue;
|
||
|
||
/* It's OK to base decisions on the section name, because none
|
||
of the dynobj section names depend upon the input files. */
|
||
name = bfd_get_section_name (dynobj, s);
|
||
|
||
strip = 0;
|
||
|
||
if (strcmp (name, ".plt") == 0)
|
||
{
|
||
if (s->_raw_size == 0)
|
||
{
|
||
/* Strip this section if we don't need it; see the
|
||
comment below. */
|
||
strip = true;
|
||
}
|
||
else
|
||
{
|
||
/* Remember whether there is a PLT. */
|
||
plt = true;
|
||
}
|
||
}
|
||
else if (strcmp (name, ".dlt") == 0)
|
||
{
|
||
if (s->_raw_size == 0)
|
||
{
|
||
/* Strip this section if we don't need it; see the
|
||
comment below. */
|
||
strip = true;
|
||
}
|
||
}
|
||
else if (strcmp (name, ".opd") == 0)
|
||
{
|
||
if (s->_raw_size == 0)
|
||
{
|
||
/* Strip this section if we don't need it; see the
|
||
comment below. */
|
||
strip = true;
|
||
}
|
||
}
|
||
else if (strncmp (name, ".rela", 4) == 0)
|
||
{
|
||
if (s->_raw_size == 0)
|
||
{
|
||
/* If we don't need this section, strip it from the
|
||
output file. This is mostly to handle .rela.bss and
|
||
.rela.plt. We must create both sections in
|
||
create_dynamic_sections, because they must be created
|
||
before the linker maps input sections to output
|
||
sections. The linker does that before
|
||
adjust_dynamic_symbol is called, and it is that
|
||
function which decides whether anything needs to go
|
||
into these sections. */
|
||
strip = true;
|
||
}
|
||
else
|
||
{
|
||
asection *target;
|
||
|
||
/* Remember whether there are any reloc sections other
|
||
than .rela.plt. */
|
||
if (strcmp (name, ".rela.plt") != 0)
|
||
{
|
||
const char *outname;
|
||
|
||
relocs = true;
|
||
|
||
/* If this relocation section applies to a read only
|
||
section, then we probably need a DT_TEXTREL
|
||
entry. The entries in the .rela.plt section
|
||
really apply to the .got section, which we
|
||
created ourselves and so know is not readonly. */
|
||
outname = bfd_get_section_name (output_bfd,
|
||
s->output_section);
|
||
target = bfd_get_section_by_name (output_bfd, outname + 4);
|
||
if (target != NULL
|
||
&& (target->flags & SEC_READONLY) != 0
|
||
&& (target->flags & SEC_ALLOC) != 0)
|
||
reltext = true;
|
||
}
|
||
|
||
/* We use the reloc_count field as a counter if we need
|
||
to copy relocs into the output file. */
|
||
s->reloc_count = 0;
|
||
}
|
||
}
|
||
else if (strncmp (name, ".dlt", 4) != 0
|
||
&& strcmp (name, ".stub") != 0
|
||
&& strcmp (name, ".got") != 0)
|
||
{
|
||
/* It's not one of our sections, so don't allocate space. */
|
||
continue;
|
||
}
|
||
|
||
if (strip)
|
||
{
|
||
_bfd_strip_section_from_output (info, s);
|
||
continue;
|
||
}
|
||
|
||
/* Allocate memory for the section contents if it has not
|
||
been allocated already. We use bfd_zalloc here in case
|
||
unused entries are not reclaimed before the section's
|
||
contents are written out. This should not happen, but this
|
||
way if it does, we get a R_PARISC_NONE reloc instead of
|
||
garbage. */
|
||
if (s->contents == NULL)
|
||
{
|
||
s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
|
||
if (s->contents == NULL && s->_raw_size != 0)
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
/* Always create a DT_PLTGOT. It actually has nothing to do with
|
||
the PLT, it is how we communicate the __gp value of a load
|
||
module to the dynamic linker. */
|
||
#define add_dynamic_entry(TAG, VAL) \
|
||
bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
|
||
|
||
if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
|
||
|| !add_dynamic_entry (DT_PLTGOT, 0))
|
||
return false;
|
||
|
||
/* Add some entries to the .dynamic section. We fill in the
|
||
values later, in elf64_hppa_finish_dynamic_sections, but we
|
||
must add the entries now so that we get the correct size for
|
||
the .dynamic section. The DT_DEBUG entry is filled in by the
|
||
dynamic linker and used by the debugger. */
|
||
if (! info->shared)
|
||
{
|
||
if (!add_dynamic_entry (DT_DEBUG, 0)
|
||
|| !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
|
||
|| !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
|
||
return false;
|
||
}
|
||
|
||
if (plt)
|
||
{
|
||
if (!add_dynamic_entry (DT_PLTRELSZ, 0)
|
||
|| !add_dynamic_entry (DT_PLTREL, DT_RELA)
|
||
|| !add_dynamic_entry (DT_JMPREL, 0))
|
||
return false;
|
||
}
|
||
|
||
if (relocs)
|
||
{
|
||
if (!add_dynamic_entry (DT_RELA, 0)
|
||
|| !add_dynamic_entry (DT_RELASZ, 0)
|
||
|| !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
|
||
return false;
|
||
}
|
||
|
||
if (reltext)
|
||
{
|
||
if (!add_dynamic_entry (DT_TEXTREL, 0))
|
||
return false;
|
||
info->flags |= DF_TEXTREL;
|
||
}
|
||
}
|
||
#undef add_dynamic_entry
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Called after we have output the symbol into the dynamic symbol
|
||
table, but before we output the symbol into the normal symbol
|
||
table.
