binutils-gdb/gas/config/tc-i386.c
2002-02-13 11:19:07 +00:00

5957 lines
155 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* i386.c -- Assemble code for the Intel 80386
Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
2000, 2001, 2002
Free Software Foundation, Inc.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
/* Intel 80386 machine specific gas.
Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
x86_64 support by Jan Hubicka (jh@suse.cz)
Bugs & suggestions are completely welcome. This is free software.
Please help us make it better. */
#include "as.h"
#include "safe-ctype.h"
#include "subsegs.h"
#include "dwarf2dbg.h"
#include "opcode/i386.h"
#ifndef REGISTER_WARNINGS
#define REGISTER_WARNINGS 1
#endif
#ifndef INFER_ADDR_PREFIX
#define INFER_ADDR_PREFIX 1
#endif
#ifndef SCALE1_WHEN_NO_INDEX
/* Specifying a scale factor besides 1 when there is no index is
futile. eg. `mov (%ebx,2),%al' does exactly the same as
`mov (%ebx),%al'. To slavishly follow what the programmer
specified, set SCALE1_WHEN_NO_INDEX to 0. */
#define SCALE1_WHEN_NO_INDEX 1
#endif
#ifndef true
#define true 1
#endif
#ifndef false
#define false 0
#endif
static unsigned int mode_from_disp_size PARAMS ((unsigned int));
static int fits_in_signed_byte PARAMS ((offsetT));
static int fits_in_unsigned_byte PARAMS ((offsetT));
static int fits_in_unsigned_word PARAMS ((offsetT));
static int fits_in_signed_word PARAMS ((offsetT));
static int fits_in_unsigned_long PARAMS ((offsetT));
static int fits_in_signed_long PARAMS ((offsetT));
static int smallest_imm_type PARAMS ((offsetT));
static offsetT offset_in_range PARAMS ((offsetT, int));
static int add_prefix PARAMS ((unsigned int));
static void set_code_flag PARAMS ((int));
static void set_16bit_gcc_code_flag PARAMS ((int));
static void set_intel_syntax PARAMS ((int));
static void set_cpu_arch PARAMS ((int));
#ifdef BFD_ASSEMBLER
static bfd_reloc_code_real_type reloc
PARAMS ((int, int, int, bfd_reloc_code_real_type));
#define RELOC_ENUM enum bfd_reloc_code_real
#else
#define RELOC_ENUM int
#endif
#ifndef DEFAULT_ARCH
#define DEFAULT_ARCH "i386"
#endif
static const char *default_arch = DEFAULT_ARCH;
/* 'md_assemble ()' gathers together information and puts it into a
i386_insn. */
union i386_op
{
expressionS *disps;
expressionS *imms;
const reg_entry *regs;
};
struct _i386_insn
{
/* TM holds the template for the insn were currently assembling. */
template tm;
/* SUFFIX holds the instruction mnemonic suffix if given.
(e.g. 'l' for 'movl') */
char suffix;
/* OPERANDS gives the number of given operands. */
unsigned int operands;
/* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
of given register, displacement, memory operands and immediate
operands. */
unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
/* TYPES [i] is the type (see above #defines) which tells us how to
use OP[i] for the corresponding operand. */
unsigned int types[MAX_OPERANDS];
/* Displacement expression, immediate expression, or register for each
operand. */
union i386_op op[MAX_OPERANDS];
/* Flags for operands. */
unsigned int flags[MAX_OPERANDS];
#define Operand_PCrel 1
/* Relocation type for operand */
RELOC_ENUM reloc[MAX_OPERANDS];
/* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
the base index byte below. */
const reg_entry *base_reg;
const reg_entry *index_reg;
unsigned int log2_scale_factor;
/* SEG gives the seg_entries of this insn. They are zero unless
explicit segment overrides are given. */
const seg_entry *seg[2];
/* PREFIX holds all the given prefix opcodes (usually null).
PREFIXES is the number of prefix opcodes. */
unsigned int prefixes;
unsigned char prefix[MAX_PREFIXES];
/* RM and SIB are the modrm byte and the sib byte where the
addressing modes of this insn are encoded. */
modrm_byte rm;
rex_byte rex;
sib_byte sib;
};
typedef struct _i386_insn i386_insn;
/* List of chars besides those in app.c:symbol_chars that can start an
operand. Used to prevent the scrubber eating vital white-space. */
#ifdef LEX_AT
const char extra_symbol_chars[] = "*%-(@";
#else
const char extra_symbol_chars[] = "*%-(";
#endif
/* This array holds the chars that always start a comment. If the
pre-processor is disabled, these aren't very useful. */
#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD) && !defined(TE_NetBSD))
/* Putting '/' here makes it impossible to use the divide operator.
However, we need it for compatibility with SVR4 systems. */
const char comment_chars[] = "#/";
#define PREFIX_SEPARATOR '\\'
#else
const char comment_chars[] = "#";
#define PREFIX_SEPARATOR '/'
#endif
/* This array holds the chars that only start a comment at the beginning of
a line. If the line seems to have the form '# 123 filename'
.line and .file directives will appear in the pre-processed output.
Note that input_file.c hand checks for '#' at the beginning of the
first line of the input file. This is because the compiler outputs
#NO_APP at the beginning of its output.
Also note that comments started like this one will always work if
'/' isn't otherwise defined. */
#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD) && !defined(TE_NetBSD))
const char line_comment_chars[] = "";
#else
const char line_comment_chars[] = "/";
#endif
const char line_separator_chars[] = ";";
/* Chars that can be used to separate mant from exp in floating point
nums. */
const char EXP_CHARS[] = "eE";
/* Chars that mean this number is a floating point constant
As in 0f12.456
or 0d1.2345e12. */
const char FLT_CHARS[] = "fFdDxX";
/* Tables for lexical analysis. */
static char mnemonic_chars[256];
static char register_chars[256];
static char operand_chars[256];
static char identifier_chars[256];
static char digit_chars[256];
/* Lexical macros. */
#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
#define is_operand_char(x) (operand_chars[(unsigned char) x])
#define is_register_char(x) (register_chars[(unsigned char) x])
#define is_space_char(x) ((x) == ' ')
#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
#define is_digit_char(x) (digit_chars[(unsigned char) x])
/* All non-digit non-letter charcters that may occur in an operand. */
static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
/* md_assemble() always leaves the strings it's passed unaltered. To
effect this we maintain a stack of saved characters that we've smashed
with '\0's (indicating end of strings for various sub-fields of the
assembler instruction). */
static char save_stack[32];
static char *save_stack_p;
#define END_STRING_AND_SAVE(s) \
do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
#define RESTORE_END_STRING(s) \
do { *(s) = *--save_stack_p; } while (0)
/* The instruction we're assembling. */
static i386_insn i;
/* Possible templates for current insn. */
static const templates *current_templates;
/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
static expressionS disp_expressions[2], im_expressions[2];
/* Current operand we are working on. */
static int this_operand;
/* We support four different modes. FLAG_CODE variable is used to distinguish
these. */
enum flag_code {
CODE_32BIT,
CODE_16BIT,
CODE_64BIT };
#define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
static enum flag_code flag_code;
static int use_rela_relocations = 0;
/* The names used to print error messages. */
static const char *flag_code_names[] =
{
"32",
"16",
"64"
};
/* 1 for intel syntax,
0 if att syntax. */
static int intel_syntax = 0;
/* 1 if register prefix % not required. */
static int allow_naked_reg = 0;
/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
leave, push, and pop instructions so that gcc has the same stack
frame as in 32 bit mode. */
static char stackop_size = '\0';
/* Non-zero to quieten some warnings. */
static int quiet_warnings = 0;
/* CPU name. */
static const char *cpu_arch_name = NULL;
/* CPU feature flags. */
static unsigned int cpu_arch_flags = CpuUnknownFlags|CpuNo64;
/* If set, conditional jumps are not automatically promoted to handle
larger than a byte offset. */
static unsigned int no_cond_jump_promotion = 0;
/* Interface to relax_segment.
There are 3 major relax states for 386 jump insns because the
different types of jumps add different sizes to frags when we're
figuring out what sort of jump to choose to reach a given label. */
/* Types. */
#define UNCOND_JUMP 0
#define COND_JUMP 1
#define COND_JUMP86 2
/* Sizes. */
#define CODE16 1
#define SMALL 0
#define SMALL16 (SMALL|CODE16)
#define BIG 2
#define BIG16 (BIG|CODE16)
#ifndef INLINE
#ifdef __GNUC__
#define INLINE __inline__
#else
#define INLINE
#endif
#endif
#define ENCODE_RELAX_STATE(type, size) \
((relax_substateT) (((type) << 2) | (size)))
#define TYPE_FROM_RELAX_STATE(s) \
((s) >> 2)
#define DISP_SIZE_FROM_RELAX_STATE(s) \
((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
/* This table is used by relax_frag to promote short jumps to long
ones where necessary. SMALL (short) jumps may be promoted to BIG
(32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
don't allow a short jump in a 32 bit code segment to be promoted to
a 16 bit offset jump because it's slower (requires data size
prefix), and doesn't work, unless the destination is in the bottom
64k of the code segment (The top 16 bits of eip are zeroed). */
const relax_typeS md_relax_table[] =
{
/* The fields are:
1) most positive reach of this state,
2) most negative reach of this state,
3) how many bytes this mode will have in the variable part of the frag
4) which index into the table to try if we can't fit into this one. */
/* UNCOND_JUMP states. */
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
/* dword jmp adds 4 bytes to frag:
0 extra opcode bytes, 4 displacement bytes. */
{0, 0, 4, 0},
/* word jmp adds 2 byte2 to frag:
0 extra opcode bytes, 2 displacement bytes. */
{0, 0, 2, 0},
/* COND_JUMP states. */
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
/* dword conditionals adds 5 bytes to frag:
1 extra opcode byte, 4 displacement bytes. */
{0, 0, 5, 0},
/* word conditionals add 3 bytes to frag:
1 extra opcode byte, 2 displacement bytes. */
{0, 0, 3, 0},
/* COND_JUMP86 states. */
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
/* dword conditionals adds 5 bytes to frag:
1 extra opcode byte, 4 displacement bytes. */
{0, 0, 5, 0},
/* word conditionals add 4 bytes to frag:
1 displacement byte and a 3 byte long branch insn. */
{0, 0, 4, 0}
};
static const arch_entry cpu_arch[] = {
{"i8086", Cpu086 },
{"i186", Cpu086|Cpu186 },
{"i286", Cpu086|Cpu186|Cpu286 },
{"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
{"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
{"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
{"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
{"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
{"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
{"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
{"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
{"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
{"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
{NULL, 0 }
};
void
i386_align_code (fragP, count)
fragS *fragP;
int count;
{
/* Various efficient no-op patterns for aligning code labels.
Note: Don't try to assemble the instructions in the comments.
0L and 0w are not legal. */
static const char f32_1[] =
{0x90}; /* nop */
static const char f32_2[] =
{0x89,0xf6}; /* movl %esi,%esi */
static const char f32_3[] =
{0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
static const char f32_4[] =
{0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
static const char f32_5[] =
{0x90, /* nop */
0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
static const char f32_6[] =
{0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
static const char f32_7[] =
{0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
static const char f32_8[] =
{0x90, /* nop */
0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
static const char f32_9[] =
{0x89,0xf6, /* movl %esi,%esi */
0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
static const char f32_10[] =
{0x8d,0x76,0x00, /* leal 0(%esi),%esi */
0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
static const char f32_11[] =
{0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
static const char f32_12[] =
{0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
static const char f32_13[] =
{0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
static const char f32_14[] =
{0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
static const char f32_15[] =
{0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
static const char f16_3[] =
{0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
static const char f16_4[] =
{0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
static const char f16_5[] =
{0x90, /* nop */
0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
static const char f16_6[] =
{0x89,0xf6, /* mov %si,%si */
0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
static const char f16_7[] =
{0x8d,0x74,0x00, /* lea 0(%si),%si */
0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
static const char f16_8[] =
{0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
static const char *const f32_patt[] = {
f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
};
static const char *const f16_patt[] = {
f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
};
/* ??? We can't use these fillers for x86_64, since they often kills the
upper halves. Solve later. */
if (flag_code == CODE_64BIT)
count = 1;
if (count > 0 && count <= 15)
{
if (flag_code == CODE_16BIT)
{
memcpy (fragP->fr_literal + fragP->fr_fix,
f16_patt[count - 1], count);
if (count > 8)
/* Adjust jump offset. */
fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
}
else
memcpy (fragP->fr_literal + fragP->fr_fix,
f32_patt[count - 1], count);
fragP->fr_var = count;
}
}
static char *output_invalid PARAMS ((int c));
static int i386_operand PARAMS ((char *operand_string));
static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
static const reg_entry *parse_register PARAMS ((char *reg_string,
char **end_op));
#ifndef I386COFF
static void s_bss PARAMS ((int));
#endif
symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
static INLINE unsigned int
mode_from_disp_size (t)
unsigned int t;
{
return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
}
static INLINE int
fits_in_signed_byte (num)
offsetT num;
{
return (num >= -128) && (num <= 127);
}
static INLINE int
fits_in_unsigned_byte (num)
offsetT num;
{
return (num & 0xff) == num;
}
static INLINE int
fits_in_unsigned_word (num)
offsetT num;
{
return (num & 0xffff) == num;
}
static INLINE int
fits_in_signed_word (num)
offsetT num;
{
return (-32768 <= num) && (num <= 32767);
}
static INLINE int
fits_in_signed_long (num)
offsetT num ATTRIBUTE_UNUSED;
{
#ifndef BFD64
return 1;
#else
return (!(((offsetT) -1 << 31) & num)
|| (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
#endif
} /* fits_in_signed_long() */
static INLINE int
fits_in_unsigned_long (num)
offsetT num ATTRIBUTE_UNUSED;
{
#ifndef BFD64
return 1;
#else
return (num & (((offsetT) 2 << 31) - 1)) == num;
#endif
} /* fits_in_unsigned_long() */
static int
smallest_imm_type (num)
offsetT num;
{
if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
{
/* This code is disabled on the 486 because all the Imm1 forms
in the opcode table are slower on the i486. They're the
versions with the implicitly specified single-position
displacement, which has another syntax if you really want to
use that form. */
if (num == 1)
return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
}
return (fits_in_signed_byte (num)
? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
: fits_in_unsigned_byte (num)
? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
: (fits_in_signed_word (num) || fits_in_unsigned_word (num))
? (Imm16 | Imm32 | Imm32S | Imm64)
: fits_in_signed_long (num)
? (Imm32 | Imm32S | Imm64)
: fits_in_unsigned_long (num)
? (Imm32 | Imm64)
: Imm64);
}
static offsetT
offset_in_range (val, size)
offsetT val;
int size;
{
addressT mask;
switch (size)
{
case 1: mask = ((addressT) 1 << 8) - 1; break;
case 2: mask = ((addressT) 1 << 16) - 1; break;
case 4: mask = ((addressT) 2 << 31) - 1; break;
#ifdef BFD64
case 8: mask = ((addressT) 2 << 63) - 1; break;
#endif
default: abort ();
}
/* If BFD64, sign extend val. */
if (!use_rela_relocations)
if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
{
char buf1[40], buf2[40];
sprint_value (buf1, val);
sprint_value (buf2, val & mask);
as_warn (_("%s shortened to %s"), buf1, buf2);
}
return val & mask;
}
/* Returns 0 if attempting to add a prefix where one from the same
class already exists, 1 if non rep/repne added, 2 if rep/repne
added. */
static int
add_prefix (prefix)
unsigned int prefix;
{
int ret = 1;
int q;
if (prefix >= 0x40 && prefix < 0x50 && flag_code == CODE_64BIT)
q = REX_PREFIX;
else
switch (prefix)
{
default:
abort ();
case CS_PREFIX_OPCODE:
case DS_PREFIX_OPCODE:
case ES_PREFIX_OPCODE:
case FS_PREFIX_OPCODE:
case GS_PREFIX_OPCODE:
case SS_PREFIX_OPCODE:
q = SEG_PREFIX;
break;
case REPNE_PREFIX_OPCODE:
case REPE_PREFIX_OPCODE:
ret = 2;
/* fall thru */
case LOCK_PREFIX_OPCODE:
q = LOCKREP_PREFIX;
break;
case FWAIT_OPCODE:
q = WAIT_PREFIX;
break;
case ADDR_PREFIX_OPCODE:
q = ADDR_PREFIX;
break;
case DATA_PREFIX_OPCODE:
q = DATA_PREFIX;
break;
}
if (i.prefix[q])
{
as_bad (_("same type of prefix used twice"));
return 0;
}
i.prefixes += 1;
i.prefix[q] = prefix;
return ret;
}
static void
set_code_flag (value)
int value;
{
flag_code = value;
cpu_arch_flags &= ~(Cpu64 | CpuNo64);
cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
{
as_bad (_("64bit mode not supported on this CPU."));
}
if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
{
as_bad (_("32bit mode not supported on this CPU."));
}
stackop_size = '\0';
}
static void
set_16bit_gcc_code_flag (new_code_flag)
int new_code_flag;
{
flag_code = new_code_flag;
cpu_arch_flags &= ~(Cpu64 | CpuNo64);
cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
