binutils-gdb/gold/resolve.cc
2006-09-26 21:50:25 +00:00

483 lines
14 KiB
C++

// resolve.cc -- symbol resolution for gold
#include "gold.h"
#include "elfcpp.h"
#include "target.h"
#include "object.h"
#include "symtab.h"
namespace gold
{
// Symbol methods used in this file.
// Override the fields in Symbol.
template<int size, bool big_endian>
void
Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
Object* object)
{
this->object_ = object;
this->shnum_ = sym.get_st_shndx(); // FIXME: Handle SHN_XINDEX.
this->type_ = sym.get_st_type();
this->binding_ = sym.get_st_bind();
this->visibility_ = sym.get_st_visibility();
this->other_ = sym.get_st_nonvis();
}
// Override the fields in Sized_symbol.
template<int size>
template<bool big_endian>
void
Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
Object* object)
{
this->override_base(sym, object);
this->value_ = sym.get_st_value();
this->size_ = sym.get_st_size();
}
// Resolve a symbol. This is called the second and subsequent times
// we see a symbol. TO is the pre-existing symbol. SYM is the new
// symbol, seen in OBJECT.
template<int size, bool big_endian>
void
Symbol_table::resolve(Sized_symbol<size>* to,
const elfcpp::Sym<size, big_endian>& sym,
Object* object)
{
if (object->target()->has_resolve())
{
Sized_target<size, big_endian>* sized_target;
#ifdef HAVE_MEMBER_TEMPLATE_SPECIFICATIONS
sized_target = object->sized_target<size, big_endian>();
#else
Target* target = object->target();
assert(target->get_size() == size);
assert(target->is_big_endian() ? big_endian : !big_endian);
sized_target = static_cast<Sized_target<size, big_endian>*>(target);
#endif
sized_target->resolve(to, sym, object);
return;
}
// Build a little code for each symbol.
// Bit 0: 0 for global, 1 for weak.
// Bit 1: 0 for regular object, 1 for shared object
// Bits 2-3: 0 for normal, 1 for undefined, 2 for common
// This gives us values from 0 to 11:
enum
{
DEF = 0,
WEAK_DEF = 1,
DYN_DEF = 2,
DYN_WEAK_DEF = 3,
UNDEF = 4,
WEAK_UNDEF = 5,
DYN_UNDEF = 6,
DYN_WEAK_UNDEF = 7,
COMMON = 8,
WEAK_COMMON = 9,
DYN_COMMON = 10,
DYN_WEAK_COMMON = 11
};
int tobits;
switch (to->binding())
{
case elfcpp::STB_GLOBAL:
tobits = 0;
break;
case elfcpp::STB_WEAK:
tobits = 1;
break;
case elfcpp::STB_LOCAL:
// We should only see externally visible symbols in the symbol
// table.
abort();
default:
// Any target which wants to handle STB_LOOS, etc., needs to
// define a resolve method.
abort();
}
if (to->object() != NULL && to->object()->is_dynamic())
tobits |= (1 << 1);
switch (to->shnum())
{
case elfcpp::SHN_UNDEF:
tobits |= (1 << 2);
break;
case elfcpp::SHN_COMMON:
tobits |= (2 << 2);
break;
default:
if (to->type() == elfcpp::STT_COMMON)
tobits |= (2 << 2);
break;
}
int frombits;
switch (sym.get_st_bind())
{
case elfcpp::STB_GLOBAL:
frombits = 0;
break;
case elfcpp::STB_WEAK:
frombits = 1;
break;
case elfcpp::STB_LOCAL:
fprintf(stderr,
_("%s: %s: invalid STB_LOCAL symbol %s in external symbols\n"),
program_name, object->name().c_str(), to->name());
gold_exit(false);
default:
fprintf(stderr,
_("%s: %s: unsupported symbol binding %d for symbol %s\n"),
program_name, object->name().c_str(),
static_cast<int>(sym.get_st_bind()), to->name());
gold_exit(false);
}
if (object->is_dynamic())
{
frombits |= (1 << 1);
// Record that we've seen this symbol in a dynamic object.
to->set_in_dyn();
}
switch (sym.get_st_shndx())
{
case elfcpp::SHN_UNDEF:
frombits |= (1 << 2);
break;
case elfcpp::SHN_COMMON:
frombits |= (2 << 2);
break;
default:
if (sym.get_st_type() == elfcpp::STT_COMMON)
frombits |= (2 << 2);
break;
}
// FIXME: Warn if either but not both of TO and SYM are STT_TLS.
// We use a giant switch table for symbol resolution. This code is
// unwieldy, but: 1) it is efficient; 2) we definitely handle all
// cases; 3) it is easy to change the handling of a particular case.