|
||
|
||
For some symbols we had to change their address when outputting
|
||
the dynamic symbol table. We undo that change here so that
|
||
the symbols have their expected value in the normal symbol
|
||
table. Ick. */
|
||
|
||
static boolean
|
||
elf64_hppa_link_output_symbol_hook (abfd, info, name, sym, input_sec)
|
||
bfd *abfd ATTRIBUTE_UNUSED;
|
||
struct bfd_link_info *info;
|
||
const char *name;
|
||
Elf_Internal_Sym *sym;
|
||
asection *input_sec ATTRIBUTE_UNUSED;
|
||
{
|
||
struct elf64_hppa_link_hash_table *hppa_info;
|
||
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
||
|
||
/* We may be called with the file symbol or section symbols.
|
||
They never need munging, so it is safe to ignore them. */
|
||
if (!name)
|
||
return true;
|
||
|
||
/* Get the PA dyn_symbol (if any) associated with NAME. */
|
||
hppa_info = elf64_hppa_hash_table (info);
|
||
dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
|
||
name, false, false);
|
||
|
||
/* Function symbols for which we created .opd entries *may* have been
|
||
munged by finish_dynamic_symbol and have to be un-munged here.
|
||
|
||
Note that finish_dynamic_symbol sometimes turns dynamic symbols
|
||
into non-dynamic ones, so we initialize st_shndx to -1 in
|
||
mark_exported_functions and check to see if it was overwritten
|
||
here instead of just checking dyn_h->h->dynindx. */
|
||
if (dyn_h && dyn_h->want_opd && dyn_h->st_shndx != -1)
|
||
{
|
||
/* Restore the saved value and section index. */
|
||
sym->st_value = dyn_h->st_value;
|
||
sym->st_shndx = dyn_h->st_shndx;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Finish up dynamic symbol handling. We set the contents of various
|
||
dynamic sections here. */
|
||
|
||
static boolean
|
||
elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
|
||
bfd *output_bfd;
|
||
struct bfd_link_info *info;
|
||
struct elf_link_hash_entry *h;
|
||
Elf_Internal_Sym *sym;
|
||
{
|
||
asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
|
||
struct elf64_hppa_link_hash_table *hppa_info;
|
||
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
||
|
||
hppa_info = elf64_hppa_hash_table (info);
|
||
dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
|
||
h->root.root.string, false, false);
|
||
|
||
stub = hppa_info->stub_sec;
|
||
splt = hppa_info->plt_sec;
|
||
sdlt = hppa_info->dlt_sec;
|
||
sopd = hppa_info->opd_sec;
|
||
spltrel = hppa_info->plt_rel_sec;
|
||
sdltrel = hppa_info->dlt_rel_sec;
|
||
|
||
BFD_ASSERT (stub != NULL && splt != NULL
|
||
&& sopd != NULL && sdlt != NULL)
|
||
|
||
/* Incredible. It is actually necessary to NOT use the symbol's real
|
||
value when building the dynamic symbol table for a shared library.
|
||
At least for symbols that refer to functions.