stackop_size = 'l';
}
static void
set_intel_syntax (syntax_flag)
int syntax_flag;
{
/* Find out if register prefixing is specified. */
int ask_naked_reg = 0;
SKIP_WHITESPACE ();
if (! is_end_of_line[(unsigned char) *input_line_pointer])
{
char *string = input_line_pointer;
int e = get_symbol_end ();
if (strcmp (string, "prefix") == 0)
ask_naked_reg = 1;
else if (strcmp (string, "noprefix") == 0)
ask_naked_reg = -1;
else
as_bad (_("bad argument to syntax directive."));
*input_line_pointer = e;
}
demand_empty_rest_of_line ();
intel_syntax = syntax_flag;
if (ask_naked_reg == 0)
{
#ifdef BFD_ASSEMBLER
allow_naked_reg = (intel_syntax
&& (bfd_get_symbol_leading_char (stdoutput) != '\0'));
#else
/* Conservative default. */
allow_naked_reg = 0;
#endif
}
else
allow_naked_reg = (ask_naked_reg < 0);
}
static void
set_cpu_arch (dummy)
int dummy ATTRIBUTE_UNUSED;
{
SKIP_WHITESPACE ();
if (! is_end_of_line[(unsigned char) *input_line_pointer])
{
char *string = input_line_pointer;
int e = get_symbol_end ();
int i;
for (i = 0; cpu_arch[i].name; i++)
{
if (strcmp (string, cpu_arch[i].name) == 0)
{
cpu_arch_name = cpu_arch[i].name;
cpu_arch_flags = (cpu_arch[i].flags
| (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
break;
}
}
if (!cpu_arch[i].name)
as_bad (_("no such architecture: `%s'"), string);
*input_line_pointer = e;
}
else
as_bad (_("missing cpu architecture"));
no_cond_jump_promotion = 0;
if (*input_line_pointer == ','
&& ! is_end_of_line[(unsigned char) input_line_pointer[1]])
{
char *string = ++input_line_pointer;
int e = get_symbol_end ();
if (strcmp (string, "nojumps") == 0)
no_cond_jump_promotion = 1;
else if (strcmp (string, "jumps") == 0)
;
else
as_bad (_("no such architecture modifier: `%s'"), string);
*input_line_pointer = e;
}
demand_empty_rest_of_line ();
}
const pseudo_typeS md_pseudo_table[] =
{
#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
{"align", s_align_bytes, 0},
#else
{"align", s_align_ptwo, 0},
#endif
{"arch", set_cpu_arch, 0},
#ifndef I386COFF
{"bss", s_bss, 0},
#endif
{"ffloat", float_cons, 'f'},
{"dfloat", float_cons, 'd'},
{"tfloat", float_cons, 'x'},
{"value", cons, 2},
{"noopt", s_ignore, 0},
{"optim", s_ignore, 0},
{"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
{"code16", set_code_flag, CODE_16BIT},
{"code32", set_code_flag, CODE_32BIT},
{"code64", set_code_flag, CODE_64BIT},
{"intel_syntax", set_intel_syntax, 1},
{"att_syntax", set_intel_syntax, 0},
{"file", dwarf2_directive_file, 0},
{"loc", dwarf2_directive_loc, 0},
{0, 0, 0}
};
/* For interface with expression (). */
extern char *input_line_pointer;
/* Hash table for instruction mnemonic lookup. */
static struct hash_control *op_hash;
/* Hash table for register lookup. */
static struct hash_control *reg_hash;
#ifdef BFD_ASSEMBLER
unsigned long
i386_mach ()
{
if (!strcmp (default_arch, "x86_64"))
return bfd_mach_x86_64;
else if (!strcmp (default_arch, "i386"))
return bfd_mach_i386_i386;
else
as_fatal (_("Unknown architecture"));
}
#endif
void
md_begin ()
{
const char *hash_err;
/* Initialize op_hash hash table. */
op_hash = hash_new ();
{
register const template *optab;
register templates *core_optab;
/* Setup for loop. */
optab = i386_optab;
core_optab = (templates *) xmalloc (sizeof (templates));
core_optab->start = optab;
while (1)
{
++optab;
if (optab->name == NULL
|| strcmp (optab->name, (optab - 1)->name) != 0)
{
/* different name --> ship out current template list;
add to hash table; & begin anew. */
core_optab->end = optab;
hash_err = hash_insert (op_hash,
(optab - 1)->name,
(PTR) core_optab);
if (hash_err)
{
as_fatal (_("Internal Error: Can't hash %s: %s"),
(optab - 1)->name,
hash_err);
}
if (optab->name == NULL)
break;
core_optab = (templates *) xmalloc (sizeof (templates));
core_optab->start = optab;
}
}
}
/* Initialize reg_hash hash table. */
reg_hash = hash_new ();
{
register const reg_entry *regtab;
for (regtab = i386_regtab;
regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
regtab++)
{
hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
if (hash_err)
as_fatal (_("Internal Error: Can't hash %s: %s"),
regtab->reg_name,
hash_err);
}
}
/* Fill in lexical tables: mnemonic_chars, operand_chars. */
{
register int c;
register char *p;
for (c = 0; c < 256; c++)
{
if (ISDIGIT (c))
{
digit_chars[c] = c;
mnemonic_chars[c] = c;
register_chars[c] = c;
operand_chars[c] = c;
}
else if (ISLOWER (c))
{
mnemonic_chars[c] = c;
register_chars[c] = c;
operand_chars[c] = c;
}
else if (ISUPPER (c))
{
mnemonic_chars[c] = TOLOWER (c);
register_chars[c] = mnemonic_chars[c];
operand_chars[c] = c;
}
if (ISALPHA (c) || ISDIGIT (c))
identifier_chars[c] = c;
else if (c >= 128)
{
identifier_chars[c] = c;
operand_chars[c] = c;
}
}
#ifdef LEX_AT
identifier_chars['@'] = '@';
#endif
digit_chars['-'] = '-';
identifier_chars['_'] = '_';
identifier_chars['.'] = '.';
for (p = operand_special_chars; *p != '\0'; p++)
operand_chars[(unsigned char) *p] = *p;
}
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
{
record_alignment (text_section, 2);
record_alignment (data_section, 2);
record_alignment (bss_section, 2);
}
#endif
}
void
i386_print_statistics (file)
FILE *file;
{
hash_print_statistics (file, "i386 opcode", op_hash);
hash_print_statistics (file, "i386 register", reg_hash);
}
#ifdef DEBUG386
/* Debugging routines for md_assemble. */
static void pi PARAMS ((char *, i386_insn *));
static void pte PARAMS ((template *));
static void pt PARAMS ((unsigned int));
static void pe PARAMS ((expressionS *));
static void ps PARAMS ((symbolS *));
static void
pi (line, x)
char *line;
i386_insn *x;
{
unsigned int i;
fprintf (stdout, "%s: template ", line);
pte (&x->tm);
fprintf (stdout, " address: base %s index %s scale %x\n",
x->base_reg ? x->base_reg->reg_name : "none",
x->index_reg ? x->index_reg->reg_name : "none",
x->log2_scale_factor);
fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
x->rm.mode, x->rm.reg, x->rm.regmem);
fprintf (stdout, " sib: base %x index %x scale %x\n",
x->sib.base, x->sib.index, x->sib.scale);
fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
x->rex.mode64, x->rex.extX, x->rex.extY, x->rex.extZ);
for (i = 0; i < x->operands; i++)
{
fprintf (stdout, " #%d: ", i + 1);
pt (x->types[i]);
fprintf (stdout, "\n");
if (x->types[i]
& (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
if (x->types[i] & Imm)
pe (x->op[i].imms);
if (x->types[i] & Disp)
pe (x->op[i].disps);
}
}
static void
pte (t)
template *t;
{
unsigned int i;
fprintf (stdout, " %d operands ", t->operands);
fprintf (stdout, "opcode %x ", t->base_opcode);
if (t->extension_opcode != None)
fprintf (stdout, "ext %x ", t->extension_opcode);
if (t->opcode_modifier & D)
fprintf (stdout, "D");
if (t->opcode_modifier & W)
fprintf (stdout, "W");
fprintf (stdout, "\n");
for (i = 0; i < t->operands; i++)
{
fprintf (stdout, " #%d type ", i + 1);
pt (t->operand_types[i]);
fprintf (stdout, "\n");
}
}
static void
pe (e)
expressionS *e;
{
fprintf (stdout, " operation %d\n", e->X_op);
fprintf (stdout, " add_number %ld (%lx)\n",
(long) e->X_add_number, (long) e->X_add_number);
if (e->X_add_symbol)
{
fprintf (stdout, " add_symbol ");
ps (e->X_add_symbol);
fprintf (stdout, "\n");
}
if (e->X_op_symbol)
{
fprintf (stdout, " op_symbol ");
ps (e->X_op_symbol);
fprintf (stdout, "\n");
}
}
static void
ps (s)
symbolS *s;
{
fprintf (stdout, "%s type %s%s",
S_GET_NAME (s),
S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
segment_name (S_GET_SEGMENT (s)));
}
struct type_name
{
unsigned int mask;
char *tname;
}
type_names[] =
{
{ Reg8, "r8" },
{ Reg16, "r16" },
{ Reg32, "r32" },
{ Reg64, "r64" },
{ Imm8, "i8" },
{ Imm8S, "i8s" },
{ Imm16, "i16" },
{ Imm32, "i32" },
{ Imm32S, "i32s" },
{ Imm64, "i64" },
{ Imm1, "i1" },
{ BaseIndex, "BaseIndex" },
{ Disp8, "d8" },
{ Disp16, "d16" },
{ Disp32, "d32" },
{ Disp32S, "d32s" },
{ Disp64, "d64" },
{ InOutPortReg, "InOutPortReg" },
{ ShiftCount, "ShiftCount" },
{ Control, "control reg" },
{ Test, "test reg" },
{ Debug, "debug reg" },
{ FloatReg, "FReg" },
{ FloatAcc, "FAcc" },
{ SReg2, "SReg2" },
{ SReg3, "SReg3" },
{ Acc, "Acc" },
{ JumpAbsolute, "Jump Absolute" },
{ RegMMX, "rMMX" },
{ RegXMM, "rXMM" },
{ EsSeg, "es" },
{ 0, "" }
};
static void
pt (t)
unsigned int t;
{
register struct type_name *ty;
for (ty = type_names; ty->mask; ty++)
if (t & ty->mask)
fprintf (stdout, "%s, ", ty->tname);
fflush (stdout);
}
#endif /* DEBUG386 */
int
tc_i386_force_relocation (fixp)
struct fix *fixp;
{
#ifdef BFD_ASSEMBLER
if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|| fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
return 1;
return 0;
#else
/* For COFF. */
return fixp->fx_r_type == 7;
#endif
}
#ifdef BFD_ASSEMBLER
static bfd_reloc_code_real_type
reloc (size, pcrel, sign, other)
int size;
int pcrel;
int sign;
bfd_reloc_code_real_type other;
{
if (other != NO_RELOC)
return other;
if (pcrel)
{
if (!sign)
as_bad (_("There are no unsigned pc-relative relocations"));
switch (size)
{
case 1: return BFD_RELOC_8_PCREL;
case 2: return BFD_RELOC_16_PCREL;
case 4: return BFD_RELOC_32_PCREL;
}
as_bad (_("can not do %d byte pc-relative relocation"), size);
}
else
{
if (sign)
switch (size)
{
case 4: return BFD_RELOC_X86_64_32S;
}
else
switch (size)
{
case 1: return BFD_RELOC_8;
case 2: return BFD_RELOC_16;
case 4: return BFD_RELOC_32;
case 8: return BFD_RELOC_64;
}
as_bad (_("can not do %s %d byte relocation"),
sign ? "signed" : "unsigned", size);
}
abort ();
return BFD_RELOC_NONE;
}
/* Here we decide which fixups can be adjusted to make them relative to
the beginning of the section instead of the symbol. Basically we need
to make sure that the dynamic relocations are done correctly, so in
some cases we force the original symbol to be used. */
int
tc_i386_fix_adjustable (fixP)
fixS *fixP;
{
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
/* Prevent all adjustments to global symbols, or else dynamic
linking will not work correctly. */
if (S_IS_EXTERNAL (fixP->fx_addsy)
|| S_IS_WEAK (fixP->fx_addsy)
/* Don't adjust pc-relative references to merge sections in 64-bit
mode. */
|| (use_rela_relocations
&& (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
&& fixP->fx_pcrel))
return 0;
#endif
/* adjust_reloc_syms doesn't know about the GOT. */
if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
|| fixP->fx_r_type == BFD_RELOC_386_PLT32
|| fixP->fx_r_type == BFD_RELOC_386_GOT32
|| fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
|| fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
|| fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
|| fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|| fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
return 0;
return 1;
}
#else
#define reloc(SIZE,PCREL,SIGN,OTHER) 0
#define BFD_RELOC_16 0
#define BFD_RELOC_32 0
#define BFD_RELOC_16_PCREL 0
#define BFD_RELOC_32_PCREL 0
#define BFD_RELOC_386_PLT32 0
#define BFD_RELOC_386_GOT32 0
#define BFD_RELOC_386_GOTOFF 0
#define BFD_RELOC_X86_64_PLT32 0
#define BFD_RELOC_X86_64_GOT32 0
#define BFD_RELOC_X86_64_GOTPCREL 0
#endif
static int intel_float_operand PARAMS ((char *mnemonic));
static int
intel_float_operand (mnemonic)
char *mnemonic;
{
if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
return 2;
if (mnemonic[0] == 'f')
return 1;
return 0;
}
/* This is the guts of the machine-dependent assembler. LINE points to a
machine dependent instruction. This function is supposed to emit
the frags/bytes it assembles to. */
void
md_assemble (line)
char *line;
{
/* Points to template once we've found it. */
const template *t;
int j;
char mnemonic[MAX_MNEM_SIZE];
/* Initialize globals. */
memset (&i, '\0', sizeof (i));
for (j = 0; j < MAX_OPERANDS; j++)
i.reloc[j] = NO_RELOC;
memset (disp_expressions, '\0', sizeof (disp_expressions));
memset (im_expressions, '\0', sizeof (im_expressions));
save_stack_p = save_stack;
/* First parse an instruction mnemonic & call i386_operand for the operands.
We assume that the scrubber has arranged it so that line[0] is the valid
start of a (possibly prefixed) mnemonic. */
{
char *l = line;
char *token_start = l;
char *mnem_p;
/* Non-zero if we found a prefix only acceptable with string insns. */
const char *expecting_string_instruction = NULL;
while (1)
{
mnem_p = mnemonic;
while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
{
mnem_p++;
if (mnem_p >= mnemonic + sizeof (mnemonic))
{
as_bad (_("no such instruction: `%s'"), token_start);
return;
}
l++;
}
if (!is_space_char (*l)
&& *l != END_OF_INSN
&& *l != PREFIX_SEPARATOR
&& *l != ',')
{
as_bad (_("invalid character %s in mnemonic"),
output_invalid (*l));
return;
}
if (token_start == l)
{
if (*l == PREFIX_SEPARATOR)
as_bad (_("expecting prefix; got nothing"));
else
as_bad (_("expecting mnemonic; got nothing"));
return;
}
/* Look up instruction (or prefix) via hash table. */
current_templates = hash_find (op_hash, mnemonic);
if (*l != END_OF_INSN
&& (! is_space_char (*l) || l[1] != END_OF_INSN)
&& current_templates
&& (current_templates->start->opcode_modifier & IsPrefix))
{
/* If we are in 16-bit mode, do not allow addr16 or data16.
Similarly, in 32-bit mode, do not allow addr32 or data32. */
if ((current_templates->start->opcode_modifier & (Size16 | Size32))
&& flag_code != CODE_64BIT
&& (((current_templates->start->opcode_modifier & Size32) != 0)
^ (flag_code == CODE_16BIT)))
{
as_bad (_("redundant %s prefix"),
current_templates->start->name);
return;
}
/* Add prefix, checking for repeated prefixes. */
switch (add_prefix (current_templates->start->base_opcode))
{
case 0:
return;
case 2:
expecting_string_instruction = current_templates->start->name;
break;
}
/* Skip past PREFIX_SEPARATOR and reset token_start. */
token_start = ++l;
}
else
break;
}
if (!current_templates)
{
/* See if we can get a match by trimming off a suffix. */
switch (mnem_p[-1])
{
case WORD_MNEM_SUFFIX:
case BYTE_MNEM_SUFFIX:
case QWORD_MNEM_SUFFIX:
i.suffix = mnem_p[-1];
mnem_p[-1] = '\0';
current_templates = hash_find (op_hash, mnemonic);
break;
case SHORT_MNEM_SUFFIX:
case LONG_MNEM_SUFFIX:
if (!intel_syntax)
{
i.suffix = mnem_p[-1];
mnem_p[-1] = '\0';
current_templates = hash_find (op_hash, mnemonic);
}
break;
/* Intel Syntax. */
case 'd':
if (intel_syntax)
{
if (intel_float_operand (mnemonic))
i.suffix = SHORT_MNEM_SUFFIX;
else
i.suffix = LONG_MNEM_SUFFIX;
mnem_p[-1] = '\0';
current_templates = hash_find (op_hash, mnemonic);
}
break;
}
if (!current_templates)
{
as_bad (_("no such instruction: `%s'"), token_start);
return;
}
}
if (current_templates->start->opcode_modifier & (Jump | JumpByte))
{
/* Check for a branch hint. We allow ",pt" and ",pn" for
predict taken and predict not taken respectively.
I'm not sure that branch hints actually do anything on loop
and jcxz insns (JumpByte) for current Pentium4 chips. They
may work in the future and it doesn't hurt to accept them
now. */
if (l[0] == ',' && l[1] == 'p')
{
if (l[2] == 't')
{
if (! add_prefix (DS_PREFIX_OPCODE))
return;
l += 3;
}
else if (l[2] == 'n')
{
if (! add_prefix (CS_PREFIX_OPCODE))
return;
l += 3;
}
}
}
/* Any other comma loses. */
if (*l == ',')
{
as_bad (_("invalid character %s in mnemonic"),
output_invalid (*l));
return;
}
/* Check if instruction is supported on specified architecture. */
if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
& ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
{
as_warn (_("`%s' is not supported on `%s'"),
current_templates->start->name, cpu_arch_name);
}
else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
{
as_warn (_("use .code16 to ensure correct addressing mode"));
}
/* Check for rep/repne without a string instruction. */
if (expecting_string_instruction
&& !(current_templates->start->opcode_modifier & IsString))
{
as_bad (_("expecting string instruction after `%s'"),
expecting_string_instruction);
return;
}
/* There may be operands to parse. */
if (*l != END_OF_INSN)
{
/* 1 if operand is pending after ','. */
unsigned int expecting_operand = 0;
/* Non-zero if operand parens not balanced. */
unsigned int paren_not_balanced;
do
{
/* Skip optional white space before operand. */
if (is_space_char (*l))
++l;
if (!is_operand_char (*l) && *l != END_OF_INSN)
{
as_bad (_("invalid character %s before operand %d"),
output_invalid (*l),
i.operands + 1);
return;
}
token_start = l; /* after white space */
paren_not_balanced = 0;
while (paren_not_balanced || *l != ',')
{
if (*l == END_OF_INSN)
{
if (paren_not_balanced)
{
if (!intel_syntax)
as_bad (_("unbalanced parenthesis in operand %d."),
i.operands + 1);
else
as_bad (_("unbalanced brackets in operand %d."),
i.operands + 1);
return;
}
else
break; /* we are done */
}
else if (!is_operand_char (*l) && !is_space_char (*l))
{
as_bad (_("invalid character %s in operand %d"),
output_invalid (*l),
i.operands + 1);
return;
}
if (!intel_syntax)
{
if (*l == '(')
++paren_not_balanced;
if (*l == ')')
--paren_not_balanced;
}
else
{
if (*l == '[')
++paren_not_balanced;
if (*l == ']')
--paren_not_balanced;
}
l++;
}
if (l != token_start)
{ /* Yes, we've read in another operand. */
unsigned int operand_ok;
this_operand = i.operands++;
if (i.operands > MAX_OPERANDS)
{
as_bad (_("spurious operands; (%d operands/instruction max)"),
MAX_OPERANDS);
return;
}
/* Now parse operand adding info to 'i' as we go along. */
END_STRING_AND_SAVE (l);
if (intel_syntax)
operand_ok =
i386_intel_operand (token_start,
intel_float_operand (mnemonic));
else
operand_ok = i386_operand (token_start);
RESTORE_END_STRING (l);
if (!operand_ok)
return;
}
else
{
if (expecting_operand)
{
expecting_operand_after_comma:
as_bad (_("expecting operand after ','; got nothing"));
return;
}
if (*l == ',')
{
as_bad (_("expecting operand before ','; got nothing"));
return;
}
}
/* Now *l must be either ',' or END_OF_INSN. */
if (*l == ',')
{
if (*++l == END_OF_INSN)
{
/* Just skip it, if it's \n complain. */
goto expecting_operand_after_comma;
}
expecting_operand = 1;
}
}
while (*l != END_OF_INSN);
}
}
/* Now we've parsed the mnemonic into a set of templates, and have the
operands at hand.