// The alternative would be a series of conditionals, but it is easy
// to get the ordering wrong. This could also be done as a table,
// but that is no easier to understand than this large switch
// statement.
switch (tobits * 16 + frombits)
{
case DEF * 16 + DEF:
// Two definitions of the same symbol.
fprintf(stderr, "%s: %s: multiple definition of %s\n",
program_name, object->name().c_str(), to->name());
// FIXME: Report locations. Record that we have seen an error.
return;
case WEAK_DEF * 16 + DEF:
// We've seen a weak definition, and now we see a strong
// definition. In the original SVR4 linker, this was treated as
// a multiple definition error. In the Solaris linker and the
// GNU linker, a weak definition followed by a regular
// definition causes the weak definition to be overridden. We
// are currently compatible with the GNU linker. In the future
// we should add a target specific option to change this.
// FIXME.
to->override(sym, object);
return;
case DYN_DEF * 16 + DEF:
case DYN_WEAK_DEF * 16 + DEF:
// We've seen a definition in a dynamic object, and now we see a
// definition in a regular object. The definition in the
// regular object overrides the definition in the dynamic
// object.
to->override(sym, object);
return;
case UNDEF * 16 + DEF:
case WEAK_UNDEF * 16 + DEF:
case DYN_UNDEF * 16 + DEF:
case DYN_WEAK_UNDEF * 16 + DEF:
// We've seen an undefined reference, and now we see a
// definition. We use the definition.
to->override(sym, object);
return;
case COMMON * 16 + DEF:
case WEAK_COMMON * 16 + DEF:
case DYN_COMMON * 16 + DEF:
case DYN_WEAK_COMMON * 16 + DEF:
// We've seen a common symbol and now we see a definition. The
// definition overrides. FIXME: We should optionally issue a
// warning.
to->override(sym, object);
return;
case DEF * 16 + WEAK_DEF:
case WEAK_DEF * 16 + WEAK_DEF:
// We've seen a definition and now we see a weak definition. We
// ignore the new weak definition.
return;
case DYN_DEF * 16 + WEAK_DEF:
case DYN_WEAK_DEF * 16 + WEAK_DEF:
// We've seen a dynamic definition and now we see a regular weak
// definition. The regular weak definition overrides.
to->override(sym, object);
return;
case UNDEF * 16 + WEAK_DEF:
case WEAK_UNDEF * 16 + WEAK_DEF:
case DYN_UNDEF * 16 + WEAK_DEF:
case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
// A weak definition of a currently undefined symbol.
to->override(sym, object);
return;
case COMMON * 16 + WEAK_DEF:
case WEAK_COMMON * 16 + WEAK_DEF:
// A weak definition does not override a common definition.
return;
case DYN_COMMON * 16 + WEAK_DEF:
case DYN_WEAK_COMMON * 16 + WEAK_DEF:
// A weak definition does override a definition in a dynamic
// object. FIXME: We should optionally issue a warning.
to->override(sym, object);
return;
case DEF * 16 + DYN_DEF:
case WEAK_DEF * 16 + DYN_DEF:
case DYN_DEF * 16 + DYN_DEF:
case DYN_WEAK_DEF * 16 + DYN_DEF:
// Ignore a dynamic definition if we already have a definition.
return;
case UNDEF * 16 + DYN_DEF:
case WEAK_UNDEF * 16 + DYN_DEF:
case DYN_UNDEF * 16 + DYN_DEF:
case DYN_WEAK_UNDEF * 16 + DYN_DEF:
// Use a dynamic definition if we have a reference.
to->override(sym, object);
return;
case COMMON * 16 + DYN_DEF:
case WEAK_COMMON * 16 + DYN_DEF:
case DYN_COMMON * 16 + DYN_DEF:
case DYN_WEAK_COMMON * 16 + DYN_DEF:
// Ignore a dynamic definition if we already have a common
// definition.
return;
case DEF * 16 + DYN_WEAK_DEF:
case WEAK_DEF * 16 + DYN_WEAK_DEF:
case DYN_DEF * 16 + DYN_WEAK_DEF:
case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
// Ignore a weak dynamic definition if we already have a
// definition.
return;
case UNDEF * 16 + DYN_WEAK_DEF:
case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
case DYN_UNDEF * 16 + DYN_WEAK_DEF:
case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
// Use a weak dynamic definition if we have a reference.
to->override(sym, object);
return;
case COMMON * 16 + DYN_WEAK_DEF:
case WEAK_COMMON * 16 + DYN_WEAK_DEF:
case DYN_COMMON * 16 + DYN_WEAK_DEF:
case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
// Ignore a weak dynamic definition if we already have a common
// definition.
return;
case DEF * 16 + UNDEF:
case WEAK_DEF * 16 + UNDEF:
case DYN_DEF * 16 + UNDEF:
case DYN_WEAK_DEF * 16 + UNDEF:
case UNDEF * 16 + UNDEF:
case WEAK_UNDEF * 16 + UNDEF:
case DYN_UNDEF * 16 + UNDEF:
case DYN_WEAK_UNDEF * 16 + UNDEF:
case COMMON * 16 + UNDEF:
case WEAK_COMMON * 16 + UNDEF:
case DYN_COMMON * 16 + UNDEF:
case DYN_WEAK_COMMON * 16 + UNDEF:
// A new undefined reference tells us nothing.