|
||
|
||
We will store a new value and section index into the symbol long
|
||
enough to output it into the dynamic symbol table, then we restore
|
||
the original values (in elf64_hppa_link_output_symbol_hook). */
|
||
if (dyn_h && dyn_h->want_opd)
|
||
{
|
||
/* Save away the original value and section index so that we
|
||
can restore them later. */
|
||
dyn_h->st_value = sym->st_value;
|
||
dyn_h->st_shndx = sym->st_shndx;
|
||
|
||
/* For the dynamic symbol table entry, we want the value to be
|
||
address of this symbol's entry within the .opd section. */
|
||
sym->st_value = (dyn_h->opd_offset
|
||
+ sopd->output_offset
|
||
+ sopd->output_section->vma);
|
||
sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
|
||
sopd->output_section);
|
||
}
|
||
|
||
/* Initialize a .plt entry if requested. */
|
||
if (dyn_h && dyn_h->want_plt
|
||
&& elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
|
||
{
|
||
bfd_vma value;
|
||
Elf_Internal_Rela rel;
|
||
|
||
/* We do not actually care about the value in the PLT entry
|
||
if we are creating a shared library and the symbol is
|
||
still undefined, we create a dynamic relocation to fill
|
||
in the correct value. */
|
||
if (info->shared && h->root.type == bfd_link_hash_undefined)
|
||
value = 0;
|
||
else
|
||
value = (h->root.u.def.value + h->root.u.def.section->vma);
|
||
|
||
/* Fill in the entry in the procedure linkage table.
|
||
|
||
The format of a plt entry is
|
||
<funcaddr> <__gp>.
|
||
|
||
plt_offset is the offset within the PLT section at which to
|
||
install the PLT entry.
|
||
|
||
We are modifying the in-memory PLT contents here, so we do not add
|
||
in the output_offset of the PLT section. */
|
||
|
||
bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
|
||
value = _bfd_get_gp_value (splt->output_section->owner);
|
||
bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
|
||
|
||
/* Create a dynamic IPLT relocation for this entry.
|
||
|
||
We are creating a relocation in the output file's PLT section,
|
||
which is included within the DLT secton. So we do need to include
|
||
the PLT's output_offset in the computation of the relocation's
|
||
address. */
|
||
rel.r_offset = (dyn_h->plt_offset + splt->output_offset
|
||
+ splt->output_section->vma);
|
||
rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
|
||
rel.r_addend = 0;
|
||
|
||
bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel,
|
||
(((Elf64_External_Rela *)
|
||
spltrel->contents)
|
||
+ spltrel->reloc_count));
|
||
spltrel->reloc_count++;
|
||
}
|
||
|
||
/* Initialize an external call stub entry if requested. */
|
||
if (dyn_h && dyn_h->want_stub
|
||
&& elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
|
||
{
|
||
bfd_vma value;
|
||
int insn;
|
||
unsigned int max_offset;
|
||
|
||
/* Install the generic stub template.
|
||
|
||
We are modifying the contents of the stub section, so we do not
|
||
need to include the stub section's output_offset here. */
|
||
memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
|
||
|
||
/* Fix up the first ldd instruction.
|
||
|
||
We are modifying the contents of the STUB section in memory,
|
||
so we do not need to include its output offset in this computation.
|
||
|
||
Note the plt_offset value is the value of the PLT entry relative to
|
||
the start of the PLT section. These instructions will reference
|
||
data relative to the value of __gp, which may not necessarily have
|
||
the same address as the start of the PLT section.
|
||
|
||
gp_offset contains the offset of __gp within the PLT section. */
|
||
value = dyn_h->plt_offset - hppa_info->gp_offset;
|
||
|
||
insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
|
||
if (output_bfd->arch_info->mach >= 25)
|
||
{
|
||
/* Wide mode allows 16 bit offsets. */
|
||
max_offset = 32768;
|
||
insn &= ~ 0xfff1;
|
||
insn |= re_assemble_16 ((int) value);
|
||
}
|
||
else
|
||
{
|
||
max_offset = 8192;
|
||
insn &= ~ 0x3ff1;
|
||
insn |= re_assemble_14 ((int) value);
|
||
}
|
||
|
||
if ((value & 7) || value + max_offset >= 2*max_offset - 8)
|
||
{
|
||
(*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
|
||
dyn_h->root.string,
|
||
(long) value);
|
||
return false;
|
||
}
|
||
|
||
bfd_put_32 (stub->owner, (bfd_vma) insn,
|
||
stub->contents + dyn_h->stub_offset);
|
||
|
||
/* Fix up the second ldd instruction. */
|
||
value += 8;
|
||
insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
|
||
if (output_bfd->arch_info->mach >= 25)
|
||
{
|
||
insn &= ~ 0xfff1;
|
||
insn |= re_assemble_16 ((int) value);
|
||
}
|
||
else
|
||
{
|
||
insn &= ~ 0x3ff1;
|
||
insn |= re_assemble_14 ((int) value);
|
||
}
|
||
bfd_put_32 (stub->owner, (bfd_vma) insn,
|
||
stub->contents + dyn_h->stub_offset + 8);
|
||
}
|
||
|
||
/* Millicode symbols should not be put in the dynamic
|
||
symbol table under any circumstances. */
|
||
if (ELF_ST_TYPE (sym->st_info) == STT_PARISC_MILLI)
|
||
h->dynindx = -1;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* The .opd section contains FPTRs for each function this file
|
||
exports. Initialize the FPTR entries. */
|
||
|
||
static boolean
|
||
elf64_hppa_finalize_opd (dyn_h, data)
|
||
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
||
PTR data;
|
||
{
|
||
struct bfd_link_info *info = (struct bfd_link_info *)data;
|
||
struct elf64_hppa_link_hash_table *hppa_info;
|
||
struct elf_link_hash_entry *h = dyn_h->h;
|
||
asection *sopd;
|
||
asection *sopdrel;
|
||
|
||
hppa_info = elf64_hppa_hash_table (info);
|
||
sopd = hppa_info->opd_sec;
|
||
sopdrel = hppa_info->opd_rel_sec;
|
||
|
||
if (h && dyn_h && dyn_h->want_opd)
|
||
{
|
||
bfd_vma value;
|
||
|
||
/* The first two words of an .opd entry are zero.