Next, we find a template that matches the given insn,
making sure the overlap of the given operands types is consistent
with the template operand types. */
#define MATCH(overlap, given, template) \
((overlap & ~JumpAbsolute) \
&& ((given) & (BaseIndex|JumpAbsolute)) == ((overlap) & (BaseIndex|JumpAbsolute)))
/* If given types r0 and r1 are registers they must be of the same type
unless the expected operand type register overlap is null.
Note that Acc in a template matches every size of reg. */
#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
( ((g0) & Reg) == 0 || ((g1) & Reg) == 0 || \
((g0) & Reg) == ((g1) & Reg) || \
((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
{
register unsigned int overlap0, overlap1;
unsigned int overlap2;
unsigned int found_reverse_match;
int suffix_check;
/* All intel opcodes have reversed operands except for "bound" and
"enter". We also don't reverse intersegment "jmp" and "call"
instructions with 2 immediate operands so that the immediate segment
precedes the offset, as it does when in AT&T mode. "enter" and the
intersegment "jmp" and "call" instructions are the only ones that
have two immediate operands. */
if (intel_syntax && i.operands > 1
&& (strcmp (mnemonic, "bound") != 0)
&& !((i.types[0] & Imm) && (i.types[1] & Imm)))
{
union i386_op temp_op;
unsigned int temp_type;
RELOC_ENUM temp_reloc;
int xchg1 = 0;
int xchg2 = 0;
if (i.operands == 2)
{
xchg1 = 0;
xchg2 = 1;
}
else if (i.operands == 3)
{
xchg1 = 0;
xchg2 = 2;
}
temp_type = i.types[xchg2];
i.types[xchg2] = i.types[xchg1];
i.types[xchg1] = temp_type;
temp_op = i.op[xchg2];
i.op[xchg2] = i.op[xchg1];
i.op[xchg1] = temp_op;
temp_reloc = i.reloc[xchg2];
i.reloc[xchg2] = i.reloc[xchg1];
i.reloc[xchg1] = temp_reloc;
if (i.mem_operands == 2)
{
const seg_entry *temp_seg;
temp_seg = i.seg[0];
i.seg[0] = i.seg[1];
i.seg[1] = temp_seg;
}
}
if (i.imm_operands)
{
/* Try to ensure constant immediates are represented in the smallest
opcode possible. */
char guess_suffix = 0;
int op;
if (i.suffix)
guess_suffix = i.suffix;
else if (i.reg_operands)
{
/* Figure out a suffix from the last register operand specified.
We can't do this properly yet, ie. excluding InOutPortReg,
but the following works for instructions with immediates.
In any case, we can't set i.suffix yet. */
for (op = i.operands; --op >= 0;)
if (i.types[op] & Reg)
{
if (i.types[op] & Reg8)
guess_suffix = BYTE_MNEM_SUFFIX;
else if (i.types[op] & Reg16)
guess_suffix = WORD_MNEM_SUFFIX;
else if (i.types[op] & Reg32)
guess_suffix = LONG_MNEM_SUFFIX;
else if (i.types[op] & Reg64)
guess_suffix = QWORD_MNEM_SUFFIX;
break;
}
}
else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
guess_suffix = WORD_MNEM_SUFFIX;
for (op = i.operands; --op >= 0;)
if (i.types[op] & Imm)
{
switch (i.op[op].imms->X_op)
{
case O_constant:
/* If a suffix is given, this operand may be shortened. */
switch (guess_suffix)
{
case LONG_MNEM_SUFFIX:
i.types[op] |= Imm32 | Imm64;
break;
case WORD_MNEM_SUFFIX:
i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
break;
case BYTE_MNEM_SUFFIX:
i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
break;
}
/* If this operand is at most 16 bits, convert it
to a signed 16 bit number before trying to see
whether it will fit in an even smaller size.
This allows a 16-bit operand such as $0xffe0 to
be recognised as within Imm8S range. */
if ((i.types[op] & Imm16)
&& (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
{
i.op[op].imms->X_add_number =
(((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
}
if ((i.types[op] & Imm32)
&& (i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1)) == 0)
{
i.op[op].imms->X_add_number =
(i.op[op].imms->X_add_number ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
}
i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
/* We must avoid matching of Imm32 templates when 64bit only immediate is available. */
if (guess_suffix == QWORD_MNEM_SUFFIX)
i.types[op] &= ~Imm32;
break;
case O_absent:
case O_register:
abort ();
/* Symbols and expressions. */
default:
/* Convert symbolic operand to proper sizes for matching. */
switch (guess_suffix)
{
case QWORD_MNEM_SUFFIX:
i.types[op] = Imm64 | Imm32S;
break;
case LONG_MNEM_SUFFIX:
i.types[op] = Imm32 | Imm64;
break;
case WORD_MNEM_SUFFIX:
i.types[op] = Imm16 | Imm32 | Imm64;
break;
break;
case BYTE_MNEM_SUFFIX:
i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
break;
break;
}
break;
}
}
}
if (i.disp_operands)
{
/* Try to use the smallest displacement type too. */
int op;
for (op = i.operands; --op >= 0;)
if ((i.types[op] & Disp)
&& i.op[op].disps->X_op == O_constant)
{
offsetT disp = i.op[op].disps->X_add_number;
if (i.types[op] & Disp16)
{
/* We know this operand is at most 16 bits, so
convert to a signed 16 bit number before trying
to see whether it will fit in an even smaller
size. */
disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
}
else if (i.types[op] & Disp32)
{
/* We know this operand is at most 32 bits, so convert to a
signed 32 bit number before trying to see whether it will
fit in an even smaller size. */
disp &= (((offsetT) 2 << 31) - 1);
disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
}
if (flag_code == CODE_64BIT)
{
if (fits_in_signed_long (disp))
i.types[op] |= Disp32S;
if (fits_in_unsigned_long (disp))
i.types[op] |= Disp32;
}
if ((i.types[op] & (Disp32 | Disp32S | Disp16))
&& fits_in_signed_byte (disp))
i.types[op] |= Disp8;
}
}
overlap0 = 0;
overlap1 = 0;
overlap2 = 0;
found_reverse_match = 0;
suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
? No_bSuf
: (i.suffix == WORD_MNEM_SUFFIX
? No_wSuf
: (i.suffix == SHORT_MNEM_SUFFIX
? No_sSuf
: (i.suffix == LONG_MNEM_SUFFIX
? No_lSuf
: (i.suffix == QWORD_MNEM_SUFFIX
? No_qSuf
: (i.suffix == LONG_DOUBLE_MNEM_SUFFIX ? No_xSuf : 0))))));
for (t = current_templates->start;
t < current_templates->end;
t++)
{
/* Must have right number of operands. */
if (i.operands != t->operands)
continue;
/* Check the suffix, except for some instructions in intel mode. */
if ((t->opcode_modifier & suffix_check)
&& !(intel_syntax
&& (t->opcode_modifier & IgnoreSize))
&& !(intel_syntax
&& t->base_opcode == 0xd9
&& (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
|| t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
continue;
/* Do not verify operands when there are none. */
else if (!t->operands)
{
if (t->cpu_flags & ~cpu_arch_flags)
continue;
/* We've found a match; break out of loop. */
break;
}
overlap0 = i.types[0] & t->operand_types[0];
switch (t->operands)
{
case 1:
if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
continue;
break;
case 2:
case 3:
overlap1 = i.types[1] & t->operand_types[1];
if (!MATCH (overlap0, i.types[0], t->operand_types[0])
|| !MATCH (overlap1, i.types[1], t->operand_types[1])
|| !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
t->operand_types[0],
overlap1, i.types[1],
t->operand_types[1]))
{
/* Check if other direction is valid ... */
if ((t->opcode_modifier & (D|FloatD)) == 0)
continue;
/* Try reversing direction of operands. */
overlap0 = i.types[0] & t->operand_types[1];
overlap1 = i.types[1] & t->operand_types[0];
if (!MATCH (overlap0, i.types[0], t->operand_types[1])
|| !MATCH (overlap1, i.types[1], t->operand_types[0])
|| !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
t->operand_types[1],
overlap1, i.types[1],
t->operand_types[0]))
{
/* Does not match either direction. */
continue;
}
/* found_reverse_match holds which of D or FloatDR
we've found. */
found_reverse_match = t->opcode_modifier & (D|FloatDR);
}
/* Found a forward 2 operand match here. */
else if (t->operands == 3)
{
/* Here we make use of the fact that there are no
reverse match 3 operand instructions, and all 3
operand instructions only need to be checked for
register consistency between operands 2 and 3. */
overlap2 = i.types[2] & t->operand_types[2];
if (!MATCH (overlap2, i.types[2], t->operand_types[2])
|| !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
t->operand_types[1],
overlap2, i.types[2],
t->operand_types[2]))
continue;
}
/* Found either forward/reverse 2 or 3 operand match here:
slip through to break. */
}
if (t->cpu_flags & ~cpu_arch_flags)
{
found_reverse_match = 0;
continue;
}
/* We've found a match; break out of loop. */
break;
}
if (t == current_templates->end)
{
/* We found no match. */
as_bad (_("suffix or operands invalid for `%s'"),
current_templates->start->name);
return;
}
if (!quiet_warnings)
{
if (!intel_syntax
&& ((i.types[0] & JumpAbsolute)
!= (t->operand_types[0] & JumpAbsolute)))
{
as_warn (_("indirect %s without `*'"), t->name);
}
if ((t->opcode_modifier & (IsPrefix|IgnoreSize))
== (IsPrefix|IgnoreSize))
{
/* Warn them that a data or address size prefix doesn't
affect assembly of the next line of code. */
as_warn (_("stand-alone `%s' prefix"), t->name);
}
}
/* Copy the template we found. */
i.tm = *t;
if (found_reverse_match)
{
/* If we found a reverse match we must alter the opcode
direction bit. found_reverse_match holds bits to change
(different for int & float insns). */
i.tm.base_opcode ^= found_reverse_match;
i.tm.operand_types[0] = t->operand_types[1];
i.tm.operand_types[1] = t->operand_types[0];
}
/* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
if (SYSV386_COMPAT
&& intel_syntax
&& (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
i.tm.base_opcode ^= FloatR;
if (i.tm.opcode_modifier & FWait)
if (! add_prefix (FWAIT_OPCODE))
return;
/* Check string instruction segment overrides. */
if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
{
int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
{
if (i.seg[0] != NULL && i.seg[0] != &es)
{
as_bad (_("`%s' operand %d must use `%%es' segment"),
i.tm.name,
mem_op + 1);
return;
}
/* There's only ever one segment override allowed per instruction.
This instruction possibly has a legal segment override on the
second operand, so copy the segment to where non-string
instructions store it, allowing common code. */
i.seg[0] = i.seg[1];
}
else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
{
if (i.seg[1] != NULL && i.seg[1] != &es)
{
as_bad (_("`%s' operand %d must use `%%es' segment"),
i.tm.name,
mem_op + 2);
return;
}
}
}
/* If matched instruction specifies an explicit instruction mnemonic
suffix, use it. */
if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
{
if (i.tm.opcode_modifier & Size16)
i.suffix = WORD_MNEM_SUFFIX;
else if (i.tm.opcode_modifier & Size64)
i.suffix = QWORD_MNEM_SUFFIX;
else
i.suffix = LONG_MNEM_SUFFIX;
}
else if (i.reg_operands)
{
/* If there's no instruction mnemonic suffix we try to invent one
based on register operands. */
if (!i.suffix)
{
/* We take i.suffix from the last register operand specified,
Destination register type is more significant than source
register type. */
int op;
for (op = i.operands; --op >= 0;)
if ((i.types[op] & Reg)
&& !(i.tm.operand_types[op] & InOutPortReg))
{
i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
(i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
(i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
LONG_MNEM_SUFFIX);
break;
}
}
else if (i.suffix == BYTE_MNEM_SUFFIX)
{
int op;
for (op = i.operands; --op >= 0;)
{
/* If this is an eight bit register, it's OK. If it's
the 16 or 32 bit version of an eight bit register,
we will just use the low portion, and that's OK too. */
if (i.types[op] & Reg8)
continue;
/* movzx and movsx should not generate this warning. */
if (intel_syntax
&& (i.tm.base_opcode == 0xfb7
|| i.tm.base_opcode == 0xfb6
|| i.tm.base_opcode == 0x63
|| i.tm.base_opcode == 0xfbe
|| i.tm.base_opcode == 0xfbf))
continue;
if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
#if 0
/* Check that the template allows eight bit regs
This kills insns such as `orb $1,%edx', which
maybe should be allowed. */
&& (i.tm.operand_types[op] & (Reg8|InOutPortReg))
#endif
)
{
/* Prohibit these changes in the 64bit mode, since
the lowering is more complicated. */
if (flag_code == CODE_64BIT
&& (i.tm.operand_types[op] & InOutPortReg) == 0)
as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
i.op[op].regs->reg_name,
i.suffix);
#if REGISTER_WARNINGS
if (!quiet_warnings
&& (i.tm.operand_types[op] & InOutPortReg) == 0)
as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
(i.op[op].regs
+ (i.types[op] & Reg16
? REGNAM_AL - REGNAM_AX
: REGNAM_AL - REGNAM_EAX))->reg_name,
i.op[op].regs->reg_name,
i.suffix);
#endif
continue;
}
/* Any other register is bad. */
if (i.types[op] & (Reg | RegMMX | RegXMM
| SReg2 | SReg3
| Control | Debug | Test
| FloatReg | FloatAcc))
{
as_bad (_("`%%%s' not allowed with `%s%c'"),
i.op[op].regs->reg_name,
i.tm.name,
i.suffix);
return;
}
}
}
else if (i.suffix == LONG_MNEM_SUFFIX)
{
int op;
for (op = i.operands; --op >= 0;)
/* Reject eight bit registers, except where the template
requires them. (eg. movzb) */
if ((i.types[op] & Reg8) != 0
&& (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
{
as_bad (_("`%%%s' not allowed with `%s%c'"),
i.op[op].regs->reg_name,
i.tm.name,
i.suffix);
return;
}
/* Warn if the e prefix on a general reg is missing. */
else if ((!quiet_warnings || flag_code == CODE_64BIT)
&& (i.types[op] & Reg16) != 0
&& (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
{
/* Prohibit these changes in the 64bit mode, since
the lowering is more complicated. */
if (flag_code == CODE_64BIT)
as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
i.op[op].regs->reg_name,
i.suffix);
#if REGISTER_WARNINGS
else
as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
(i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
i.op[op].regs->reg_name,
i.suffix);
#endif
}
/* Warn if the r prefix on a general reg is missing. */
else if ((i.types[op] & Reg64) != 0
&& (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
{
as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
i.op[op].regs->reg_name,
i.suffix);
}
}
else if (i.suffix == QWORD_MNEM_SUFFIX)
{
int op;
for (op = i.operands; --op >= 0; )
/* Reject eight bit registers, except where the template
requires them. (eg. movzb) */
if ((i.types[op] & Reg8) != 0
&& (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
{
as_bad (_("`%%%s' not allowed with `%s%c'"),
i.op[op].regs->reg_name,
i.tm.name,
i.suffix);
return;
}
/* Warn if the e prefix on a general reg is missing. */
else if (((i.types[op] & Reg16) != 0
|| (i.types[op] & Reg32) != 0)
&& (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
{
/* Prohibit these changes in the 64bit mode, since
the lowering is more complicated. */
as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
i.op[op].regs->reg_name,
i.suffix);
}
}
else if (i.suffix == WORD_MNEM_SUFFIX)
{
int op;
for (op = i.operands; --op >= 0;)
/* Reject eight bit registers, except where the template
requires them. (eg. movzb) */
if ((i.types[op] & Reg8) != 0
&& (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
{
as_bad (_("`%%%s' not allowed with `%s%c'"),
i.op[op].regs->reg_name,
i.tm.name,
i.suffix);
return;
}
/* Warn if the e prefix on a general reg is present. */
else if ((!quiet_warnings || flag_code == CODE_64BIT)
&& (i.types[op] & Reg32) != 0
&& (i.tm.operand_types[op] & (Reg16|Acc)) != 0)
{
/* Prohibit these changes in the 64bit mode, since
the lowering is more complicated. */
if (flag_code == CODE_64BIT)
as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
i.op[op].regs->reg_name,
i.suffix);
else
#if REGISTER_WARNINGS
as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
(i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
i.op[op].regs->reg_name,
i.suffix);
#endif
}
}
else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
/* Do nothing if the instruction is going to ignore the prefix. */
;
else
abort ();
}
else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
{
i.suffix = stackop_size;
}
/* Make still unresolved immediate matches conform to size of immediate
given in i.suffix. Note: overlap2 cannot be an immediate! */
if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
&& overlap0 != Imm8 && overlap0 != Imm8S
&& overlap0 != Imm16 && overlap0 != Imm32S
&& overlap0 != Imm32 && overlap0 != Imm64)
{
if (i.suffix)
{
overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
(i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
(i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
}
else if (overlap0 == (Imm16 | Imm32S | Imm32)
|| overlap0 == (Imm16 | Imm32)
|| overlap0 == (Imm16 | Imm32S))
{
overlap0 =
((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
}
if (overlap0 != Imm8 && overlap0 != Imm8S
&& overlap0 != Imm16 && overlap0 != Imm32S
&& overlap0 != Imm32 && overlap0 != Imm64)
{
as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
return;
}
}
if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
&& overlap1 != Imm8 && overlap1 != Imm8S
&& overlap1 != Imm16 && overlap1 != Imm32S
&& overlap1 != Imm32 && overlap1 != Imm64)
{
if (i.suffix)
{
overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
(i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
(i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
}
else if (overlap1 == (Imm16 | Imm32 | Imm32S)
|| overlap1 == (Imm16 | Imm32)
|| overlap1 == (Imm16 | Imm32S))
{
overlap1 =
((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
}
if (overlap1 != Imm8 && overlap1 != Imm8S
&& overlap1 != Imm16 && overlap1 != Imm32S
&& overlap1 != Imm32 && overlap1 != Imm64)
{
as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
return;
}
}
assert ((overlap2 & Imm) == 0);
i.types[0] = overlap0;
if (overlap0 & ImplicitRegister)
i.reg_operands--;
if (overlap0 & Imm1)
i.imm_operands = 0; /* kludge for shift insns. */
i.types[1] = overlap1;
if (overlap1 & ImplicitRegister)
i.reg_operands--;
i.types[2] = overlap2;
if (overlap2 & ImplicitRegister)
i.reg_operands--;
/* Finalize opcode. First, we change the opcode based on the operand
size given by i.suffix: We need not change things for byte insns. */
if (!i.suffix && (i.tm.opcode_modifier & W))
{
as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
return;
}
/* For movzx and movsx, need to check the register type. */
if (intel_syntax
&& (i.tm.base_opcode == 0xfb6 || i.tm.base_opcode == 0xfbe))
if (i.suffix && i.suffix == BYTE_MNEM_SUFFIX)
{
unsigned int prefix = DATA_PREFIX_OPCODE;
if ((i.op[1].regs->reg_type & Reg16) != 0)
if (!add_prefix (prefix))
return;
}
if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
{
/* It's not a byte, select word/dword operation. */
if (i.tm.opcode_modifier & W)
{
if (i.tm.opcode_modifier & ShortForm)
i.tm.base_opcode |= 8;
else
i.tm.base_opcode |= 1;
}
/* Now select between word & dword operations via the operand
size prefix, except for instructions that will ignore this
prefix anyway. */
if (i.suffix != QWORD_MNEM_SUFFIX
&& (i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
&& !(i.tm.opcode_modifier & IgnoreSize))
{
unsigned int prefix = DATA_PREFIX_OPCODE;
if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
prefix = ADDR_PREFIX_OPCODE;
if (! add_prefix (prefix))
return;
}
if (i.suffix != QWORD_MNEM_SUFFIX && (flag_code == CODE_64BIT)
&& !(i.tm.opcode_modifier & IgnoreSize)
&& (i.tm.opcode_modifier & JumpByte))
{
if (! add_prefix (ADDR_PREFIX_OPCODE))
return;
}
/* Set mode64 for an operand. */
if (i.suffix == QWORD_MNEM_SUFFIX
&& !(i.tm.opcode_modifier & NoRex64))
{
i.rex.mode64 = 1;
if (flag_code < CODE_64BIT)
{
as_bad (_("64bit operations available only in 64bit modes."));
return;
}
}
/* Size floating point instruction. */
if (i.suffix == LONG_MNEM_SUFFIX)
{
if (i.tm.opcode_modifier & FloatMF)
i.tm.base_opcode ^= 4;
}
}
if (i.tm.opcode_modifier & ImmExt)
{
/* These AMD 3DNow! and Intel Katmai New Instructions have an
opcode suffix which is coded in the same place as an 8-bit
immediate field would be. Here we fake an 8-bit immediate
operand from the opcode suffix stored in tm.extension_opcode. */
expressionS *exp;
assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
exp = &im_expressions[i.imm_operands++];
i.op[i.operands].imms = exp;
i.types[i.operands++] = Imm8;
exp->X_op = O_constant;
exp->X_add_number = i.tm.extension_opcode;
i.tm.extension_opcode = None;
}
/* For insns with operands there are more diddles to do to the opcode. */
if (i.operands)
{
/* Default segment register this instruction will use
for memory accesses. 0 means unknown.