return;
case DEF * 16 + WEAK_UNDEF:
case WEAK_DEF * 16 + WEAK_UNDEF:
case DYN_DEF * 16 + WEAK_UNDEF:
case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
case UNDEF * 16 + WEAK_UNDEF:
case WEAK_UNDEF * 16 + WEAK_UNDEF:
case DYN_UNDEF * 16 + WEAK_UNDEF:
case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
case COMMON * 16 + WEAK_UNDEF:
case WEAK_COMMON * 16 + WEAK_UNDEF:
case DYN_COMMON * 16 + WEAK_UNDEF:
case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
// A new weak undefined reference tells us nothing.
return;
case DEF * 16 + DYN_UNDEF:
case WEAK_DEF * 16 + DYN_UNDEF:
case DYN_DEF * 16 + DYN_UNDEF:
case DYN_WEAK_DEF * 16 + DYN_UNDEF:
case UNDEF * 16 + DYN_UNDEF:
case WEAK_UNDEF * 16 + DYN_UNDEF:
case DYN_UNDEF * 16 + DYN_UNDEF:
case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
case COMMON * 16 + DYN_UNDEF:
case WEAK_COMMON * 16 + DYN_UNDEF:
case DYN_COMMON * 16 + DYN_UNDEF:
case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
// A new dynamic undefined reference tells us nothing.
return;
case DEF * 16 + DYN_WEAK_UNDEF:
case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
case DYN_DEF * 16 + DYN_WEAK_UNDEF:
case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
case UNDEF * 16 + DYN_WEAK_UNDEF:
case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
case COMMON * 16 + DYN_WEAK_UNDEF:
case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
// A new weak dynamic undefined reference tells us nothing.
return;
case DEF * 16 + COMMON:
// A common symbol does not override a definition.
return;
case WEAK_DEF * 16 + COMMON:
case DYN_DEF * 16 + COMMON:
case DYN_WEAK_DEF * 16 + COMMON:
// A common symbol does override a weak definition or a dynamic
// definition.
to->override(sym, object);
return;
case UNDEF * 16 + COMMON:
case WEAK_UNDEF * 16 + COMMON:
case DYN_UNDEF * 16 + COMMON:
case DYN_WEAK_UNDEF * 16 + COMMON:
// A common symbol is a definition for a reference.
to->override(sym, object);
return;
case COMMON * 16 + COMMON:
case WEAK_COMMON * 16 + COMMON:
case DYN_COMMON * 16 + COMMON:
case DYN_WEAK_COMMON * 16 + COMMON:
case DEF * 16 + WEAK_COMMON:
case WEAK_DEF * 16 + WEAK_COMMON:
case DYN_DEF * 16 + WEAK_COMMON:
case DYN_WEAK_DEF * 16 + WEAK_COMMON:
case UNDEF * 16 + WEAK_COMMON:
case WEAK_UNDEF * 16 + WEAK_COMMON:
case DYN_UNDEF * 16 + WEAK_COMMON:
case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
case COMMON * 16 + WEAK_COMMON:
case WEAK_COMMON * 16 + WEAK_COMMON:
case DYN_COMMON * 16 + WEAK_COMMON:
case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
case DEF * 16 + DYN_COMMON:
case WEAK_DEF * 16 + DYN_COMMON:
case DYN_DEF * 16 + DYN_COMMON:
case DYN_WEAK_DEF * 16 + DYN_COMMON:
case UNDEF * 16 + DYN_COMMON:
case WEAK_UNDEF * 16 + DYN_COMMON:
case DYN_UNDEF * 16 + DYN_COMMON:
case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
case COMMON * 16 + DYN_COMMON:
case WEAK_COMMON * 16 + DYN_COMMON:
case DYN_COMMON * 16 + DYN_COMMON:
case DYN_WEAK_COMMON * 16 + DYN_COMMON:
case DEF * 16 + DYN_WEAK_COMMON:
case WEAK_DEF * 16 + DYN_WEAK_COMMON:
case DYN_DEF * 16 + DYN_WEAK_COMMON:
case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
case UNDEF * 16 + DYN_WEAK_COMMON:
case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
case COMMON * 16 + DYN_WEAK_COMMON:
case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
case DYN_COMMON * 16 + DYN_WEAK_COMMON:
case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
abort();
break;
default:
abort();
}
}
// Instantiate the templates we need. We could use the configure
// script to restrict this to only the ones needed for implemented
// targets.
template
void
Symbol_table::resolve<32, true>(
Sized_symbol<32>* to,
const elfcpp::Sym<32, true>& sym,
Object* object);
template
void
Symbol_table::resolve<32, false>(
Sized_symbol<32>* to,
const elfcpp::Sym<32, false>& sym,
Object* object);
template
void
Symbol_table::resolve<64, true>(
Sized_symbol<64>* to,
const elfcpp::Sym<64, true>& sym,
Object* object);
template
void
Symbol_table::resolve<64, false>(
Sized_symbol<64>* to,
const elfcpp::Sym<64, false>& sym,
Object* object);
} // End namespace gold.