|
||
|
||
We are modifying the contents of the OPD section in memory, so we
|
||
do not need to include its output offset in this computation. */
|
||
memset (sopd->contents + dyn_h->opd_offset, 0, 16);
|
||
|
||
value = (h->root.u.def.value
|
||
+ h->root.u.def.section->output_section->vma
|
||
+ h->root.u.def.section->output_offset);
|
||
|
||
/* The next word is the address of the function. */
|
||
bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
|
||
|
||
/* The last word is our local __gp value. */
|
||
value = _bfd_get_gp_value (sopd->output_section->owner);
|
||
bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
|
||
}
|
||
|
||
/* If we are generating a shared library, we must generate EPLT relocations
|
||
for each entry in the .opd, even for static functions (they may have
|
||
had their address taken). */
|
||
if (info->shared && dyn_h && dyn_h->want_opd)
|
||
{
|
||
Elf64_Internal_Rela rel;
|
||
int dynindx;
|
||
|
||
/* We may need to do a relocation against a local symbol, in
|
||
which case we have to look up it's dynamic symbol index off
|
||
the local symbol hash table. */
|
||
if (h && h->dynindx != -1)
|
||
dynindx = h->dynindx;
|
||
else
|
||
dynindx
|
||
= _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
|
||
dyn_h->sym_indx);
|
||
|
||
/* The offset of this relocation is the absolute address of the
|
||
.opd entry for this symbol. */
|
||
rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
|
||
+ sopd->output_section->vma);
|
||
|
||
/* If H is non-null, then we have an external symbol.
|
||
|
||
It is imperative that we use a different dynamic symbol for the
|
||
EPLT relocation if the symbol has global scope.
|
||
|
||
In the dynamic symbol table, the function symbol will have a value
|
||
which is address of the function's .opd entry.
|
||
|
||
Thus, we can not use that dynamic symbol for the EPLT relocation
|
||
(if we did, the data in the .opd would reference itself rather
|
||
than the actual address of the function). Instead we have to use
|
||
a new dynamic symbol which has the same value as the original global
|
||
function symbol.
|
||
|
||
We prefix the original symbol with a "." and use the new symbol in
|
||
the EPLT relocation. This new symbol has already been recorded in
|
||
the symbol table, we just have to look it up and use it.
|
||
|
||
We do not have such problems with static functions because we do
|
||
not make their addresses in the dynamic symbol table point to
|
||
the .opd entry. Ultimately this should be safe since a static
|
||
function can not be directly referenced outside of its shared
|
||
library.
|
||
|
||
We do have to play similar games for FPTR relocations in shared
|
||
libraries, including those for static symbols. See the FPTR
|
||
handling in elf64_hppa_finalize_dynreloc. */
|
||
if (h)
|
||
{
|
||
char *new_name;
|
||
struct elf_link_hash_entry *nh;
|
||
|
||
new_name = alloca (strlen (h->root.root.string) + 2);
|
||
new_name[0] = '.';
|
||
strcpy (new_name + 1, h->root.root.string);
|
||
|
||
nh = elf_link_hash_lookup (elf_hash_table (info),
|
||
new_name, false, false, false);
|
||
|
||
/* All we really want from the new symbol is its dynamic
|
||
symbol index. */
|
||
dynindx = nh->dynindx;
|
||
}
|
||
|
||
rel.r_addend = 0;
|
||
rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
|
||
|
||
bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel,
|
||
(((Elf64_External_Rela *)
|
||
sopdrel->contents)
|
||
+ sopdrel->reloc_count));
|
||
sopdrel->reloc_count++;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* The .dlt section contains addresses for items referenced through the
|
||
dlt. Note that we can have a DLTIND relocation for a local symbol, thus
|
||
we can not depend on finish_dynamic_symbol to initialize the .dlt. */
|
||
|
||
static boolean
|
||
elf64_hppa_finalize_dlt (dyn_h, data)
|
||
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
||
PTR data;
|
||
{
|
||
struct bfd_link_info *info = (struct bfd_link_info *)data;
|
||
struct elf64_hppa_link_hash_table *hppa_info;
|
||
asection *sdlt, *sdltrel;
|
||
struct elf_link_hash_entry *h = dyn_h->h;
|
||
|
||
hppa_info = elf64_hppa_hash_table (info);
|
||
|
||
sdlt = hppa_info->dlt_sec;
|
||
sdltrel = hppa_info->dlt_rel_sec;
|
||
|
||
/* H/DYN_H may refer to a local variable and we know it's
|
||
address, so there is no need to create a relocation. Just install
|
||
the proper value into the DLT, note this shortcut can not be
|
||
skipped when building a shared library. */
|
||
if (! info->shared && h && dyn_h && dyn_h->want_dlt)
|
||
{
|
||
bfd_vma value;
|
||
|
||
/* If we had an LTOFF_FPTR style relocation we want the DLT entry
|
||
to point to the FPTR entry in the .opd section.