This is only for optimizing out unnecessary segment overrides. */
const seg_entry *default_seg = 0;
/* The imul $imm, %reg instruction is converted into
imul $imm, %reg, %reg, and the clr %reg instruction
is converted into xor %reg, %reg. */
if (i.tm.opcode_modifier & regKludge)
{
unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
/* Pretend we saw the extra register operand. */
assert (i.op[first_reg_op + 1].regs == 0);
i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
i.types[first_reg_op + 1] = i.types[first_reg_op];
i.reg_operands = 2;
}
if (i.tm.opcode_modifier & ShortForm)
{
/* The register or float register operand is in operand 0 or 1. */
unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
/* Register goes in low 3 bits of opcode. */
i.tm.base_opcode |= i.op[op].regs->reg_num;
if (i.op[op].regs->reg_flags & RegRex)
i.rex.extZ = 1;
if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
{
/* Warn about some common errors, but press on regardless.
The first case can be generated by gcc (<= 2.8.1). */
if (i.operands == 2)
{
/* Reversed arguments on faddp, fsubp, etc. */
as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
i.op[1].regs->reg_name,
i.op[0].regs->reg_name);
}
else
{
/* Extraneous `l' suffix on fp insn. */
as_warn (_("translating to `%s %%%s'"), i.tm.name,
i.op[0].regs->reg_name);
}
}
}
else if (i.tm.opcode_modifier & Modrm)
{
/* The opcode is completed (modulo i.tm.extension_opcode which
must be put into the modrm byte).
Now, we make the modrm & index base bytes based on all the
info we've collected. */
/* i.reg_operands MUST be the number of real register operands;
implicit registers do not count. */
if (i.reg_operands == 2)
{
unsigned int source, dest;
source = ((i.types[0]
& (Reg | RegMMX | RegXMM
| SReg2 | SReg3
| Control | Debug | Test))
? 0 : 1);
dest = source + 1;
i.rm.mode = 3;
/* One of the register operands will be encoded in the
i.tm.reg field, the other in the combined i.tm.mode
and i.tm.regmem fields. If no form of this
instruction supports a memory destination operand,
then we assume the source operand may sometimes be
a memory operand and so we need to store the
destination in the i.rm.reg field. */
if ((i.tm.operand_types[dest] & AnyMem) == 0)
{
i.rm.reg = i.op[dest].regs->reg_num;
i.rm.regmem = i.op[source].regs->reg_num;
if (i.op[dest].regs->reg_flags & RegRex)
i.rex.extX = 1;
if (i.op[source].regs->reg_flags & RegRex)
i.rex.extZ = 1;
}
else
{
i.rm.reg = i.op[source].regs->reg_num;
i.rm.regmem = i.op[dest].regs->reg_num;
if (i.op[dest].regs->reg_flags & RegRex)
i.rex.extZ = 1;
if (i.op[source].regs->reg_flags & RegRex)
i.rex.extX = 1;
}
}
else
{ /* If it's not 2 reg operands... */
if (i.mem_operands)
{
unsigned int fake_zero_displacement = 0;
unsigned int op = ((i.types[0] & AnyMem)
? 0
: (i.types[1] & AnyMem) ? 1 : 2);
default_seg = &ds;
if (! i.base_reg)
{
i.rm.mode = 0;
if (! i.disp_operands)
fake_zero_displacement = 1;
if (! i.index_reg)
{
/* Operand is just <disp> */
if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0)
&& (flag_code != CODE_64BIT))
{
i.rm.regmem = NO_BASE_REGISTER_16;
i.types[op] &= ~Disp;
i.types[op] |= Disp16;
}
else if (flag_code != CODE_64BIT
|| (i.prefix[ADDR_PREFIX] != 0))
{
i.rm.regmem = NO_BASE_REGISTER;
i.types[op] &= ~Disp;
i.types[op] |= Disp32;
}
else
{
/* 64bit mode overwrites the 32bit
absolute addressing by RIP relative
addressing and absolute addressing
is encoded by one of the redundant
SIB forms. */
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
i.sib.base = NO_BASE_REGISTER;
i.sib.index = NO_INDEX_REGISTER;
i.types[op] &= ~Disp;
i.types[op] |= Disp32S;
}
}
else /* ! i.base_reg && i.index_reg */
{
i.sib.index = i.index_reg->reg_num;
i.sib.base = NO_BASE_REGISTER;
i.sib.scale = i.log2_scale_factor;
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
i.types[op] &= ~Disp;
if (flag_code != CODE_64BIT)
i.types[op] |= Disp32; /* Must be 32 bit */
else
i.types[op] |= Disp32S;
if (i.index_reg->reg_flags & RegRex)
i.rex.extY = 1;
}
}
/* RIP addressing for 64bit mode. */
else if (i.base_reg->reg_type == BaseIndex)
{
i.rm.regmem = NO_BASE_REGISTER;
i.types[op] &= ~Disp;
i.types[op] |= Disp32S;
i.flags[op] = Operand_PCrel;
}
else if (i.base_reg->reg_type & Reg16)
{
switch (i.base_reg->reg_num)
{
case 3: /* (%bx) */
if (! i.index_reg)
i.rm.regmem = 7;
else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
i.rm.regmem = i.index_reg->reg_num - 6;
break;
case 5: /* (%bp) */
default_seg = &ss;
if (! i.index_reg)
{
i.rm.regmem = 6;
if ((i.types[op] & Disp) == 0)
{
/* fake (%bp) into 0(%bp) */
i.types[op] |= Disp8;
fake_zero_displacement = 1;
}
}
else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
i.rm.regmem = i.index_reg->reg_num - 6 + 2;
break;
default: /* (%si) -> 4 or (%di) -> 5 */
i.rm.regmem = i.base_reg->reg_num - 6 + 4;
}
i.rm.mode = mode_from_disp_size (i.types[op]);
}
else /* i.base_reg and 32/64 bit mode */
{
if (flag_code == CODE_64BIT
&& (i.types[op] & Disp))
{
if (i.types[op] & Disp8)
i.types[op] = Disp8 | Disp32S;
else
i.types[op] = Disp32S;
}
i.rm.regmem = i.base_reg->reg_num;
if (i.base_reg->reg_flags & RegRex)
i.rex.extZ = 1;
i.sib.base = i.base_reg->reg_num;
/* x86-64 ignores REX prefix bit here to avoid
decoder complications. */
if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
{
default_seg = &ss;
if (i.disp_operands == 0)
{
fake_zero_displacement = 1;
i.types[op] |= Disp8;
}
}
else if (i.base_reg->reg_num == ESP_REG_NUM)
{
default_seg = &ss;
}
i.sib.scale = i.log2_scale_factor;
if (! i.index_reg)
{
/* <disp>(%esp) becomes two byte modrm
with no index register. We've already
stored the code for esp in i.rm.regmem
ie. ESCAPE_TO_TWO_BYTE_ADDRESSING. Any
base register besides %esp will not use
the extra modrm byte. */
i.sib.index = NO_INDEX_REGISTER;
#if ! SCALE1_WHEN_NO_INDEX
/* Another case where we force the second
modrm byte. */
if (i.log2_scale_factor)
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
#endif
}
else
{
i.sib.index = i.index_reg->reg_num;
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
if (i.index_reg->reg_flags & RegRex)
i.rex.extY = 1;
}
i.rm.mode = mode_from_disp_size (i.types[op]);
}
if (fake_zero_displacement)
{
/* Fakes a zero displacement assuming that i.types[op]
holds the correct displacement size. */
expressionS *exp;
assert (i.op[op].disps == 0);
exp = &disp_expressions[i.disp_operands++];
i.op[op].disps = exp;
exp->X_op = O_constant;
exp->X_add_number = 0;
exp->X_add_symbol = (symbolS *) 0;
exp->X_op_symbol = (symbolS *) 0;
}
}
/* Fill in i.rm.reg or i.rm.regmem field with register
operand (if any) based on i.tm.extension_opcode.
Again, we must be careful to make sure that
segment/control/debug/test/MMX registers are coded
into the i.rm.reg field. */
if (i.reg_operands)
{
unsigned int op =
((i.types[0]
& (Reg | RegMMX | RegXMM
| SReg2 | SReg3
| Control | Debug | Test))
? 0
: ((i.types[1]
& (Reg | RegMMX | RegXMM
| SReg2 | SReg3
| Control | Debug | Test))
? 1
: 2));
/* If there is an extension opcode to put here, the
register number must be put into the regmem field. */
if (i.tm.extension_opcode != None)
{
i.rm.regmem = i.op[op].regs->reg_num;
if (i.op[op].regs->reg_flags & RegRex)
i.rex.extZ = 1;
}
else
{
i.rm.reg = i.op[op].regs->reg_num;
if (i.op[op].regs->reg_flags & RegRex)
i.rex.extX = 1;
}
/* Now, if no memory operand has set i.rm.mode = 0, 1, 2
we must set it to 3 to indicate this is a register
operand in the regmem field. */
if (!i.mem_operands)
i.rm.mode = 3;
}
/* Fill in i.rm.reg field with extension opcode (if any). */
if (i.tm.extension_opcode != None)
i.rm.reg = i.tm.extension_opcode;
}
}
else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
{
if (i.tm.base_opcode == POP_SEG_SHORT
&& i.op[0].regs->reg_num == 1)
{
as_bad (_("you can't `pop %%cs'"));
return;
}
i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
if (i.op[0].regs->reg_flags & RegRex)
i.rex.extZ = 1;
}
else if ((i.tm.base_opcode & ~(D|W)) == MOV_AX_DISP32)
{
default_seg = &ds;
}
else if ((i.tm.opcode_modifier & IsString) != 0)
{
/* For the string instructions that allow a segment override
on one of their operands, the default segment is ds. */
default_seg = &ds;
}
/* If a segment was explicitly specified,
and the specified segment is not the default,
use an opcode prefix to select it.
If we never figured out what the default segment is,
then default_seg will be zero at this point,
and the specified segment prefix will always be used. */
if ((i.seg[0]) && (i.seg[0] != default_seg))
{
if (! add_prefix (i.seg[0]->seg_prefix))
return;
}
}
else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
{
/* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
as_warn (_("translating to `%sp'"), i.tm.name);
}
}
/* Handle conversion of 'int $3' --> special int3 insn. */
if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
{
i.tm.base_opcode = INT3_OPCODE;
i.imm_operands = 0;
}
if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
&& i.op[0].disps->X_op == O_constant)
{
/* Convert "jmp constant" (and "call constant") to a jump (call) to
the absolute address given by the constant. Since ix86 jumps and
calls are pc relative, we need to generate a reloc. */
i.op[0].disps->X_add_symbol = &abs_symbol;
i.op[0].disps->X_op = O_symbol;
}
if (i.tm.opcode_modifier & Rex64)
i.rex.mode64 = 1;
/* For 8bit registers we would need an empty rex prefix.
Also in the case instruction is already having prefix,
we need to convert old registers to new ones. */
if (((i.types[0] & Reg8) && (i.op[0].regs->reg_flags & RegRex64))
|| ((i.types[1] & Reg8) && (i.op[1].regs->reg_flags & RegRex64))
|| ((i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
&& ((i.types[0] & Reg8) || (i.types[1] & Reg8))))
{
int x;
i.rex.empty = 1;
for (x = 0; x < 2; x++)
{
/* Look for 8bit operand that does use old registers. */
if (i.types[x] & Reg8
&& !(i.op[x].regs->reg_flags & RegRex64))
{
/* In case it is "hi" register, give up. */
if (i.op[x].regs->reg_num > 3)
as_bad (_("Can't encode registers '%%%s' in the instruction requiring REX prefix.\n"),
i.op[x].regs->reg_name);
/* Otherwise it is equivalent to the extended register.
Since the encoding don't change this is merely cosmetical
cleanup for debug output. */
i.op[x].regs = i.op[x].regs + 8;
}
}
}
if (i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
add_prefix (0x40
| (i.rex.mode64 ? 8 : 0)
| (i.rex.extX ? 4 : 0)
| (i.rex.extY ? 2 : 0)
| (i.rex.extZ ? 1 : 0));
/* We are ready to output the insn. */
{
register char *p;
/* Tie dwarf2 debug info to the address at the start of the insn.
We can't do this after the insn has been output as the current
frag may have been closed off. eg. by frag_var. */
dwarf2_emit_insn (0);
/* Output jumps. */
if (i.tm.opcode_modifier & Jump)
{
int code16;
int prefix;
relax_substateT subtype;
symbolS *sym;
offsetT off;
code16 = 0;
if (flag_code == CODE_16BIT)
code16 = CODE16;
prefix = 0;
if (i.prefix[DATA_PREFIX])
{
prefix = 1;
i.prefixes -= 1;
code16 ^= CODE16;
}
/* Pentium4 branch hints. */
if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
|| i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
{
prefix++;
i.prefixes--;
}
if (i.prefix[REX_PREFIX])
{
prefix++;
i.prefixes--;
}
if (i.prefixes != 0 && !intel_syntax)
as_warn (_("skipping prefixes on this instruction"));
/* It's always a symbol; End frag & setup for relax.
Make sure there is enough room in this frag for the largest
instruction we may generate in md_convert_frag. This is 2
bytes for the opcode and room for the prefix and largest
displacement. */
frag_grow (prefix + 2 + 4);
/* Prefix and 1 opcode byte go in fr_fix. */
p = frag_more (prefix + 1);
if (i.prefix[DATA_PREFIX])
*p++ = DATA_PREFIX_OPCODE;
if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
|| i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
*p++ = i.prefix[SEG_PREFIX];
if (i.prefix[REX_PREFIX])
*p++ = i.prefix[REX_PREFIX];
*p = i.tm.base_opcode;
if ((unsigned char) *p == JUMP_PC_RELATIVE)
subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
else if ((cpu_arch_flags & Cpu386) != 0)
subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
else
subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
subtype |= code16;
sym = i.op[0].disps->X_add_symbol;
off = i.op[0].disps->X_add_number;
if (i.op[0].disps->X_op != O_constant
&& i.op[0].disps->X_op != O_symbol)
{
/* Handle complex expressions. */
sym = make_expr_symbol (i.op[0].disps);
off = 0;
}
/* 1 possible extra opcode + 4 byte displacement go in var part.