|
||
|
||
We include the OPD's output offset in this computation as
|
||
we are referring to an absolute address in the resulting
|
||
object file. */
|
||
if (dyn_h->want_opd)
|
||
{
|
||
value = (dyn_h->opd_offset
|
||
+ hppa_info->opd_sec->output_offset
|
||
+ hppa_info->opd_sec->output_section->vma);
|
||
}
|
||
else
|
||
{
|
||
value = (h->root.u.def.value
|
||
+ h->root.u.def.section->output_offset);
|
||
|
||
if (h->root.u.def.section->output_section)
|
||
value += h->root.u.def.section->output_section->vma;
|
||
else
|
||
value += h->root.u.def.section->vma;
|
||
}
|
||
|
||
/* We do not need to include the output offset of the DLT section
|
||
here because we are modifying the in-memory contents. */
|
||
bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
|
||
}
|
||
|
||
/* Create a relocation for the DLT entry assocated with this symbol.
|
||
When building a shared library the symbol does not have to be dynamic. */
|
||
if (dyn_h->want_dlt
|
||
&& (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
|
||
{
|
||
Elf64_Internal_Rela rel;
|
||
int dynindx;
|
||
|
||
/* We may need to do a relocation against a local symbol, in
|
||
which case we have to look up it's dynamic symbol index off
|
||
the local symbol hash table. */
|
||
if (h && h->dynindx != -1)
|
||
dynindx = h->dynindx;
|
||
else
|
||
dynindx
|
||
= _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
|
||
dyn_h->sym_indx);
|
||
|
||
/* Create a dynamic relocation for this entry. Do include the output
|
||
offset of the DLT entry since we need an absolute address in the
|
||
resulting object file. */
|
||
rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
|
||
+ sdlt->output_section->vma);
|
||
if (h && h->type == STT_FUNC)
|
||
rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
|
||
else
|
||
rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
|
||
rel.r_addend = 0;
|
||
|
||
bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel,
|
||
(((Elf64_External_Rela *)
|
||
sdltrel->contents)
|
||
+ sdltrel->reloc_count));
|
||
sdltrel->reloc_count++;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Finalize the dynamic relocations. Specifically the FPTR relocations
|
||
for dynamic functions used to initialize static data. */
|
||
|
||
static boolean
|
||
elf64_hppa_finalize_dynreloc (dyn_h, data)
|
||
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
||
PTR data;
|
||
{
|
||
struct bfd_link_info *info = (struct bfd_link_info *)data;
|
||
struct elf64_hppa_link_hash_table *hppa_info;
|
||
struct elf_link_hash_entry *h;
|
||
int dynamic_symbol;
|
||
|
||
dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
|
||
|
||
if (!dynamic_symbol && !info->shared)
|
||
return true;
|
||
|
||
if (dyn_h->reloc_entries)
|
||
{
|
||
struct elf64_hppa_dyn_reloc_entry *rent;
|
||
int dynindx;
|
||
|
||
hppa_info = elf64_hppa_hash_table (info);
|
||
h = dyn_h->h;
|
||
|
||
/* We may need to do a relocation against a local symbol, in
|
||
which case we have to look up it's dynamic symbol index off
|
||
the local symbol hash table. */
|
||
if (h && h->dynindx != -1)
|
||
dynindx = h->dynindx;
|
||
else
|
||
dynindx
|
||
= _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
|
||
dyn_h->sym_indx);
|
||
|
||
for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
|
||
{
|
||
Elf64_Internal_Rela rel;
|
||
|
||
switch (rent->type)
|
||
{
|
||
case R_PARISC_FPTR64:
|
||
/* Allocate one iff we are not building a shared library and
|
||
!want_opd, which by this point will be true only if we're
|
||
actually allocating one statically in the main executable. */
|
||
if (!info->shared && dyn_h->want_opd)
|
||
continue;
|
||
break;
|
||
}
|
||
|
||
/* Create a dynamic relocation for this entry.
|
||
|
||
We need the output offset for the reloc's section because
|
||
we are creating an absolute address in the resulting object
|
||
file. */
|
||
rel.r_offset = (rent->offset + rent->sec->output_offset
|
||
+ rent->sec->output_section->vma);
|
||
|
||
/* An FPTR64 relocation implies that we took the address of
|
||
a function and that the function has an entry in the .opd
|
||
section. We want the FPTR64 relocation to reference the
|
||
entry in .opd.
|
||
|
||
We could munge the symbol value in the dynamic symbol table
|
||
(in fact we already do for functions with global scope) to point
|
||
to the .opd entry. Then we could use that dynamic symbol in
|
||
this relocation.
|
||
|
||
Or we could do something sensible, not munge the symbol's
|
||
address and instead just use a different symbol to reference
|
||
the .opd entry. At least that seems sensible until you
|
||
realize there's no local dynamic symbols we can use for that
|
||
purpose. Thus the hair in the check_relocs routine.
|
||
|
||
We use a section symbol recorded by check_relocs as the
|
||
base symbol for the relocation. The addend is the difference
|
||
between the section symbol and the address of the .opd entry. */
|
||
if (info->shared && rent->type == R_PARISC_FPTR64)
|
||
{
|
||
bfd_vma value, value2;
|
||
|
||
/* First compute the address of the opd entry for this symbol. */
|
||
value = (dyn_h->opd_offset
|
||
+ hppa_info->opd_sec->output_section->vma
|
||
+ hppa_info->opd_sec->output_offset);
|
||
|
||
/* Compute the value of the start of the section with
|
||
the relocation. */
|
||
value2 = (rent->sec->output_section->vma
|
||
+ rent->sec->output_offset);
|
||
|
||
/* Compute the difference between the start of the section
|
||
with the relocation and the opd entry. */
|
||
value -= value2;
|
||
|
||
/* The result becomes the addend of the relocation. */
|
||
rel.r_addend = value;
|
||
|
||
/* The section symbol becomes the symbol for the dynamic
|
||
relocation. */
|
||
dynindx
|
||
= _bfd_elf_link_lookup_local_dynindx (info,
|
||
rent->sec->owner,
|
||
rent->sec_symndx);
|
||
}
|
||
else
|
||
rel.r_addend = rent->addend;
|
||
|
||
rel.r_info = ELF64_R_INFO (dynindx, rent->type);
|
||
|
||
bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
|
||
&rel,
|
||
(((Elf64_External_Rela *)
|
||
hppa_info->other_rel_sec->contents)
|
||
+ hppa_info->other_rel_sec->reloc_count));
|
||
hppa_info->other_rel_sec->reloc_count++;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Finish up the dynamic sections. */
|
||
|
||
static boolean
|
||
elf64_hppa_finish_dynamic_sections (output_bfd, info)
|
||
bfd *output_bfd;
|
||
struct bfd_link_info *info;
|
||
{
|
||
bfd *dynobj;
|
||
asection *sdyn;
|
||
struct elf64_hppa_link_hash_table *hppa_info;
|
||
|
||
hppa_info = elf64_hppa_hash_table (info);
|
||
|
||
/* Finalize the contents of the .opd section. */
|
||
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
||
elf64_hppa_finalize_opd,
|
||
info);
|
||
|
||
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
||
elf64_hppa_finalize_dynreloc,
|
||
info);
|
||
|
||
/* Finalize the contents of the .dlt section. */
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
/* Finalize the contents of the .dlt section. */
|
||
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
||
elf64_hppa_finalize_dlt,
|
||
info);
|
||
|
||
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
Elf64_External_Dyn *dyncon, *dynconend;
|
||
|
||
BFD_ASSERT (sdyn != NULL);
|
||
|
||
dyncon = (Elf64_External_Dyn *) sdyn->contents;
|
||
dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
|
||
for (; dyncon < dynconend; dyncon++)
|
||
{
|
||
Elf_Internal_Dyn dyn;
|
||
asection *s;
|
||
|
||
bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
|
||
|
||
switch (dyn.d_tag)
|
||
{
|
||
default:
|
||
break;
|
||
|
||
case DT_HP_LOAD_MAP:
|
||
/* Compute the absolute address of 16byte scratchpad area
|
||
for the dynamic linker.