Pass reloc in fr_var. */
frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
}
else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
{
int size;
if (i.tm.opcode_modifier & JumpByte)
{
/* This is a loop or jecxz type instruction. */
size = 1;
if (i.prefix[ADDR_PREFIX])
{
FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
i.prefixes -= 1;
}
/* Pentium4 branch hints. */
if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
|| i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
{
FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
i.prefixes--;
}
}
else
{
int code16;
code16 = 0;
if (flag_code == CODE_16BIT)
code16 = CODE16;
if (i.prefix[DATA_PREFIX])
{
FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
i.prefixes -= 1;
code16 ^= CODE16;
}
size = 4;
if (code16)
size = 2;
}
if (i.prefix[REX_PREFIX])
{
FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
i.prefixes -= 1;
}
if (i.prefixes != 0 && !intel_syntax)
as_warn (_("skipping prefixes on this instruction"));
p = frag_more (1 + size);
*p++ = i.tm.base_opcode;
fix_new_exp (frag_now, p - frag_now->fr_literal, size,
i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
}
else if (i.tm.opcode_modifier & JumpInterSegment)
{
int size;
int prefix;
int code16;
code16 = 0;
if (flag_code == CODE_16BIT)
code16 = CODE16;
prefix = 0;
if (i.prefix[DATA_PREFIX])
{
prefix = 1;
i.prefixes -= 1;
code16 ^= CODE16;
}
if (i.prefix[REX_PREFIX])
{
prefix++;
i.prefixes -= 1;
}
size = 4;
if (code16)
size = 2;
if (i.prefixes != 0 && !intel_syntax)
as_warn (_("skipping prefixes on this instruction"));
/* 1 opcode; 2 segment; offset */
p = frag_more (prefix + 1 + 2 + size);
if (i.prefix[DATA_PREFIX])
*p++ = DATA_PREFIX_OPCODE;
if (i.prefix[REX_PREFIX])
*p++ = i.prefix[REX_PREFIX];
*p++ = i.tm.base_opcode;
if (i.op[1].imms->X_op == O_constant)
{
offsetT n = i.op[1].imms->X_add_number;
if (size == 2
&& !fits_in_unsigned_word (n)
&& !fits_in_signed_word (n))
{
as_bad (_("16-bit jump out of range"));
return;
}
md_number_to_chars (p, n, size);
}
else
fix_new_exp (frag_now, p - frag_now->fr_literal, size,
i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
if (i.op[0].imms->X_op != O_constant)
as_bad (_("can't handle non absolute segment in `%s'"),
i.tm.name);
md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
}
else
{
/* Output normal instructions here. */
unsigned char *q;
/* All opcodes on i386 have eighter 1 or 2 bytes. We may use third
byte for the SSE instructions to specify prefix they require. */
if (i.tm.base_opcode & 0xff0000)
add_prefix ((i.tm.base_opcode >> 16) & 0xff);
/* The prefix bytes. */
for (q = i.prefix;
q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
q++)
{
if (*q)
{
p = frag_more (1);
md_number_to_chars (p, (valueT) *q, 1);
}
}
/* Now the opcode; be careful about word order here! */
if (fits_in_unsigned_byte (i.tm.base_opcode))
{
FRAG_APPEND_1_CHAR (i.tm.base_opcode);
}
else
{
p = frag_more (2);
/* Put out high byte first: can't use md_number_to_chars! */
*p++ = (i.tm.base_opcode >> 8) & 0xff;
*p = i.tm.base_opcode & 0xff;
}
/* Now the modrm byte and sib byte (if present). */
if (i.tm.opcode_modifier & Modrm)
{
p = frag_more (1);
md_number_to_chars (p,
(valueT) (i.rm.regmem << 0
| i.rm.reg << 3
| i.rm.mode << 6),
1);
/* If i.rm.regmem == ESP (4)
&& i.rm.mode != (Register mode)
&& not 16 bit
==> need second modrm byte. */
if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
&& i.rm.mode != 3
&& !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
{
p = frag_more (1);
md_number_to_chars (p,
(valueT) (i.sib.base << 0
| i.sib.index << 3
| i.sib.scale << 6),
1);
}
}
if (i.disp_operands)
{
register unsigned int n;
for (n = 0; n < i.operands; n++)
{
if (i.types[n] & Disp)
{
if (i.op[n].disps->X_op == O_constant)
{
int size;
offsetT val;
size = 4;
if (i.types[n] & (Disp8 | Disp16 | Disp64))
{
size = 2;
if (i.types[n] & Disp8)
size = 1;
if (i.types[n] & Disp64)
size = 8;
}
val = offset_in_range (i.op[n].disps->X_add_number,
size);
p = frag_more (size);
md_number_to_chars (p, val, size);
}
else
{
int size = 4;
int sign = 0;
int pcrel = (i.flags[n] & Operand_PCrel) != 0;
/* The PC relative address is computed relative
to the instruction boundary, so in case immediate
fields follows, we need to adjust the value. */
if (pcrel && i.imm_operands)
{
int imm_size = 4;
register unsigned int n1;
for (n1 = 0; n1 < i.operands; n1++)
if (i.types[n1] & Imm)
{
if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
{
imm_size = 2;
if (i.types[n1] & (Imm8 | Imm8S))
imm_size = 1;
if (i.types[n1] & Imm64)
imm_size = 8;
}
break;
}
/* We should find the immediate. */
if (n1 == i.operands)
abort ();
i.op[n].disps->X_add_number -= imm_size;
}
if (i.types[n] & Disp32S)
sign = 1;
if (i.types[n] & (Disp16 | Disp64))
{
size = 2;
if (i.types[n] & Disp64)
size = 8;
}
p = frag_more (size);
fix_new_exp (frag_now, p - frag_now->fr_literal, size,
i.op[n].disps, pcrel,
reloc (size, pcrel, sign, i.reloc[n]));
}
}
}
}
/* Output immediate. */
if (i.imm_operands)
{
register unsigned int n;
for (n = 0; n < i.operands; n++)
{
if (i.types[n] & Imm)
{
if (i.op[n].imms->X_op == O_constant)
{
int size;
offsetT val;
size = 4;
if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
{
size = 2;
if (i.types[n] & (Imm8 | Imm8S))
size = 1;
else if (i.types[n] & Imm64)
size = 8;
}
val = offset_in_range (i.op[n].imms->X_add_number,
size);
p = frag_more (size);
md_number_to_chars (p, val, size);
}
else
{
/* Not absolute_section.
Need a 32-bit fixup (don't support 8bit
non-absolute imms). Try to support other
sizes ... */
RELOC_ENUM reloc_type;
int size = 4;
int sign = 0;
if ((i.types[n] & (Imm32S))
&& i.suffix == QWORD_MNEM_SUFFIX)
sign = 1;
if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
{
size = 2;
if (i.types[n] & (Imm8 | Imm8S))
size = 1;
if (i.types[n] & Imm64)
size = 8;
}
p = frag_more (size);
reloc_type = reloc (size, 0, sign, i.reloc[n]);
#ifdef BFD_ASSEMBLER
if (reloc_type == BFD_RELOC_32
&& GOT_symbol
&& GOT_symbol == i.op[n].imms->X_add_symbol
&& (i.op[n].imms->X_op == O_symbol
|| (i.op[n].imms->X_op == O_add
&& ((symbol_get_value_expression
(i.op[n].imms->X_op_symbol)->X_op)
== O_subtract))))
{
/* We don't support dynamic linking on x86-64 yet. */
if (flag_code == CODE_64BIT)
abort ();
reloc_type = BFD_RELOC_386_GOTPC;
i.op[n].imms->X_add_number += 3;
}
#endif
fix_new_exp (frag_now, p - frag_now->fr_literal, size,
i.op[n].imms, 0, reloc_type);
}
}
}
}
}
#ifdef DEBUG386
if (flag_debug)
{
pi (line, &i);
}
#endif /* DEBUG386 */
}
}
#ifndef LEX_AT
static char *lex_got PARAMS ((RELOC_ENUM *, int *));
/* Parse operands of the form
<symbol>@GOTOFF+<nnn>
and similar .plt or .got references.
If we find one, set up the correct relocation in RELOC and copy the
input string, minus the `@GOTOFF' into a malloc'd buffer for
parsing by the calling routine. Return this buffer, and if ADJUST
is non-null set it to the length of the string we removed from the
input line. Otherwise return NULL. */
static char *
lex_got (reloc, adjust)
RELOC_ENUM *reloc;
int *adjust;
{
static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
static const struct {
const char *str;
const RELOC_ENUM rel[NUM_FLAG_CODE];
} gotrel[] = {
{ "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
{ "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
{ "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
{ "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
};
char *cp;
unsigned int j;
for (cp = input_line_pointer; *cp != '@'; cp++)
if (is_end_of_line[(unsigned char) *cp])
return NULL;
for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
{
int len;
len = strlen (gotrel[j].str);
if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
{
if (gotrel[j].rel[(unsigned int) flag_code] != 0)
{
int first, second;
char *tmpbuf, *past_reloc;
*reloc = gotrel[j].rel[(unsigned int) flag_code];
if (adjust)
*adjust = len;
if (GOT_symbol == NULL)
GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
/* Replace the relocation token with ' ', so that
errors like foo@GOTOFF1 will be detected. */
/* The length of the first part of our input line. */
first = cp - input_line_pointer;
/* The second part goes from after the reloc token until
(and including) an end_of_line char. Don't use strlen
here as the end_of_line char may not be a NUL. */
past_reloc = cp + 1 + len;
for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
;
second = cp - past_reloc;
/* Allocate and copy string. The trailing NUL shouldn't
be necessary, but be safe. */
tmpbuf = xmalloc (first + second + 2);
memcpy (tmpbuf, input_line_pointer, first);
tmpbuf[first] = ' ';
memcpy (tmpbuf + first + 1, past_reloc, second);
tmpbuf[first + second + 1] = '\0';
return tmpbuf;
}
as_bad (_("@%s reloc is not supported in %s bit mode"),
gotrel[j].str, mode_name[(unsigned int) flag_code]);
return NULL;
}
}
/* Might be a symbol version string. Don't as_bad here. */
return NULL;
}
/* x86_cons_fix_new is called via the expression parsing code when a
reloc is needed. We use this hook to get the correct .got reloc. */
static RELOC_ENUM got_reloc = NO_RELOC;
void
x86_cons_fix_new (frag, off, len, exp)
fragS *frag;
unsigned int off;
unsigned int len;
expressionS *exp;
{
RELOC_ENUM r = reloc (len, 0, 0, got_reloc);
got_reloc = NO_RELOC;
fix_new_exp (frag, off, len, exp, 0, r);
}
void
x86_cons (exp, size)
expressionS *exp;
int size;
{
if (size == 4)
{
/* Handle @GOTOFF and the like in an expression. */
char *save;
char *gotfree_input_line;
int adjust;
save = input_line_pointer;
gotfree_input_line = lex_got (&got_reloc, &adjust);
if (gotfree_input_line)
input_line_pointer = gotfree_input_line;
expression (exp);
if (gotfree_input_line)
{
/* expression () has merrily parsed up to the end of line,
or a comma - in the wrong buffer. Transfer how far
input_line_pointer has moved to the right buffer. */
input_line_pointer = (save
+ (input_line_pointer - gotfree_input_line)
+ adjust);
free (gotfree_input_line);
}
}
else
expression (exp);
}
#endif
static int i386_immediate PARAMS ((char *));
static int
i386_immediate (imm_start)
char *imm_start;
{
char *save_input_line_pointer;
#ifndef LEX_AT
char *gotfree_input_line;
#endif
segT exp_seg = 0;
expressionS *exp;
if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
{
as_bad (_("only 1 or 2 immediate operands are allowed"));
return 0;
}
exp = &im_expressions[i.imm_operands++];
i.op[this_operand].imms = exp;
if (is_space_char (*imm_start))
++imm_start;
save_input_line_pointer = input_line_pointer;
input_line_pointer = imm_start;
#ifndef LEX_AT
gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
if (gotfree_input_line)
input_line_pointer = gotfree_input_line;
#endif
exp_seg = expression (exp);
SKIP_WHITESPACE ();
if (*input_line_pointer)
as_bad (_("junk `%s' after expression"), input_line_pointer);
input_line_pointer = save_input_line_pointer;
#ifndef LEX_AT
if (gotfree_input_line)
free (gotfree_input_line);
#endif
if (exp->X_op == O_absent || exp->X_op == O_big)
{
/* Missing or bad expr becomes absolute 0. */
as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
imm_start);
exp->X_op = O_constant;
exp->X_add_number = 0;
exp->X_add_symbol = (symbolS *) 0;
exp->X_op_symbol = (symbolS *) 0;
}
else if (exp->X_op == O_constant)
{
/* Size it properly later. */
i.types[this_operand] |= Imm64;
/* If BFD64, sign extend val. */
if (!use_rela_relocations)
if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
}
#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
else if (1
#ifdef BFD_ASSEMBLER
&& OUTPUT_FLAVOR == bfd_target_aout_flavour
#endif
&& exp_seg != text_section
&& exp_seg != data_section
&& exp_seg != bss_section
&& exp_seg != undefined_section
#ifdef BFD_ASSEMBLER
&& !bfd_is_com_section (exp_seg)
#endif
)
{
#ifdef BFD_ASSEMBLER
as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
#else
as_bad (_("unimplemented segment type %d in operand"), exp_seg);
#endif
return 0;
}
#endif
else
{
/* This is an address. The size of the address will be
determined later, depending on destination register,
suffix, or the default for the section. */
i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
}
return 1;
}
static char *i386_scale PARAMS ((char *));
static char *
i386_scale (scale)
char *scale;
{
offsetT val;
char *save = input_line_pointer;
input_line_pointer = scale;
val = get_absolute_expression ();
switch (val)
{
case 0:
case 1:
i.log2_scale_factor = 0;
break;
case 2:
i.log2_scale_factor = 1;
break;
case 4:
i.log2_scale_factor = 2;
break;
case 8:
i.log2_scale_factor = 3;
break;
default:
as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
scale);
input_line_pointer = save;
return NULL;
}
if (i.log2_scale_factor != 0 && ! i.index_reg)
{
as_warn (_("scale factor of %d without an index register"),
1 << i.log2_scale_factor);
#if SCALE1_WHEN_NO_INDEX
i.log2_scale_factor = 0;
#endif
}
scale = input_line_pointer;
input_line_pointer = save;
return scale;
}
static int i386_displacement PARAMS ((char *, char *));
static int
i386_displacement (disp_start, disp_end)
char *disp_start;
char *disp_end;
{
register expressionS *exp;
segT exp_seg = 0;
char *save_input_line_pointer;
#ifndef LEX_AT
char *gotfree_input_line;
#endif
int bigdisp = Disp32;
if (flag_code == CODE_64BIT)
{
if (!i.prefix[ADDR_PREFIX])
bigdisp = Disp64;
}
else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
bigdisp = Disp16;
i.types[this_operand] |= bigdisp;
exp = &disp_expressions[i.disp_operands];
i.op[this_operand].disps = exp;
i.disp_operands++;
save_input_line_pointer = input_line_pointer;
input_line_pointer = disp_start;
END_STRING_AND_SAVE (disp_end);
#ifndef GCC_ASM_O_HACK
#define GCC_ASM_O_HACK 0
#endif
#if GCC_ASM_O_HACK
END_STRING_AND_SAVE (disp_end + 1);
if ((i.types[this_operand] & BaseIndex) != 0
&& displacement_string_end[-1] == '+')
{
/* This hack is to avoid a warning when using the "o"
constraint within gcc asm statements.
For instance:
#define _set_tssldt_desc(n,addr,limit,type) \
__asm__ __volatile__ ( \
"movw %w2,%0\n\t" \
"movw %w1,2+%0\n\t" \
"rorl $16,%1\n\t" \
"movb %b1,4+%0\n\t" \
"movb %4,5+%0\n\t" \
"movb $0,6+%0\n\t" \
"movb %h1,7+%0\n\t" \
"rorl $16,%1" \
: "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
This works great except that the output assembler ends
up looking a bit weird if it turns out that there is
no offset. You end up producing code that looks like:
#APP
movw $235,(%eax)
movw %dx,2+(%eax)
rorl $16,%edx
movb %dl,4+(%eax)
movb $137,5+(%eax)
movb $0,6+(%eax)
movb %dh,7+(%eax)
rorl $16,%edx
#NO_APP
So here we provide the missing zero. */
*displacement_string_end = '0';
}
#endif
#ifndef LEX_AT
gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
if (gotfree_input_line)
input_line_pointer = gotfree_input_line;
#endif
exp_seg = expression (exp);
SKIP_WHITESPACE ();
if (*input_line_pointer)
as_bad (_("junk `%s' after expression"), input_line_pointer);
#if GCC_ASM_O_HACK
RESTORE_END_STRING (disp_end + 1);
#endif
RESTORE_END_STRING (disp_end);
input_line_pointer = save_input_line_pointer;
#ifndef LEX_AT
if (gotfree_input_line)
free (gotfree_input_line);
#endif
#ifdef BFD_ASSEMBLER
/* We do this to make sure that the section symbol is in
the symbol table. We will ultimately change the relocation
to be relative to the beginning of the section. */
if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
|| i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
{
if (exp->X_op != O_symbol)
{
as_bad (_("bad expression used with @%s"),
(i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
? "GOTPCREL"
: "GOTOFF"));
return 0;
}
if (S_IS_LOCAL (exp->X_add_symbol)
&& S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
exp->X_op = O_subtract;
exp->X_op_symbol = GOT_symbol;
if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
i.reloc[this_operand] = BFD_RELOC_32_PCREL;
else
i.reloc[this_operand] = BFD_RELOC_32;
}
#endif
if (exp->X_op == O_absent || exp->X_op == O_big)
{
/* Missing or bad expr becomes absolute 0. */
as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
disp_start);
exp->X_op = O_constant;
exp->X_add_number = 0;
exp->X_add_symbol = (symbolS *) 0;
exp->X_op_symbol = (symbolS *) 0;
}
#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
if (exp->X_op != O_constant
#ifdef BFD_ASSEMBLER
&& OUTPUT_FLAVOR == bfd_target_aout_flavour
#endif
&& exp_seg != text_section
&& exp_seg != data_section
&& exp_seg != bss_section
&& exp_seg != undefined_section)
{
#ifdef BFD_ASSEMBLER
as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
#else
as_bad (_("unimplemented segment type %d in operand"), exp_seg);
#endif
return 0;
}
#endif
else if (flag_code == CODE_64BIT)
i.types[this_operand] |= Disp32S | Disp32;
return 1;
}
static int i386_index_check PARAMS ((const char *));
/* Make sure the memory operand we've been dealt is valid.