|
||
|
||
By convention the linker script will allocate the scratchpad
|
||
area at the start of the .data section. So all we have to
|
||
to is find the start of the .data section. */
|
||
s = bfd_get_section_by_name (output_bfd, ".data");
|
||
dyn.d_un.d_ptr = s->vma;
|
||
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
|
||
break;
|
||
|
||
case DT_PLTGOT:
|
||
/* HP's use PLTGOT to set the GOT register. */
|
||
dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
|
||
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
|
||
break;
|
||
|
||
case DT_JMPREL:
|
||
s = hppa_info->plt_rel_sec;
|
||
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
|
||
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
|
||
break;
|
||
|
||
case DT_PLTRELSZ:
|
||
s = hppa_info->plt_rel_sec;
|
||
dyn.d_un.d_val = s->_raw_size;
|
||
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
|
||
break;
|
||
|
||
case DT_RELA:
|
||
s = hppa_info->other_rel_sec;
|
||
if (! s)
|
||
s = hppa_info->dlt_rel_sec;
|
||
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
|
||
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
|
||
break;
|
||
|
||
case DT_RELASZ:
|
||
s = hppa_info->other_rel_sec;
|
||
dyn.d_un.d_val = s->_raw_size;
|
||
s = hppa_info->dlt_rel_sec;
|
||
dyn.d_un.d_val += s->_raw_size;
|
||
s = hppa_info->opd_rel_sec;
|
||
dyn.d_un.d_val += s->_raw_size;
|
||
/* There is some question about whether or not the size of
|
||
the PLT relocs should be included here. HP's tools do
|
||
it, so we'll emulate them. */
|
||
s = hppa_info->plt_rel_sec;
|
||
dyn.d_un.d_val += s->_raw_size;
|
||
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
|
||
break;
|
||
|
||
}
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return the number of additional phdrs we will need.
|
||
|
||
The generic ELF code only creates PT_PHDRs for executables. The HP
|
||
dynamic linker requires PT_PHDRs for dynamic libraries too.
|
||
|
||
This routine indicates that the backend needs one additional program
|
||
header for that case.
|
||
|
||
Note we do not have access to the link info structure here, so we have
|
||
to guess whether or not we are building a shared library based on the
|
||
existence of a .interp section. */
|
||
|
||
static int
|
||
elf64_hppa_additional_program_headers (abfd)
|
||
bfd *abfd;
|
||
{
|
||
asection *s;
|
||
|
||
/* If we are creating a shared library, then we have to create a
|
||
PT_PHDR segment. HP's dynamic linker chokes without it. */
|
||
s = bfd_get_section_by_name (abfd, ".interp");
|
||
if (! s)
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Allocate and initialize any program headers required by this
|
||
specific backend.
|
||
|
||
The generic ELF code only creates PT_PHDRs for executables. The HP
|
||
dynamic linker requires PT_PHDRs for dynamic libraries too.
|
||
|
||
This allocates the PT_PHDR and initializes it in a manner suitable
|
||
for the HP linker.
|
||
|
||
Note we do not have access to the link info structure here, so we have
|
||
to guess whether or not we are building a shared library based on the
|
||
existence of a .interp section. */
|
||
|
||
static boolean
|
||
elf64_hppa_modify_segment_map (abfd)
|
||
bfd *abfd;
|
||
{
|
||
struct elf_segment_map *m;
|
||
asection *s;
|
||
|
||
s = bfd_get_section_by_name (abfd, ".interp");
|
||
if (! s)
|
||
{
|
||
for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
|
||
if (m->p_type == PT_PHDR)
|
||
break;
|
||
if (m == NULL)
|
||
{
|
||
m = ((struct elf_segment_map *)
|
||
bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
|
||
if (m == NULL)
|
||
return false;
|
||
|
||
m->p_type = PT_PHDR;
|
||
m->p_flags = PF_R | PF_X;
|
||
m->p_flags_valid = 1;
|
||
m->p_paddr_valid = 1;
|
||
m->includes_phdrs = 1;
|
||
|
||
m->next = elf_tdata (abfd)->segment_map;
|
||
elf_tdata (abfd)->segment_map = m;
|
||
}
|
||
}
|
||
|
||
for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
|
||
if (m->p_type == PT_LOAD)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < m->count; i++)
|
||
{
|
||
/* The code "hint" is not really a hint. It is a requirement
|
||
for certain versions of the HP dynamic linker. Worse yet,
|
||
it must be set even if the shared library does not have
|
||
any code in its "text" segment (thus the check for .hash
|
||
to catch this situation). */
|
||
if (m->sections[i]->flags & SEC_CODE
|
||
|| (strcmp (m->sections[i]->name, ".hash") == 0))
|
||
m->p_flags |= (PF_X | PF_HP_CODE);
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Called when writing out an object file to decide the type of a
|
||
symbol. */
|
||
static int
|
||
elf64_hppa_elf_get_symbol_type (elf_sym, type)
|
||
Elf_Internal_Sym *elf_sym;
|
||
int type;
|
||
{
|
||
if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
|
||
return STT_PARISC_MILLI;
|
||
else
|
||
return type;
|
||
}
|
||
|
||
/* The hash bucket size is the standard one, namely 4. */
|
||
|
||
const struct elf_size_info hppa64_elf_size_info =
|
||
{
|
||
sizeof (Elf64_External_Ehdr),
|
||
sizeof (Elf64_External_Phdr),
|
||
sizeof (Elf64_External_Shdr),
|
||
sizeof (Elf64_External_Rel),
|
||
sizeof (Elf64_External_Rela),
|
||
sizeof (Elf64_External_Sym),
|
||
sizeof (Elf64_External_Dyn),
|
||
sizeof (Elf_External_Note),
|
||
4,
|
||
1,
|
||
64, 8,
|
||
ELFCLASS64, EV_CURRENT,
|
||
bfd_elf64_write_out_phdrs,
|
||
bfd_elf64_write_shdrs_and_ehdr,
|
||
bfd_elf64_write_relocs,
|
||
bfd_elf64_swap_symbol_out,
|
||
bfd_elf64_slurp_reloc_table,
|
||
bfd_elf64_slurp_symbol_table,
|
||
bfd_elf64_swap_dyn_in,
|
||
bfd_elf64_swap_dyn_out,
|
||
NULL,
|
||
NULL,
|
||
NULL,
|
||
NULL
|
||
};
|
||
|
||
#define TARGET_BIG_SYM bfd_elf64_hppa_vec
|
||
#define TARGET_BIG_NAME "elf64-hppa"
|
||
#define ELF_ARCH bfd_arch_hppa
|
||
#define ELF_MACHINE_CODE EM_PARISC
|
||
/* This is not strictly correct. The maximum page size for PA2.0 is
|
||
64M. But everything still uses 4k. */
|
||
#define ELF_MAXPAGESIZE 0x1000
|
||
#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
|
||
#define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
|
||
#define elf_info_to_howto elf_hppa_info_to_howto
|
||
#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
|
||
|
||
#define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
|
||
#define elf_backend_object_p elf64_hppa_object_p
|
||
#define elf_backend_final_write_processing \
|
||
elf_hppa_final_write_processing
|
||
#define elf_backend_fake_sections elf_hppa_fake_sections
|
||
#define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
|
||
|
||
#define elf_backend_relocate_section elf_hppa_relocate_section
|
||
|
||
#define bfd_elf64_bfd_final_link elf_hppa_final_link
|
||
|
||
#define elf_backend_create_dynamic_sections \
|
||
elf64_hppa_create_dynamic_sections
|
||
#define elf_backend_post_process_headers elf64_hppa_post_process_headers
|
||
|
||
#define elf_backend_adjust_dynamic_symbol \
|
||
elf64_hppa_adjust_dynamic_symbol
|
||
|
||
#define elf_backend_size_dynamic_sections \
|
||
elf64_hppa_size_dynamic_sections
|
||
|
||
#define elf_backend_finish_dynamic_symbol \
|
||
elf64_hppa_finish_dynamic_symbol
|
||
#define elf_backend_finish_dynamic_sections \
|
||
elf64_hppa_finish_dynamic_sections
|
||
|
||
/* Stuff for the BFD linker: */
|
||
#define bfd_elf64_bfd_link_hash_table_create \
|
||
elf64_hppa_hash_table_create
|
||
|
||
#define elf_backend_check_relocs \
|
||
elf64_hppa_check_relocs
|
||
|
||
#define elf_backend_size_info \
|
||
hppa64_elf_size_info
|
||
|
||
#define elf_backend_additional_program_headers \
|
||
elf64_hppa_additional_program_headers
|
||
|
||
#define elf_backend_modify_segment_map \
|
||
elf64_hppa_modify_segment_map
|
||
|
||
#define elf_backend_link_output_symbol_hook \
|
||
elf64_hppa_link_output_symbol_hook
|
||
|
||
#define elf_backend_want_got_plt 0
|
||
#define elf_backend_plt_readonly 0
|
||
#define elf_backend_want_plt_sym 0
|
||
#define elf_backend_got_header_size 0
|
||
#define elf_backend_plt_header_size 0
|
||
#define elf_backend_type_change_ok true
|
||
#define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
|
||
|
||
#include "elf64-target.h"
|
||
|
||
#undef TARGET_BIG_SYM
|
||
#define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
|
||
#undef TARGET_BIG_NAME
|
||
#define TARGET_BIG_NAME "elf64-hppa-linux"
|
||
|
||
#define INCLUDED_TARGET_FILE 1
|
||
#include "elf64-target.h"
|