Return 1 on success, 0 on a failure. */
static int
i386_index_check (operand_string)
const char *operand_string;
{
int ok;
#if INFER_ADDR_PREFIX
int fudged = 0;
tryprefix:
#endif
ok = 1;
if (flag_code == CODE_64BIT)
{
if (i.prefix[ADDR_PREFIX] == 0)
{
/* 64bit checks. */
if ((i.base_reg
&& ((i.base_reg->reg_type & Reg64) == 0)
&& (i.base_reg->reg_type != BaseIndex
|| i.index_reg))
|| (i.index_reg
&& ((i.index_reg->reg_type & (Reg64|BaseIndex))
!= (Reg64|BaseIndex))))
ok = 0;
}
else
{
/* 32bit checks. */
if ((i.base_reg
&& (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
|| (i.index_reg
&& ((i.index_reg->reg_type & (Reg32|BaseIndex|RegRex))
!= (Reg32|BaseIndex))))
ok = 0;
}
}
else
{
if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
{
/* 16bit checks. */
if ((i.base_reg
&& ((i.base_reg->reg_type & (Reg16|BaseIndex|RegRex))
!= (Reg16|BaseIndex)))
|| (i.index_reg
&& (((i.index_reg->reg_type & (Reg16|BaseIndex))
!= (Reg16|BaseIndex))
|| ! (i.base_reg
&& i.base_reg->reg_num < 6
&& i.index_reg->reg_num >= 6
&& i.log2_scale_factor == 0))))
ok = 0;
}
else
{
/* 32bit checks. */
if ((i.base_reg
&& (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
|| (i.index_reg
&& ((i.index_reg->reg_type & (Reg32|BaseIndex|RegRex))
!= (Reg32|BaseIndex))))
ok = 0;
}
}
if (!ok)
{
#if INFER_ADDR_PREFIX
if (flag_code != CODE_64BIT
&& i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
{
i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
i.prefixes += 1;
/* Change the size of any displacement too. At most one of
Disp16 or Disp32 is set.
FIXME. There doesn't seem to be any real need for separate
Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
Removing them would probably clean up the code quite a lot. */
if (i.types[this_operand] & (Disp16|Disp32))
i.types[this_operand] ^= (Disp16|Disp32);
fudged = 1;
goto tryprefix;
}
if (fudged)
as_bad (_("`%s' is not a valid base/index expression"),
operand_string);
else
#endif
as_bad (_("`%s' is not a valid %s bit base/index expression"),
operand_string,
flag_code_names[flag_code]);
return 0;
}
return 1;
}
/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
on error. */
static int
i386_operand (operand_string)
char *operand_string;
{
const reg_entry *r;
char *end_op;
char *op_string = operand_string;
if (is_space_char (*op_string))
++op_string;
/* We check for an absolute prefix (differentiating,
for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
if (*op_string == ABSOLUTE_PREFIX)
{
++op_string;
if (is_space_char (*op_string))
++op_string;
i.types[this_operand] |= JumpAbsolute;
}
/* Check if operand is a register. */
if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
&& (r = parse_register (op_string, &end_op)) != NULL)
{
/* Check for a segment override by searching for ':' after a
segment register. */
op_string = end_op;
if (is_space_char (*op_string))
++op_string;
if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
{
switch (r->reg_num)
{
case 0:
i.seg[i.mem_operands] = &es;
break;
case 1:
i.seg[i.mem_operands] = &cs;
break;
case 2:
i.seg[i.mem_operands] = &ss;
break;
case 3:
i.seg[i.mem_operands] = &ds;
break;
case 4:
i.seg[i.mem_operands] = &fs;
break;
case 5:
i.seg[i.mem_operands] = &gs;
break;
}
/* Skip the ':' and whitespace. */
++op_string;
if (is_space_char (*op_string))
++op_string;
if (!is_digit_char (*op_string)
&& !is_identifier_char (*op_string)
&& *op_string != '('
&& *op_string != ABSOLUTE_PREFIX)
{
as_bad (_("bad memory operand `%s'"), op_string);
return 0;
}
/* Handle case of %es:*foo. */
if (*op_string == ABSOLUTE_PREFIX)
{
++op_string;
if (is_space_char (*op_string))
++op_string;
i.types[this_operand] |= JumpAbsolute;
}
goto do_memory_reference;
}
if (*op_string)
{
as_bad (_("junk `%s' after register"), op_string);
return 0;
}
i.types[this_operand] |= r->reg_type & ~BaseIndex;
i.op[this_operand].regs = r;
i.reg_operands++;
}
else if (*op_string == REGISTER_PREFIX)
{
as_bad (_("bad register name `%s'"), op_string);
return 0;
}
else if (*op_string == IMMEDIATE_PREFIX)
{
++op_string;
if (i.types[this_operand] & JumpAbsolute)
{
as_bad (_("immediate operand illegal with absolute jump"));
return 0;
}
if (!i386_immediate (op_string))
return 0;
}
else if (is_digit_char (*op_string)
|| is_identifier_char (*op_string)
|| *op_string == '(')
{
/* This is a memory reference of some sort. */
char *base_string;
/* Start and end of displacement string expression (if found). */
char *displacement_string_start;
char *displacement_string_end;
do_memory_reference:
if ((i.mem_operands == 1
&& (current_templates->start->opcode_modifier & IsString) == 0)
|| i.mem_operands == 2)
{
as_bad (_("too many memory references for `%s'"),
current_templates->start->name);
return 0;
}
/* Check for base index form. We detect the base index form by
looking for an ')' at the end of the operand, searching
for the '(' matching it, and finding a REGISTER_PREFIX or ','
after the '('. */
base_string = op_string + strlen (op_string);
--base_string;
if (is_space_char (*base_string))
--base_string;
/* If we only have a displacement, set-up for it to be parsed later. */
displacement_string_start = op_string;
displacement_string_end = base_string + 1;
if (*base_string == ')')
{
char *temp_string;
unsigned int parens_balanced = 1;
/* We've already checked that the number of left & right ()'s are
equal, so this loop will not be infinite. */
do
{
base_string--;
if (*base_string == ')')
parens_balanced++;
if (*base_string == '(')
parens_balanced--;
}
while (parens_balanced);
temp_string = base_string;
/* Skip past '(' and whitespace. */
++base_string;
if (is_space_char (*base_string))
++base_string;
if (*base_string == ','
|| ((*base_string == REGISTER_PREFIX || allow_naked_reg)
&& (i.base_reg = parse_register (base_string, &end_op)) != NULL))
{
displacement_string_end = temp_string;
i.types[this_operand] |= BaseIndex;
if (i.base_reg)
{
base_string = end_op;
if (is_space_char (*base_string))
++base_string;
}
/* There may be an index reg or scale factor here. */
if (*base_string == ',')
{
++base_string;
if (is_space_char (*base_string))
++base_string;
if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
&& (i.index_reg = parse_register (base_string, &end_op)) != NULL)
{
base_string = end_op;
if (is_space_char (*base_string))
++base_string;
if (*base_string == ',')
{
++base_string;
if (is_space_char (*base_string))
++base_string;
}
else if (*base_string != ')')
{
as_bad (_("expecting `,' or `)' after index register in `%s'"),
operand_string);
return 0;
}
}
else if (*base_string == REGISTER_PREFIX)
{
as_bad (_("bad register name `%s'"), base_string);
return 0;
}
/* Check for scale factor. */
if (*base_string != ')')
{
char *end_scale = i386_scale (base_string);
if (!end_scale)
return 0;
base_string = end_scale;
if (is_space_char (*base_string))
++base_string;
if (*base_string != ')')
{
as_bad (_("expecting `)' after scale factor in `%s'"),
operand_string);
return 0;
}
}
else if (!i.index_reg)
{
as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
*base_string);
return 0;
}
}
else if (*base_string != ')')
{
as_bad (_("expecting `,' or `)' after base register in `%s'"),
operand_string);
return 0;
}
}
else if (*base_string == REGISTER_PREFIX)
{
as_bad (_("bad register name `%s'"), base_string);
return 0;
}
}
/* If there's an expression beginning the operand, parse it,
assuming displacement_string_start and
displacement_string_end are meaningful. */
if (displacement_string_start != displacement_string_end)
{
if (!i386_displacement (displacement_string_start,
displacement_string_end))
return 0;
}
/* Special case for (%dx) while doing input/output op. */
if (i.base_reg
&& i.base_reg->reg_type == (Reg16 | InOutPortReg)
&& i.index_reg == 0
&& i.log2_scale_factor == 0
&& i.seg[i.mem_operands] == 0
&& (i.types[this_operand] & Disp) == 0)
{
i.types[this_operand] = InOutPortReg;
return 1;
}
if (i386_index_check (operand_string) == 0)
return 0;
i.mem_operands++;
}
else
{
/* It's not a memory operand; argh! */
as_bad (_("invalid char %s beginning operand %d `%s'"),
output_invalid (*op_string),
this_operand + 1,
op_string);
return 0;
}
return 1; /* Normal return. */
}
/* md_estimate_size_before_relax()
Called just before relax() for rs_machine_dependent frags. The x86
assembler uses these frags to handle variable size jump
instructions.
Any symbol that is now undefined will not become defined.
Return the correct fr_subtype in the frag.
Return the initial "guess for variable size of frag" to caller.
The guess is actually the growth beyond the fixed part. Whatever
we do to grow the fixed or variable part contributes to our
returned value. */
int
md_estimate_size_before_relax (fragP, segment)
register fragS *fragP;
register segT segment;
{
/* We've already got fragP->fr_subtype right; all we have to do is
check for un-relaxable symbols. On an ELF system, we can't relax
an externally visible symbol, because it may be overridden by a
shared library. */
if (S_GET_SEGMENT (fragP->fr_symbol) != segment
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|| S_IS_EXTERNAL (fragP->fr_symbol)
|| S_IS_WEAK (fragP->fr_symbol)
#endif
)
{
/* Symbol is undefined in this segment, or we need to keep a
reloc so that weak symbols can be overridden. */
int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
RELOC_ENUM reloc_type;
unsigned char *opcode;
int old_fr_fix;
if (fragP->fr_var != NO_RELOC)
reloc_type = fragP->fr_var;
else if (size == 2)
reloc_type = BFD_RELOC_16_PCREL;
else
reloc_type = BFD_RELOC_32_PCREL;
old_fr_fix = fragP->fr_fix;
opcode = (unsigned char *) fragP->fr_opcode;
switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
{
case UNCOND_JUMP:
/* Make jmp (0xeb) a (d)word displacement jump. */
opcode[0] = 0xe9;
fragP->fr_fix += size;
fix_new (fragP, old_fr_fix, size,
fragP->fr_symbol,
fragP->fr_offset, 1,
reloc_type);
break;
case COND_JUMP86:
if (no_cond_jump_promotion)
goto relax_guess;
if (size == 2)
{
/* Negate the condition, and branch past an
unconditional jump. */
opcode[0] ^= 1;
opcode[1] = 3;
/* Insert an unconditional jump. */
opcode[2] = 0xe9;
/* We added two extra opcode bytes, and have a two byte
offset. */
fragP->fr_fix += 2 + 2;
fix_new (fragP, old_fr_fix + 2, 2,
fragP->fr_symbol,
fragP->fr_offset, 1,
reloc_type);
break;
}
/* Fall through. */
case COND_JUMP:
if (no_cond_jump_promotion)
goto relax_guess;
/* This changes the byte-displacement jump 0x7N
to the (d)word-displacement jump 0x0f,0x8N. */
opcode[1] = opcode[0] + 0x10;
opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
/* We've added an opcode byte. */
fragP->fr_fix += 1 + size;
fix_new (fragP, old_fr_fix + 1, size,
fragP->fr_symbol,
fragP->fr_offset, 1,
reloc_type);
break;
default:
BAD_CASE (fragP->fr_subtype);
break;
}
frag_wane (fragP);
return fragP->fr_fix - old_fr_fix;
}
relax_guess:
/* Guess size depending on current relax state. Initially the relax
state will correspond to a short jump and we return 1, because
the variable part of the frag (the branch offset) is one byte
long. However, we can relax a section more than once and in that
case we must either set fr_subtype back to the unrelaxed state,
or return the value for the appropriate branch. */
return md_relax_table[fragP->fr_subtype].rlx_length;
}
/* Called after relax() is finished.
In: Address of frag.
fr_type == rs_machine_dependent.
fr_subtype is what the address relaxed to.
Out: Any fixSs and constants are set up.
Caller will turn frag into a ".space 0". */
#ifndef BFD_ASSEMBLER
void
md_convert_frag (headers, sec, fragP)
object_headers *headers ATTRIBUTE_UNUSED;
segT sec ATTRIBUTE_UNUSED;
register fragS *fragP;
#else
void
md_convert_frag (abfd, sec, fragP)
bfd *abfd ATTRIBUTE_UNUSED;
segT sec ATTRIBUTE_UNUSED;
register fragS *fragP;
#endif
{
register unsigned char *opcode;
unsigned char *where_to_put_displacement = NULL;
offsetT target_address;
offsetT opcode_address;
unsigned int extension = 0;
offsetT displacement_from_opcode_start;
opcode = (unsigned char *) fragP->fr_opcode;
/* Address we want to reach in file space. */
target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
/* Address opcode resides at in file space. */
opcode_address = fragP->fr_address + fragP->fr_fix;
/* Displacement from opcode start to fill into instruction. */
displacement_from_opcode_start = target_address - opcode_address;
if ((fragP->fr_subtype & BIG) == 0)
{
/* Don't have to change opcode. */
extension = 1; /* 1 opcode + 1 displacement */
where_to_put_displacement = &opcode[1];
}
else
{
if (no_cond_jump_promotion
&& TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
switch (fragP->fr_subtype)
{
case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
extension = 4; /* 1 opcode + 4 displacement */
opcode[0] = 0xe9;
where_to_put_displacement = &opcode[1];
break;
case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
extension = 2; /* 1 opcode + 2 displacement */
opcode[0] = 0xe9;
where_to_put_displacement = &opcode[1];
break;
case ENCODE_RELAX_STATE (COND_JUMP, BIG):
case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
extension = 5; /* 2 opcode + 4 displacement */
opcode[1] = opcode[0] + 0x10;
opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
where_to_put_displacement = &opcode[2];
break;
case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
extension = 3; /* 2 opcode + 2 displacement */
opcode[1] = opcode[0] + 0x10;
opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
where_to_put_displacement = &opcode[2];
break;
case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
extension = 4;
opcode[0] ^= 1;
opcode[1] = 3;
opcode[2] = 0xe9;
where_to_put_displacement = &opcode[3];
break;
default:
BAD_CASE (fragP->fr_subtype);
break;
}
}
/* Now put displacement after opcode. */
md_number_to_chars ((char *) where_to_put_displacement,
(valueT) (displacement_from_opcode_start - extension),
DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
fragP->fr_fix += extension;
}
/* Size of byte displacement jmp. */
int md_short_jump_size = 2;
/* Size of dword displacement jmp. */
int md_long_jump_size = 5;
/* Size of relocation record. */
const int md_reloc_size = 8;
void
md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
char *ptr;
addressT from_addr, to_addr;
fragS *frag ATTRIBUTE_UNUSED;
symbolS *to_symbol ATTRIBUTE_UNUSED;
{
offsetT offset;
offset = to_addr - (from_addr + 2);
/* Opcode for byte-disp jump. */
md_number_to_chars (ptr, (valueT) 0xeb, 1);
md_number_to_chars (ptr + 1, (valueT) offset, 1);
}
void
md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
char *ptr;
addressT from_addr, to_addr;
fragS *frag ATTRIBUTE_UNUSED;
symbolS *to_symbol ATTRIBUTE_UNUSED;
{
offsetT offset;
offset = to_addr - (from_addr + 5);
md_number_to_chars (ptr, (valueT) 0xe9, 1);
md_number_to_chars (ptr + 1, (valueT) offset, 4);
}
/* Apply a fixup (fixS) to segment data, once it has been determined
by our caller that we have all the info we need to fix it up.
On the 386, immediates, displacements, and data pointers are all in
the same (little-endian) format, so we don't need to care about which
we are handling. */
void
md_apply_fix3 (fixP, valP, seg)
/* The fix we're to put in. */
fixS *fixP;
/* Pointer to the value of the bits. */
valueT * valP;
/* Segment fix is from. */
segT seg ATTRIBUTE_UNUSED;
{
char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
valueT value = * valP;
#if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
if (fixP->fx_pcrel)
{
switch (fixP->fx_r_type)
{
default:
break;
case BFD_RELOC_32:
fixP->fx_r_type = BFD_RELOC_32_PCREL;
break;
case BFD_RELOC_16:
fixP->fx_r_type = BFD_RELOC_16_PCREL;
break;
case BFD_RELOC_8:
fixP->fx_r_type = BFD_RELOC_8_PCREL;
break;
}
}
/* This is a hack. There should be a better way to handle this.
This covers for the fact that bfd_install_relocation will
subtract the current location (for partial_inplace, PC relative
relocations); see more below. */
if ((fixP->fx_r_type == BFD_RELOC_32_PCREL
|| fixP->fx_r_type == BFD_RELOC_16_PCREL
|| fixP->fx_r_type == BFD_RELOC_8_PCREL)
&& fixP->fx_addsy && !use_rela_relocations)
{
#ifndef OBJ_AOUT
if (OUTPUT_FLAVOR == bfd_target_elf_flavour
#ifdef TE_PE
|| OUTPUT_FLAVOR == bfd_target_coff_flavour
#endif
)
value += fixP->fx_where + fixP->fx_frag->fr_address;
#endif
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
{
segT fseg = S_GET_SEGMENT (fixP->fx_addsy);
if ((fseg == seg
|| (symbol_section_p (fixP->fx_addsy)
&& fseg != absolute_section))
&& ! S_IS_EXTERNAL (fixP->fx_addsy)
&& ! S_IS_WEAK (fixP->fx_addsy)
&& S_IS_DEFINED (fixP->fx_addsy)
&& ! S_IS_COMMON (fixP->fx_addsy))
{
/* Yes, we add the values in twice. This is because
bfd_perform_relocation subtracts them out again. I think
bfd_perform_relocation is broken, but I don't dare change
it. FIXME. */
value += fixP->fx_where + fixP->fx_frag->fr_address;
}
}
#endif
#if defined (OBJ_COFF) && defined (TE_PE)
/* For some reason, the PE format does not store a section
address offset for a PC relative symbol. */
if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
value += md_pcrel_from (fixP);
#endif
}
/* Fix a few things - the dynamic linker expects certain values here,
and we must not dissappoint it. */
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
if (OUTPUT_FLAVOR == bfd_target_elf_flavour
&& fixP->fx_addsy)
switch (fixP->fx_r_type)
{
case BFD_RELOC_386_PLT32:
case BFD_RELOC_X86_64_PLT32:
/* Make the jump instruction point to the address of the operand. At
runtime we merely add the offset to the actual PLT entry. */
value = -4;
break;
case BFD_RELOC_386_GOTPC:
/* This is tough to explain. We end up with this one if we have
* operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal
* here is to obtain the absolute address of the GOT, and it is strongly
* preferable from a performance point of view to avoid using a runtime
* relocation for this. The actual sequence of instructions often look
* something like:
*
* call .L66
* .L66:
* popl %ebx
* addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
*
* The call and pop essentially return the absolute address of
* the label .L66 and store it in %ebx. The linker itself will
* ultimately change the first operand of the addl so that %ebx points to
* the GOT, but to keep things simple, the .o file must have this operand
* set so that it generates not the absolute address of .L66, but the
* absolute address of itself. This allows the linker itself simply
* treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
* added in, and the addend of the relocation is stored in the operand
* field for the instruction itself.
*
* Our job here is to fix the operand so that it would add the correct
* offset so that %ebx would point to itself. The thing that is tricky is
* that .-.L66 will point to the beginning of the instruction, so we need
* to further modify the operand so that it will point to itself.
* There are other cases where you have something like:
*
* .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
*
* and here no correction would be required. Internally in the assembler
* we treat operands of this form as not being pcrel since the '.' is
* explicitly mentioned, and I wonder whether it would simplify matters
* to do it this way. Who knows. In earlier versions of the PIC patches,
* the pcrel_adjust field was used to store the correction, but since the
* expression is not pcrel, I felt it would be confusing to do it this
* way. */
value -= 1;
break;
case BFD_RELOC_386_GOT32:
case BFD_RELOC_X86_64_GOT32:
value = 0; /* Fully resolved at runtime. No addend. */
break;
case BFD_RELOC_386_GOTOFF:
case BFD_RELOC_X86_64_GOTPCREL:
break;
case BFD_RELOC_VTABLE_INHERIT:
case BFD_RELOC_VTABLE_ENTRY:
fixP->fx_done = 0;
return;
default:
break;
}
#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
* valP = value;
#endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
/* Are we finished with this relocation now? */
if (fixP->fx_addsy == NULL && fixP->fx_pcrel == 0)
fixP->fx_done = 1;
#ifdef BFD_ASSEMBLER
else if (use_rela_relocations)
{
fixP->fx_no_overflow = 1;
value = 0;
}
#endif
md_number_to_chars (p, value, fixP->fx_size);
}
#define MAX_LITTLENUMS 6
/* Turn the string pointed to by litP into a floating point constant
of type TYPE, and emit the appropriate bytes. The number of
LITTLENUMS emitted is stored in *SIZEP. An error message is
returned, or NULL on OK. */
char *
md_atof (type, litP, sizeP)
int type;
char *litP;
int *sizeP;
{
int prec;
LITTLENUM_TYPE words[MAX_LITTLENUMS];
LITTLENUM_TYPE *wordP;
char *t;
switch (type)
{
case 'f':
case 'F':
prec = 2;
break;
case 'd':
case 'D':
prec = 4;
break;
case 'x':
case 'X':
prec = 5;
break;
default:
*sizeP = 0;
return _("Bad call to md_atof ()");
}
t = atof_ieee (input_line_pointer, type, words);
if (t)
input_line_pointer = t;
*sizeP = prec * sizeof (LITTLENUM_TYPE);
/* This loops outputs the LITTLENUMs in REVERSE order; in accord with
the bigendian 386. */
for (wordP = words + prec - 1; prec--;)
{
md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
litP += sizeof (LITTLENUM_TYPE);
}
return 0;
}
char output_invalid_buf[8];
static char *
output_invalid (c)
int c;
{
if (ISPRINT (c))
sprintf (output_invalid_buf, "'%c'", c);
else
sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
return output_invalid_buf;
}
/* REG_STRING starts *before* REGISTER_PREFIX. */
static const reg_entry *
parse_register (reg_string, end_op)
char *reg_string;
char **end_op;
{
char *s = reg_string;
char *p;
char reg_name_given[MAX_REG_NAME_SIZE + 1];
const reg_entry *r;
/* Skip possible REGISTER_PREFIX and possible whitespace. */
if (*s == REGISTER_PREFIX)
++s;
if (is_space_char (*s))
++s;
p = reg_name_given;
while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
{
if (p >= reg_name_given + MAX_REG_NAME_SIZE)
return (const reg_entry *) NULL;
s++;
}
/* For naked regs, make sure that we are not dealing with an identifier.
This prevents confusing an identifier like `eax_var' with register
`eax'. */
if (allow_naked_reg && identifier_chars[(unsigned char) *s])
return (const reg_entry *) NULL;
*end_op = s;
r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
/* Handle floating point regs, allowing spaces in the (i) part. */
if (r == i386_regtab /* %st is first entry of table */)
{
if (is_space_char (*s))
++s;
if (*s == '(')
{
++s;
if (is_space_char (*s))
++s;
if (*s >= '0' && *s <= '7')
{
r = &i386_float_regtab[*s - '0'];
++s;
if (is_space_char (*s))
++s;
if (*s == ')')
{
*end_op = s + 1;
return r;
}
}
/* We have "%st(" then garbage. */
return (const reg_entry *) NULL;
}
}
if (r != NULL
&& r->reg_flags & (RegRex64|RegRex)
&& flag_code != CODE_64BIT)
{
return (const reg_entry *) NULL;
}
return r;
}
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
const char *md_shortopts = "kVQ:sq";
#else
const char *md_shortopts = "q";
#endif
struct option md_longopts[] = {
#define OPTION_32 (OPTION_MD_BASE + 0)
{"32", no_argument, NULL, OPTION_32},
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
#define OPTION_64 (OPTION_MD_BASE + 1)
{"64", no_argument, NULL, OPTION_64},
#endif
{NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof (md_longopts);
int
md_parse_option (c, arg)
int c;
char *arg ATTRIBUTE_UNUSED;
{
switch (c)
{
case 'q':
quiet_warnings = 1;
break;
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
/* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
should be emitted or not. FIXME: Not implemented. */
case 'Q':
break;
/* -V: SVR4 argument to print version ID. */
case 'V':
print_version_id ();
break;
/* -k: Ignore for FreeBSD compatibility. */
case 'k':
break;
case 's':
/* -s: On i386 Solaris, this tells the native assembler to use
.stab instead of .stab.excl. We always use .stab anyhow. */
break;
case OPTION_64:
{
const char **list, **l;
list = bfd_target_list ();
for (l = list; *l != NULL; l++)
if (strcmp (*l, "elf64-x86-64") == 0)
{
default_arch = "x86_64";
break;
}
if (*l == NULL)
as_fatal (_("No compiled in support for x86_64"));
free (list);
}
break;
#endif
case OPTION_32:
default_arch = "i386";
break;
default:
return 0;
}
return 1;
}
void
md_show_usage (stream)
FILE *stream;
{
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
fprintf (stream, _("\
-Q ignored\n\
-V print assembler version number\n\
-k ignored\n\
-q quieten some warnings\n\
-s ignored\n"));
#else
fprintf (stream, _("\
-q quieten some warnings\n"));
#endif
}
#ifdef BFD_ASSEMBLER
#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
|| defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
/* Pick the target format to use. */
const char *
i386_target_format ()
{
if (!strcmp (default_arch, "x86_64"))
set_code_flag (CODE_64BIT);
else if (!strcmp (default_arch, "i386"))
set_code_flag (CODE_32BIT);
else
as_fatal (_("Unknown architecture"));
switch (OUTPUT_FLAVOR)
{
#ifdef OBJ_MAYBE_AOUT
case bfd_target_aout_flavour:
return AOUT_TARGET_FORMAT;
#endif
#ifdef OBJ_MAYBE_COFF
case bfd_target_coff_flavour:
return "coff-i386";
#endif
#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
case bfd_target_elf_flavour:
{
if (flag_code == CODE_64BIT)
use_rela_relocations = 1;
return flag_code == CODE_64BIT ? "elf64-x86-64" : "elf32-i386";
}
#endif
default:
abort ();
return NULL;
}
}
#endif /* OBJ_MAYBE_ more than one */
#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
void i386_elf_emit_arch_note ()
{
if (OUTPUT_FLAVOR == bfd_target_elf_flavour
&& cpu_arch_name != NULL)
{
char *p;
asection *seg = now_seg;
subsegT subseg = now_subseg;
Elf_Internal_Note i_note;
Elf_External_Note e_note;
asection *note_secp;
int len;
/* Create the .note section. */
note_secp = subseg_new (".note", 0);
bfd_set_section_flags (stdoutput,
note_secp,
SEC_HAS_CONTENTS | SEC_READONLY);
/* Process the arch string. */
len = strlen (cpu_arch_name);
i_note.namesz = len + 1;
i_note.descsz = 0;
i_note.type = NT_ARCH;
p = frag_more (sizeof (e_note.namesz));
md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
p = frag_more (sizeof (e_note.descsz));
md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
p = frag_more (sizeof (e_note.type));
md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
p = frag_more (len + 1);
strcpy (p, cpu_arch_name);
frag_align (2, 0, 0);
subseg_set (seg, subseg);
}
}
#endif
#endif /* BFD_ASSEMBLER */
symbolS *
md_undefined_symbol (name)
char *name;
{
if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
&& name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
&& name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
&& strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
{
if (!GOT_symbol)
{
if (symbol_find (name))
as_bad (_("GOT already in symbol table"));
GOT_symbol = symbol_new (name, undefined_section,
(valueT) 0, &zero_address_frag);
};
return GOT_symbol;
}
return 0;
}
/* Round up a section size to the appropriate boundary. */
valueT
md_section_align (segment, size)
segT segment ATTRIBUTE_UNUSED;
valueT size;
{
#ifdef BFD_ASSEMBLER
#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
{
/* For a.out, force the section size to be aligned. If we don't do
this, BFD will align it for us, but it will not write out the
final bytes of the section. This may be a bug in BFD, but it is
easier to fix it here since that is how the other a.out targets
work. */
int align;
align = bfd_get_section_alignment (stdoutput, segment);
size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
}
#endif
#endif
return size;
}
/* On the i386, PC-relative offsets are relative to the start of the
next instruction. That is, the address of the offset, plus its
size, since the offset is always the last part of the insn. */
long
md_pcrel_from (fixP)
fixS *fixP;
{
return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
}
#ifndef I386COFF
static void
s_bss (ignore)
int ignore ATTRIBUTE_UNUSED;
{
register int temp;
temp = get_absolute_expression ();
subseg_set (bss_section, (subsegT) temp);
demand_empty_rest_of_line ();
}
#endif
#ifdef BFD_ASSEMBLER
void
i386_validate_fix (fixp)
fixS *fixp;
{
if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
{
/* GOTOFF relocation are nonsense in 64bit mode. */
if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
{
if (flag_code != CODE_64BIT)
abort ();
fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
}
else
{
if (flag_code == CODE_64BIT)
abort ();
fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
}
fixp->fx_subsy = 0;
}
}
arelent *
tc_gen_reloc (section, fixp)
asection *section ATTRIBUTE_UNUSED;
fixS *fixp;
{
arelent *rel;
bfd_reloc_code_real_type code;
switch (fixp->fx_r_type)
{
case BFD_RELOC_X86_64_PLT32:
case BFD_RELOC_X86_64_GOT32:
case BFD_RELOC_X86_64_GOTPCREL:
case BFD_RELOC_386_PLT32:
case BFD_RELOC_386_GOT32:
case BFD_RELOC_386_GOTOFF:
case BFD_RELOC_386_GOTPC:
case BFD_RELOC_X86_64_32S:
case BFD_RELOC_RVA:
case BFD_RELOC_VTABLE_ENTRY:
case BFD_RELOC_VTABLE_INHERIT:
code = fixp->fx_r_type;
break;
default:
if (fixp->fx_pcrel)
{
switch (fixp->fx_size)
{
default:
as_bad_where (fixp->fx_file, fixp->fx_line,
_("can not do %d byte pc-relative relocation"),
fixp->fx_size);
code = BFD_RELOC_32_PCREL;
break;
case 1: code = BFD_RELOC_8_PCREL; break;
case 2: code = BFD_RELOC_16_PCREL; break;
case 4: code = BFD_RELOC_32_PCREL; break;
}
}
else
{
switch (fixp->fx_size)
{
default:
as_bad_where (fixp->fx_file, fixp->fx_line,
_("can not do %d byte relocation"),
fixp->fx_size);
code = BFD_RELOC_32;
break;
case 1: code = BFD_RELOC_8; break;
case 2: code = BFD_RELOC_16; break;
case 4: code = BFD_RELOC_32; break;
case 8: code = BFD_RELOC_64; break;
}
}
break;
}
if (code == BFD_RELOC_32
&& GOT_symbol
&& fixp->fx_addsy == GOT_symbol)
{
/* We don't support GOTPC on 64bit targets. */
if (flag_code == CODE_64BIT)
abort ();
code = BFD_RELOC_386_GOTPC;
}
rel = (arelent *) xmalloc (sizeof (arelent));
rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
*rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
if (!use_rela_relocations)
{
/* HACK: Since i386 ELF uses Rel instead of Rela, encode the
vtable entry to be used in the relocation's section offset. */
if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
rel->address = fixp->fx_offset;
if (fixp->fx_pcrel)
rel->addend = fixp->fx_addnumber;
else
rel->addend = 0;
}
/* Use the rela in 64bit mode. */
else
{
rel->addend = fixp->fx_offset;
if (fixp->fx_pcrel)
rel->addend -= fixp->fx_size;
}
rel->howto = bfd_reloc_type_lookup (stdoutput, code);
if (rel->howto == NULL)
{
as_bad_where (fixp->fx_file, fixp->fx_line,
_("cannot represent relocation type %s"),
bfd_get_reloc_code_name (code));
/* Set howto to a garbage value so that we can keep going. */
rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
assert (rel->howto != NULL);
}
return rel;
}
#else /* ! BFD_ASSEMBLER */
#if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
void
tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
char *where;
fixS *fixP;
relax_addressT segment_address_in_file;
{
/* In: length of relocation (or of address) in chars: 1, 2 or 4.
Out: GNU LD relocation length code: 0, 1, or 2. */
static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
long r_symbolnum;
know (fixP->fx_addsy != NULL);
md_number_to_chars (where,
(valueT) (fixP->fx_frag->fr_address
+ fixP->fx_where - segment_address_in_file),
4);
r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
? S_GET_TYPE (fixP->fx_addsy)
: fixP->fx_addsy->sy_number);
where[6] = (r_symbolnum >> 16) & 0x0ff;
where[5] = (r_symbolnum >> 8) & 0x0ff;
where[4] = r_symbolnum & 0x0ff;
where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
| ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
| (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
}
#endif /* OBJ_AOUT or OBJ_BOUT. */
#if defined (I386COFF)
short
tc_coff_fix2rtype (fixP)
fixS *fixP;
{
if (fixP->fx_r_type == R_IMAGEBASE)
return R_IMAGEBASE;
return (fixP->fx_pcrel ?
(fixP->fx_size == 1 ? R_PCRBYTE :
fixP->fx_size == 2 ? R_PCRWORD :
R_PCRLONG) :
(fixP->fx_size == 1 ? R_RELBYTE :
fixP->fx_size == 2 ? R_RELWORD :
R_DIR32));
}
int
tc_coff_sizemachdep (frag)
fragS *frag;
{
if (frag->fr_next)
return (frag->fr_next->fr_address - frag->fr_address);
else
return 0;
}
#endif /* I386COFF */
#endif /* ! BFD_ASSEMBLER */
/* Parse operands using Intel syntax. This implements a recursive descent
parser based on the BNF grammar published in Appendix B of the MASM 6.1
Programmer's Guide.
FIXME: We do not recognize the full operand grammar defined in the MASM
documentation. In particular, all the structure/union and
high-level macro operands are missing.
Uppercase words are terminals, lower case words are non-terminals.
Objects surrounded by double brackets '[[' ']]' are optional. Vertical
bars '|' denote choices. Most grammar productions are implemented in
functions called 'intel_<production>'.
Initial production is 'expr'.
addOp + | -
alpha [a-zA-Z]
byteRegister AL | AH | BL | BH | CL | CH | DL | DH
constant digits [[ radixOverride ]]
dataType BYTE | WORD | DWORD | QWORD | XWORD
digits decdigit
| digits decdigit
| digits hexdigit
decdigit [0-9]
e05 e05 addOp e06
| e06
e06 e06 mulOp e09
| e09
e09 OFFSET e10
| e09 PTR e10
| e09 : e10
| e10
e10 e10 [ expr ]
| e11
e11 ( expr )
| [ expr ]
| constant
| dataType
| id
| $
| register
=> expr SHORT e05
| e05
gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
| BP | EBP | SP | ESP | DI | EDI | SI | ESI
hexdigit a | b | c | d | e | f
| A | B | C | D | E | F
id alpha
| id alpha
| id decdigit
mulOp * | / | MOD
quote " | '
register specialRegister
| gpRegister
| byteRegister
segmentRegister CS | DS | ES | FS | GS | SS
specialRegister CR0 | CR2 | CR3
| DR0 | DR1 | DR2 | DR3 | DR6 | DR7
| TR3 | TR4 | TR5 | TR6 | TR7
We simplify the grammar in obvious places (e.g., register parsing is
done by calling parse_register) and eliminate immediate left recursion
to implement a recursive-descent parser.
expr SHORT e05
| e05
e05 e06 e05'
e05' addOp e06 e05'
| Empty
e06 e09 e06'
e06' mulOp e09 e06'
| Empty
e09 OFFSET e10 e09'
| e10 e09'
e09' PTR e10 e09'
| : e10 e09'
| Empty
e10 e11 e10'
e10' [ expr ] e10'
| Empty
e11 ( expr )
| [ expr ]
| BYTE
| WORD
| DWORD
| QWORD
| XWORD
| .
| $
| register
| id
| constant */
/* Parsing structure for the intel syntax parser. Used to implement the
semantic actions for the operand grammar. */
struct intel_parser_s
{
char *op_string; /* The string being parsed. */
int got_a_float; /* Whether the operand is a float. */
int op_modifier; /* Operand modifier. */
int is_mem; /* 1 if operand is memory reference. */
const reg_entry *reg; /* Last register reference found. */
char *disp; /* Displacement string being built. */
};
static struct intel_parser_s intel_parser;
/* Token structure for parsing intel syntax. */
struct intel_token
{
int code; /* Token code. */
const reg_entry *reg; /* Register entry for register tokens. */
char *str; /* String representation. */
};
static struct intel_token cur_token, prev_token;
/* Token codes for the intel parser. Since T_SHORT is already used
by COFF, undefine it first to prevent a warning. */
#define T_NIL -1
#define T_CONST 1
#define T_REG 2
#define T_BYTE 3
#define T_WORD 4
#define T_DWORD 5
#define T_QWORD 6
#define T_XWORD 7
#undef T_SHORT
#define T_SHORT 8
#define T_OFFSET 9
#define T_PTR 10
#define T_ID 11
/* Prototypes for intel parser functions. */
static int intel_match_token PARAMS ((int code));
static void intel_get_token PARAMS ((void));
static void intel_putback_token PARAMS ((void));
static int intel_expr PARAMS ((void));
static int intel_e05 PARAMS ((void));
static int intel_e05_1 PARAMS ((void));
static int intel_e06 PARAMS ((void));
static int intel_e06_1 PARAMS ((void));
static int intel_e09 PARAMS ((void));
static int intel_e09_1 PARAMS ((void));
static int intel_e10 PARAMS ((void));
static int intel_e10_1 PARAMS ((void));
static int intel_e11 PARAMS ((void));
static int
i386_intel_operand (operand_string, got_a_float)
char *operand_string;
int got_a_float;
{
int ret;
char *p;
/* Initialize token holders. */
cur_token.code = prev_token.code = T_NIL;
cur_token.reg = prev_token.reg = NULL;
cur_token.str = prev_token.str = NULL;
/* Initialize parser structure. */
p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
if (p == NULL)
abort ();
strcpy (intel_parser.op_string, operand_string);
intel_parser.got_a_float = got_a_float;
intel_parser.op_modifier = -1;
intel_parser.is_mem = 0;
intel_parser.reg = NULL;
intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
if (intel_parser.disp == NULL)
abort ();
intel_parser.disp[0] = '\0';
/* Read the first token and start the parser. */
intel_get_token ();
ret = intel_expr ();
if (ret)
{
/* If we found a memory reference, hand it over to i386_displacement
to fill in the rest of the operand fields. */
if (intel_parser.is_mem)
{
if ((i.mem_operands == 1
&& (current_templates->start->opcode_modifier & IsString) == 0)
|| i.mem_operands == 2)
{
as_bad (_("too many memory references for '%s'"),
current_templates->start->name);
ret = 0;
}
else
{
char *s = intel_parser.disp;
i.mem_operands++;
/* Add the displacement expression. */
if (*s != '\0')
ret = i386_displacement (s, s + strlen (s))
&& i386_index_check (s);
}
}
/* Constant and OFFSET expressions are handled by i386_immediate. */
else if (intel_parser.op_modifier == OFFSET_FLAT
|| intel_parser.reg == NULL)
ret = i386_immediate (intel_parser.disp);
}
free (p);
free (intel_parser.disp);
return ret;
}
/* expr SHORT e05
| e05 */
static int
intel_expr ()
{
/* expr SHORT e05 */
if (cur_token.code == T_SHORT)
{
intel_parser.op_modifier = SHORT;
intel_match_token (T_SHORT);
return (intel_e05 ());
}
/* expr e05 */
else
return intel_e05 ();
}
/* e05 e06 e05'
e05' addOp e06 e05'
| Empty */
static int
intel_e05 ()
{
return (intel_e06 () && intel_e05_1 ());
}
static int
intel_e05_1 ()
{
/* e05' addOp e06 e05' */
if (cur_token.code == '+' || cur_token.code == '-')
{
strcat (intel_parser.disp, cur_token.str);
intel_match_token (cur_token.code);
return (intel_e06 () && intel_e05_1 ());
}
/* e05' Empty */
else
return 1;
}
/* e06 e09 e06'
e06' mulOp e09 e06'
| Empty */
static int
intel_e06 ()
{
return (intel_e09 () && intel_e06_1 ());
}
static int
intel_e06_1 ()
{
/* e06' mulOp e09 e06' */
if (cur_token.code == '*' || cur_token.code == '/')
{
strcat (intel_parser.disp, cur_token.str);
intel_match_token (cur_token.code);
return (intel_e09 () && intel_e06_1 ());
}
/* e06' Empty */
else
return 1;
}
/* e09 OFFSET e10 e09'
| e10 e09'
e09' PTR e10 e09'
| : e10 e09'
| Empty */
static int
intel_e09 ()
{
/* e09 OFFSET e10 e09' */
if (cur_token.code == T_OFFSET)
{
intel_parser.is_mem = 0;
intel_parser.op_modifier = OFFSET_FLAT;
intel_match_token (T_OFFSET);
return (intel_e10 () && intel_e09_1 ());
}
/* e09 e10 e09' */
else
return (intel_e10 () && intel_e09_1 ());
}
static int
intel_e09_1 ()
{
/* e09' PTR e10 e09' */
if (cur_token.code == T_PTR)
{
if (prev_token.code == T_BYTE)
i.suffix = BYTE_MNEM_SUFFIX;
else if (prev_token.code == T_WORD)
{
if (intel_parser.got_a_float == 2) /* "fi..." */
i.suffix = SHORT_MNEM_SUFFIX;
else
i.suffix = WORD_MNEM_SUFFIX;
}
else if (prev_token.code == T_DWORD)
{
if (intel_parser.got_a_float == 1) /* "f..." */
i.suffix = SHORT_MNEM_SUFFIX;
else
i.suffix = LONG_MNEM_SUFFIX;
}
else if (prev_token.code == T_QWORD)
{
if (intel_parser.got_a_float == 1) /* "f..." */
i.suffix = LONG_MNEM_SUFFIX;
else
i.suffix = QWORD_MNEM_SUFFIX;
}
else if (prev_token.code == T_XWORD)
i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
else
{
as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
return 0;
}
intel_match_token (T_PTR);
return (intel_e10 () && intel_e09_1 ());
}
/* e09 : e10 e09' */
else if (cur_token.code == ':')
{
/* Mark as a memory operand only if it's not already known to be an
offset expression. */
if (intel_parser.op_modifier != OFFSET_FLAT)
intel_parser.is_mem = 1;
return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
}
/* e09' Empty */
else
return 1;
}
/* e10 e11 e10'
e10' [ expr ] e10'
| Empty */
static int
intel_e10 ()
{
return (intel_e11 () && intel_e10_1 ());
}
static int
intel_e10_1 ()
{
/* e10' [ expr ] e10' */
if (cur_token.code == '[')
{
intel_match_token ('[');
/* Mark as a memory operand only if it's not already known to be an
offset expression. If it's an offset expression, we need to keep
the brace in. */
if (intel_parser.op_modifier != OFFSET_FLAT)
intel_parser.is_mem = 1;
else
strcat (intel_parser.disp, "[");
/* Add a '+' to the displacement string if necessary. */
if (*intel_parser.disp != '\0'
&& *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
strcat (intel_parser.disp, "+");
if (intel_expr () && intel_match_token (']'))
{
/* Preserve brackets when the operand is an offset expression. */
if (intel_parser.op_modifier == OFFSET_FLAT)
strcat (intel_parser.disp, "]");
return intel_e10_1 ();
}
else
return 0;
}
/* e10' Empty */
else
return 1;
}
/* e11 ( expr )
| [ expr ]
| BYTE
| WORD
| DWORD
| QWORD
| XWORD
| $
| .
| register
| id
| constant */
static int
intel_e11 ()
{
/* e11 ( expr ) */
if (cur_token.code == '(')
{
intel_match_token ('(');
strcat (intel_parser.disp, "(");
if (intel_expr () && intel_match_token (')'))
{
strcat (intel_parser.disp, ")");
return 1;
}
else
return 0;
}
/* e11 [ expr ] */
else if (cur_token.code == '[')
{
intel_match_token ('[');
/* Mark as a memory operand only if it's not already known to be an
offset expression. If it's an offset expression, we need to keep
the brace in. */
if (intel_parser.op_modifier != OFFSET_FLAT)
intel_parser.is_mem = 1;
else
strcat (intel_parser.disp, "[");
/* Operands for jump/call inside brackets denote absolute addresses. */
if (current_templates->start->opcode_modifier & Jump
|| current_templates->start->opcode_modifier & JumpDword
|| current_templates->start->opcode_modifier & JumpByte
|| current_templates->start->opcode_modifier & JumpInterSegment)
i.types[this_operand] |= JumpAbsolute;
/* Add a '+' to the displacement string if necessary. */
if (*intel_parser.disp != '\0'
&& *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
strcat (intel_parser.disp, "+");
if (intel_expr () && intel_match_token (']'))
{
/* Preserve brackets when the operand is an offset expression. */
if (intel_parser.op_modifier == OFFSET_FLAT)
strcat (intel_parser.disp, "]");
return 1;
}
else
return 0;
}
/* e11 BYTE
| WORD
| DWORD
| QWORD
| XWORD */
else if (cur_token.code == T_BYTE
|| cur_token.code == T_WORD
|| cur_token.code == T_DWORD
|| cur_token.code == T_QWORD
|| cur_token.code == T_XWORD)
{
intel_match_token (cur_token.code);
return 1;
}
/* e11 $
| . */
else if (cur_token.code == '$' || cur_token.code == '.')
{
strcat (intel_parser.disp, cur_token.str);
intel_match_token (cur_token.code);
/* Mark as a memory operand only if it's not already known to be an
offset expression. */
if (intel_parser.op_modifier != OFFSET_FLAT)
intel_parser.is_mem = 1;
return 1;
}
/* e11 register */
else if (cur_token.code == T_REG)
{
const reg_entry *reg = intel_parser.reg = cur_token.reg;
intel_match_token (T_REG);
/* Check for segment change. */
if (cur_token.code == ':')
{
if (reg->reg_type & (SReg2 | SReg3))
{
switch (reg->reg_num)
{
case 0:
i.seg[i.mem_operands] = &es;
break;
case 1:
i.seg[i.mem_operands] = &cs;
break;
case 2:
i.seg[i.mem_operands] = &ss;
break;
case 3:
i.seg[i.mem_operands] = &ds;
break;
case 4:
i.seg[i.mem_operands] = &fs;
break;
case 5:
i.seg[i.mem_operands] = &gs;
break;
}
}
else
{
as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
return 0;
}
}
/* Not a segment register. Check for register scaling. */
else if (cur_token.code == '*')
{
if (!intel_parser.is_mem)
{
as_bad (_("Register scaling only allowed in memory operands."));
return 0;
}
/* What follows must be a valid scale. */
if (intel_match_token ('*')
&& strchr ("01248", *cur_token.str))
{
i.index_reg = reg;
i.types[this_operand] |= BaseIndex;
/* Set the scale after setting the register (otherwise,
i386_scale will complain) */
i386_scale (cur_token.str);
intel_match_token (T_CONST);
}
else
{
as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
cur_token.str);
return 0;
}
}
/* No scaling. If this is a memory operand, the register is either a
base register (first occurrence) or an index register (second
occurrence). */
else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
{
if (i.base_reg && i.index_reg)
{
as_bad (_("Too many register references in memory operand.\n"));
return 0;
}
if (i.base_reg == NULL)
i.base_reg = reg;
else
i.index_reg = reg;
i.types[this_operand] |= BaseIndex;
}
/* Offset modifier. Add the register to the displacement string to be
parsed as an immediate expression after we're done. */
else if (intel_parser.op_modifier == OFFSET_FLAT)
strcat (intel_parser.disp, reg->reg_name);
/* It's neither base nor index nor offset. */
else
{
i.types[this_operand] |= reg->reg_type & ~BaseIndex;
i.op[this_operand].regs = reg;
i.reg_operands++;
}
/* Since registers are not part of the displacement string (except
when we're parsing offset operands), we may need to remove any
preceding '+' from the displacement string. */
if (*intel_parser.disp != '\0'
&& intel_parser.op_modifier != OFFSET_FLAT)
{
char *s = intel_parser.disp;
s += strlen (s) - 1;
if (*s == '+')
*s = '\0';
}
return 1;
}
/* e11 id */
else if (cur_token.code == T_ID)
{
/* Add the identifier to the displacement string. */
strcat (intel_parser.disp, cur_token.str);
intel_match_token (T_ID);
/* The identifier represents a memory reference only if it's not
preceded by an offset modifier. */
if (intel_parser.op_modifier != OFFSET_FLAT)
intel_parser.is_mem = 1;
return 1;
}
/* e11 constant */
else if (cur_token.code == T_CONST
|| cur_token.code == '-'
|| cur_token.code == '+')
{
char *save_str;
/* Allow constants that start with `+' or `-'. */
if (cur_token.code == '-' || cur_token.code == '+')
{
strcat (intel_parser.disp, cur_token.str);
intel_match_token (cur_token.code);
if (cur_token.code != T_CONST)
{
as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
cur_token.str);
return 0;
}
}
save_str = (char *) malloc (strlen (cur_token.str) + 1);
if (save_str == NULL)
abort ();
strcpy (save_str, cur_token.str);
/* Get the next token to check for register scaling. */
intel_match_token (cur_token.code);
/* Check if this constant is a scaling factor for an index register. */
if (cur_token.code == '*')
{
if (intel_match_token ('*') && cur_token.code == T_REG)
{
if (!intel_parser.is_mem)
{
as_bad (_("Register scaling only allowed in memory operands."));
return 0;
}
/* The constant is followed by `* reg', so it must be
a valid scale. */
if (strchr ("01248", *save_str))
{
i.index_reg = cur_token.reg;
i.types[this_operand] |= BaseIndex;
/* Set the scale after setting the register (otherwise,
i386_scale will complain) */
i386_scale (save_str);
intel_match_token (T_REG);
/* Since registers are not part of the displacement
string, we may need to remove any preceding '+' from
the displacement string. */
if (*intel_parser.disp != '\0')
{
char *s = intel_parser.disp;
s += strlen (s) - 1;
if (*s == '+')
*s = '\0';
}
free (save_str);
return 1;
}
else
return 0;
}
/* The constant was not used for register scaling. Since we have
already consumed the token following `*' we now need to put it
back in the stream. */
else
intel_putback_token ();
}
/* Add the constant to the displacement string. */
strcat (intel_parser.disp, save_str);
free (save_str);
return 1;
}
as_bad (_("Unrecognized token '%s'"), cur_token.str);
return 0;
}
/* Match the given token against cur_token. If they match, read the next
token from the operand string. */
static int
intel_match_token (code)
int code;
{
if (cur_token.code == code)
{
intel_get_token ();
return 1;
}
else
{
as_bad (_("Unexpected token `%s'\n"), cur_token.str);
return 0;
}
}
/* Read a new token from intel_parser.op_string and store it in cur_token. */
static void
intel_get_token ()
{
char *end_op;
const reg_entry *reg;
struct intel_token new_token;
new_token.code = T_NIL;
new_token.reg = NULL;
new_token.str = NULL;
/* Free the memory allocated to the previous token and move
cur_token to prev_token. */
if (prev_token.str)
free (prev_token.str);
prev_token = cur_token;
/* Skip whitespace. */
while (is_space_char (*intel_parser.op_string))
intel_parser.op_string++;
/* Return an empty token if we find nothing else on the line. */
if (*intel_parser.op_string == '\0')
{
cur_token = new_token;
return;
}
/* The new token cannot be larger than the remainder of the operand
string. */
new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
if (new_token.str == NULL)
abort ();
new_token.str[0] = '\0';
if (strchr ("0123456789", *intel_parser.op_string))
{
char *p = new_token.str;
char *q = intel_parser.op_string;
new_token.code = T_CONST;
/* Allow any kind of identifier char to encompass floating point and
hexadecimal numbers. */
while (is_identifier_char (*q))
*p++ = *q++;
*p = '\0';
/* Recognize special symbol names [0-9][bf]. */
if (strlen (intel_parser.op_string) == 2
&& (intel_parser.op_string[1] == 'b'
|| intel_parser.op_string[1] == 'f'))
new_token.code = T_ID;
}
else if (strchr ("+-/*:[]()", *intel_parser.op_string))
{
new_token.code = *intel_parser.op_string;
new_token.str[0] = *intel_parser.op_string;
new_token.str[1] = '\0';
}
else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
&& ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
{
new_token.code = T_REG;
new_token.reg = reg;
if (*intel_parser.op_string == REGISTER_PREFIX)
{
new_token.str[0] = REGISTER_PREFIX;
new_token.str[1] = '\0';
}
strcat (new_token.str, reg->reg_name);
}
else if (is_identifier_char (*intel_parser.op_string))
{
char *p = new_token.str;
char *q = intel_parser.op_string;
/* A '.' or '$' followed by an identifier char is an identifier.
Otherwise, it's operator '.' followed by an expression. */
if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
{
new_token.code = *q;
new_token.str[0] = *q;
new_token.str[1] = '\0';
}
else
{
while (is_identifier_char (*q) || *q == '@')
*p++ = *q++;
*p = '\0';
if (strcasecmp (new_token.str, "BYTE") == 0)
new_token.code = T_BYTE;
else if (strcasecmp (new_token.str, "WORD") == 0)
new_token.code = T_WORD;
else if (strcasecmp (new_token.str, "DWORD") == 0)
new_token.code = T_DWORD;
else if (strcasecmp (new_token.str, "QWORD") == 0)
new_token.code = T_QWORD;
else if (strcasecmp (new_token.str, "XWORD") == 0)
new_token.code = T_XWORD;
else if (strcasecmp (new_token.str, "PTR") == 0)
new_token.code = T_PTR;
else if (strcasecmp (new_token.str, "SHORT") == 0)
new_token.code = T_SHORT;
else if (strcasecmp (new_token.str, "OFFSET") == 0)
{
new_token.code = T_OFFSET;
/* ??? This is not mentioned in the MASM grammar but gcc
makes use of it with -mintel-syntax. OFFSET may be
followed by FLAT: */
if (strncasecmp (q, " FLAT:", 6) == 0)
strcat (new_token.str, " FLAT:");
}
/* ??? This is not mentioned in the MASM grammar. */
else if (strcasecmp (new_token.str, "FLAT") == 0)
new_token.code = T_OFFSET;
else
new_token.code = T_ID;
}
}
else
as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
intel_parser.op_string += strlen (new_token.str);
cur_token = new_token;
}
/* Put cur_token back into the token stream and make cur_token point to
prev_token. */
static void
intel_putback_token ()
{
intel_parser.op_string -= strlen (cur_token.str);
free (cur_token.str);
cur_token = prev_token;
/* Forget prev_token. */
prev_token.code = T_NIL;
prev_token.reg = NULL;
prev_token.str = NULL;
}